Включение светодиода в 220в схема: Как подключить светодиоды к 220 В используя простые схемы

Содержание

Как подключить светодиоды к 220 В используя простые схемы

Достаточно часто нам приходится сталкиваться с таким вопросом — как подключить светодиоды к 220 В, или попросту к электрической сети переменного напряжения. Как таковое, прямое подключение диода напрямую к сети не несет никакой смысловой нагрузки. Даже при использовании определенных схем мы не получим необходимого эффекта.

Если нам необходимо подключить светодиод к сети постоянного напряжения, то такая задача решается очень просто — ставим ограничительный резистор и забываем. Светодиод как работал «в прямом направлении» так и будет работать. Резисторы любого номинала, а также наборами можно купить в этом магазине буквально за копейки и с бесплатной доставкой!

[contents]

Если же нам необходимо использовать сеть 220 В для подключения LED, то на него будет уже воздействовать обратная полярность. Это хорошо видно, взглянув на график синусоиды, где каждый полупериод синусоида имеет свойство менять свой знак на противоположный.

В данном случае мы не получим свечение в этом полупериоде. В принципе, ничего страшного))), но светодиод выйдет из строя очень быстро.

Вообще гасящий резистор стоит выбирать из условия расчетного напряжения в 310 В. Объяснять почему так — муторное занятие, но стоит просто это запомнить, т.к. действующее значение напряжения составляет 220 В, а амплитудное уже увеличивается на корень из двух от действующего. Т.е. таким образом мы получаем приложенное прямое и обратное напряжение к светодиоду. Резистор подбирается на 310В обратной полярности, дабы защитить светодиод. Каким образом можно произвести защиту мы посмотрим ниже. На нашем сайте есть уже подготовленный калькулятор расчета резистора для светодиода.

Как подключить светодиоды к 220 В по простой схеме, используя резисторы и диод — вариант 1


Первая схема работает по принципу гашения обратного полупериода. Подавляющее большинство полупроводников отрицательно относятся к обратному напряжение. Для блокировки его нам нужен диод.

Как правило, в большинстве случаев используют диоды типа IN4004, рассчитанный на напряжение больше 300 В.

Подключение LED по простой схеме с резистором и диодом — вариант 2


Другая простая схема показывает, как подключить светодиоды к 220 В переменного напряжения не намного сложнее и ее также можно отнести к простым схемам.

Рассмотрим принцип работы. При положительной полуволне ток идет сквозь резисторы 1 и 2, а также сам светодиод. В данном случае стоит помнить, что падение напряжения на светодиоде будет обратным для обычного диода — VD1. Как только в схему «попадает» отрицательная полуволна 220 В, ток пойдет через обычный диод и резисторы. В этом случае уже прямое падение напряжение на VD1 будет обратным по отношению к светодиоду. Все просто.

При положительной полуволне сетевого напряжения ток протекает через резисторы R1, R2 и светодиод LED1 (при этом прямое падение напряжения на светодиоде LED1 является обратным напряжением для диода VD1). При отрицательной полуволне сетевого напряжения ток протекает через диод VD1 и резисторы R1, R2 (при этом прямое падение напряжения на диоде VD1 является обратным напряжением для светодиода LED1).

Расчетная часть схемы


Номинальное напряжение сети:

UС.НОМ = 220 В

Принимается минимальное и максимальное напряжение сети (опытные данные):

UС.МИН = 170 В
UС.МАКС = 250 В

Принимается к установке светодиод LED1, имеющий максимально допустимый ток:

I

LED1.ДОП = 20 мА

Максимальный расчетный амплитудный ток светодиода LED1:

ILED1.АМПЛ.МАКС = 0,7*ILED1.ДОП = 0,7*20 = 14 мА

Падение напряжения на светодиоде LED1(опытные данные):

ULED1 = 2 В

Минимальное и максимальное действующее напряжение на резисторах R1, R2:

UR.ДЕЙСТВ.МИН = UС.МИН = 170 В
UR.ДЕЙСТВ.МАКС = UС.МАКС = 250 В

Расчетное эквивалентное сопротивление резисторов R1, R2:

RЭКВ.РАСЧ = UR.АМПЛ.МАКС/ILED1. АМПЛ.МАКС = 350/14 = 25 кОм

Максимальная суммарная мощность резисторов R1, R2:

PR.МАКС = UR.ДЕЙСТВ.МАКС

2/RЭКВ.РАСЧ = 2502/25 = 2500 мВт = 2,5 Вт

Расчетная суммарная мощность резисторов R1, R2:

PR.РАСЧ = PR.МАКС/0,7 = 2,5/0,7 = 3,6 Вт

Принимается параллельное соединение двух резисторов типа МЛТ-2, имеющих суммарную максимально допустимую мощность:

PR.ДОП = 2·2 = 4 Вт

Расчетное сопротивление каждого резистора:

RРАСЧ = 2*RЭКВ.РАСЧ = 2*25 = 50 кОм

Принимается ближайшее большее стандартное сопротивление каждого резистора:

R1 = R2 = 51 кОм

Эквивалентное сопротивление резисторов R1, R2:

RЭКВ = R1/2 = 51/2 = 26 кОм

Максимальная суммарная мощность резисторов R1, R2:

PR.МАКС = UR.ДЕЙСТВ.

МАКС2/RЭКВ = 2502/26 = 2400 мВт = 2,4 Вт

Минимальный и максимальный амплитудный ток светодиода HL1 и диода VD1:

ILED1.АМПЛ.МИН = IVD1.АМПЛ.МИН = UR.АМПЛ.МИН/RЭКВ = 240/26 = 9,2 мА
ILED1.АМПЛ.МАКС = IVD1.АМПЛ.МАКС = UR.АМПЛ.МАКС/RЭКВ = 350/26 = 13 мА

Минимальный и максимальный средний ток светодиода HL1 и диода VD1:

ILED1.СР.МИН = IVD1.СР.МИН = ILED1.ДЕЙСТВ.МИНФ = 3,3/1,1 = 3,0 мА
ILED1.СР.МАКС = IVD1.СР.МАКС = ILED1.ДЕЙСТВ.МАКСФ = 4,8/1,1 = 4,4 мА

Обратное напряжение диода VD1:

UVD1.ОБР = ULED1.ПР = 2 В

Расчетные параметры диода VD1:

UVD1.РАСЧ = UVD1.ОБР

/0,7 = 2/0,7 = 2,9 В
IVD1.РАСЧ = UVD1.АМПЛ.МАКС/0,7 = 13/0,7 = 19 мА

Принимается диод VD1 типа Д9В, имеющий следующие основные параметры:

UVD1. ДОП = 30 В
IVD1.ДОП = 20 мА
I0.МАКС = 250 мкА

Минусы использования схемы подключения светодиодов к 220 В по варианту 2


Главные недостатки подключения светодиодов по этой схеме — малая яркость светодиодов, за счет малого тока. ILED1.СР = (3,0-4,4) мА и большая мощность на резисторах: R1, R2: PR.МАКС = 2,4 Вт.

Вариант 3 подключения LEDs к электрической сети переменного напряжения 220 В


При положительном полупериоде ток протекает через резистор R1, диод и светодиод. При отрицательном ток не протекает, т.к. диод в этом случае включается в обратное направление.

Расчет параметров схемы аналогичен второму варианту. Кому надо — посчитает и сравнит. Разница небольшая.

Минусы подключения по 3 варианту


Если самые «пытливые умы» уже посчитали, то могут сравнить данные со вторым вариантом. Кому лень — придется поверить на слово. Минус такого подключения — также низкая яркость светодиода, т. к. ток протекающий через полупроводник составляет всего ILED1.СР = (2,8-4,2) мА.

Зато при такой схеме мы получаем заметное снижение мощности резистора: РR1.МАКС = 1,2 Вт вместо 2,4 Вт полученных ранее.

Подключение светодиода на 220 В с использованием диодного моста — 4 вариант


Как видно на графической картинке, в данном случае для подключения на 220 мы используем резисторы и диодный мост.

В данном случае ток через 2 резистора и светодиод ток будет протекать как при положительной, так и при отрицательной полуволне синусоиды за счет использования выпрямительного моста на диодах VD1-VD4.

UVD.РАСЧ = UVD.ОБР/0,7 = 2,6/0,7 = 3,7 В
IVD.РАСЧ = UVD.АМПЛ.МАКС/0,7 = 13/0,7 = 19 мА

Принимаются диоды VD1-VD4 типа Д9В, имеющие следующие основные параметры:

UVD.ДОП = 30 В
IVD.ДОП = 20 мА
I0.МАКС = 250 мкА

Недостатки схемы подключения по 4 варианту


Если все рассчитать по приведенным выше формулам, то можно провести аналогию со 2 вариантом подключения. Минусом будет большая мощность на резисторах: PR.МАКС = 2,4 Вт.

Однако при такой схеме мы получим заметное увеличение яркости светодиода: LED1: ILED1.СР = (5,9-8,7) мА вместо (2,8-4,2) мА

В принципе, это самые распространенные схемы, которые нам показывают как подключить светодиоды к 220 В с применением обычного диода и резисторов. Для простоты понимания были приведены расчеты. Не для всех, может быть понятные, но кому надо, тот найдет, прочитает и разберется. Ну а если нет, то достаточно будет простой графической части.

Как подключить светодиод к 220 В используя конденсатор


Выше мы посмотрели, как легко, используя только диоды и резисторы, подключить к сети 220 В любой светодиод. Это были простые схемы. Сейчас посмотрим на более сложные, но лучшие в плане реализации и долговечности. Для этого нам понадобится уже конденсатор.

Токоограничивающий элемент — конденсатор. На схеме — C1. Конденсатор должен быть рассчитан на работу с напряжением не менее 400 В.

После зарядки последнего ток через него будет ограничивать резистор.

 Подключение светодиода к сети 220 В на примере выключателя с подсветкой


Сейчас уже никого не удивишь выключателем с интегрированной подсветкой в виде светодиода. Разобрав его и разобравшись мы получим еще один способ, благодаря которому можем подключить любой светодиод к сети 220 В.

Во всех выключателях с подсветкой используется резистор с номиналом не менее 20 кОм. Ток в этом случае ограничивается порядка 1А. При включении в сеть такой светодиод будет светиться. Ночью его легко можно различить на стене. Обратный же ток в этом случае будет очень маленьким и не сможет повредить полупроводник. В принципе, такая схема также имеет право на существование, но свет от такого диода будет все-таки ничтожно маленьким. И стоит ли овчинка выделки — не понятно.

Видео на тему подключения светодиода к сети 220 В


Ну и в конце всего длинного поста посмотрим видео на тему : «как подключить светодиоды к 220 В». Для тех, кому лень все читать было.

Как подключить светодиод к 220 В ⋆ diodov.net

У многих начинающих радиолюбителей возникает мысль, как подключить светодиод к

220 В без применения трансформатора. Ведь габариты даже самого маломощного трансформатора сравнительно велики. Это в первую очередь вызвано высоким сетевым напряжением, в результате чего первичная обмотка трансформатора имеет большое число витков.

Основной проблемой подключения светодиода к 220 вольтам на прямую, без трансформатора является ограничение ток, протекающего через него вследствие проложенного напряжения. Оценим его величину для понимания сети происходящего.

Светодиод – это светоизлучающий полупроводниковый прибор, как и «обычный» диод пропускает ток лишь в одном направлении. Поскольку переменное напряжение изменяет свое направление дважды за период, то в один полупериод ток протекает, а во второй – нет. Поэтому, чтобы определить средний ток, протекающий через светодиод, следует действующее напряжения 220 В разделить на два. Получим 110 В. Эту величину возьмем за основу при дальнейших расчетах.

Сопротивление любого полупроводника нелинейное, т.е. нелинейно зависит от величины приложенного напряжения. Не вникая в подробности, с приемлемой точностью примем 1,7 Ом. Тогда ток, протекающий через полупроводниковый кристалл равен 110/1,7 = 65 А! Естественно, такой огромный ток сожжёт полупроводниковый прибор. Поэтому обязательно нужно последовательно со светодиодом включать какое-либо сопротивление.

Если в цепи постоянного напряжения в качестве сопротивления можно использовать только резистор, то на переменном напряжении есть возможность применять еще и конденсатор или катушку индуктивности. Их еще называют реактивными элементами. В один полупериод времени они накапливают энергию (в виде электрического или магнитного поля), а в следующий полупериод возвращают ее в направлении источника питания. При этом электрическая энергия практически не потребляется.

Применение катушки индуктивности не рассматривается, по ряду причин, связанных с ее нагревом.

Как подключить светодиод к 220 В с помощью резистора

Для большей наглядности изобразим расчетную схему.

Такая схема очень распространена в цепях индикации работы электротехнических устройств, например, подсветки выключателя или кнопки электрического чайника. Главным достоинством данной схемы является ее простота, а отсюда и надежность.

С целью сравнения полученных результатов возьмем два светодиода. Один индикаторного типа, а второй более мощный.

Определим сопротивление R1, необходимое для первого светодиода:

Сетевое напряжение делим на два по уже указанной выше причине.

Мощность рассеивания резистор равна:

Принимаем 2 ватта, поскольку такой номинал является ближайшим в сторону увеличения из стандартного ряда мощностей.

Теперь определим сопротивление резистора, соединенного последовательно со вторым светодиодом:

Мощность рассеивания равна:

Резисторы с такой мощностью рассеивания имеют значительные размеры и немалую стоимость, поэтому не рационально их применение в цепи с мощными светодиодами. Более эффективным будет замена его конденсатором.

Для защиты полупроводникового прибора встречно-параллельно подсоединяют диод.

Его назначение состоит в следующем. В проводящий полупериод на светодиоде падает напряжения порядка 2…3 В. В не проводящий полупериод он заперт и к его выводам прикладывается обратное полное действующее напряжение 220 В, амплитуда которого достигает 310 В. Поэтому существует вероятность пробоя полупроводникового прибора. Однако если создать путь для протекания тока в этот непроводящий полупериод времени, то снизится амплитуда опасного обратного напряжения. Именно это достигается за счет применения шунтирующего диода.

Кстати, вместо него можно применять еще один светодиод, желательно со схожими параметрами.

Визуально нам будет казаться, что оба они светят все время, но на самом деле они мерцают с частотой 50 Гц. Причем, когда первый светит, второй гаснет и наоборот, т.е. работают в противофазе.

В этом случае необходимо учесть, что через резистор ток протекает в оба полупериода времени, поэтому его сопротивление нужно снизить вдвое. Далее в последующих расчетах мы будем пользоваться схемой без шунтирующего диода.

Как подключить светодиод к 220 В с помощью конденсатора

Выше уже было сказано, что конденсатор обладает реактивным сопротивлением переменному току, т.е. он не потребляет активную мощность, как резистор, поэтому практически не нагревается. Постоянный ток он не пропускает и является для него огромным сопротивлением, которое можно приравнять к разрыву цепи.

Если же на конденсатор подать переменное напряжение, то через него будет, упрощенно говоря протекать ток. Причем сопротивление этого реактивного элемента обратно пропорционально зависит от частоты f, т.е. с ростом f оно снижается. Таким же образом сопротивление зависит и от емкости:

Из приведенной формулы нам необходимо найти значение емкости:

Сопротивления Xс мы принимаем аналогично ранее найденным для резисторов: XС1 = R1 = 11000 Ом; XС2 = R2 = 306 Ом.

Подставляем данные значения и находим емкости:

Внимание! Все конденсаторы, подключаемые в сеть 220 В, должны быть рассчитаны на напряжение не менее 400 В!!!

Главным и очень существенным недостатком такой схемы является протекание значительного тока в момент подключения к сети. При этом величина его может превышать в несколько раз номинальный ток светодиода, в результате последний может выйти из строя.

Следует учитывать, что чем больше емкость конденсатора, тем выше значение тока в момент включения. Поэтому для защиты полупроводникового прибора рекомендуется последовательно с конденсатором включать резистор.

Исходя из тех соображений, что резистор с мощностью рассеивания P = 5 Вт имеет небольшие габариты, то рассчитаем величину его сопротивления при данных ограничениях для схемы с более мощным светодиодом:

Из номинального ряда сопротивлений выбираем ближайшее значение 39 Ом.

Конечно, коэффициент полезного действия данной схемы очень снизится, поскольку для питания светодиода мощностью 1 Вт необходимо затратить 6 Вт с источника питания. 5 ватт будут попросту греть резистор.

Еще статьи по данной теме

способы интеграции, схемы питания и особенности подключения

Светодиоды — неотъемлемая часть электроники, позволяющая осуществлять индикацию состояния приборов. В зависимости от цвета и расположения на корпусе светоизлучающие диоды сигнализируют о состоянии зарядки, подключении гаджета к сети и т. п. Но бывают ситуации, когда в приборе отсутствует штатная сигнализация, а человеку она нужна. Тогда и встаёт вопрос о том, как включить светодиод в 220 В, не используя понижающих напряжение трансформаторных устройств.

Технические особенности диода

Светодиод представляет собой радиотехнический элемент, пропускающий ток, как и стандартный диод, только в одном направлении, но при этом излучающий электромагнитные волны в видимом диапазоне. Если осуществлять интеграцию такого диода в сеть с постоянным током, то важно не перепутать «плюс» и «минус». Внедрение же светового диода в переменную сеть и решение вопроса о том, как запитать светодиод от сети 220 В, где периодически (с частотой 50 Гц) происходит изменение направления тока и напряжения, потребует дополнительных расчётов.

Чтобы определить среднее значение тока и подключить светодиод к сети 220 вольт, необходимо разделить напряжение действующей сети пополам, то есть 220 В / 2 = 110 В. Это значение берут за основу для последующих расчётов.

Электрическое сопротивление светодиода, как и любого полупроводникового элемента, не линейно и зависит от величины разности потенциалов, приложенной к нему. Для сети с переменным током и напряжением 220 В с приемлемой точностью можно взять усреднённое значение в 1,7 Ом. Тогда, согласно закону Ома, величина тока, который будет проходить через полупроводниковый кристалл диода, если его подключить напрямую к сети, будет примерно равна 65 ампер (110/1,7).

Такой показатель просто приведёт к сжиганию прибора. Для уменьшения величины тока, проходящего через полупроводник, потребуется последовательное включение в цепь рядом со световым диодом сопротивления.

Для этой цели применяют исключительно резисторы в цепях с постоянным напряжением, а с переменным током есть возможность применять так называемые реактивные сопротивления — конденсаторы и катушки индуктивности. Сопротивление они создают благодаря накапливанию электромагнитной энергии в первый полупериод (ток протекает в одном направлении) и возвращению её в сеть во втором полупериоде (при обратном течении электрического тока).

Подключение через резистор

Подобная схема обычно реализуется для индикации работы электротехнических устройств. Она используется в световом сигнале, свидетельствующем о включении в сеть электрочайника, в подсветке кнопки выключателя и т. д. Главными достоинствами этого варианта интеграции светящегося диода в сеть считаются относительная дешевизна, простота и надёжность.

Но есть в этой схеме один нюанс. Он заключается в необходимости гашения обратного напряжения, так как его избыток может привести к выходу из строя полупроводникового прибора. С этой задачей легко справляются кремниевые диоды, которые способны пропускать ток по величине не меньше того, что проходит в сети. Подключить их можно в цепь двумя способами:

  • последовательно, то есть после резистора и перед светодиодом, но соблюдая полярность;
  • параллельно со светящимся диодом, но изменив полярность на 180 градусов.

Некоторые специалисты считают, что использование гасящих диодов необязательно, но практика показывает, что обратный ток в некоторых случаях вызывает тепловой пробой p-n перехода. Поэтому дополнительные затраты на приобретение кремниевых диодов вполне оправданы для реализации подключения светодиода к сети 220 В, схема которого содержит гасящий резистор.

Применение конденсатора

Негативной стороной использования резистора для уменьшения тока при включении в цепь 220 В светодиода является довольно существенное рассеивание мощности. Эта проблема становится заметной при нагрузке с большим током потребления. Решением является схема подключения светодиода к 220 В, где реализуется интеграция неполярного конденсатора вместо резистора. Сопротивление конденсаторов имеет реактивный характер, что исключает рассеивание мощности.

Подключение конденсатора в схему светодиода с целью токоограничения имеет один нюанс, который может привести к выходу из строя светового диода, — сохранение накопленного заряда после отключения питания сети. Из-за этого в схему с неполярным конденсатором добавляют:

  • два резистора;
  • диод, подключённый параллельно светодиоду, но в обратном направлении.

Резисторы (один — параллельно с конденсатором, а второй — последовательно) защищают всю схему от бросков напряжения при подаче напряжения из сети, а диод является защитой светодиода от разности потенциалов с обратной полярностью.

Эти способы подключения применимы к маломощным светодиодам, которые используются для индикации или подсветки. Подключение мощных диодных элементов, предназначенных для светодиодных ламп освещения, осуществляется схемами с использованием спецблоков питания (драйверов).

Как подключить диоды к 220в

Потому что нужно грамотно решить сразу две задачи:

  1. Ограничить прямой ток через светодиод, чтобы он не сгорел.
  2. Обеспечить защиту светодиода от пробоя обратным током.

Если проигнорировать любой из этих пунктов, светодиод моментально накроется медным тазом.

В самом простейшем случае ограничить ток через светодиод можно резистором и/или конденсатором. А предотвратить пробой от обратного напряжения можно с помощью обычного диода или еще одного светодиода.

Поэтому самая простая схема подключения светодиода к 220В состоит всего из нескольких элементов:

Защитный диод может быть практически любым, т.к. его обратное напряжение никогда не будет превышать прямого напряжения на светодиоде, а ток ограничен резистором.

Сопротивление и мощность ограничительного (балластного) резистора зависит от рабочего тока светодиода и рассчитывается по закону Ома:

А мощность рассеивания резистора рассчитывается так:

P = (Uвх – ULED) 2 / R

где Uвх = 220 В,
ULED – прямое (рабочее) напряжение светодиода. Обычно оно лежит в пределах 1.5-3.5 В. Для одного-двух светодиодов им можно пренебречь и, соответственно, упростить формулу до R=Uвх/I,
I – ток светодиода. Для обычных индикаторных светодиодов ток будет 5-20 мА.

Пример расчета балластного резистора

Допустим, нам нужно получить средний ток через светодиод = 20 мА, следовательно, резистор должен быть:

R = 220В/0.020А = 11000 Ом (берем два резистора: 10 + 1 кОм)

P = (220В) 2 /11000 = 4.4 Вт (берём с запасом: 5 Вт)

Необходимое сопротивление резистора можно взять из таблицы ниже.

Таблица 1. Зависимость тока светодиода от сопротивления балластного резистора.

Сопротивление резистора, кОмАмплитудное значение тока через светодиод, мАСредний ток светодиода, мАСредний ток резистора, мАМощность резистора, Вт
437.22.551.1
24134.592
22145102.2
12269184
103111224.8
7.54115296.5
4.372255111.3
2.21415010022

Другие варианты подключения

В предыдущих схемах защитный диод был включен встречно-параллельно, однако его можно разместить и так:

Это вторая схема включения светодиодов на 220 вольт без драйвера. В этой схеме ток через резистор будет в 2 раза меньше, чем в первом варианте. А, следовательно, на нем будет выделяться в 4 раза меньше мощности. Это несомненный плюс.

Но есть и минус: к защитному диоду прикладывается полное (амплитудное) напряжение сети, поэтому любой диод здесь не прокатит. Придется подобрать что-нибудь с обратным напряжением 400 В и выше. Но в наши дни это вообще не проблема. Отлично подойдет, например, вездесущий диод на 1000 вольт – 1N4007 (КД258).

Не смотря на распространенное заблуждение, в отрицательные полупериоды сетевого напряжения, светодиод все-таки будет находиться в состоянии электрического пробоя. Но благодаря тому, что сопротивление обратносмещенного p-n-перехода защитного диода очень велико, ток пробоя будет недостаточен для вывода светодиода из строя.

Для уменьшения величины тока прикосновения нужно располовинить резистор на две части, чтобы получилось как показано на картинках:

Благодаря такому решению, даже поменяв местами фазу и ноль, ток через человека на «землю» (при случайном прикосновении) никак не сможет превысить 220/12000=0. 018А. А это уже не так опасно.

Как быть с пульсациями?

В обеих схемах светодиод будет светиться только в положительный полупериод сетевого напряжения. То есть он будет мерцать с частой 50 Гц или 50 раз в секунду, причём размах пульсаций будет равен 100% (10 мс горит, 10 мс не горит и так далее). Это будет заметно глазу.

К тому же, при подсветке мерцающими светодиодами каких-либо движущихся объектов, например, лопастей вентилятора, колес велосипеда и т.п., неизбежно будет возникать стробоскопический эффект. В некоторых случаях данный эффект может быть неприемлем или даже опасен. Например, при работе за станком может показаться, что фреза неподвижна, а на самом деле она вращается с бешенной скоростью и только и ждет, чтобы вы сунули туда пальцы.

Чтобы сделать пульсации менее заметными, можно удвоить частоту включения светодиода с помощью двухполупериодного выпрямителя (диодного моста):

Обратите внимание, что по сравнению со схемой #2 при том же самом сопротивлении резисторов, мы получили в два раза больший средний ток. И, соответственно, в четыре раза большую мощность рассеивания резисторов.

К диодному мосту при этом не предъявляется каких-либо особых требований, главное, чтобы диоды, из которых он состоит, выдерживали половину рабочего тока светодиода. Обратное напряжение на каждом из диодов будет совсем ничтожным.

Еще, как вариант, можно организовать встречно-параллельное включение двух светодиодов. Тогда один из них будет гореть во время положительной полуволны, а второй – во время отрицательной.

Фишка в том, что при таком включении максимальное обратное напряжение на каждом из светодиодов будет равно прямому напряжению другого светодиода (несколько вольт максимум), поэтому каждый из светодиодов будет надежно защищен от пробоя.

Светодиоды следует разместить как можно ближе друг к другу. В идеале – попытаться найти сдвоенный светодиод, где оба кристалла размещены в одном корпусе и у каждого свои выводы (хотя я таких ни разу не видел).

Вообще говоря, для светодиодов, выполняющих индикаторную функцию, величина пульсаций не очень-то и важна. Для них самое главное – это максимально заметная разница между включенным и выключенным состоянием (индикация вкл/выкл, воспроизведение/запись, заряд/разряд, норма/авария и т.п.)

А вот при создании светильников, всегда нужно стараться свести пульсации к минимуму. И не столько из-за опасностей стробоскопического эффекта, сколько из-за их вредного влияния на организм.

Какие пульсации считаются допустимыми?

Все зависит от частоты: чем она ниже, тем заметнее пульсации. На частотах выше 300 Гц пульсации становятся совершенно невидимыми и вообще никак не нормируются, то есть даже 100%-ные считаются нормой.

Не смотря на то, что пульсации освещенности на частотах 60-80 Гц и выше визуально не воспринимаются, тем не менее, они способны вызывать повышенную усталость глаз, общую утомляемость, тревожность, снижение производительности зрительной работы и даже головные боли.

Для предотвращения вышеперечисленных последствий, международный стандарт IEEE 1789-2015 рекомендует максимальный уровень пульсаций яркости для частоты 100 Гц – 8% (гарантированно безопасный уровень – 3%). Для частоты 50 Гц – это будут 1.25% и 0.5% соответственно. Но это для перфекционистов.

На самом деле, для того, чтобы пульсации яркости светодиода перестали хоть как-то досаждать, достаточно, чтобы они не превышали 15-20%. Именно таков уровень мерцания ламп накаливания средней мощности, а ведь на них никто и никогда не жаловался. Да и наш российский СНиП 23-05-95 допускает мерцание света в 20% (и только для особо кропотливых и ответственных работ требование повышено до 10%).

В соответствии с ГОСТ 33393-2015 «Здания и сооружения. Методы измерения коэффициента пульсации освещенности» для оценки величины пульсаций вводится специальный показатель – коэффициент пульсаций (Кп).

Коэфф. пульсаций в общем рассчитывается по сложной формуле с применением интегральной функции, но для гармонических колебаний формула упрощается до следующей:

где Емах – максимальное значение освещенности (амплитудное), а Емин – минимальное.

Мы будем использовать эту формулу для расчета емкости сглаживающего конденсатора.

Очень точно определить пульсации любого источника света можно при помощи солнечной панели и осциллографа:

Как уменьшить пульсации?

Посмотрим, как включить светодиод в сеть 220 вольт, чтобы снизить пульсации. Для этого проще всего подпаять параллельно светодиоду накопительный (сглаживающий) конденсатор:

Из-за нелинейного сопротивления светодиодов, расчет емкости этого конденсатора является довольно нетривиальной задачей.

Однако, эту задачу можно упростить, если сделать несколько допущений. Во-первых, представить светодиод в виде эквивалентного постоянного резистора:

А во-вторых, сделать вид, что яркость светодиода (а, следовательно, и освещенность) имеет линейную зависимость от тока.

Давайте попробуем приблизительно рассчитать емкость конденсатора на конкретном примере.

Расчет емкости сглаживающего конденсатора

Допустим, мы хотим получить коэфф. пульсаций 2.5% при токе через светодиод 20 мА. И пусть в нашем распоряжении оказался светодиод, на котором при токе в 20 мА падает 2 В. Частота сети, как обычно, 50 Гц.

Так как мы решили, что яркость линейно зависит от тока через светодиод, а сам светодиод мы представили в виде простого резистора, то освещенность в формуле расчета коэффициента пульсаций можем спокойно заменить на напряжение на конденсаторе:

Подставляем исходные данные и вычисляем Umin:

2.5% = (2В – Umin) / (2В + Umin) 100% => Umin = 1.9В

Период колебаний напряжения в сети равен 0.02 с (1/50).

Таким образом, осциллограмма напряжения на конденсаторе (а значит и на нашем упрощенном светодиоде) будет выглядеть примерно вот так:

Вспоминаем тригонометрию и считаем время заряда конденсатора (для простоты не будем учитывать сопротивление балластного резистора):

tзар = arccos(Umin/Umax) / 2πf = arccos(1. 9/2) / (23.141550) = 0.0010108 с

Весь остальной остаток периода кондер будет разряжаться. Причем, период в данном случае нужно сократить в два раза, т.к. у нас используется двухполупериодный выпрямитель:

tразр = Т – tзар = 0.02/2 – 0.0010108 = 0.008989 с

Осталось вычислить емкость:

C = ILED dt/dU = 0.02 0.008989/(2-1.9) = 0.0018 Ф (или 1800 мкФ)

На практике вряд ли кто-то будет ставить такой большой кондер ради одного маленького светодиодика. Хотя, если стоит задача получить пульсации в 10%, то нужно всего 440 мкФ.

Повышаем КПД

Обратили внимание, насколько большая мощность выделяется на гасящем резисторе? Мощность, которая тратится впустую. Нельзя ли ее как-нибудь уменьшить?

Оказывается, еще как можно! Достаточно вместо активного сопротивления (резистора) взять реактивное (конденсатор или дроссель).

Дроссель мы, пожалуй, сразу откинем из-за его громоздкости и возможных проблем с ЭДС самоиндукции. А насчет конденсаторов можно подумать.

Как известно, конденсатор любой емкости обладает бесконечным сопротивлением для постоянного тока. А вот сопротивление переменному току рассчитывается по этой формуле:

Rc = 1 / 2πfC

то есть, чем больше емкость C и чем выше частота тока f – тем ниже сопротивление.

Прелесть в том, что на реактивном сопротивлении и мощность тоже реактивная, то есть ненастоящая. Она как бы есть, но ее как бы и нет. На самом деле эта мощность не совершает никакой работы, а просто возвращается назад к источнику питания (в розетку). Бытовые счетчики ее не учитывают, поэтому платить за нее не придется. Да, она создает дополнительную нагрузку на сеть, но вас, как конечного потребителя, это вряд ли сильно обеспокоит =)

Таким образом, наша схема питания светодиодов от 220В своими руками приобретает следующий вид:

Но! Именно в таком виде ее лучше не использовать, так как в этой схеме светодиод уязвим для импульсных помех.

Включение или выключение распложенных на одной с вами линии мощной индуктивной нагрузки (двигатель кондиционера, компрессор холодильника, сварочный аппарат и т.п.) приводит к появлению в сети очень коротких выбросов напряжения. Конденсатор С1 представляет для них практически нулевое сопротивление, следовательно мощный импульс направится прямиком к С2 и VD5.

К сожалению, электролитические конденсаторы, из-за своей большой паразитной индуктивности, плохо справляются с ВЧ-помехами, поэтому большая часть энергии импульса пойдет через p-n-переход светодиода.

Еще один опасный момент возникает в случае включения схемы в момент пучности напряжения в сети (т.е. в тот самый момент, когда напряжение в розетке находится на пике своего значения). Т.к. С1 в этот момент полностью разряжен, то возникает слишком большой бросок тока через светодиод.

Все это со временем это приводит к прогрессирующей деградации кристалла и падению яркости свечения.

Во избежание таких печальных последствий, схему нужно дополнить небольшим гасящим резистором на 47-100 Ом и мощностью 1 Вт. Кроме того, резистор R1 будет выступать в роли предохранителя на случай пробоя конденсатора С1.

Получается, что схема включения светодиода в сеть 220 вольт должна быть такой:

И остается еще один маленький нюанс: если выдернуть эту схему из розетки, то на конденсаторе С1 останется какой-то заряд. Остаточное напряжение будет зависеть от того, в какой момент была разорвана цепь питания и в отдельных случаях может превышать 300 вольт.

А так как конденсатору некуда разряжаться, кроме как через свое внутреннее сопротивление, то заряд может сохраняться очень долго (сутки и более). И все это время кондер будет ждать вас или вашего ребенка, через которого можно будет как следует разрядиться. Причем, для того, чтобы получить удар током, не нужно лезть в недра схемы, достаточно просто прикоснуться к обоим контактам штепсельной вилки.

Чтобы помочь кондеру избавиться от ненужного заряда, подключим параллельно ему любой высокоомный резистор (например, на 1 МОм). Этот резистор не будет оказывать никакого влияния на расчетный режим работы схемы. Он даже греться не будет.

Таким образом, законченная схема подключения светодиода к сети 220В (с учетом всех нюансов и доработок) будет выглядеть так:

Значение емкости конденсатора C1 для получения нужного тока через светодиод можно сразу взять из Таблицы 2, а можно рассчитать самостоятельно.

Расчет гасящего конденсатора для светодиода

Не буду приводить утомляющие математические выкладки, дам сразу готовую формулу емкости (в Фарадах):

C = I / (2πf√(U 2 вх – U 2 LED)) [Ф],

где I – ток через светодиод, f – частота тока (50 Гц), Uвх – действующее значение напряжения сети (220В), ULED – напряжение на светодиоде.

Если расчет ведется для небольшого числа последовательно включенных светодиодов, то выражение √(U 2 вх – U 2 LED) приблизительно равно Uвх, следовательно формулу можно упростить:

C ≈ 3183 ⋅ ILED / Uвх [мкФ]

а, раз уж мы делаем расчеты под Uвх = 220 вольт, то:

C ≈ 15 ⋅ ILED [мкФ]

Таким образом, при включении светодиода на напряжение 220 В, на каждые 100 мА тока потребуется примерно 1. 5 мкФ (1500 нФ) емкости.

Кто не в ладах с математикой, заранее посчитанные значения можно взять из таблицы ниже.

Таблица 2. Зависимость тока через светодиоды от емкости балластного конденсатора.

C115 nF68 nF100 nF150 nF330 nF680 nF1000 nF
ILED1 mA4.5 mA6.7 mA10 mA22 mA45 mA67 mA

Немного о самих конденсаторах

В качестве гасящих рекомендуется применять помехоподавляющие конденсаторы класса Y1, Y2, X1 или X2 на напряжение не менее 250 В. Они имеют прямоугольный корпус с многочисленными обозначениями сертификатов на нем. Выглядят так:

Если вкратце, то:

  • X1 – используются в промышленных устройствах, подключаемых к трехфазной сети. Эти конденсаторы гарантированно выдерживают всплеск напряжения в 4 кВ;
  • X2 – самые распространенные. Используются в бытовых приборах с номинальным напряжением сети до 250 В, выдерживают скачек до 2.5 кВ;
  • Y1 – работают при номинальном сетевом напряжении до 250 В и выдерживают импульсное напряжение до 8 кВ;
  • Y2 – довольно-таки распространенный тип, может быть использован при сетевом напряжении до 250 В и выдерживает импульсы в 5 кВ.

Допустимо применять отечественные пленочные конденсаторы К73-17 на 400 В (а лучше – на 630 В).

Сегодня широкое распространение получили китайские «шоколадки» (CL21), но в виду их крайне низкой надежности, очень рекомендую удержаться от соблазна применять их в своих схемах. Особенно в качестве балластных конденсаторов.

Итак, мы рассмотрели, как подключать светодиод к 220В (схемы и их расчет). Все приведенные в данной статье примеры хорошо подходят для одного или нескольких маломощных светодиодов, но совершенно нецелесообразны для мощных светильников, например, ламп или прожекторов – для них лучше использовать полноценные схемы, которые называются драйверами.

Обычно светодиоды подключаются к 220В при помощи драйвера, рассчитанного под их характеристики. Но если требуется подключить только один маломощный светодиод, например, в качестве индикатора, то применение драйвера становится нецелесообразным. В таких случаях возникает вопрос — как подключить светодиод к 220 В без дополнительного блока питания.

Основы подключения к 220 В

В отличие от драйвера, который питает светодиод постоянным током и сравнительно небольшим напряжением (единицы-десятки вольт), сеть выдает переменное синусоподобное напряжение с частотой 50 Гц и средним значением 220 В. Поскольку светодиод пропускает ток только в одну сторону, то светиться он будет только на определенных полуволнах:

То есть led при таком питании светится не постоянно, а мигает с частотой 50 Гц. Но из-за инерционности человеческого зрения это не так заметно.

В то же время напряжение обратной полярности, хотя и не заставляет led светиться, все же прикладывается к нему и может вывести из строя, если не предпринять никаких защитных мер.

Способы подключения светодиода к сети 220 В

Самый простой способ (читайте про все возможные способы подключения led) – подключение при помощи гасящего резистора, включенного последовательно со светодиодом. При этом нужно учесть, что 220 В – это среднеквадратичное значение U в сети. Амплитудное значение составляет 310 В, и его нужно учитывать при расчете сопротивления резистора.

Кроме того, необходимо обеспечить защиту светоизлучающего диода от обратного напряжения той же величины. Это можно сделать несколькими способами.

Последовательное подключение диода с высоким напряжением обратного пробоя (400 В и более).

Рассмотрим схему подключения более подробно.

В схеме используется выпрямительный диод 1N4007 с обратным напряжением 1000 В. При изменении полярности все напряжение будет приложено именно к нему, и led оказывается защищенным от пробоя.

Такой вариант подключения наглядно показан в этом ролике:

Также здесь описывается, как определить расположение анода и катода у стандартного маломощного светодиода и рассчитать сопротивление гасящего резистора.

Шунтирование светодиода обычным диодом.

Здесь подойдет любой маломощный диод, включенный встречно-параллельно с led. Обратное напряжение при этом будет приложено к гасящему резистору, т.к. диод оказывается включенным в прямом направлении.

Встречно-параллельное подключение двух светодиодов:

Схема подключения выглядит следующим образом:

Принцип аналогичен предыдущему, только здесь светоизлучающие диоды горят каждый на своем участке синусоиды, защищая друг друга от пробоя.

Обратите внимание, что подключение светодиода к питанию 220В без защиты ведет к быстрому выходу его из строя.

Схемы подключения к 220В при помощи гасящего резистора обладают одним серьезным недостатком: на резисторе выделяется большая мощность.

Например, в рассмотренных случаях используется резистор сопротивлением 24 Ком, что при напряжении 220 В обеспечивает ток около 9 мА. Таким образом, мощность, рассеиваемая на резисторе, составляет:

9 * 9 * 24 = 1944 мВт, приблизительно 2 Вт.

То есть для оптимального режима работы потребуется резистор мощностью не менее 3 Вт.

Если же светодиодов будет несколько, и они будут потреблять больший ток, то мощность будет расти пропорционально квадрату тока, что сделает применение резистора нецелесообразным.

Применение резистора недостаточной мощности ведет к его быстрому перегреву и выходу из строя, что может вызвать короткое замыкание в сети.

В таких случаях в качестве токоограничивающего элемента можно использовать конденсатор. Преимущество этого способа в том, что на конденсаторе не рассеивается мощность, поскольку его сопротивление носит реактивный характер.

Здесь показана типовая схема подключения светоизлучающего диода в сеть 220В при помощи конденсатора. Поскольку конденсатор после отключения питания может хранить в себе остаточный заряд, представляющий опасность для человека, его необходимо разряжать при помощи резистора R1. R2 защищает всю схему от бросков тока через конденсатор при включении питания. VD1 защищает светодиод от напряжения обратной полярности.

Конденсатор должен быть неполярным, рассчитанным на напряжение не менее 400 В.

Применение полярных конденсаторов (электролит, тантал) в сети переменного тока недопустимо, т.к. ток, проходящий через них в обратном направлении, разрушает их конструкцию.

Емкость конденсатора рассчитывается по эмпирической формуле:

где U – амплитудное напряжение сети (310 В),

I – ток, проходящий через светодиод (в миллиамперах),

Uд – падение напряжения на led в прямом направлении.

Допустим, нужно подключить светодиод с падением напряжения 2 В при токе 9 мА. Исходя из этого, рассчитаем емкость конденсатора при подключении одного такого led к сети:

Данная формула действительна только для частоты колебаний напряжения в сети 50 Гц. На других частотах потребуется пересчет коэффициента 4,45.

Нюансы подключения к сети 220 В

При подключении led к сети 220В существуют некоторые особенности, связанные с величиной проходящего тока. Например, в распространенных выключателях освещения с подсветкой, светодиод включается по схеме, изображенной ниже:

Как видно, здесь отсутствуют защитные диоды, а сопротивление резистора выбрано таким образом, чтобы ограничить прямой ток led на уровне около 1 мА. Нагрузка в виде лампы также служит ограничителем тока. При такой схеме подключения светодиод будет светиться тускло, но достаточно для того, чтобы разглядеть выключатель в комнате в ночное время. Кроме того, обратное напряжение будет приложено в основном к резистору при разомкнутом ключе, и светоизлучающий диод оказывается защищенным от пробоя.

Если требуется подключить к 220В несколько светодиодов, можно включить их последовательно на основе схемы с гасящим конденсатором:

При этом все led должны быть рассчитаны на одинаковый ток для равномерного свечения.

Можно заменить шунтирующий диод встречно-параллельным подключением светодиодов:

В обоих случаях нужно будет пересчитать величину емкости конденсатора, т.к. возрастет напряжение на светодиодах.

Параллельное (не встречно-параллельное) подключение led в сеть недопустимо, поскольку при выходе одной цепи из строя через другую потечет удвоенный ток, что вызовет перегорание светодиодов и последующее короткое замыкание.

Еще несколько вариантов недопустимого подключения светоизлучающих диодов в сеть 220В описаны в этом видео:

Здесь показано, почему нельзя:

  • включать светодиод напрямую;
  • последовательно соединять светодиоды, рассчитанные на разный ток;
  • включать led без защиты от обратного напряжения.

Безопасность при подключении

При подключении к 220В следует учитывать, что выключатель освещения обычно размыкает фазный провод. Ноль при этом проводится общим по всему помещению. Кроме того, электросеть зачастую не имеет защитного заземления, поэтому даже на нулевом проводе присутствует некоторое напряжение относительно земли. Также следует иметь в виду, что в некоторых случаях провод заземления подключается к батареям отопления или водопроводным трубам. Поэтому при одновременном контакте человека с фазой и батареей, особенно при монтажных работах в ванной комнате, есть риск попасть под напряжение между фазой и землей.

В связи с этим, при подключении в сеть лучше отключать и ноль, и фазу при помощи пакетного автомата во избежание поражения током при прикосновении к токоведущим проводам сети.

Заключение

Описанные здесь способы подключения светодиодов в сеть 220В целесообразно применять только при использовании маломощных светоизлучающих диодов в целях подсветки или индикации. Мощные led так подключать нельзя, поскольку нестабильность сетевого напряжения приводит к их быстрой деградации и выходу из строя. В таких случаях нужно применять специализированные блоки питания светодиодов – драйверы.

Без светодиодов трудно обойтись при проектировании электронной аппаратуры, а также при изготовлении экономичных осветительных приборов. Их надежность, простота монтажа и относительная дешевизна привлекают внимание разработчиков бытовых и промышленных светильников. Поэтому многих пользователей интересуют схемные решения по включению светодиода, предполагающие прямую подачу на него фазного напряжения. Неспециалистам в области электроники и электрики полезно будет узнать, как подключить светодиод к 220В.

Технические особенности диода

По определению светодиод, схема которого схожа с обычным диодом, – это тот же полупроводник, пропускающий ток в одном направлении и излучающий свет при его протекании. Его рабочий переход не рассчитан на высокие напряжения, поэтому для загорания светодиодного элемента вполне достаточно всего нескольких вольт. Другой особенностью этого прибора является необходимость подачи на него постоянного напряжения, так как при переменных 220 Вольт светодиод будет мигать с частотой сети (50Герц). Считается, что глаз человека не реагирует на такие мигания и что они не причиняют ему вреда. Но все же согласно действующим стандартам для его работы нужно использовать постоянный потенциал. В противном случае приходится применять особые меры защиты от опасных обратных напряжений.

Большинство образцов осветительной техники, в которых диоды используются в качестве элементов освещения, включаются в сеть через специальные преобразователи – драйверы. Эти устройства необходимы для получения из исходного сетевого напряжения постоянных 12, 24, 36 или 48 Вольт. Несмотря на их широкое распространение в быту нередки ситуации, когда обстоятельства вынуждают обходиться без драйвера. В этом случае важно уметь включать светодиоды в 220 В.

Полюса светодиода

Чтобы ознакомиться со схемами включения и распайкой диодного элемента, нужно узнать, как выглядит распиновка светодиода. В качестве его графического обозначения используется треугольник, к одному из углов которого примыкает короткая вертикальная полоса – на схеме она называется катодом. Он считается выходным для постоянного тока, втекающего с обратной стороны. Туда подается положительный потенциал от источника питания и поэтому входной контакт называется анодом (по аналогии с электронными лампами).

Выпускаемые промышленностью светодиоды имеют всего два вывода (реже – три или даже четыре). Известны три способа определения их полярности:

  • визуальный метод, позволяющий определить анод элемента по характерному выступу на одной из ножек;
  • с помощью мультиметра в режиме «Проверка диодов»;
  • посредством блока питания с постоянным выходным напряжением.

Для определения полярности вторым способом плюсовой конец измерительного шнура тестера в красной изоляции подсоединяется к одному контактному выводу диода, а черный минусовой – к другому. Если прибор показывает прямое напряжение порядка полвольта, со стороны плюсового конца расположен анод. Если на табло индикации появляется знак бесконечности или «0L», с этого конца располагается катод.

При проверке от источника питания на 12 Вольт его плюс следует соединить с одним концом светодиода через ограничивающий резистор 1 кОм. Если диод загорается, его анод находится со стороны плюса блока питания, а если нет – с другого конца.

Способы подключения

Простейший подход к решению проблемы недопустимого для диода обратного напряжения – установка последовательно с ним дополнительного резистора, который способен ограничить 220 Вольт. Этот элемент получил название гасящего, так как он «рассеивает» на себе излишки мощности, оставляя светодиоду необходимые для его работы 12-24 Вольта.

Последовательная установка ограничивающего резистора также решает проблему обратного напряжения на переходе диода, которое снижается до тех же величин. В качестве модификации последовательного включения с ограничением напряжения рассматривается смешанная или комбинированная схема подключения светодиодов в 220 В. В ней на один резистор последовательный резистор приходится несколько параллельно соединенных диодов.

Подключение светодиода можно организовать по схеме, в которой вместо резистора используется обычный диод, имеющий высокое напряжение обратного пробоя (желательно – до 400 Вольт и более). Для этих целей удобнее всего взять типовое изделие марки 1N4007 с заявленным в характеристиках показателем до 1000 Вольт. При его установке в последовательную цепочку (при изготовлении гирлянды, например), обратная часть волны выпрямляется полупроводниковым диодом. Он в этом случае выполняет функцию шунта, защищающего чип светового элемента от пробоя.

Шунтирование светодиода обычным диодом (встречно-параллельное подключение)

Другой распространенный вариант «нейтрализации» обратной полуволны состоит в использовании совместно с гасящим резистором еще одного светодиода, включаемого параллельно и навстречу первому элементу. В этой схеме обратное напряжение «замыкается» через параллельно подключенный диод и ограничивается дополнительным сопротивлением, включенным последовательно.

Такое соединение двух светодиодов напоминает предыдущий вариант, но с одним отличием. Каждый из них работает со «своей» частью синусоиды, обеспечивая другому элементу защиту от пробоя.

Существенный недостаток схемы подключения через гасящий резистор – значительная величина непроизводительно расходуемой мощности, выделяемой на нем вхолостую.

Подтверждением этому является следующий пример. Пусть используется гасящий резистор номиналом 24 кОм и светодиод с рабочим током 9 мА. Рассеиваемая на сопротивлении мощность будет равна 9х9х24=1944 мВт (после округления – порядка 2-х Ватт). Чтобы резистор работал в оптимальном режиме, он выбирается со значением P не менее 3 Вт. На самом светодиоде расходуется совсем ничтожная часть энергии.

С другой стороны, при использовании нескольких последовательно подключенных LED элементов ставить гасящий резистор из соображений оптимального режима их свечения нецелесообразно. Если выбрать очень маленькое по номиналу сопротивление, оно быстро сгорит из-за большого тока и значительной рассеиваемой мощности. Поэтому функцию токоограничивающего элемента в цепи переменного тока естественнее выполнять конденсатору, на котором энергия не теряется.

Ограничение с помощью конденсатора

Простейшая схема подключения светодиодов через ограничительный конденсатор C характеризуется следующими особенностями:

  • предусматриваются цепочки заряда и разряда, обеспечивающие режимы работы реактивного элемента;
  • потребуется еще один светодиод, необходимый для защиты основного от обратного напряжения;
  • для расчета емкости конденсатора используется полученная опытным путем формула, в которую подставляются конкретные цифры.

Для вычисления значения номинала C нужно умножить силу тока в цепи на выведенный эмпирически путем коэффициент 4,45. После этого следует разделить полученное произведение на разницу между предельным напряжением (310 Вольт) и его падением на светодиоде.

В качестве примера рассмотрим подключение конденсатора к RGB или обычному LED-диоду с падением напряжения на его переходе, равным 3 Вольта и током через него в 9 мА. Согласно рассмотренной формуле его емкость составит 0,13 мкФ. Для введения поправки на ее точное значение следует учитывать, что на величину этого параметра в большей мере влияет токовая составляющая.

Выеденная опытным путем эмпирическая формула действительна лишь для расчета емкостей и параметров светодиодов на 220 В., установленных в сетях частотой 50 Гц. В других частотных диапазонах питающих напряжений (в преобразователях, например), коэффициент 4,45 нуждается в перерасчете.

Нюансы подключения к сети 220 Вольт

При использовании различных схем подключения светодиода к сети 220 В возможны некоторые нюансы, учет которых поможет избежать элементарных ошибок в коммутации электрических цепей. Они в основном связаны с величиной тока, протекающего через цепочку при подаче на нее питания. Для их понимания потребуется рассмотреть простейший прибор типа подсветки для декорирования, состоящий из целого набора светодиодных элементов или обычный светильник на их основе.

Значительное внимание обращается на особенности процессов, протекающих в выключателе в момент подачи питания. Для обеспечения «мягкого» режима включения к его контактам потребуется подпаять в параллель гасящий резистор и светодиод-индикатор, обозначающий включенное состояние.

Значение сопротивления подбирается по методикам, описанным ранее.

Только после выключателя с резистором в схеме располагается сама лента с чипами светодиодных элементов. В ней не предусмотрены защитные диоды, так что величина гасящего резистора подбирается из расчета протекающего по цепи тока, он не должен превышать значения порядка 1 мА.

Светодиодный индикатор-лампочка в этой схеме выполняет функцию нагрузки, еще больше ограничивающей ток. Из-за небольшой величины он будет светиться очень тускло, но этого вполне хватает для ночного режима. При действии обратной полуволны напряжение частично гасится на резисторе, что защищает диод от нежелательного пробоя.

Схема лед драйвера на 220 вольт

Более надежный способ, позволяющий запитать светодиоды от сети, – применение специального преобразователя или драйвера, понижающего напряжение до безопасного уровня. Основное назначение драйвера под светодиод 220 вольт – ограничить ток через него в рамках допустимого значения (согласно паспорту). В его состав входят формирователь напряжения, выпрямительный мостик и микросхема токового стабилизатора.

Вариант драйвера без стабилизатора тока

При желании собрать устройство питания светодиодов от 220 В своими руками потребуется знать следующее:

  • при использовании выходного стабилизатора амплитуда пульсаций существенно снижается;
  • в этом случае на самой микросхеме теряется часть мощности, что сказывается на яркости свечения излучающих приборов;
  • при использовании вместо фирменного стабилизатора фильтрующего электролита большой емкости пульсации не полностью сглаживаются, но остаются в допустимых пределах.

При самостоятельном изготовлении драйвера схему можно упростить, поставив на место выходной микросхемы электролит.

Безопасность при подключении

При работе со схемой включения диодов в сеть 220 Вольт основную опасность представляет соединенный последовательно с ними ограничивающий конденсатор. Под воздействием сетевого напряжения он заряжается до опасного для человека потенциала. Чтобы избежать неприятностей в этой ситуации рекомендуется:

  • предусмотреть в схеме специальную разрядную резисторную цепочку, управляемую отдельной кнопкой;
  • если сделать это невозможно, перед началом настойки после отключения от сети следует разряжать конденсатор с помощью жала отвертки;
  • не устанавливать в цепь питания диодов полярные конденсаторы, обратный ток которых достигает значений, способных «выжечь» схему.

Подключить светодиодные элементы на 220 Вольт удается лишь с помощью специальных элементов, вводимых в схему дополнительно. В этом случае можно обойтись без понижающего трансформатора и блока питания, традиционно используемых для подключения низковольтных осветителей. Основная задача добавочных элементов в схеме подключения светодиода в 220В – ограничить и выпрямить ток через него, а также защитить полупроводниковый переход от обратной полуволны.

Светодиод от 220 вольт схема

Подключение светодиода к 220 вольтам, схемы, примеры (видео, калькулятор)

При конструировании радиоаппаратуры часто встает вопрос о индикации питания. Век ламп накаливания для индикации уже давно прошел, современным и надежным радиоэлементом индикации на настоящий момент является светодиод. В данной статье будет предложена схема подключения светодиода к 220 вольтам, то есть рассмотрена возможность запитать светодиод от бытовой сети переменного тока — розетки, которая есть в любой благоустроенной квартире.
Если вам необходимо будет запитать несколько светодиодов одновременно, то об этом мы также упомянем в нашей статье. Фактически такие схемы применяются для светодиодных гирлянд или ламп, это немного другое. Фактически здесь необходимо реализовать так называемый драйвер для светодиодов. Итак, давайте не будем все валить в одну кучу. Попробуем разобраться по порядку.

Принцип понижения напряжения питания для светодиода

Для питания низковольтной нагрузки может быть выбрана два пути питания. Первый, это так скажем классический вариант, когда питание снижается за счет резистора. Второй, вариант, который часто используется для зарядных устройств, это гасящий конденсатор. В этом случае напряжение и ток идут словно импульсами, и эти самые импульсы и должны быть точно подобраны, дабы светодиод, нагрузка не сгорела. Здесь необходимо более детальный расчет чем с резистором. Третий вариант, это комбинированное питание, когда применяется и тот и другой способ понижения напряжения. Что же, теперь обо всех этих вариантах по порядку.

Схема подключения светодиода к напряжению 220 вольт (гасящий конденсатор)

Схема подключения светодиода к 220 вольтам на вид не сложная, принцип ее работы прост. Алгоритм следующий. При подаче напряжения начинает заряжаться конденсатор С1, при этом фактически с одной стороны он заряжается напрямую, а со второй через стабилитрон. Стабилитрон должен соответствовать напряжению свечения светодиода. Так в итоге полностью заряжается конденсатор. Далее приходит вторая полуволна, когда конденсатор начинает разряжаться. В этом случае напряжение также идет через стабилитрон, который теперь работает в своем штатном режиме и через светодиод. В итоге на светодиод в это время подается напряжение равное напряжению стабилизации стабилитрона. Здесь важно подобрать стабилитрон с тем же номиналом, что и светодиод.

Здесь все вроде как просто и теоретически реализуется нормально. Однако точные расчеты не столь просты. Ведь по сути надо рассчитать емкость конденсатора, который будет являться в данном случае гасящим. Делается это по формуле.

Прикинем: 3200*0,02/√(220*220-3*3)=0,29 мКФ. Вот какой должен быть конденсатор при напряжении для светодиода 3 вольта, а токе 0,02 А. Вы же можете подставить свои значения и рассчитать свой вариант.

Радиодетали для подключения светодиода к 220 вольтам

Мощность резистора может быть минимальной вполне подойдет 0. 25 Вт (номинал на схеме в омах).
Конденсатор (емкость указана в микрофарадах) лучше подобрать с запасом, то есть с рабочим напряжением в 300 вольт.
Светодиод может быть любой, например с напряжением свечения от 2 вольт АЛ307 БМ или АЛ 307Б и до 5.5 воль — это КЛ101А или КЛ101Б.
Стабилитрон как мы уже упоминали должен соответствовать напряжению питания светодиода, так для 2 вольт это КС130Д1 или КС133А (напряжение стабилизации 3 и 3.3 вольта соответственно), а для 5.5 вольт КС156А или КС156Г

Такой способ имеет свои недостатки, так как при незначительном скачке напряжения или отклонении в работе конденсатора, можем получить напряжения куда более высокое нежели 3 вольта. Светодиод сгорит в один момент. Плюсом является экономичность схемы, так как она импульсная. Скажем так, не высокая надежность, но экономичность. Теперь о варианте комбинированном.

Схема подключения светодиода к напряжению 220 вольт (гасящий конденсатор + резистор)

Здесь все тоже самое, за исключением того, что в цепочку добавили резистор. В целом влияние резистора способно сделать всю схему более предсказуемое, более надежной. Здесь будет меньше импульсных токов с высоким напряжением. Это хорошо!

(. как и н на схеме выше использован гасящий конденсатор + резистор)

Все плюсы и минусы сродни варианту с гасящим конденсатором, но надежности здесь тоже нет. Даже более, того, использование диода, а не стабилитрона, скажется на защите светодиода при разрядке конденсатора. То есть весь ток потечет именно через светодиод, а не как в предыдущем случае через светодиод и стабилитрон. Вариант этот так себе. И вот последний случай, с применением резистора.

Схема подключения светодиода к напряжению 220 вольт (резистор)

Именно эти схемы мы вам рекомендуем к сборке. Здесь все по классическим принципам, закону Ома и формуле расчета мощности. Первое, рассчитаем сопротивление. При расчете сопротивления будет пренебрегать внутренним сопротивлением светодиода и падением напряжения на нем. В этом случае получим небольшой запас, так как фактическое падение напряжения на нем, позволит ему работать в режиме чуть более щадящем, нежели предписано характеристиками. Итак, скажем у нас ток светодиода 0,01 А и 3 вольта.

R=U/I=220/0,01=22000 Ом=22 кОм. В схеме же 15 кОм, то есть ток приняли 0,014666 А, что вполне допустимо. Вот так и рассчитываются резисторы для этих случаев. Единственное здесь все будет зависеть от того, сколько резисторов вы применяете. Если два как на первой схеме, то делим получившийся результат пополам.

Если один, то само собой все напряжение будет падать только на нем.

Ну, как и положено, скажем о плюсах и минусах. Плюс один и очень большой, схема очень надежная. Минус тоже один, то что все напряжение будет падать на 1-2 резисторе, а значит он будет рассеивать большую мощность. Давайте прикинем. P=U*I=220*0,02=4,4 Ватта. То есть аж 4 Ватта должен быть резистор, если ток будет 0,02 А. В этом случае стоит щепетильно подойти к выбору резистора, он должен быть не менее 3-4 Ватт. Ну и сами понимаете, что об экономичности в этом случае речи не идет, когда на резисторе рассеивается 4 Ватта, а светодиодом можно пренебречь. Фактически это почти как маленькая светодиодная лампа, а горит всего лишь 1 светодиод.

Подключение нескольких светодиодов к 220 вольтам

Когда вам необходимо подключить сразу несколько светодиодов, это несколько друга история. Фактически такие вариации схемы, еще вернее схемы стабилизатора для светодиодов называют драйвером. Видимо от слова drive (англ.) в движении. То есть вроде как схема запускающая в работу группу светодиодов. Не будем говорить о корректности применения данного слова и о новых словах, которые мы постоянно заимствуем из других языков. Скажем лишь, что это несколько иной вариант, а значит и разбирать его мы будем в другой нашей статье «Драйвер для светодиодов (светодиодной лампы)».

Видео о подключении светодиода к сети 220 вольт

А теперь тоже самое, но на видео, для тех кто видимо ленился читать;)

Итак, если хотите подключить светодиод надежно, но чуть с завышенными энергозатратами, то вам к сборке рекомендуется последних два варианта из статьи. Для всех ищущих приключений — первый вариант в самый раз!

Ну и напоследок калькулятор для тех, кто не в состоянии осилить подсчеты по формулам сам или лень;)

Подключение светодиода к сети 220в

Обычно светодиоды подключаются к 220В при помощи драйвера, рассчитанного под их характеристики. Но если требуется подключить только один маломощный светодиод, например, в качестве индикатора, то применение драйвера становится нецелесообразным. В таких случаях возникает вопрос — как подключить светодиод к 220 В без дополнительного блока питания.

Основы подключения к 220 В

В отличие от драйвера, который питает светодиод постоянным током и сравнительно небольшим напряжением (единицы-десятки вольт), сеть выдает переменное синусоподобное напряжение с частотой 50 Гц и средним значением 220 В. Поскольку светодиод пропускает ток только в одну сторону, то светиться он будет только на определенных полуволнах:

То есть led при таком питании светится не постоянно, а мигает с частотой 50 Гц. Но из-за инерционности человеческого зрения это не так заметно.

В то же время напряжение обратной полярности, хотя и не заставляет led светиться, все же прикладывается к нему и может вывести из строя, если не предпринять никаких защитных мер.

Способы подключения светодиода к сети 220 В

Самый простой способ (читайте про все возможные способы подключения led) – подключение при помощи гасящего резистора, включенного последовательно со светодиодом. При этом нужно учесть, что 220 В – это среднеквадратичное значение U в сети. Амплитудное значение составляет 310 В, и его нужно учитывать при расчете сопротивления резистора.

Кроме того, необходимо обеспечить защиту светоизлучающего диода от обратного напряжения той же величины. Это можно сделать несколькими способами.

Последовательное подключение диода с высоким напряжением обратного пробоя (400 В и более).

Рассмотрим схему подключения более подробно.

В схеме используется выпрямительный диод 1N4007 с обратным напряжением 1000 В. При изменении полярности все напряжение будет приложено именно к нему, и led оказывается защищенным от пробоя.

Такой вариант подключения наглядно показан в этом ролике:

Также здесь описывается, как определить расположение анода и катода у стандартного маломощного светодиода и рассчитать сопротивление гасящего резистора.

Шунтирование светодиода обычным диодом.

Здесь подойдет любой маломощный диод, включенный встречно-параллельно с led. Обратное напряжение при этом будет приложено к гасящему резистору, т.к. диод оказывается включенным в прямом направлении.

Встречно-параллельное подключение двух светодиодов:

Схема подключения выглядит следующим образом:

Принцип аналогичен предыдущему, только здесь светоизлучающие диоды горят каждый на своем участке синусоиды, защищая друг друга от пробоя.

Обратите внимание, что подключение светодиода к питанию 220В без защиты ведет к быстрому выходу его из строя.

Схемы подключения к 220В при помощи гасящего резистора обладают одним серьезным недостатком: на резисторе выделяется большая мощность.

Например, в рассмотренных случаях используется резистор сопротивлением 24 Ком, что при напряжении 220 В обеспечивает ток около 9 мА. Таким образом, мощность, рассеиваемая на резисторе, составляет:

9 * 9 * 24 = 1944 мВт, приблизительно 2 Вт.

То есть для оптимального режима работы потребуется резистор мощностью не менее 3 Вт.

Если же светодиодов будет несколько, и они будут потреблять больший ток, то мощность будет расти пропорционально квадрату тока, что сделает применение резистора нецелесообразным.

Применение резистора недостаточной мощности ведет к его быстрому перегреву и выходу из строя, что может вызвать короткое замыкание в сети.

В таких случаях в качестве токоограничивающего элемента можно использовать конденсатор. Преимущество этого способа в том, что на конденсаторе не рассеивается мощность, поскольку его сопротивление носит реактивный характер.

Здесь показана типовая схема подключения светоизлучающего диода в сеть 220В при помощи конденсатора. Поскольку конденсатор после отключения питания может хранить в себе остаточный заряд, представляющий опасность для человека, его необходимо разряжать при помощи резистора R1. R2 защищает всю схему от бросков тока через конденсатор при включении питания. VD1 защищает светодиод от напряжения обратной полярности.

Конденсатор должен быть неполярным, рассчитанным на напряжение не менее 400 В.

Применение полярных конденсаторов (электролит, тантал) в сети переменного тока недопустимо, т.к. ток, проходящий через них в обратном направлении, разрушает их конструкцию.

Емкость конденсатора рассчитывается по эмпирической формуле:

где U – амплитудное напряжение сети (310 В),

I – ток, проходящий через светодиод (в миллиамперах),

Uд – падение напряжения на led в прямом направлении.

Допустим, нужно подключить светодиод с падением напряжения 2 В при токе 9 мА. Исходя из этого, рассчитаем емкость конденсатора при подключении одного такого led к сети:

Данная формула действительна только для частоты колебаний напряжения в сети 50 Гц. На других частотах потребуется пересчет коэффициента 4,45.

Нюансы подключения к сети 220 В

При подключении led к сети 220В существуют некоторые особенности, связанные с величиной проходящего тока. Например, в распространенных выключателях освещения с подсветкой, светодиод включается по схеме, изображенной ниже:

Как видно, здесь отсутствуют защитные диоды, а сопротивление резистора выбрано таким образом, чтобы ограничить прямой ток led на уровне около 1 мА. Нагрузка в виде лампы также служит ограничителем тока. При такой схеме подключения светодиод будет светиться тускло, но достаточно для того, чтобы разглядеть выключатель в комнате в ночное время. Кроме того, обратное напряжение будет приложено в основном к резистору при разомкнутом ключе, и светоизлучающий диод оказывается защищенным от пробоя.

Если требуется подключить к 220В несколько светодиодов, можно включить их последовательно на основе схемы с гасящим конденсатором:

При этом все led должны быть рассчитаны на одинаковый ток для равномерного свечения.

Можно заменить шунтирующий диод встречно-параллельным подключением светодиодов:

В обоих случаях нужно будет пересчитать величину емкости конденсатора, т.к. возрастет напряжение на светодиодах.

Параллельное (не встречно-параллельное) подключение led в сеть недопустимо, поскольку при выходе одной цепи из строя через другую потечет удвоенный ток, что вызовет перегорание светодиодов и последующее короткое замыкание.

Еще несколько вариантов недопустимого подключения светоизлучающих диодов в сеть 220В описаны в этом видео:

Здесь показано, почему нельзя:

  • включать светодиод напрямую;
  • последовательно соединять светодиоды, рассчитанные на разный ток;
  • включать led без защиты от обратного напряжения.

Безопасность при подключении

При подключении к 220В следует учитывать, что выключатель освещения обычно размыкает фазный провод. Ноль при этом проводится общим по всему помещению. Кроме того, электросеть зачастую не имеет защитного заземления, поэтому даже на нулевом проводе присутствует некоторое напряжение относительно земли. Также следует иметь в виду, что в некоторых случаях провод заземления подключается к батареям отопления или водопроводным трубам. Поэтому при одновременном контакте человека с фазой и батареей, особенно при монтажных работах в ванной комнате, есть риск попасть под напряжение между фазой и землей.

В связи с этим, при подключении в сеть лучше отключать и ноль, и фазу при помощи пакетного автомата во избежание поражения током при прикосновении к токоведущим проводам сети.

Заключение

Описанные здесь способы подключения светодиодов в сеть 220В целесообразно применять только при использовании маломощных светоизлучающих диодов в целях подсветки или индикации. Мощные led так подключать нельзя, поскольку нестабильность сетевого напряжения приводит к их быстрой деградации и выходу из строя. В таких случаях нужно применять специализированные блоки питания светодиодов – драйверы.

Варианты схем как подключить светодиод к 220 вольтам (для световой индикации). Включение светодиода к сети 220 В.

Порой возникает необходимость в подключении обычного, маломощного светодиода к переменному, сетевому напряжению 220 вольт в роли светового индикатора. Казалось бы нет ничего проще, чем взять и поставить последовательно светодиоду обычный резистор, который бы ограничивал силу тока в данной цепи. Но не все так просто. В этой статье давайте с вами рассмотрим наиболее распространенные варианты такого подключения, после чего можно будет выбрать наиболее лучшую схему с учетом имеющихся достоинств и недостатков.

Вариант №1 » последовательное включение светодиода и резистора.

Итак, первым вариантом все же будет схема, где последовательно к светодиоду подключается обычный резистор с нужным сопротивлением. Величину сопротивления можно вычислить по закону ома. Допустим у нас светодиод, рассчитанный на напряжение 3 вольта и потребляющий 9 миллиампер. Напряжение питания (220 В) разделится между резистором и светодиодом. Если на светодиоде осядет 3 вольта, то на резисторе осядет около 217 вольт. Ток в последовательных цепях во всех точках одинаковый (в нашем случае он будет равен 9 мА). И чтобы узнать сопротивление резистора мы 217 вольт делим на 9 миллиампер и получаем 24 килоома (24000 ом).

Теоретически эта схема подключения светодиода к сети 220 вольт рабочая, но практически она скорее всего сгорит сразу при включении. Почему это так. Дело в том, что большинство обычных светодиодов рассчитаны на напряжение питания (при прямом своем включении, то есть плюс светодиода к плюсу источника питания и минус светодиода к минусу источника питания), где-то в пределах от 2,5 до 4,5 вольта. При прямом включении на светодиоде будет его рабочее напряжение (пусть 3 вольта), а излишек (217 вольт) осядет на резисторе. Обратное напряжение у светодиодов не такое уж и высокое (где-то около 30 вольт). И когда обратная полуволна переменного напряжения подается на светодиод, то светодиод просто выйдет из строя из-за слишком большого обратного напряжения, поданного на него. Напомню, что полупроводники при обратном включении имеют очень большое внутреннее сопротивление (гораздо большее чем стоящий в цепи резистор). Следовательно все сетевое напряжение осядет именно на светодиоде.

Вариант №2 » подключение светодиода с защитой от обратного напряжения.

В этом варианте схемы подключения индикаторного светодиода к сетевому напряжению 220 вольт имеется защита от чрезмерного высокого напряжения обратной полуволны, что подается на светодиод. То есть, в цепь добавлен обычный диод, который включен той же полярностью, что и светодиод. В итоге все излишнее высокое напряжение оседает на полупроводниках (при обратном включении питания, обратной полуволне переменного тока). Тот ток, что возникает в цепи при обратной полуволне настолько настолько мал, что его не хватает для пробития светодиода при обратном его включении. Таким образом данная схема уже будет нормально работать. Хотя в этом варианте все же имеются свои недостатки, а именно будет достаточно сильно греться резистор. Его мощность должна быть не менее 2 Вт. Этот нагрев приводит к тому, что схема весьма не экономна, у нее низкий КПД. Помимо этого поскольку светодиод будет светить только при одной полуволне, то рабочая частота светодиода будет равна 25 Гц. Свечение светодиода при такой частоте будет восприниматься глазом с эффектом мерцания.

Вариант №3 » альтернативная схема подключения светодиода к 220 с защитой от обратного напряжения.

Эта схема похожа не предидущую. Она также имеет защиту от чрезмерного напряжения обратной полуволны переменного напряжения. Если в первой схеме защитный диод стоял последовательно со светодиодом, то в данной схеме диод подключен параллельно, и имеет уже обратное включение относительно светодиоду. При одной полуволне переменного напряжения будет гореть индикаторный светодиод (на котором будет падение напряжения до рабочей величины светодиода), а при обратной полуволне диод будет находится в открытом состоянии и на нем также будет падение напряжения до величины (порядка 1 вольта) недостаточной для пробоя светодиода. Как и в предыдущей схеме недостатками будет значительный нагрев резистора и видимое мерцание светодиода, вдобавок эта схема будет больше потреблять электроэнергии из-за прямого включения диода.

Хотя вместо обычного диода можно поставить еще один светодиод.

Тогда в одну полуволну будет гореть один светодиод, ну а в обратную второй. Хотя в этом случае и будут светодиоды обезопасены от высокого обратного напряжения, но гореть каждый из них будет все равно с частотой 25 герц (будут оба мерцать).

Вариант №4 » лучшая схема с токоограничительным кондесатором, резистором и выпрямительным мостом.

Данный вариант схемы подключения индикаторного светодиода к сети 220 вольт считаю наиболее лучшим. Единственным недостатком (если можно так сказать) этой схемы является то, что в ней больше всего деталей. К достоинствам же можно отнести то, что в ней нет элементов, которые чрезмерно нагревались, поскольку стоит диодный мост, то светодиод работает с двумя полупериодами переменного напряжения, следовательно нет заметных для глаза мерцаний. Потребляет эта схема меньше всего электроэнергии (экономная).

Работает данная схема следующим образом. Вместо токоограничительного резистора (который был в предыдущих схемах на 24 кОм) стоит конденсатор, что исключает нагрев данного элемента. Этот конденсатор обязательно должен быть пленочного типа (не электролит) и рассчитан на напряжение не менее 250 вольт (лучше ставить на 400 вольт). Именно подбором его емкости можно регулировать величину силы тока в схеме. В таблице на рисунке приведены емкости конденсатора и соответствующие им токи. Параллельно конденсатору стоит резистор, задача которого сводится всего лишь к разряду конденсатора после отключения схемы от сети 220 вольт. Активной роли в самой схеме запитки индикаторного светодиода от 220 В он не принимает.

Далее стоит обычный выпрямительный диодный мост, который из переменного тока делает постоянный. Подойдут любые диоды (готовый диодный мост), у которых максимальная сила тока будет больше тока, потребляемого самим индикаторным светодиодом. Ну и обратное напряжение этих диодов должно быть не менее 400 вольт. Можно поставить наиболее популярные диоды серии 1N4007. Они дешево стоят, малы по размерам, рассчитаны на ток до 1 ампера и обратное напряжение 1000 вольт.

В схеме есть еще один резистор, токоограничительный, но он нужен для ограничения тока, который возникает от случайных всплесков напряжения, идущие от самой сети 220 вольт. Допусти если кто-то по соседству использует мощные устройства, содержащие катушки (индуктивный элемент, способствующий кратковременным всплескам напряжения), то в сети образуется кратковременное увеличение сетевого напряжения. Конденсатор данный всплеск напряжения пропускает беспрепятственно. А поскольку величина тока этого всплеска достаточна для того, чтобы вывести из строя индикаторный светодиод в схеме предусмотрен токоограничительный резистор, защищающий схему от подобный перепадов напряжения в электрической сети. Этот резистор нагревается незначительно, в сравнении с резисторами в предыдущих схемах. Ну и сам индикаторный светодиод. Его вы выбираете уже сами, его яркость, цвет, размеры. После выбора светодиода подбирайте соответствующий конденсатор нужной емкости руководствуясь таблицей на рисунке.

Питание светодиодов от 220В своими руками — схема подключения

Без светодиодов трудно обойтись при проектировании электронной аппаратуры, а также при изготовлении экономичных осветительных приборов. Их надежность, простота монтажа и относительная дешевизна привлекают внимание разработчиков бытовых и промышленных светильников. Поэтому многих пользователей интересуют схемные решения по включению светодиода, предполагающие прямую подачу на него фазного напряжения. Неспециалистам в области электроники и электрики полезно будет узнать, как подключить светодиод к 220В.

Технические особенности диода

По определению светодиод, схема которого схожа с обычным диодом, – это тот же полупроводник, пропускающий ток в одном направлении и излучающий свет при его протекании. Его рабочий переход не рассчитан на высокие напряжения, поэтому для загорания светодиодного элемента вполне достаточно всего нескольких вольт. Другой особенностью этого прибора является необходимость подачи на него постоянного напряжения, так как при переменных 220 Вольт светодиод будет мигать с частотой сети (50Герц). Считается, что глаз человека не реагирует на такие мигания и что они не причиняют ему вреда. Но все же согласно действующим стандартам для его работы нужно использовать постоянный потенциал. В противном случае приходится применять особые меры защиты от опасных обратных напряжений.

Большинство образцов осветительной техники, в которых диоды используются в качестве элементов освещения, включаются в сеть через специальные преобразователи – драйверы. Эти устройства необходимы для получения из исходного сетевого напряжения постоянных 12, 24, 36 или 48 Вольт. Несмотря на их широкое распространение в быту нередки ситуации, когда обстоятельства вынуждают обходиться без драйвера. В этом случае важно уметь включать светодиоды в 220 В.

Полюса светодиода

Чтобы ознакомиться со схемами включения и распайкой диодного элемента, нужно узнать, как выглядит распиновка светодиода. В качестве его графического обозначения используется треугольник, к одному из углов которого примыкает короткая вертикальная полоса – на схеме она называется катодом. Он считается выходным для постоянного тока, втекающего с обратной стороны. Туда подается положительный потенциал от источника питания и поэтому входной контакт называется анодом (по аналогии с электронными лампами).

Выпускаемые промышленностью светодиоды имеют всего два вывода (реже – три или даже четыре). Известны три способа определения их полярности:

  • визуальный метод, позволяющий определить анод элемента по характерному выступу на одной из ножек;
  • с помощью мультиметра в режиме «Проверка диодов»;
  • посредством блока питания с постоянным выходным напряжением.

Для определения полярности вторым способом плюсовой конец измерительного шнура тестера в красной изоляции подсоединяется к одному контактному выводу диода, а черный минусовой – к другому. Если прибор показывает прямое напряжение порядка полвольта, со стороны плюсового конца расположен анод. Если на табло индикации появляется знак бесконечности или «0L», с этого конца располагается катод.

При проверке от источника питания на 12 Вольт его плюс следует соединить с одним концом светодиода через ограничивающий резистор 1 кОм. Если диод загорается, его анод находится со стороны плюса блока питания, а если нет – с другого конца.

Способы подключения

Простейший подход к решению проблемы недопустимого для диода обратного напряжения – установка последовательно с ним дополнительного резистора, который способен ограничить 220 Вольт. Этот элемент получил название гасящего, так как он «рассеивает» на себе излишки мощности, оставляя светодиоду необходимые для его работы 12-24 Вольта.

Последовательная установка ограничивающего резистора также решает проблему обратного напряжения на переходе диода, которое снижается до тех же величин. В качестве модификации последовательного включения с ограничением напряжения рассматривается смешанная или комбинированная схема подключения светодиодов в 220 В. В ней на один резистор последовательный резистор приходится несколько параллельно соединенных диодов.

Подключение светодиода можно организовать по схеме, в которой вместо резистора используется обычный диод, имеющий высокое напряжение обратного пробоя (желательно – до 400 Вольт и более). Для этих целей удобнее всего взять типовое изделие марки 1N4007 с заявленным в характеристиках показателем до 1000 Вольт. При его установке в последовательную цепочку (при изготовлении гирлянды, например), обратная часть волны выпрямляется полупроводниковым диодом. Он в этом случае выполняет функцию шунта, защищающего чип светового элемента от пробоя.

Шунтирование светодиода обычным диодом (встречно-параллельное подключение)

Другой распространенный вариант «нейтрализации» обратной полуволны состоит в использовании совместно с гасящим резистором еще одного светодиода, включаемого параллельно и навстречу первому элементу. В этой схеме обратное напряжение «замыкается» через параллельно подключенный диод и ограничивается дополнительным сопротивлением, включенным последовательно.

Такое соединение двух светодиодов напоминает предыдущий вариант, но с одним отличием. Каждый из них работает со «своей» частью синусоиды, обеспечивая другому элементу защиту от пробоя.

Существенный недостаток схемы подключения через гасящий резистор – значительная величина непроизводительно расходуемой мощности, выделяемой на нем вхолостую.

Подтверждением этому является следующий пример. Пусть используется гасящий резистор номиналом 24 кОм и светодиод с рабочим током 9 мА. Рассеиваемая на сопротивлении мощность будет равна 9х9х24=1944 мВт (после округления – порядка 2-х Ватт). Чтобы резистор работал в оптимальном режиме, он выбирается со значением P не менее 3 Вт. На самом светодиоде расходуется совсем ничтожная часть энергии.

С другой стороны, при использовании нескольких последовательно подключенных LED элементов ставить гасящий резистор из соображений оптимального режима их свечения нецелесообразно. Если выбрать очень маленькое по номиналу сопротивление, оно быстро сгорит из-за большого тока и значительной рассеиваемой мощности. Поэтому функцию токоограничивающего элемента в цепи переменного тока естественнее выполнять конденсатору, на котором энергия не теряется.

Ограничение с помощью конденсатора

Простейшая схема подключения светодиодов через ограничительный конденсатор C характеризуется следующими особенностями:

  • предусматриваются цепочки заряда и разряда, обеспечивающие режимы работы реактивного элемента;
  • потребуется еще один светодиод, необходимый для защиты основного от обратного напряжения;
  • для расчета емкости конденсатора используется полученная опытным путем формула, в которую подставляются конкретные цифры.

Для вычисления значения номинала C нужно умножить силу тока в цепи на выведенный эмпирически путем коэффициент 4,45. После этого следует разделить полученное произведение на разницу между предельным напряжением (310 Вольт) и его падением на светодиоде.

В качестве примера рассмотрим подключение конденсатора к RGB или обычному LED-диоду с падением напряжения на его переходе, равным 3 Вольта и током через него в 9 мА. Согласно рассмотренной формуле его емкость составит 0,13 мкФ. Для введения поправки на ее точное значение следует учитывать, что на величину этого параметра в большей мере влияет токовая составляющая.

Выеденная опытным путем эмпирическая формула действительна лишь для расчета емкостей и параметров светодиодов на 220 В., установленных в сетях частотой 50 Гц. В других частотных диапазонах питающих напряжений (в преобразователях, например), коэффициент 4,45 нуждается в перерасчете.

Нюансы подключения к сети 220 Вольт

При использовании различных схем подключения светодиода к сети 220 В возможны некоторые нюансы, учет которых поможет избежать элементарных ошибок в коммутации электрических цепей. Они в основном связаны с величиной тока, протекающего через цепочку при подаче на нее питания. Для их понимания потребуется рассмотреть простейший прибор типа подсветки для декорирования, состоящий из целого набора светодиодных элементов или обычный светильник на их основе.

Значительное внимание обращается на особенности процессов, протекающих в выключателе в момент подачи питания. Для обеспечения «мягкого» режима включения к его контактам потребуется подпаять в параллель гасящий резистор и светодиод-индикатор, обозначающий включенное состояние.

Значение сопротивления подбирается по методикам, описанным ранее.

Только после выключателя с резистором в схеме располагается сама лента с чипами светодиодных элементов. В ней не предусмотрены защитные диоды, так что величина гасящего резистора подбирается из расчета протекающего по цепи тока, он не должен превышать значения порядка 1 мА.

Светодиодный индикатор-лампочка в этой схеме выполняет функцию нагрузки, еще больше ограничивающей ток. Из-за небольшой величины он будет светиться очень тускло, но этого вполне хватает для ночного режима. При действии обратной полуволны напряжение частично гасится на резисторе, что защищает диод от нежелательного пробоя.

Схема лед драйвера на 220 вольт

Более надежный способ, позволяющий запитать светодиоды от сети, – применение специального преобразователя или драйвера, понижающего напряжение до безопасного уровня. Основное назначение драйвера под светодиод 220 вольт – ограничить ток через него в рамках допустимого значения (согласно паспорту). В его состав входят формирователь напряжения, выпрямительный мостик и микросхема токового стабилизатора.

Вариант драйвера без стабилизатора тока

При желании собрать устройство питания светодиодов от 220 В своими руками потребуется знать следующее:
  • при использовании выходного стабилизатора амплитуда пульсаций существенно снижается;
  • в этом случае на самой микросхеме теряется часть мощности, что сказывается на яркости свечения излучающих приборов;
  • при использовании вместо фирменного стабилизатора фильтрующего электролита большой емкости пульсации не полностью сглаживаются, но остаются в допустимых пределах.

При самостоятельном изготовлении драйвера схему можно упростить, поставив на место выходной микросхемы электролит.

Безопасность при подключении

При работе со схемой включения диодов в сеть 220 Вольт основную опасность представляет соединенный последовательно с ними ограничивающий конденсатор. Под воздействием сетевого напряжения он заряжается до опасного для человека потенциала. Чтобы избежать неприятностей в этой ситуации рекомендуется:

  • предусмотреть в схеме специальную разрядную резисторную цепочку, управляемую отдельной кнопкой;
  • если сделать это невозможно, перед началом настойки после отключения от сети следует разряжать конденсатор с помощью жала отвертки;
  • не устанавливать в цепь питания диодов полярные конденсаторы, обратный ток которых достигает значений, способных «выжечь» схему.

Подключить светодиодные элементы на 220 Вольт удается лишь с помощью специальных элементов, вводимых в схему дополнительно. В этом случае можно обойтись без понижающего трансформатора и блока питания, традиционно используемых для подключения низковольтных осветителей. Основная задача добавочных элементов в схеме подключения светодиода в 220В – ограничить и выпрямить ток через него, а также защитить полупроводниковый переход от обратной полуволны.

Как подключить светодиод к 220 В

У многих начинающих радиолюбителей возникает мысль, как подключить светодиод к 220 В без применения трансформатора. Ведь габариты даже самого маломощного трансформатора сравнительно велики. Это в первую очередь вызвано высоким сетевым напряжением, в результате чего первичная обмотка трансформатора имеет большое число витков.

Основной проблемой подключения светодиода к 220 вольтам на прямую, без трансформатора является ограничение ток, протекающего через него вследствие проложенного напряжения. Оценим его величину для понимания сети происходящего.

Светодиод – это светоизлучающий полупроводниковый прибор, как и «обычный» диод пропускает ток лишь в одном направлении. Поскольку переменное напряжение изменяет свое направление дважды за период, то в один полупериод ток протекает, а во второй – нет. Поэтому, чтобы определить средний ток, протекающий через светодиод, следует действующее напряжения 220 В разделить на два. Получим 110 В. Эту величину возьмем за основу при дальнейших расчетах.

Сопротивление любого полупроводника нелинейное, т.е. нелинейно зависит от величины приложенного напряжения. Не вникая в подробности, с приемлемой точностью примем 1,7 Ом. Тогда ток, протекающий через полупроводниковый кристалл равен 110/1,7 = 65 А! Естественно, такой огромный ток сожжёт полупроводниковый прибор. Поэтому обязательно нужно последовательно со светодиодом включать какое-либо сопротивление.

Если в цепи постоянного напряжения в качестве сопротивления можно использовать только резистор, то на переменном напряжении есть возможность применять еще и конденсатор или катушку индуктивности. Их еще называют реактивными элементами. В один полупериод времени они накапливают энергию (в виде электрического или магнитного поля), а в следующий полупериод возвращают ее в направлении источника питания. При этом электрическая энергия практически не потребляется.

Применение катушки индуктивности не рассматривается, по ряду причин, связанных с ее нагревом.

Как подключить светодиод к 220 В с помощью резистора

Для большей наглядности изобразим расчетную схему.

Такая схема очень распространена в цепях индикации работы электротехнических устройств, например, подсветки выключателя или кнопки электрического чайника. Главным достоинством данной схемы является ее простота, а отсюда и надежность.

С целью сравнения полученных результатов возьмем два светодиода. Один индикаторного типа, а второй более мощный.

Определим сопротивление R1, необходимое для первого светодиода:

Сетевое напряжение делим на два по уже указанной выше причине.

Мощность рассеивания резистор равна:

Принимаем 2 ватта, поскольку такой номинал является ближайшим в сторону увеличения из стандартного ряда мощностей.

Теперь определим сопротивление резистора, соединенного последовательно со вторым светодиодом:

Мощность рассеивания равна:

Резисторы с такой мощностью рассеивания имеют значительные размеры и немалую стоимость, поэтому не рационально их применение в цепи с мощными светодиодами. Более эффективным будет замена его конденсатором.

Для защиты полупроводникового прибора встречно-параллельно подсоединяют диод.

Его назначение состоит в следующем. В проводящий полупериод на светодиоде падает напряжения порядка 2…3 В. В не проводящий полупериод он заперт и к его выводам прикладывается обратное полное действующее напряжение 220 В, амплитуда которого достигает 310 В. Поэтому существует вероятность пробоя полупроводникового прибора. Однако если создать путь для протекания тока в этот непроводящий полупериод времени, то снизится амплитуда опасного обратного напряжения. Именно это достигается за счет применения шунтирующего диода.

Кстати, вместо него можно применять еще один светодиод, желательно со схожими параметрами.

Визуально нам будет казаться, что оба они светят все время, но на самом деле они мерцают с частотой 50 Гц. Причем, когда первый светит, второй гаснет и наоборот, т.е. работают в противофазе.

В этом случае необходимо учесть, что через резистор ток протекает в оба полупериода времени, поэтому его сопротивление нужно снизить вдвое. Далее в последующих расчетах мы будем пользоваться схемой без шунтирующего диода.

Как подключить светодиод к 220 В с помощью конденсатора

Выше уже было сказано, что конденсатор обладает реактивным сопротивлением переменному току, т.е. он не потребляет активную мощность, как резистор, поэтому практически не нагревается. Постоянный ток он не пропускает и является для него огромным сопротивлением, которое можно приравнять к разрыву цепи.

Если же на конденсатор подать переменное напряжение, то через него будет, упрощенно говоря протекать ток. Причем сопротивление этого реактивного элемента обратно пропорционально зависит от частоты f, т.е. с ростом f оно снижается. Таким же образом сопротивление зависит и от емкости:

Из приведенной формулы нам необходимо найти значение емкости:

Подставляем данные значения и находим емкости:

Внимание! Все конденсаторы, подключаемые в сеть 220 В, должны быть рассчитаны на напряжение не менее 400 В.

Главным и очень существенным недостатком такой схемы является протекание значительного тока в момент подключения к сети. При этом величина его может превышать в несколько раз номинальный ток светодиода, в результате последний может выйти из строя.

Следует учитывать, что чем больше емкость конденсатора, тем выше значение тока в момент включения. Поэтому для защиты полупроводникового прибора рекомендуется последовательно с конденсатором включать резистор.

Исходя из тех соображений, что резистор с мощностью рассеивания P = 5 Вт имеет небольшие габариты, то рассчитаем величину его сопротивления при данных ограничениях для схемы с более мощным светодиодом:

Из номинального ряда сопротивлений выбираем ближайшее значение 39 Ом.

Конечно, коэффициент полезного действия данной схемы очень снизится, поскольку для питания светодиода мощностью 1 Вт необходимо затратить 6 Вт с источника питания. 5 ватт будут попросту греть резистор.

Сообщества › Сделай Сам › Блог › Светодиоды в сети 220 вольт или LED ночник своими руками.

Так как многих интересует, как включить светодиоды в сеть 220 в, решил написать об этом. Схем в интернете очень много, но некоторые сложноваты для такого несерьезного изделия, некоторые не так надежны в работе. В результате нескольких экспериментов я выбрал эту.
А заодно решил на ее базе сделать ночник дабы не таранить лбом мебель в темноте ночью и не будить домочадцев, включая свет.
Конечно очень много таких девайсов сейчас в продаже, и стоят они копейки. Но…
Сколько я не смотрел мимоходом такие изделия в магазинах, не стал ничего покупать по следующим причинам.
1. Они в упаковке, и нельзя посмотреть, как светят. Тускло ли, ярко ли, да и каким цветом непонятно.
2. Гламурный вид многих из них меня реально бесит.
Так что, не просто найти нужный ночник, по крайней мере для меня оказалось.
Купил когда-то давно ночник из «Икеа» (фото 1). Который так и валялся без дела, потому как он светит так, что в темноте видно только его дурацкую улыбочку и ничего больше. Разобрав его, увидел под почти непрозрачным желтым пластиковым плафоном… Две неоновые лампочки! О как! На моих часах лимб и стрелки ярче светятся в темноте.

Смотрите также

Метки: светодиоды в сети 220 вольт.

Комментарии 50

а я проще сделал: взял старый манометр, диаметром 10 см. выпотрошил его, на дно положил старый сд-диск подрезанный, светодиодную ленту 12 В наклеил на борт, затонировал стекло зеркальной пленкой, все собрал, запитал от старого блока питания 9В и вот, что получилось

прочитал «в розетке холла», много думал… Датчик знаю, розетку нет 🙂 Потом осознал

Схема простейшая и работать будет долго (Главное не перебрать с мощностью на диодах — у меня со временем дохли такие даже на токе 10 мА) Только диод vd1 неважно на какое напряжение: на нем не более 6В в этой схеме. А в целом запись поучительная для начинаний!

Почитал. Долго думал. В итоге понял что иностранные матершинные слова все равно не смогу перевести ??? А ночник прикольный.

ночник светодиодный стоит от 50-80р? зачем его делать, разве что руки подразмять

Удивляюсь, как пишут комментарии даже не прочитав материал. Там все сказано. Зачем и почему. И что копейки это стоит в магазинах, кстати тоже.

Ну вот, пришли поручики Ржевские и все опошлили.
Да все нормально там, не выгорят. Я оставил запас им по напряжению (току) процентов 40. Можно конечно было напихать туда импульсный блок питания, и стабилизатор, и конденсаторы, и плафон взять с кастрюлю размером. Только вы советуете, а он горит каждую ночь. И включался-выключался за его короткую жизнь пока уже раз 150, не умер еще от страстей ваших.
А про мерцание я уже трижды сказал здесь, — его практически незаметно. И «любоваться на мерцание в темноте» мне, как-то в отличие от товарисча, который меня поучал снисходительно и на «ты» выше, как-то в голову не приходило.

Нужно параллельно диоду подключить электролитический конденсатор и не будет мерцания, схема без стабилизатора, будут часто гореть светодиоды.

Надо было встречно-параллельно включать светодиоды.

Ты бы хоть туда стабилитрон поставил что ли, чтоб Сд твои не выгорели от броска в момент включения и электролит в параллель . . и охота любоваться на мерцание сд в темноте?! Схема овно.

Господин, уважаемый, неоднократно замечал, что «критикуют» с употреблением мощного термина в оценке чужого, а именно «говно», обычно те, кто сам ничего не делает. Убедился в этом в очередной раз, зайдя на вашу пустую страничку, где вы в одной записи живописуете, как и сколько на своей газели кирпичей возите. Вот и возите кирпичи.
И извольте на «вы» с незнакомыми людьми. Как-то не довелось мне бухать с вами и на вашей газели под бухло по девочкам кататься. Физкультпривет, мастер.

Хочешь чтоб не критиковали и не советовали? -так это не в этом случае. форум или сообщество это публичное место, так что, придется тебе потерпеть чутка, да и выставляй свои детские поделия напоказ, мне-то что, хотя и взрослый мущщина ). Просто начинающие люди на это клюют и заведомо будут делать неправильные решения, а ты прежде чем выпучиваться, сперва почитал бы соответствующую техлитературу что ли, или просто спросить-как вы думаете, как надежнее и правильнее сделать то-то и то-то ?! но видать самолюбие при этом у тя сильно зашкаливает, чтобы я да в свои года что-то спросил еще . . . Никогда.А учиться никогда не поздно. Вот ты и застыл на уровне начальных классов.Удачи кулиппин, да и меньше шарься по чужим профилям, твоему делу это точно не поможет.

Ты хамло. давайдосвидания.

обзывать человека тебе права никто не давал вообще-то.Забанить тебя можно конкретно за это, на улице б давно схватить успел бы

Иди лесом. И метлу привяжи. Чешешь с незнакомыми людьми по-хамски. Жаль, схватить ты еще не успел. Но у таких все впереди, я их видел не раз. Конец связи.

эх Адрюша, болеешь ты самолюбием сильно . . .И справедливые замечания как дополнения не хочешь воспринимать, а обид выше неба. Не сердись и не обижайся.Все по делу. Удач тебе на паяльном фронте, больше радостей и меньше разочарований.)

Я тебе не Андрюша. Ты, бес, попутал меня с кем-то. Обиженных ты еще не видел походу. Понимай речь людскую. И кончай здесь базар свой попугайский. Издалека такие как ты хамством свою самооценку поднимают, это понятно. Только часто они берега теряют и потом все плохо случается.
А «паяльный фронт» это баловство для меня, там удач мне не надо.
Каждый сам за себя знает, что он внутри из себя представляет по пути тому, что за спиной оставил.
Я тут грешным делом подумал сбросить базар твой глумливый моему старинному приятелю столичному, да опасаюсь спросит с тебя не по-детски. Потому тормознул. Надеюсь понималка твоя сработает правильно. Так что не буди лихо… И не путай обмен мнениями в этом публичном месте, как ты выразился, с хамством бычьим.
Жизнь тебя еще поучит за язык твой отвязный, походу пока еще недосуг ей было. Это последнее, что скажу тебе, Юрок.

да конечно бэмэвэ хе5 это конечно не Соболь, тягаться мне с тобой разве что по уму, но в этом ты не сильно преуспел, а пугать меня не надо, за это можно и в полиции оказаться и веди себя прилично и держи как подобает порядочному человеку а не блатной свой жаргон выпячивать, иначе сюда забудешь дорогу навсегда. Умей выслушивать и противную сторону, даже если она тебе противна ).Не пиши-не отвечу.

Мне твои ответы, — как в бане гудок. Умным себя считаешь? Ну, ну. Смешной ты, заяц тряпошный.
Умный человек никогда не начнет разговор на «ты» и в хамском тоне, тем более с незнакомым человеком и тем более на людях. Говорил уже, что видел достаточно таких. Только им чуть на кадык наступишь, — визжат свиньей и полицию зовут в спасители. А дел то всего — веди себя по людски с людьми, и будет тебе мир и здоровье на долгие годы.
Тягаться тебе вообще ни с кем не стоит. Ты нечто и более ничего. Машины приплел здесь. Это не при чем. Я знаю много достойных людей на скромных бюджетных тачках. Это для тебя хороший автомобиль — блестящая мечта на горизонте, а для меня и многих людей здесь это нечто вроде удобной обуви, которую носишь не думая о ней.
Не тебе учить, как вести себя порядочному человеку, ибо где он, этот порядочный человек, а где ты (эпитеты применять не стану, а то про полицию опять заголосишь)?
Такие «умные», как ты всегда впадают в ступор от взрыва остатков мозга при одном вопросе, который часто задают в Одессе таким умникам евреи, — раз ты такой умный, что ж ты такой бедный?
И последнее. Я довольно много сказал тебе здесь, чем уже против себя пошел. Обычно с такими я не говорю. Но ты (не я, а ты) на людях этот гнилой базар начал. Другой бы понял давно, тот кто умный, что тебе донести в приличной форме пытаются элементарные вещи, но ты не догоняешь, масла в голове недостаточно.
Про таких я говорю, — их горе в том, что родились такими.
Будь здоров, вози свои кирпичи на своем соболе и почаще включай мозги, хотя для тебя это и трудно.

ПОДКЛЮЧЕНИЕ СВЕТОДИОДОВ К 220 В


   При самостоятельном конструировании радиоэлектронной аппаратуры часто встает вопрос о индикации питания. Лампы накаливания никто уже не ставит, неонки получили распространение только в подсветках выключателей, поэтому современным и надежным элементом индикации является светодиод. Ведь даже в выключатели неоновые лампочки уже часто не подходят, так как многие имеют диодные осветительные лампы, которые начинают мерцать при подключении через такие выключатели света. В данной статье будет рассмотрено несколько схем подключения светодиода к 220 вольтам сети.

Схемы простейшего подключения светодиодов к 220В


   Обе схемы работают одинаково — ограничивают ток и гасят обратную полуволну переменного напряжения. Многие светодиоды не любят высокое обратное напряжение, которое и блокирует диод. Он должен быть типа IN4004 — на напряжение более 300 вольт. Если нужно включить сразу несколько (2-10) светодиодов, то соединяем их последоватедовательно.

Схема подключения светодиода к 220В через конденсатор


   Тут лишнее напряжение гасим не резистором, а на ёмкости, потом идёт стабилитрон и ограничительный резистор. Ёмкость выбираем исходя из тока светодиодов. Примерное соотношение ёмкость/ток — 0,1 мкФ на 6 мА. Мощность резистора для импортных LED элементов с малым током потребления, может быть минимальной — подойдет 0.25 Вт. Конденсатор лучше подобрать с запасом по напряжению, то есть не менее 300 вольт. Стабилитрон должен быть немного больше напряжения питания светодиода, например на 5 вольт — это КС156А или аналогичные импортные.

   Принцип работы в том, что при подаче напряжения 220В начинает заряжаться конденсатор С1, при этом с одной стороны он заряжается напрямую, а со второй через стабилитрон. При увеличении напряжения на конденсаторе стабилитрон увеличивает свое сопротивление, ограничивая напряжения зарядки для конденсатора своим рабочим стабилизирующим напряжением. Эта схема оправдана только при питании светодиодов с большим рабочим током — от 20 мА и выше.

Схема мигающего светодиода на 220В


   А эта схема позволяет не просто светиться светодиоду, а мигать, что гораздо информативнее и красивее. Причём LED индикатор сюда ставим самый обычный — не мигающий. Для этого надо всего 5 радиодеталей.


   Здесь напряжение сети 220 вольт через диод и резистор на 200-300 кОм заряжает электролитический конденсатор на 20 мкФ 100 В, а уже с него постоянное напряжение периодически открывает динистор DB3, заставляя вспыхивать светодиод. Частота вспышек будет определяться ёмкостью, а яркость — сопротивлением резистора.

   Вопросы по питанию светодиодов

   Светодиоды

Лабораторный БП 0-30 вольт

Драгметаллы в микросхемах

Металлоискатель с дискримом

Ремонт фонарика с АКБ

Восстановление БП ПК ATX

Кодировка SMD деталей

Справочник по диодам

Аналоги стабилитронов

Как подключить светодиод: инструкция 12 в и 220 в, расчет резистора

Обычно светодиоды подключаются к 220В при помощи драйвера, рассчитанного под их характеристики. Но если требуется подключить только один маломощный светодиод, например, в качестве индикатора, то применение драйвера становится нецелесообразным. В таких случаях возникает вопрос — как подключить светодиод к 220 В без дополнительного блока питания.

Основы подключения к 220 В

В отличие от драйвера, который питает светодиод постоянным током и сравнительно небольшим напряжением (единицы-десятки вольт), сеть выдает переменное синусоподобное напряжение с частотой 50 Гц и средним значением 220 В. Поскольку светодиод пропускает ток только в одну сторону, то светиться он будет только на определенных полуволнах:

То есть led при таком питании светится не постоянно, а мигает с частотой 50 Гц. Но из-за инерционности человеческого зрения это не так заметно.

В то же время напряжение обратной полярности, хотя и не заставляет led светиться, все же прикладывается к нему и может вывести из строя, если не предпринять никаких защитных мер.

Способы подключения светодиода к сети 220 В

Самый простой способ (читайте про все возможные способы подключения led) – подключение при помощи гасящего резистора, включенного последовательно со светодиодом. При этом нужно учесть, что 220 В – это среднеквадратичное значение U в сети. Амплитудное значение составляет 310 В, и его нужно учитывать при расчете сопротивления резистора.

Кроме того, необходимо обеспечить защиту светоизлучающего диода от обратного напряжения той же величины. Это можно сделать несколькими способами.

Последовательное подключение диода с высоким напряжением обратного пробоя (400 В и более)

Рассмотрим схему подключения более подробно.

В схеме используется выпрямительный диод 1N4007 с обратным напряжением 1000 В. При изменении полярности все напряжение будет приложено именно к нему, и led оказывается защищенным от пробоя.

Такой вариант подключения наглядно показан в этом ролике:

Также здесь описывается, как определить расположение анода и катода у стандартного маломощного светодиода и рассчитать сопротивление гасящего резистора.

Шунтирование светодиода обычным диодом

Здесь подойдет любой маломощный диод, включенный встречно-параллельно с led. Обратное напряжение при этом будет приложено к гасящему резистору, т.к. диод оказывается включенным в прямом направлении.

Встречно-параллельное подключение двух светодиодов:

Схема подключения выглядит следующим образом:

Принцип аналогичен предыдущему, только здесь светоизлучающие диоды горят каждый на своем участке синусоиды, защищая друг друга от пробоя.

Обратите внимание, что подключение светодиода к питанию 220В без защиты ведет к быстрому выходу его из строя.

  • Схемы подключения к 220В при помощи гасящего резистора обладают одним серьезным недостатком: на резисторе выделяется большая мощность.
  • Например, в рассмотренных случаях используется резистор сопротивлением 24 Ком, что при напряжении 220 В обеспечивает ток около 9 мА. Таким образом, мощность, рассеиваемая на резисторе, составляет:
  • 9 * 9 * 24 = 1944 мВт, приблизительно 2 Вт.
  • То есть для оптимального режима работы потребуется резистор мощностью не менее 3 Вт.
  • Если же светодиодов будет несколько, и они будут потреблять больший ток, то мощность будет расти пропорционально квадрату тока, что сделает применение резистора нецелесообразным.

Применение резистора недостаточной мощности ведет к его быстрому перегреву и выходу из строя, что может вызвать короткое замыкание в сети.

В таких случаях в качестве токоограничивающего элемента можно использовать конденсатор. Преимущество этого способа в том, что на конденсаторе не рассеивается мощность, поскольку его сопротивление носит реактивный характер.

Здесь показана типовая схема подключения светоизлучающего диода в сеть 220В при помощи конденсатора.

Поскольку конденсатор после отключения питания может хранить в себе остаточный заряд, представляющий опасность для человека, его необходимо разряжать при помощи резистора R1.

R2 защищает всю схему от бросков тока через конденсатор при включении питания. VD1 защищает светодиод от напряжения обратной полярности.

Конденсатор должен быть неполярным, рассчитанным на напряжение не менее 400 В.

Применение полярных конденсаторов (электролит, тантал) в сети переменного тока недопустимо, т.к. ток, проходящий через них в обратном направлении, разрушает их конструкцию.

Емкость конденсатора рассчитывается по эмпирической формуле:

  1. где U – амплитудное напряжение сети (310 В),
  2. I – ток, проходящий через светодиод (в миллиамперах),
  3. Uд – падение напряжения на led в прямом направлении.
  4. Допустим, нужно подключить светодиод с падением напряжения 2 В при токе 9 мА. Исходя из этого, рассчитаем емкость конденсатора при подключении одного такого led к сети:

Данная формула действительна только для частоты колебаний напряжения в сети 50 Гц. На других частотах потребуется пересчет коэффициента 4,45.

Нюансы подключения к сети 220 В

При подключении led к сети 220В существуют некоторые особенности, связанные с величиной проходящего тока. Например, в распространенных выключателях освещения с подсветкой, светодиод включается по схеме, изображенной ниже:

Как видно, здесь отсутствуют защитные диоды, а сопротивление резистора выбрано таким образом, чтобы ограничить прямой ток led на уровне около 1 мА. Нагрузка в виде лампы также служит ограничителем тока.

При такой схеме подключения светодиод будет светиться тускло, но достаточно для того, чтобы разглядеть выключатель в комнате в ночное время.

Кроме того, обратное напряжение будет приложено в основном к резистору при разомкнутом ключе, и светоизлучающий диод оказывается защищенным от пробоя.

Если требуется подключить к 220В несколько светодиодов, можно включить их последовательно на основе схемы с гасящим конденсатором:

При этом все led должны быть рассчитаны на одинаковый ток для равномерного свечения.

Можно заменить шунтирующий диод встречно-параллельным подключением светодиодов:

В обоих случаях нужно будет пересчитать величину емкости конденсатора, т.к. возрастет напряжение на светодиодах.

Параллельное (не встречно-параллельное) подключение led в сеть недопустимо, поскольку при выходе одной цепи из строя через другую потечет удвоенный ток, что вызовет перегорание светодиодов и последующее короткое замыкание.

Еще несколько вариантов недопустимого подключения светоизлучающих диодов в сеть 220В описаны в этом видео:

Здесь показано, почему нельзя:

  • включать светодиод напрямую;
  • последовательно соединять светодиоды, рассчитанные на разный ток;
  • включать led без защиты от обратного напряжения.

Безопасность при подключении

При подключении к 220В следует учитывать, что выключатель освещения обычно размыкает фазный провод. Ноль при этом проводится общим по всему помещению.

Кроме того, электросеть зачастую не имеет защитного заземления, поэтому даже на нулевом проводе присутствует некоторое напряжение относительно земли. Также следует иметь в виду, что в некоторых случаях провод заземления подключается к батареям отопления или водопроводным трубам.

Поэтому при одновременном контакте человека с фазой и батареей, особенно при монтажных работах в ванной комнате, есть риск попасть под напряжение между фазой и землей.

В связи с этим, при подключении в сеть лучше отключать и ноль, и фазу при помощи пакетного автомата во избежание поражения током при прикосновении к токоведущим проводам сети.

Заключение

Описанные здесь способы подключения светодиодов в сеть 220В целесообразно применять только при использовании маломощных светоизлучающих диодов в целях подсветки или индикации.

Мощные led так подключать нельзя, поскольку нестабильность сетевого напряжения приводит к их быстрой деградации и выходу из строя.

В таких случаях нужно применять специализированные блоки питания светодиодов – драйверы.

Источник: http://ledno.ru/svetodiody/podklyuchenie-led-k-220-v.html

Как подключить светодиод к 220В: резистор, конденсатор, способы подключения

Без светодиодов трудно обойтись при проектировании электронной аппаратуры, а также при изготовлении экономичных осветительных приборов.

Их надежность, простота монтажа и относительная дешевизна привлекают внимание разработчиков бытовых и промышленных светильников.

Поэтому многих пользователей интересуют схемные решения по включению светодиода, предполагающие прямую подачу на него фазного напряжения. Неспециалистам в области электроники и электрики полезно будет узнать, как подключить светодиод к 220В.

Технические особенности диода

По определению светодиод, схема которого схожа с обычным диодом, – это тот же полупроводник, пропускающий ток в одном направлении и излучающий свет при его протекании. Его рабочий переход не рассчитан на высокие напряжения, поэтому для загорания светодиодного элемента вполне достаточно всего нескольких вольт.

Другой особенностью этого прибора является необходимость подачи на него постоянного напряжения, так как при переменных 220 Вольт светодиод будет мигать с частотой сети (50Герц). Считается, что глаз человека не реагирует на такие мигания и что они не причиняют ему вреда. Но все же согласно действующим стандартам для его работы нужно использовать постоянный потенциал.

В противном случае приходится применять особые меры защиты от опасных обратных напряжений.

Большинство образцов осветительной техники, в которых диоды используются в качестве элементов освещения, включаются в сеть через специальные преобразователи – драйверы.

Эти устройства необходимы для получения из исходного сетевого напряжения постоянных 12, 24, 36 или 48 Вольт. Несмотря на их широкое распространение в быту нередки ситуации, когда обстоятельства вынуждают обходиться без драйвера.

В этом случае важно уметь включать светодиоды в 220 В.

Полюса светодиода

Чтобы ознакомиться со схемами включения и распайкой диодного элемента, нужно узнать, как выглядит распиновка светодиода. В качестве его графического обозначения используется треугольник, к одному из углов которого примыкает короткая вертикальная полоса – на схеме она называется катодом. Он считается выходным для постоянного тока, втекающего с обратной стороны. Туда подается положительный потенциал от источника питания и поэтому входной контакт называется анодом (по аналогии с электронными лампами).

Выпускаемые промышленностью светодиоды имеют всего два вывода (реже – три или даже четыре). Известны три способа определения их полярности:

  • визуальный метод, позволяющий определить анод элемента по характерному выступу на одной из ножек;
  • с помощью мультиметра в режиме «Проверка диодов»;
  • посредством блока питания с постоянным выходным напряжением.

Для определения полярности вторым способом плюсовой конец измерительного шнура тестера в красной изоляции подсоединяется к одному контактному выводу диода, а черный минусовой – к другому. Если прибор показывает прямое напряжение порядка полвольта, со стороны плюсового конца расположен анод. Если на табло индикации появляется знак бесконечности или «0L», с этого конца располагается катод.

При проверке от источника питания на 12 Вольт его плюс следует соединить с одним концом светодиода через ограничивающий резистор 1 кОм. Если диод загорается, его анод находится со стороны плюса блока питания, а если нет – с другого конца.

Способы подключения

Установка дополнительного резистора гасит излишки мощности электричества

Простейший подход к решению проблемы недопустимого для диода обратного напряжения – установка последовательно с ним дополнительного резистора, который способен ограничить 220 Вольт. Этот элемент получил название гасящего, так как он «рассеивает» на себе излишки мощности, оставляя светодиоду необходимые для его работы 12-24 Вольта.

Последовательная установка ограничивающего резистора также решает проблему обратного напряжения на переходе диода, которое снижается до тех же величин.

В качестве модификации последовательного включения с ограничением напряжения рассматривается смешанная или комбинированная схема подключения светодиодов в 220 В.

В ней на один резистор последовательный резистор приходится несколько параллельно соединенных диодов.

Подключение светодиода можно организовать по схеме, в которой вместо резистора используется обычный диод, имеющий высокое напряжение обратного пробоя (желательно – до 400 Вольт и более).

Для этих целей удобнее всего взять типовое изделие марки 1N4007 с заявленным в характеристиках показателем до 1000 Вольт. При его установке в последовательную цепочку (при изготовлении гирлянды, например), обратная часть волны выпрямляется полупроводниковым диодом.

Он в этом случае выполняет функцию шунта, защищающего чип светового элемента от пробоя.

Шунтирование светодиода обычным диодом (встречно-параллельное подключение)

Встречно-параллельное подключение

Другой распространенный вариант «нейтрализации» обратной полуволны состоит в использовании совместно с гасящим резистором еще одного светодиода, включаемого параллельно и навстречу первому элементу. В этой схеме обратное напряжение «замыкается» через параллельно подключенный диод и ограничивается дополнительным сопротивлением, включенным последовательно.

Такое соединение двух светодиодов напоминает предыдущий вариант, но с одним отличием. Каждый из них работает со «своей» частью синусоиды, обеспечивая другому элементу защиту от пробоя.

Существенный недостаток схемы подключения через гасящий резистор – значительная величина непроизводительно расходуемой мощности, выделяемой на нем вхолостую.

Подтверждением этому является следующий пример. Пусть используется гасящий резистор номиналом 24 кОм и светодиод с рабочим током 9 мА. Рассеиваемая на сопротивлении мощность будет равна 9х9х24=1944 мВт (после округления – порядка 2-х Ватт). Чтобы резистор работал в оптимальном режиме, он выбирается со значением P не менее 3 Вт. На самом светодиоде расходуется совсем ничтожная часть энергии.

С другой стороны, при использовании нескольких последовательно подключенных LED элементов ставить гасящий резистор из соображений оптимального режима их свечения нецелесообразно.

Если выбрать очень маленькое по номиналу сопротивление, оно быстро сгорит из-за большого тока и значительной рассеиваемой мощности.

Поэтому функцию токоограничивающего элемента в цепи переменного тока естественнее выполнять конденсатору, на котором энергия не теряется.

Ограничение с помощью конденсатора

Использование накопительного конденсатора

Простейшая схема подключения светодиодов через ограничительный конденсатор C характеризуется следующими особенностями:

  • предусматриваются цепочки заряда и разряда, обеспечивающие режимы работы реактивного элемента;
  • потребуется еще один светодиод, необходимый для защиты основного от обратного напряжения;
  • для расчета емкости конденсатора используется полученная опытным путем формула, в которую подставляются конкретные цифры.

Для вычисления значения номинала C нужно умножить силу тока в цепи на выведенный эмпирически путем коэффициент 4,45. После этого следует разделить полученное произведение на разницу между предельным напряжением (310 Вольт) и его падением на светодиоде.

В качестве примера рассмотрим подключение конденсатора к RGB или обычному LED-диоду с падением напряжения на его переходе, равным 3 Вольта и током через него в 9 мА. Согласно рассмотренной формуле его емкость составит 0,13 мкФ. Для введения поправки на ее точное значение следует учитывать, что на величину этого параметра в большей мере влияет токовая составляющая.

Выеденная опытным путем эмпирическая формула действительна лишь для расчета емкостей и параметров светодиодов на 220 В., установленных в сетях частотой 50 Гц. В других частотных диапазонах питающих напряжений (в преобразователях, например), коэффициент 4,45 нуждается в перерасчете.

Нюансы подключения к сети 220 Вольт

Схема подключения светодиода к сети 220В

При использовании различных схем подключения светодиода к сети 220 В возможны некоторые нюансы, учет которых поможет избежать элементарных ошибок в коммутации электрических цепей. Они в основном связаны с величиной тока, протекающего через цепочку при подаче на нее питания. Для их понимания потребуется рассмотреть простейший прибор типа подсветки для декорирования, состоящий из целого набора светодиодных элементов или обычный светильник на их основе.

Значительное внимание обращается на особенности процессов, протекающих в выключателе в момент подачи питания. Для обеспечения «мягкого» режима включения к его контактам потребуется подпаять в параллель гасящий резистор и светодиод-индикатор, обозначающий включенное состояние.

Значение сопротивления подбирается по методикам, описанным ранее.

Только после выключателя с резистором в схеме располагается сама лента с чипами светодиодных элементов. В ней не предусмотрены защитные диоды, так что величина гасящего резистора подбирается из расчета протекающего по цепи тока, он не должен превышать значения порядка 1 мА.

Светодиодный индикатор-лампочка в этой схеме выполняет функцию нагрузки, еще больше ограничивающей ток. Из-за небольшой величины он будет светиться очень тускло, но этого вполне хватает для ночного режима. При действии обратной полуволны напряжение частично гасится на резисторе, что защищает диод от нежелательного пробоя.

Схема лед драйвера на 220 вольт

Более надежный способ, позволяющий запитать светодиоды от сети, – применение специального преобразователя или драйвера, понижающего напряжение до безопасного уровня.

Основное назначение драйвера под светодиод 220 вольт – ограничить ток через него в рамках допустимого значения (согласно паспорту).

В его состав входят формирователь напряжения, выпрямительный мостик и микросхема токового стабилизатора.

Вариант драйвера без стабилизатора тока

При желании собрать устройство питания светодиодов от 220 В своими руками потребуется знать следующее:

  • при использовании выходного стабилизатора амплитуда пульсаций существенно снижается;
  • в этом случае на самой микросхеме теряется часть мощности, что сказывается на яркости свечения излучающих приборов;
  • при использовании вместо фирменного стабилизатора фильтрующего электролита большой емкости пульсации не полностью сглаживаются, но остаются в допустимых пределах.

При самостоятельном изготовлении драйвера схему можно упростить, поставив на место выходной микросхемы электролит.

Безопасность при подключении

Не следует устанавливать в цепь диодов полярные конденсаторы

При работе со схемой включения диодов в сеть 220 Вольт основную опасность представляет соединенный последовательно с ними ограничивающий конденсатор. Под воздействием сетевого напряжения он заряжается до опасного для человека потенциала. Чтобы избежать неприятностей в этой ситуации рекомендуется:

  • предусмотреть в схеме специальную разрядную резисторную цепочку, управляемую отдельной кнопкой;
  • если сделать это невозможно, перед началом настойки после отключения от сети следует разряжать конденсатор с помощью жала отвертки;
  • не устанавливать в цепь питания диодов полярные конденсаторы, обратный ток которых достигает значений, способных «выжечь» схему.

Подключить светодиодные элементы на 220 Вольт удается лишь с помощью специальных элементов, вводимых в схему дополнительно.

В этом случае можно обойтись без понижающего трансформатора и блока питания, традиционно используемых для подключения низковольтных осветителей.

Основная задача добавочных элементов в схеме подключения светодиода в 220В – ограничить и выпрямить ток через него, а также защитить полупроводниковый переход от обратной полуволны.

Источник: https://StrojDvor.ru/elektrosnabzhenie/pitanie-svetodiodov-ot-220v-svoimi-rukami-sxema-podklyucheniya/

Подключение светодиода к 12 вольтам в машине (расчет сопротивления) (видео)

Два основных принципа о том как можно подключить светодиод к 12 вольтам или понизить напряжение на нагрузке

  Первый, это когда напряжение падает за счет того, что последовательно светодиоду подключается дополнительное сопротивление потребителя, в качестве которого выступает микросхема-стабилизатор напряжения. В этом случае определенная часть напряжения теряется в микросхеме, превращаясь в тепло. А значит вторая, оставшаяся, достается непосредственно нашему потребителю — светодиоду. Из-за этого он и не сгорает, так как не все суммарное напряжение проходит через него, а только часть. Плюсом применения микросхемы является тот факт, что она способна в автоматическом режиме поддерживать заданное напряжение. Однако есть и минусы. У вас не получиться снизить напряжение ниже уровня, на которое она рассчитана. Второе. Так как микросхема обладает определенным КПД, то падение относительно входа и выхода будет отличаться на 1-1,5 вольта в меньшую сторону. Также для применения микросхемы вам необходимо будет применить хороший рассеивающий радиатор, установленный на ней. Ведь по сути тепло выделяемое от микросхемы, это и есть невостребованные нами потери. То есть то, что мы отсекли от большего потенциала, чтобы получить меньший.

 Второй вариант питания светодиода, когда напряжение ограничивается за счет резистора. Это сродни тому, если бы большую водопроводную трубы взяли бы и сузили. При этом поток (расход и давление) снизились бы в разы. В этом случае до светодиода доходит лишь часть напряжения.

А значит, он также может работать без опасности быть сожженным. Минусом применения резистора будет то, что он также имеет свой КПД, то есть также тратит невостребованное напряжение в тепло. В этом случае бывает трудно установить резистор на радиатор.

  В итоге, он не всегда подойдет для включения в цепь. Также минусом будет являться и то обстоятельство, что резистор не поддерживает автоматического удержания напряжение в заданном пределе. При падении напряжения в общей цепи, он подаст настолько же меньшее напряжение и на светодиод.

Соответственно обратная ситуация произойдет при повышении напряжения в общей цепи.

 Конечно, тот и другой вариант не идеальны, так при работе от портативных источников энергии каждый из них будет тратить часть полезной энергии на тепло. А это актуально! Но что сделать, таков уж принцип их работы.

В этом случае источник питания будет тратить часть своей энергии не на полезное действие, а на тепло.

Здесь панацеей является использование широтно-импульсной модуляции, но это значительно усложняет схему… Поэтому мы все же остановимся на первых двух вариантах, которые и рассмотрим на практике.

Подключение светодиода через сопротивление к 12 вольтам в машине (через резистор)

Начнем, как и в абзаце выше, с варианта подключения светодиода к напряжению в 12 вольт через резистор. Для того чтобы вам лучше было понять как же происходит падение напряжение, мы приведем несколько вариантов. Когда к 12 вольтам подключено 3 светодиода, 2 и 1.

Подключение 1 светодиода через сопротивление к 12 вольтам в машине (через резистор)

 Итак, у нас есть светодиод. Его напряжение питания 3,3 вольта. То есть если бы мы взяли источник питания в 3,3 вольта и подключили к нему светодиод, то все было бы замечательно. Но в нашем случае наблюдается повышенное напряжение, которое не трудно посчитать по формуле.  14,5-3,3= 11,2 вольта.

То есть нам необходимо первоначально снизить напряжение на 11,2 вольта, а затем лишь подать напряжение на светодиод.  Для того чтобы нам рассчитать сопротивление, необходимо знать какой ток протекает в цепи, то есть ток потребляемый светодиодом. В среднем это около 0,02 А. При желании можете посмотреть номинальный ток в даташите к светодиоду. В итоге, по закону Ома получается.

R=11,2/0,02=560 Ом. Сопротивление резистора рассчитано. Ну, а уж схему нарисовать и того проще.

Мощность резистора рассчитывается по формуле  P=UI=11.2*0,02=0,224 Вт. Берем ближайший согласно стандартного типоряда.

Подключение 2 светодиодов через сопротивление к 12 вольтам в машине (через резистор)

По аналогии с предыдущим примером все высчитывается также, но с одним условием. Так как светодиода уже два, то падение напряжения на них будет 6,6 вольта, а оставшиеся 14,5-6,6=7,9 вольта останутся резистору. Исходя из этого, схема будет следующей.

Так как ток в цепи не изменился, то мощность резистора остается без изменений.

Подключение 3 светодиодов через сопротивление к 12 вольтам в машине (через резистор)

И еще один вариант, когда практически все напряжение гасится светодиодами. А значит, резистор по своему номиналу будет еще меньше. Всего 240 Ом. Схема подключения 3 светодиодов к бортовой сети машины прилагается.

Напоследок нам лишь осталось сказать, что при расчетах было использовано напряжение не 12, а 14,5 вольт. Именно такое повышенное напряжение обычно возникает в электросети машины, когда она заведена.

 Также не трудно прикинуть, что при подключении 4 светодиодов, вам и вовсе не потребуется применение какого либо резистора, ведь на каждый из светодиодов придется по 3,6 вольта, что вполне допустимо.

Подключение светодиода через стабилизатор напряжения к 12 вольтам в машине (через микросхему)

 Теперь перейдем к стабилизированной схеме питания светодиодов от 12 вольт. Здесь, как мы уже и говорили, существует схема, которая регулирует собственное внутреннее сопротивление. Таким образом, питание светодиода будет осуществляться устойчиво, независимо от скачков напряжения бортовой сети.

  К сожалению минусом применения микросхемы является тот факт, что минимальное стабилизированное напряжение, которое возможно добиться будет 5 вольт. Именно с таким напряжением можно встретить наиболее широко известные микросхемы – стабилизаторы КР142 ЕН 5Б или иностранный аналог L7805 или L7805CV.

Здесь разница лишь в производителе и номинальном рабочем токе от 1 до 1,5 А.

 Так вот, оставшееся напряжение с 5 до 3,3 вольт придется гасить все по тому же примеру что и в предыдущих случаях, то есть с помощью применения резистора. Однако снизить напряжение резистором на 1,7 вольта это уже не столь критично как на 8-9 вольт.

Стабилизация напряжения в этом случае все же будет наблюдаться! Приводим схему подключения микросхемы стабилизатора.Как видите, она очень простая. Реализовать ее может каждый. Не сложнее чем припаять тот же резистор.

Единственное условие это установка радиатора, который будет отводить тепло от микросхемы. Его установить нужно обязательно. На схеме написано что микросхема может питать 10 цепочек со светодиодом, на самом деле этот параметр занижен.

По факту, если через светодиод проходит около 0,02 А, то она может обеспечивать питанием до 50 светодиодов. Если вам необходимо обеспечить питание большего количества, то используйте вторую такую же независимую схему. Использование двух микросхем подключенных параллельно не правильно.

Так как их характеристики немного, да будут отличаться друг от друга, из-за индивидуальных особенностей. В итоге, у одной из микросхем будет шанс перегореть намного быстрее, так как режимы работы у нее будут иные — завышенные.

 О применение аналогичных микросхем мы уже рассказывали в статье «Зарядное устройство на 5 вольт в машине». Кстати, если вы все же решитесь выполнить питание для светодиода на ШИМ, хотя это вряд ли того стоит, то эта статья также раскроет вам все секреты реализации такого проекта.

Подводя итог о подключение светодиода к 12 вольтам в машине своими руками

Видео по подключению светодиода к сети в автомобиле

… а теперь чтобы вам было легче прикинуть какой номинал сопротивления нужен и какой мощностью для вашего конкретного случая, можете воспользоваться калькулятором подбора резистора

Источник: https://autosecret.net/tuning/elektro-tuning/1983-podkljuchenie-svetodioda-k-12-voltam

Схемы подключения светодиодов к 220в и 12в — LED Свет

04.03.2019

Рассмотрим способы включения лед диодов средней мощности к наиболее популярным номиналам 5В, 12 вольт, 220В.

Затем их можно использовать при изготовлении цветомузыкальных устройств, индикаторов уровня сигнала, плавное включение и выключение.

Давно собираюсь сделать плавный искусственный рассвет , чтобы соблюдать распорядок дня. К тому же эмуляция рассвета позволяет просыпаться гораздо лучше и легче.

Про подключение светодиодов к 12 и 220В читайте в предыдущей статье, рассмотрены все способы от сложных до простых, от дорогих до дешёвых.

Типы схем

Схема подключения светодиодов бывает двух типов, которые зависят от источника питания:

В первом варианте применяется специализированный  источник, который имеет определенный стабилизированный ток, например 300мА. Количество подключаемых LED диодов ограничено только его мощностью. Резистор (сопротивление) не требуется.

Во втором варианте стабильно только напряжение. Диод имеет очень малое внутреннее сопротивление, если его включить без ограничения Ампер, то он сгорит. Для включения  необходимо использовать токоограничивающий резистор.Расчет резистора для светодиода можно сделать на специальном калькуляторе.

Калькулятор учитывает 4 параметра:

  • снижение напряжения на одном LED;
  • номинальный рабочий ток;
  • количество LED в цепи;
  • количество вольт на выходе блока питания.

Разница кристаллов

Если вы используете недорогие LED элементы китайского производства, то скорее всего у них будет большой разброс параметров. Поэтому реальное значение Ампер цепи будет отличатся и потребуется корректировка установленного сопротивления.

Чтобы проверить насколько велик разброс параметров, необходимо включить все последовательно. Подключаем питание светодиодов и  затем понижаем напряжение до тех пор, когда они будут едва светиться.

Если характеристики отличаются сильно, то часть LED будет работать ярко, часть тускло.

Это приводит к тому, что на некоторых элементах электрической цепи мощность будет выше, из-за этого они будут сильнее нагружены.  Так же будет повышенный нагрев, усиленная деградация, ниже надежность.

Обозначение на схеме

Для обозначения на схеме используется две вышеуказанные пиктограммы. Две параллельные стрелочки указывают, что светит очень сильно, количество зайчиков в глазах не сосчитать.

Подключение светодиода к сети 220в, схема

Для подключения к сети 220 вольт используется драйвер, который является источником стабилизированного тока.

Схема драйвера для светодиодов бывает двух видов:

  1. простая на гасящем конденсаторе;
  2. полноценная с использованием микросхем стабилизатора;

Собрать драйвер на конденсаторе очень просто, требуется минимум деталей и времени. Напряжение 220В снижается за счёт высоковольтного конденсатора, которое затем выпрямляется и немного стабилизируется.

Она используется в дешевых светодиодных лампах. Основным недостатком является высокой уровень пульсаций света, который плохо действует на здоровье. Но это индивидуально, некоторые этого вообще не замечают.

Так же схему сложно рассчитывать из-за разброса характеристик электронных компонентов.

Полноценная схема с использованием специализированных микросхем обеспечивает лучшую стабильность на выходе драйвера. Если драйвер хорошо справляется с нагрузкой, то коэффициент пульсаций будет не выше 10%, а  в идеале 0%. Чтобы не делать драйвер своими руками, можно взять из неисправной лампочки или светильника, если проблема у них была  не с питанием.

Если у вас есть более менее подходящий стабилизатор, но сила тока меньше или больше, то её можно подкорректировать с минимум усилий. Найдите технические характеристики на микросхему из драйвера.

Чаще всего количество Ампер на выходе задаётся резистором или несколькими резисторами, находящимися рядом с микросхемой. Добавив к ним еще сопротивление или убрав один из них можно получить необходимую силу тока.

Единственное нельзя превышать указанную  мощность.

Подключение к постоянному напряжению

Далее будут рассмотрены  схемы подключения светодиодов к постоянному напряжению. Наверняка у вас дома найдутся блоки питания со стабилизированный  полярным напряжением на выходе. Несколько примеров:

  1. 3,7В – аккумуляторы от телефонов;
  2. 5В – зарядные устройства с USB;
  3. 12В – автомобиль, прикуриватель, бытовая электроника, компьютер;
  4. 19В – блоки от ноутбуков, нетбуков, моноблоков.

Самый простой низковольтный драйвер

Простейшая схема стабилизатора тока для светодиодов состоит из линейной микросхемы LM317 или его аналогов. На выходе таких стабилизаторов может быть от 0,1А до 5А. Основные недостатки это невысокий КПД и сильный нагрев. Но это компенсируется максимальной простотой изготовления.

  • Входное до 37В, до 1,5 Ампера для корпуса указанного на картинке.
  • Для рассчёта сопротивления, задающего рабочий ток используйте калькулятор стабилизатор тока на LM317 для светодиодов.

Драйвера с питанием от 5В до 30В

Если у вас есть подходящий источник питания от какой либо бытовой техники, то для включения лучше использовать низковольтный драйвер. Они бывают повышающие и понижающие.  Повышающий даже из 1,5В сделает 5В, чтобы светодиодная цепь работала. Понижающий из 10В-30В сделает более низкое, например 15В.

В большом ассортименте они продаются у китайцев, низковольтный драйвер отличается двумя регуляторами от простого стабилизатора Вольт.

Реальная мощность такого стабилизатора будет ниже, чем указал китаец. У параметрах модуля пишут характеристику микросхемы и не всей конструкции. Если стоит большой радиатор, то такой модуль потянет 70% — 80% от обещанного. Если радиатора нет, то 25% — 35%.

Более эффективны XL4015, XL4005, КПД гораздо выше. Без радиатора охлаждения выдерживают до 2,5А. Есть совсем миниатюрные модели на MP1584 размером 22мм на 17мм.

Включение 1 диода

Чаще всего используются 12 вольт, 220 вольт и 5В. Таким образом делается маломощная светодиодная подсветка настенных выключателей на 220В. В заводских стандартных выключателях чаще всего ставится неоновая лампа.

Параллельное подключение

При параллельном соединении  желательно на каждую последовательную цепь диодов использовать отдельный резистор, чтобы получить максимальную надежность.

Другой вариант, это ставить одно мощное сопротивление на несколько LED. Но при выходе одного LED из строя увеличится ток на других оставшихся.

На целых будет выше номинального или заданного, что значительно сократит ресурс и увеличит нагрев.

Рациональность применений каждого способа  рассчитывают исходя из требований к изделию.

Последовательное подключение

Последовательное подключение при питании от 220в используют в филаментных диодах и светодиодных лентах на 220 вольт.  В длинной цепочке из 60-70 LED на каждом  падает 3В, что и позволяет подсоединять напрямую  к высокому напряжению. Дополнительно используется только выпрямитель тока, для получения плюса и минуса.

Такое соединение применяют в любой светотехнике:

  1. светодиодные лампах для дома;
  2. led светильники;
  3. новогодние гирлянды на 220В;
  4. светодиодные ленты на 220.

В лампах для дома обычно используется до 20 LED включенных последовательно, напряжение на них получается около 60В. Максимальное количество используется в китайских лампочках кукурузах, от 30 до 120 штук LED. Кукурузы не имеют защитной колбы, поэтому электрические контакты на которых до 180В полностью открыты.

Подключение RGB LED

Маломощные трёхцветные RGB светодиоды состоят из трёх независимых кристаллов, находящихся в одном корпусе. Если 3 кристалла (красный, зеленый, синий) включить одновременно, то получим белый свет.

Управление каждым цветом происходит независимо от других при помощи RGB контроллера. В блоке управления есть готовые программы и ручные режимы.

Включение COB диодов

Схемы подключения такие же, как у однокристальных и трехцветных светодиодов SMD5050, SMD 5630, SMD 5730. Единственное отличие, вместо 1 диода включена последовательная цепь из нескольких кристаллов.

Мощные светодиодные матрицы имеют в своём составе множество кристаллов включенных последовательно и параллельно. Поэтому питание требуется от 9 до 40 вольт, зависит от мощности.

Подключение SMD5050 на 3 кристалла

От обычных диодов SMD5050 отличается тем, что состоит из 3 кристаллов  белого света, поэтому имеет 6 ножек.  То есть он равен трём SMD2835, сделанным на этих же кристаллах.

При параллельном включении с использованием одного резистора надежность будет ниже. Если один их кристаллов выходит из строя, то увеличивается сила тока через оставшиеся 2. Это приводит к ускоренному выгоранию оставшихся.

При использовании отдельного сопротивления для каждого кристалла, выше указанный недостаток устраняется. Но при этом в 3 раза возрастает количество используемых резисторов и схема подключения светодиода становится сложней. Поэтому оно не используется в светодиодных лентах и лампах.

Светодиодная лента 12В SMD5630

Наглядным примером подключения светодиода к 12 вольтам является светодиодная лента. Она состоит из секций по 3 диода и 1 резистора, включенных последовательно. Поэтому разрезать её можно только в указанных местах между этими секциями.

Светодиодная лента RGB 12В SMD5050

В RGB ленте используется три цвета, каждый управляется отдельно, для каждого цвета ставится резистор. Разрезать можно только по указанному месту, чтобы в каждой секции было по 3 SMD5050 и она могла подключатся к 12 вольт.

Download WordPress ThemesDownload Best WordPress Themes Free DownloadFree Download WordPress ThemesDownload Premium WordPress Themes Freelynda course free downloadFree Download WordPress Themesudemy paid course free download

Источник:

Как подключить светодиод к 12 вольтам

Источник: https://svet100led.ru/harakteristiki/shemy-podklyucheniya-svetodiodov-k-220v-i-12v.html

Как подключить светодиод к 12 вольтам: расчет подключения в схемах

Содержание:

Светодиоды уже давно используются в различных сферах жизни и деятельности людей. Благодаря своим качествам и техническим характеристикам, они приобрели широкую популярность. На основе этих источников света создаются оригинальные светотехнические конструкции.

Поэтому у многих потребителей довольно часто возникает вопрос, как подключить светодиод к 12 вольтам. Данная тема очень актуальна, поскольку такое подключение имеет принципиальные отличия от других типов ламп. Следует учитывать, что для работы светодиодов используется только постоянный ток.

Большое значение имеет соблюдение полярности при подключении, в противном случае, светодиоды просто не будут работать.

Особенности подключения светодиодов

В большинстве случаев для подключаемых светодиодов требуется ограничение тока с помощью резисторов. Но, иногда вполне возможно обойтись и без них.

Например, фонарики, брелоки и другие сувениры со светодиодными лампочками питаются от батареек, подключенных напрямую. В этих случаях ограничение тока происходит за счет внутреннего сопротивления батареи.

Ее мощность настолько мала, что ее попросту не хватит, чтобы сжечь осветительные элементы.

Однако при некорректном подключении эти источники света очень быстро перегорают. Наблюдается стремительное падение яркости свечения, когда на них начинает действовать нормальный ток.

Светодиод продолжает светиться, но в полном объеме выполнять свои функции он уже не может. Такие ситуации возникают, когда отсутствует ограничивающий резистор.

При подаче питания светильник выходит из строя буквально за несколько минут.

Одним из вариантов некорректного подключения в сеть на 12 вольт является увеличение количества светодиодов в схемах более мощных и сложных устройств. В этом случае они соединяются последовательно, в расчете на сопротивление батарейки. Однако при перегорании одной или нескольких лампочек, все устройство выходит из строя.

Существует несколько способов, как подключить светодиоды на 12 вольт схема которых позволяет избежать поломок. Можно подключить один резистор, хотя это и не гарантирует стабильную работу устройства.

Это связано с существенными различиями полупроводниковых приборов, несмотря на то, что они могут быть из одной партии. Они обладают собственными техническими характеристиками, отличаются по току и напряжению.

При превышении током номинального значения один из светодиодов может перегореть, после этого остальные лампочки также очень быстро выйдут из строя.

Влияние светодиодных ламп на зрение

В другом случае предлагается соединить каждый светодиод с отдельным резистором. Получается своеобразный стабилитрон, обеспечивающий корректную работу, поскольку токи приобретают независимость.

Однако данная схема получается слишком громоздкой и чрезмерно загруженной дополнительными элементами. В большинстве случаев ничего не остается, как подключить светодиоды к 12 вольтам последовательно. При таком подключении схема становится максимально компактной и очень эффективной.

Для ее стабильной работы следует заранее позаботиться об увеличении питающего напряжения.

Определение полярности светодиода

Чтобы решить вопрос, как подключить светодиоды в цепь 12 вольт, необходимо определить полярность каждого из них. Для определения полярности светодиодов существует несколько способов.

Стандартная лампочка имеет одну длинную ножку, которая считается анодом, то есть, плюсом. Короткая ножка является катодом – отрицательным контактом со знаком минус.

Пластиковое основание или головка имеет срез, указывающий на место расположения катода – минуса.

В другом способе необходимо внимательно посмотреть внутрь стеклянной колбочки светодиода. Можно легко разглядеть тонкий контакт, который является плюсом, и контакт в форме флажка, который, соответственно, будет минусом.

При наличии мультиметра можно легко определить полярность. Нужно выполнить установку центрального переключателя в режим прозвонки, а щупами прикоснуться к контактам. Если красный щуп соприкоснулся с плюсом, светодиод должен загореться.

Значит черный щуп будет прижат к минусу.

Тем не менее, при кратковременном неправильном подключении лампочек с нарушением полярности, с ними не произойдет ничего плохого.

Каждый светодиод способен работать только в одну сторону и выход из строя может случиться только в случае повышения напряжения. Значение номинального напряжения для отдельно взятого светодиода составляет от 2,2 до 3 вольт, в зависимости от цвета.

При подключении светодиодных лент и модулей, работающих от 12 вольт и выше, в схему обязательно добавляются резисторы.

Расчет подключения светодиодов в схемах на 12 и 220 вольт

Отдельный светодиод невозможно напрямую подключить к источнику питания на 12 В поскольку он сразу же сгорит.

Необходимо использование ограничительного резистора, параметры которого рассчитываются по формуле: R= (Uпит-Uпад)/0,75I, в которой R является сопротивлением резистора, Uпит и Uпад – питающее и падающее напряжения, I – ток, проходящий по цепи, 0,75 – коэффициент надежности светодиода, являющийся постоянной величиной.

Коэффициент пульсации светодиодных ламп

В качестве примера можно взять схему, используемую при подключение светодиодов на 12 вольт в авто к аккумулятору. Исходные данные будут выглядеть следующим образом:

  • Uпит = 12В – напряжение в автомобильном аккумуляторе;
  • Uпад = 2,2В – питающее напряжение светодиода;
  • I = 10 мА или 0,01А – ток отдельного светодиода.

В соответствии с формулой, приведенной выше, значение сопротивления будет следующим: R = (12 – 2,2)/0,75 х 0,01 = 1306 Ом или 1,306 кОм. Таким образом, ближе всего будет стандартная величина резистора в 1,3 кОм. Кроме того, потребуется расчет минимальной мощности резистора.

Данные расчеты используются и при решении вопроса, как подключить мощный светодиод к 12 вольтам. Предварительно определяется величина фактического тока, которая может не совпадать со значением, указанным выше. Для этого используется еще одна формула: I = U / (Rрез.+ Rсвет), в которой Rсвет является сопротивлением светодиода и определяется как Uпад.ном. / Iном. = 2.

2 / 0,01 = 220 Ом. Следовательно, ток в цепи составит: I = 12 / (1300 + 220) = 0,007 А.

В результате, фактическое падение напряжения светодиода будет равно: Uпад.свет = Rсвет х I = 220 х 0,007 = 1,54 В. Окончательно значение мощности будет выглядеть так: P = (Uпит. — Uпад.)² / R = (12 -1,54)²/ 1300 = 0,0841 Вт).

Для практического подключения значение мощности рекомендуется немного увеличить, например, до 0,125 Вт. Благодаря этим расчетам, удается легко подключить светодиод к аккумулятору 12 вольт.

Таким образом, для правильного подключения одного светодиода к автомобильному аккумулятору на 12В, в цепи дополнительно понадобится резистор на 1,3 кОм, мощность которого составляет 0,125Вт, соединяющийся с любым контактом светодиода.

Расчет подключения светодиода к сети 220В осуществляется по такой же схеме, что и для 12В. В качестве примера берется такой же светодиод с током 10 мА и напряжением 2,2В.

Поскольку в сети используется переменный ток напряжением 220В, расчет резистора будет выглядеть следующим образом: R = (Uпит.-Uпад.) / (I х 0,75). Вставив в формулу все необходимые данные, получаем реальное значение сопротивления: R = (220 — 2.

2) / (0,01 х 0,75) = 29040 Ом или 29,040 кОм. Ближайший стандартный номинал резистора – 30 кОм.

Как сделать светодиодную лампу

Далее выполняется расчет мощности. Вначале определяется значение фактического тока потребления: I = U / (Rрез.+ Rсвет). Сопротивление светодиода рассчитывается по формуле: Rсвет = Uпад.ном. / Iном. = 2.

2 / 0,01 = 220 Ом. Следовательно, ток в электрической цепи будет составлять: I = 220 / (30000 + 220) = 0,007А. В результате, реальное падение напряжение на светодиоде будет следующим: Uпад.

свет = Rсвет х I = 220 х 0,007 = 1,54В.

Для определения мощности резистора используется формула: P = (Uпит. — Uпад.)² / R = (220 -1,54)² / 30000 = 1,59Вт. Значение мощности следует увеличить до стандартного, составляющего 2Вт. Таким образом, чтобы подключить один светодиод к сети с напряжением 220В понадобится резистор на 30 кОм с мощностью 2Вт.

Однако в сети протекает переменный ток и горение лампочки будет происходить лишь в одной полуфазе. Светильник будет выдавать быстрый мигающий свет, с частотой 25 вспышек в секунду.

Для человеческого глаза это совершенно незаметно и воспринимается как постоянное свечение. В такой ситуации возможны обратные пробои, которые могут привести к преждевременному выходу из строя источника света.

Чтобы избежать этого, выполняется установка обратно направленного диода, обеспечивающего баланс во всей сети.

Ошибки при подключении

Источник: https://electric-220.ru/news/kak_podkljuchit_svetodiod_k_12_voltam/2017-03-05-1194

Цепь светодиодного индикатора питания

для 230 В

Как правило, мы видели, что все индикаторы в нашем доме на настенном распределительном щите представляют собой неоновую лампочку, которая небольшого размера и подключается к резистору 68 кОм последовательно. Вы можете сделать индикатор, который светится очень красиво и так здорово, используя светодиоды, и сделать светодиодный индикатор для сети. Светодиодный индикатор имеет более длительный срок службы, чем другие. Здесь я описываю схему светодиодного индикатора, которая может использоваться с сетью переменного тока 230 В — 240 В .

Светодиодный индикатор

имеет преимущество в том, что он доступен в различной цветовой гамме, не требуется никакого дополнительного защитного стекла для изменения цвета и защиты. Если вам нужно использовать двухцветный или трехцветный светодиод (двух или трехцветный), тогда не требуется никаких внешних цепей, потому что светодиод имеет встроенное свойство с этим свойством. Он более прочный, чем другие.

Светодиодная лампа светится ярче и красивее, чем неоновая лампа. Но проблема со светодиодами заключается в том, что они работают только с постоянным током, а не с переменным током.Если я подключу его к сети переменного тока с резистором. Мы видим, что светодиод имеет незначительное свечение.

Если мы подключим выпрямитель после резистора с анодной точкой светодиода и землю непосредственно с катодом, то в качестве индикатора получится надлежащая и достаточная яркость.

Резистор 68 кОм или 100 кОм подключается непосредственно к клемме линии переменного тока (+), чтобы уменьшить сигнал, подходящий для светодиода, после резистора необходимо последовательно подключить выпрямительный диод с резистором, чтобы преобразовать сигнал переменного тока в постоянный, а затем он подключается к светодиоду. положительный вывод.Отрицательный вывод светодиода напрямую подключен к заземлению переменного тока. Если вы хотите сделать светодиоды более яркими, то вместо резистора 100 кОм подключают резистор 50 кОм. .
Будьте осторожны при подключении вывода диода и светодиода. При неправильном или обратном подключении индикатор работать не будет. Используйте диод 1N4007. Ниже приведена схема подключения светодиодного индикатора с напряжением 230 В переменного тока.

ПРИМЕЧАНИЕ. Не прикасайтесь ни к каким частям цепи во время тестирования. Это опасно .

Вот еще одна принципиальная схема светодиодного индикатора питания, который можно подключить к любой линии переменного тока 220-230 В .

Эта схема надежнее 1-й.

Рекомендуется резистор номиналом 1 Вт

Купить диод 1N4007 https://amzn.to/2UrkaGZ

Купить резисторы (смешанные номиналы) — https://amzn.to/2OvAra4

Похожие сообщения

Как подключить светодиод к источнику переменного тока 220 В (с расчетом)

Описание:

В этом проекте я объяснил, как подключить светодиоды с источником переменного тока 220 В с помощью принципиальной схемы.Я также объяснил, как спроектировать бестрансформаторную схему питания светодиода 220В переменного тока с расчетом.

Принципиальная схема:

Схема светодиода 220 В переменного тока очень проста и эффективна. Здесь я подключил последовательно 8 светодиодов (5 мм, 3 В) и запитал схему от бестрансформаторного источника питания.

Необходимые компоненты для этой цепи светодиода 220 В:

  1. 0,22 мкФ Конденсатор переменного тока 400 В
  2. 100 мкФ Конденсатор постоянного тока 35 В
  3. 560 Ом 1 Вт резистор
  4. 1M 0.25-ваттный резистор
  5. 1N4007 Диод (4 шт.)
  6. 5-мм светодиоды (3 В) (8 шт.)
  7. Нулевая печатная плата

Сделайте схему светодиода 220 В переменного тока на макетной плате

Сначала я сделал схему на макетной плате для тестирования. В обучающем видео я измерил все напряжение с помощью мультиметра, чтобы показать, как работает схема.

Обучающее видео по цепи светодиода 220 В переменного тока:

В этом видео я объяснил все детали этой цепи светодиода 220 В переменного тока.

Расчет для бестрансформаторного источника питания

Чтобы спроектировать любой бестрансформаторный источник питания с конденсаторным отводом, сначала необходимо рассчитать значение емкости.

Как рассчитать значение емкости для бестрансформаторного источника питания?

1. Мы должны знать входное напряжение (Vrms) и требуемое выходное напряжение (Vreq) и ток (Iout).

2. Рассчитайте полное сопротивление (Z).
Z = (( Vrms X 1.41 ) — Vreq ) / Iout

3. Рассчитайте необходимое значение емкости (C).
C = 1 / ( 2 X 3.14 X частота X Z )

Я подробно объяснил в обучающем видео.

Сделайте схему светодиода на печатной плате

После тестирования схемы светодиода на макетной плате я сделал схему на нулевой плате.

Поместите печатную плату в коробку.

Поскольку мы используем источник переменного тока 220 В, я поместил печатную плату в пластиковую коробку, чтобы избежать опасности поражения электрическим током.

Всегда соблюдайте меры безопасности при подключении источника питания 220 В.

Наконец-то !!

Теперь я легко могу подключить схему к сети переменного тока 220В. Здесь я буду использовать эту светодиодную схему в качестве ночника.

Надеюсь, вам понравился этот проект электроники.

Вы также можете подписаться на на нашу информационную рассылку , чтобы получать больше таких полезных проектов электроники по электронной почте.

Пожалуйста, поделитесь своими отзывами об этом проекте Arduino. Спасибо за уделенное время.

Могу ли я сэкономить деньги, используя светодиодные лампы для выращивания растений на 220/240 В вместо 110 В?

Распространенное заблуждение относительно светодиодных светильников для выращивания растений состоит в том, что их использование на 220 или 240 В позволит сэкономить на счете за электроэнергию. Использование ламп для выращивания растений на 220/240 В не снизит мощность и не сэкономит денег на счетах за электроэнергию.

Работа при 220/240 В снизит силу тока примерно наполовину, но потребляемая мощность останется прежней.

Закон Ома утверждает, что V = I * R, а формула мощности утверждает, что P = I * V.

В — напряжение (вольт) количество доступной электроэнергии

I — ток (амперы) количество электричества, проходящего через провод

R — сопротивление (Ом), способность материала сопротивляться току

P — мощность (ватт) сколько работы выполняет электричество

Следовательно, удвоение напряжения (В-вольт) уменьшит ток (I-ампер) вдвое, но потребляемая мощность (P-ватт) останется прежней. Количество потребляемой электроэнергии, измеряемое в ваттах, будет одинаковым при 110 В или 220 В.Коммунальная компания не взимает плату за силу тока, они взимают плату за мощность, поэтому на счетах за электроэнергию не будет экономии при работе от сети 220 В.

Пример — Закон Ома для светодиодных ламп для выращивания

G8-900 Лампа для выращивания овощей / цветов

P = I * V

Энергопотребление — 540 Вт (0,544 кВт)

при 110 / 120 В ток (I) равен 4,6 А

При 220/240 В ток (I) равен 2.3Amps

Количество потребляемой мощности, измеренное в ваттах, одинаково в обоих случаях — 540 Вт (0,544 кВт) в час.

В чем преимущество работы от сети 220В?

Преимущество работы при 220 В состоит в том, что сила тока будет вдвое меньше, а это означает, что вы можете подключить к цепи больше устройств. Хотя вы не сэкономите на электроэнергии, использование более высокого напряжения для работы оборудования в некоторых случаях может быть выгодным. Одна из основных причин использования 240-вольтного питания — недостаточная электрическая сила тока для работы всего оборудования при более низком напряжении.

Цепь ограничена автоматическими выключателями в электрической панели для предотвращения перегрева проводов и возникновения пожара. Автоматические выключатели регулируют силу тока, которая может протекать через цепь, независимо от напряжения. При более низкой силе тока к данной комнате для выращивания можно подключить больше источников света. Однако помните, что ваш счет за электроэнергию рассчитывается по потребляемым ваттам, а не по напряжению или силе тока.

L1: Включение светодиода

Содержание

  1. Материалы
  2. Подсоедините светодиод к контакту питания 5 В Arduino
    1. Шаг 1: Оберните резистор вокруг ножки светодиода
    2. Шаг 2: Подключите компоненты к Arduino
    3. Шаг 3 : Подключите Arduino к источнику питания
    4. Давайте проанализируем нашу схему
      1. Шаг 1: Определите узлы и то, что мы знаем
      2. Шаг 2: Определите падение напряжения на резисторе
      3. Шаг 3: Определите ток
    5. Максимальный потребляемый ток
      1. Максимальное количество светодиодов в серии
      2. Максимальное количество светодиодов, подключенных параллельно
  3. Понижение напряжения питания
  4. Как сделать светодиод менее ярким?
    1. Подключение светодиода к 3.Вывод питания 3 В
    2. Полное видео-пошаговое руководство
    3. Использование резисторов большего номинала
  5. Следующий урок

Для нашего первого учебного задания мы собираемся использовать Arduino для включения светодиода. Мы не будем писать код . Вместо этого наша цель — сначала познакомиться с оборудованием Arduino и подключением компонентов к контактам Arduino, прежде чем мы начнем программировать, что мы и сделаем в следующем уроке.

Рисунок Движение тока в цепи показано анимированными желтыми кружками.Эта визуализация представляет собой грубую абстракцию, предназначенную для подчеркивания направления текущего потока. Более точная визуализация показала бы, что электроны уже распределены по проводу до того, как будет приложено напряжение. См. Нашу серию статей «Введение в электронику», в частности урок по напряжению, току и сопротивлению.

Материалы

Для этого урока вам потребуются следующие материалы. Пожалуйста, создавайте вместе с нами, чтобы улучшить свое понимание и навыки — лучший способ учиться — это делать ! .Студенты, обучающиеся на наших курсах, должны задокументировать свои творческие пути в журналах прототипирования и попытаться ответить и поразмышлять на поставленные вопросы.

Arduino LED Резистор
Arduino Uno, Leonardo или аналогичный Красный светодиод Красный светодиод использование Arduino Leonardo для этих вводных уроков по работе с микроконтроллерами, но подойдет любая плата на 5 В, включая Arduino Uno, METRO 328 от Adafruit, RedBoard от Sparkfun, и т. д. Каждая из этих плат имеет одинаковое расположение выводов и общие характеристики.

Подключите светодиод к контакту питания 5 В Arduino.

Шаг 1. Оберните резистор вокруг ножки светодиода.

Возьмите резистор 220 Ом (или любой резистор 220 Ом или больше) и оберните одну ножку вокруг ножки светодиода. Если вы хотите следовать моему примеру точно , подключите резистор к аноду светодиода (длинная ножка), но любая ножка будет работать. (Помните, что резистор, ограничивающий ток, может быть установлен с любой стороны светодиода, см. Наш урок по светодиодам).

Чтобы обмотать компоненты проволокой, просто скрутите ножки вместе следующим образом:

Видео. Пример обмотки провода резистора 220 Ом непосредственно вокруг анода светодиода

Шаг 2: Подключите компоненты к Arduino

Вставьте светодиод + резистор в Arduino: катод светодиода (короткая ножка) к GND и анод светодиода (длинная ножка) + резистор к источнику напряжения Arduino, к которому вы можете получить доступ через вывод 5V.

Шаг 3: Подключите Arduino к источнику питания

Теперь подключите Arduino к источнику питания, и светодиод должен загореться.Ты сделал это!

Вот фотография сделанной мной версии. Мне было легче протянуть проводку через Arduino от порта 5V до GND на противоположной стороне.

Для питания вы можете использовать USB-кабель (который подает 5 В) или батарею на 9 В (которая подает 9 В). В любом случае, Arduino подает 5V через вывод 5V. Как? С помощью регулятора напряжения. См. «Подробнее» ниже.

Питание от USB Питание 9 В
С питанием от USB, вывод 5 В обеспечивает 5 В Используя бочкообразный разъем Arduino, мы можем подключить 7 внешних источников питания. -12 В настенный адаптер или аккумулятор на 9 В.Внутренний стабилизатор напряжения Arduino снижает эти более высокие напряжения для вывода чистого 5 В

Давайте проанализируем нашу схему

Как и в нашем уроке по светодиодам, давайте проанализируем, сколько тока проходит через эту простую схему на основе светодиодов. Для этого нам сначала нужно определить падение напряжения на резисторе \ (V_R \), а затем использовать закон Ома, чтобы вычислить ток (\ (I = \ frac {V_R} {R} \)).

Шаг 1. Определите узлы и то, что мы знаем

Мы всегда начинаем с определения узлов и того, что мы знаем.Мы знаем, что пока выполняется \ (V_f \), на нашем резисторе будет падение напряжения \ (V_R \) и падение напряжения \ (V_D \) на светодиоде.

Согласно законам Кирхгофа, мы знаем, что полное падение напряжения на резисторе и светодиоде (\ (V_R + V_D \)) должно равняться нашему напряжению питания \ (V_S = 5V \). Из нашего урока светодиодов мы знаем, что наша цепь отключена до тех пор, пока не будет достигнуто «включено» или «прямое» напряжение нашего светодиода, которое для красного светодиода составляет ~ 2В. Таким образом, мы можем установить \ (V_D = 2V \) и найти \ (V_R \).

Шаг 2: Найдите падение напряжения на резисторе

Решение для \ (V_R \):

\ [V_S = V_R + V_D \\ V_R = V_S — V_D \\ V_R = 5V — 2V = 3V \]

Шаг 3: Найдите значение тока

Из закона Ома мы знаем, что полный ток в нашей цепи равен падению напряжения на резисторе \ (V_R \), деленному на значение сопротивления \ (R \). То есть \ (I = \ frac {V_R} {R} \). И мы знаем, что \ (V_R = 3V \) и \ (R = 220Ω \). Таким образом, ток в нашей цепи равен:

\ [I = \ frac {V_R} {R} \\ I = \ frac {3V} {220Ω} = 0.014A = 13,6 мА \]

Итак, с выводом питания 5 В наша схема потребляет ток 13,6 мА. Это много или мало? Давайте рассмотрим это в контексте ниже.

Максимальное потребление тока

Arduino имеет множество типов контактов, каждый из которых имеет свои собственные максимальные значения тока.

  • Контакты ввода / вывода : Максимальный ток, потребляемый любым одиночным выводом ввода / вывода , который мы еще не использовали, но мы будем использовать в следующем уроке, составляет 40 мА (более безопасный, непрерывный диапазон ~ 20 мА).Суммарный ток на всех выводах ввода / вывода вместе составляет 200 мА . Если мы превысим эти значения, мы можем повредить нашу плату Arduino или базовый микроконтроллер (ATmega328 для Uno или ATmega32u4 для Leonardo)

  • Контакты источника питания : Выходной контакт 5V может подавать ~ 400- 500 мА при питании от USB и ~ 900-1000 мА при использовании внешнего адаптера питания. Выходной контакт 3,3 В может выдавать ~ 150 мА; однако, если у вас есть оба 3.Выходные контакты 3 В и 5 В подключены, любой ток, потребляемый с контакта 3,3 В, будет засчитан в общий ток 5 В.

Единственный предохранитель — это сбрасываемый предохранитель на USB-порте, который ограничивает ток до 500 мА на выходном контакте 5 В (но только при питании от USB).

В Интернете ведется множество дискуссий о максимальном потреблении тока Arduino Uno и Леонардо. Лучший ресурс, который я нашел, — это сообщения StackExchange, которые также содержат ссылки на таблицы данных (post1, post2).

Максимальное количество светодиодов в серии

Интересный вопрос, над которым стоит задуматься: с Arduino, питаемым через USB (максимальный ток 500 мА), сколько красных светодиодов вы могли бы последовательно подключить к контакту питания 5 В? Как насчет параллельно? Какой ограничивающий фактор для каждого?

Ну, для простой последовательной конфигурации общее количество последовательных светодиодов ограничено напряжением питания, которое составляет 5В. С резистором 200 Ом и красным светодиодом с «прямым» напряжением \ (V_f = 2V \) мы ограничены максимум двумя светодиодами: \ (2 * 2V = 4V \).Однако на практике мне удалось подключить три светодиода последовательно (потому что светодиод начинает немного загораться при ~ 1,7–1,8 В), хотя они были довольно тусклыми. Мои измерения см. В таблице и изображении ниже.

Резистор Кол-во красных светодиодов последовательно Падение напряжения на каждом светодиоде Падение напряжения на резисторе Ток
200 Ом 1 2,09 мА
200 Ом 2 1,92 В 1,21 В 6,1 мА
200 Ом 3 1,71 В 0,021 В 1,01 В ~ 0 В ~ 0 мА

Таблица . Для этого эмпирического измерения я использовал 5-миллиметровые КРАСНЫЕ светодиоды с рассеянным светом Sparkfun.

Вот изображение испытательной установки и схем для измерений выше:

Рисунок .Измерение падения напряжения и тока отдельного светодиода в цепи с помощью двух мультиметров: желтый мультиметр, настроенный как вольтметр для измерения падения напряжения \ (V_D \) на первом светодиоде в цепи, и красный мультиметр, настроенный как амперметр для измерения ток \ (I \) через цепь.

Наконец, мы также можем исследовать эту схему в симуляторе, который отражает наши эмпирические измерения:

Видео. A CircuitJS моделирование различных серий светодиодов с питанием 5 В.

Максимальное количество светодиодов, подключенных параллельно

Для параллельной конфигурации ограничивающим фактором является общий ток, который мы можем получить, который с выводом 5V, питаемым от USB, составляет 500 мА. Сколько нужно красных светодиодов, чтобы превысить 500 мА при использовании резисторов 200 Ом?

Что ж, в параллельной конфигурации каждая ветвь резистор + светодиод получает ~ \ (I = \ frac {V_R} {R} = \ frac {3V} {200} = 15 мА \). Таким образом, максимальное количество параллельно включенных светодиодов равно \ (\ frac {500mA} {15mA} = 33,3 \), округленное до 34.

Рисунок. 34 параллельно включенных светодиода потребляют ток 514,1 мА, что превышает максимальное значение выходного вывода 5 В на Arduino (при питании от USB). Вот ссылка CircuitJS.

Я попытался немного «нагружать» максимальные значения, используя порт USB на старом MacBook Pro (не делайте этого!). Несмотря на то, что я превысил как предел 500 мА с выходным контактом 5 В (563 мА), так и предел 150 мА с контактом 3,3 В (314 мА), я не сработал предохранитель. Однако я оставил плату подключенной только на короткое время.

Рисунок. Я провел «стресс-тестирование» выходного контакта 5 В, используя USB для питания. Не пытайтесь! Несмотря на превышение номинальных максимумов, мне не удалось сработать внутренний предохранитель Arduino на источниках питания 5 В или 3,3 В. Обратите внимание, что контакты ввода / вывода не имеют такой защиты, поэтому вы можете повредить плату, если перегрузите ток.

Понижение напряжения источника питания

Если мы подключим сетевой адаптер 7–12 В или батарею на 9 В к гнезду Arduino, то как Arduino преобразует эти более высокие напряжения в 5 В? Использование компонента, называемого стабилизатором напряжения, который может принимать различные значения постоянного напряжения и понижать (но не повышать) до стабильного постоянного напряжения.Вы можете купить и использовать регуляторы напряжения в собственных проектах. Если вы хотите узнать больше о подсистеме питания Arduino Uno, прочтите этот пост в блоге Technobyte.

Как сделать светодиод менее ярким?

Яркость светодиода контролируется током . Итак, чтобы уменьшить яркость светодиода, нам нужно уменьшить ток. Но как? Вспомните закон Ома: \ (V = I * R \) или \ (I = \ frac {V} {R} \). Таким образом, мы можем уменьшить ток:

  1. Понижение напряжения
  2. Увеличение сопротивления

В будущих уроках мы покажем, как программно управлять выходным напряжением , написав код для микроконтроллера Arduino.Но пока давайте уменьшим яркость светодиода, сначала уменьшив напряжение, используя вывод 3,3 В Arduino (а не вывод 5 В), а затем используя резисторы большего номинала. Это похоже на действия в наших уроках светодиодов, но теперь мы используем выводы Arduino в качестве источника напряжения.

Подключение светодиода к контакту питания 3,3 В

Arduino Uno обеспечивает как источник питания 5 В (который мы только что использовали), так и источник питания 3,3 В.

Давайте переместим анод светодиода (длинная ножка) с вывода 5V на вывод 3.Вывод 3V, но оставьте резистор 220 Ом. Что вы наблюдаете? Светодиод должен быть менее ярким! Это связано с тем, что в цепи 3,3 В. протекает меньший ток.

Напомним, что для 5 В мы имеем \ (I = \ frac {V_R} {R} = \ frac {3V} {220Ω} = 13,6 мА \). С выходным контактом 3,3 В это значение падает до \ (I = \ frac {V_R} {R} = \ frac {1V} {220Ω} = 4,5 мА \)

Вот фотография рабочего стола светодиода, подключенного к Порт 3,3 В. Светодиод заметно менее яркий:

Полное видео-пошаговое руководство

Вот полное видео-пошаговое руководство по намотке резистора вокруг анодной ножки светодиода, подключению цепи к 5 В и заземлению, а затем переключению с 5 В на 3.Питание 3 В.

Использование резисторов большего номинала

Мы только что показали, как уменьшение напряжения питания (\ (V_s \)) пропорционально снижает ток и, следовательно, яркость светодиода. Теперь давайте поиграем с резисторами более высокого номинала, такими как 680 Ом, 2,2 кОм или 10 кОм, и посмотрим, как они действуют. Что происходит?

Вы должны заметить, что яркость светодиода уменьшается на , когда сопротивление увеличивается на , поскольку яркость светодиода зависит от тока (\ (I = \ frac {V_R} {R} \)).

Мы можем проверить эти теоретические предсказания, используя мультиметр для измерения (\ (V_s \)), фактических значений резисторов и тока \ (I \). Мы провели эти измерения с помощью мультиметра Fluke 115 True RMS.

Несколько важных замечаний:

  • Каждый электронный компонент, который мы используем, от светодиода до резисторов до напряжения питания (\ (V_s \)), будет немного отличаться от идеального. Например, наши углеродные пленочные резисторы имеют допуск 5% (обозначен золотой полосой), и я измерил напряжение питания на Arduino Uno, как (\ (V_s \) = 4.902V), а не 5V.
  • Fluke 115 обеспечивает точность до трех знаков. Таким образом, мультиметр показывает 0,013 А, 0,004 А, и т. Д. Таким образом, невозможно сравнить наши теоретические прогнозы с 4-й цифрой точности (которая влияет на наши сравнения с низким током — миллиампер).

Опять же, мы предполагаем \ (V_f = 2V \) для нашего красного светодиода (мы также можем измерить это непосредственно в каждой цепи):

Если вы хотите узнать больше о том, как использовать мультиметр, вот несколько Руководства по началу работы:

У них есть мультиметры в Tinkercad Circuits, так что вы также можете использовать их и играть с ними там (если у вас их нет дома).

Следующий урок

В следующем уроке мы узнаем, как программно управлять выходным напряжением цифрового входа / выхода для переключения между LOW (0 В) или HIGH (5 В) с помощью digitalWrite (int pin , значение int) .

Далее: мигание светодиода с помощью Arduino


Все материалы с открытым исходным кодом созданы лабораторией Makeability Lab и профессором Джоном Э. Фрелихом. Нашли ошибку? Отправьте сообщение о проблеме на GitHub.

Транзисторы 101

Транзисторы 101 Изучение транзисторов
(через простую схему драйвера светодиода)

Светодиод

Светодиод — это устройство, показанное выше.Помимо красные, они также могут быть желтыми, зелеными и синими. Буквы LED означают свет Излучающий диод. Что важно помнить о диодах (включая светодиоды) заключается в том, что ток может течь только в одном направлении.

Чтобы светодиод заработал, нужен источник питания и резистор. Если вы попытаетесь использовать светодиод без резистора, вы, вероятно, перегорите светодиод. Светодиод имеет очень маленькое сопротивление поэтому через него будет протекать большое количество тока, если вы не ограничите ток с резистором.Если вы попытаетесь использовать светодиод без источника питания, вы можете быть очень разочарованы.

Итак, в первую очередь сделаем наш Светодиод загорается при настройке схемы ниже.

Шаг 1.) Сначала вам нужно найти положительная ножка светодиода. Самый простой способ сделать это — поискать нога, которая длиннее.

Шаг 2.) Как только вы узнаете, с какой стороны положительный, включите светодиод макет таким образом, положительный отрезок находится в одном ряду, а отрицательный — в другом. (На картинке ниже ряды вертикальные.)

Шаг 3.) Поместите одну ногу 220 резистор Ом (неважно, на какой ноге) в том же ряду, что и отрицательный ножка светодиода. Затем поместите другую ножку резистора в пустой ряд.

Шаг 4.) Отключите блок питания. адаптер от блока питания. Затем поместите заземляющий (черный провод) конец адаптер питания в боковом ряду с синей полосой рядом Это. Затем вставьте положительный (красный провод) конец адаптера источника питания в боковой ряд с красной полосой рядом.

Шаг 5.) Используйте короткую перемычку. (используйте красный цвет, поскольку он будет подключен к положительному напряжению), чтобы перейти от положительный ряд мощности (тот, рядом с которым есть красная полоса) к положительному ножка светодиода (не в том же отверстии, а в том же ряду). Использовать другой короткая перемычка (используйте черный цвет) для перехода от заземляющего ряда к резистору (нога, не подключенная к светодиоду). См. Картинку ниже если необходимо.

Макет должен выглядеть как на картинке ниже.

Теперь подключите блок питания к стену, а затем подключите другой конец к адаптеру питания и Светодиод должен загореться.Ток течет от положительной ножки светодиода. через светодиод к отрицательной ножке. Попробуйте повернуть светодиод. Должно не загорается. Ток не может течь от отрицательного полюса светодиода к положительная нога.

Люди часто думают, что резистор должен быть первым на пути от положительного к отрицательному, чтобы ограничить количество тока, протекающего через светодиод. Но ток ограничен резистор независимо от того, где находится резистор. Даже когда вы впервые включаете мощность, ток будет ограничен определенной величиной, и его можно найти используя закон Ома.

Вездесущая полезность закона Ома:
[Напряжение (вольт) = ток (амперы) X сопротивление (Ом)]

Закон Ома можно использовать с резисторами найти ток, протекающий по цепи. Закон I = V / R (где I = ток, V = напряжение на резисторе и R = сопротивление). Для В приведенной выше схеме мы можем использовать только закон Ома для резистора, поэтому мы должны использовать тот факт, что при горит светодиоде на нем падение напряжения 1,9 (Кстати: падение напряжения зависит от типа светодиода).Это означает, что если положительный вывод подключен к 5 вольт, отрицательный нога будет на 3,1 вольта (т. е. 5,0–1,9 = 3,1). Теперь, когда мы знаем напряжение на обеих сторонах резистор и может использовать закон Ома для расчета силы тока. Текущий (5,0-1,9) / 220 = 3,6 / 2000 = 0,0014 Ампер = 14 мА

Это ток, протекающий через путь от 5В к GND. Это означает, что через оба канала проходит 14 мА. Светодиод и резистор (так как они включены последовательно). Если мы хотим изменить ток, протекающий через светодиода (таким образом, изменяя яркость) мы можем поменять резистор.Меньший резистор пропускает больше тока, а резистор большего размера пропускает меньше текущий поток. Будьте осторожны при использовании резисторов меньшего размера, потому что они будут раздражаться. Кроме того, некоторые светодиоды будут повреждены, если вы ими воспользуетесь. за пределами их максимального номинального тока … так что не используйте резистор, который настолько мал что вы будете генерировать чрезвычайно высокий ток (примечание: наш светодиод имеет максимум рабочий ток 20 мА).

Далее мы хотим иметь возможность превратить светодиод включается и выключается без изменения схемы.Для этого мы научимся использовать другой электронный компонент, транзистор.

Транзистор

Транзисторы — основные компоненты во всей современной электронике. Это просто переключатели, которые мы можем использовать для включения и выключения. Несмотря на то, что они просты, они самый важный электрический компонент. Например, транзисторы почти единственные компоненты, используемые для построения процессора Pentium. Один Pentium 4 имеет около 55 миллионов транзисторов (именно поэтому эти микросхемы становятся такими чертовыми). горячий).Те, что в Pentium, меньше чем те, которые мы будем использовать, но они работают одинаково.

Транзисторы (2N2222), которые мы будем использовать в наших проектах, выглядят так:

Транзистор имеет три ножки, Коллектор (C), база (B) и эмиттер (E). Иногда они помечены на плоская сторона транзистора. Транзисторы обычно имеют одну круглую сторону и одна плоская сторона. Если плоская сторона обращена к вам, ножка эмиттера Слева опорная ножка находится посередине, а коллекторная ножка находится на справа (примечание: некоторые специальные транзисторы имеют другую конфигурацию контактов, чем пакет ТО-92, описанный выше).

Символ транзистора

В электрические схемы (схемы) для представления NPN транзистора

Базовая схема

База (B) — переключатель включения / выключения для транзистора. Если к базе идет ток, будет путь от коллектора (C) к эмиттеру (E), где может течь ток (Переключатель включен.) Если к базе не течет ток, значит, нет ток может течь от коллектора к эмиттеру.(Переключатель выключен.)

Ниже приведена базовая схема, которую мы будем использовать для всех наших транзисторов.

Чтобы построить эту схему, нам нужно только добавить транзистор и еще один резистор к схеме, которую мы построили выше для светодиода. Перед внесением любых изменений отключите блок питания от адаптера блока питания. на макете. Чтобы вставить транзистор в макет, разъедините ножки немного и поместите его на макет так, чтобы каждая ножка находилась в отдельном ряду. В ножка коллектора должна быть в том же ряду, что и ножка резистора, который подключен к земле (с помощью черной перемычки).Затем переместите перемычку переход от земли к резистору 220 Ом к эмиттеру транзистора.

Затем поместите одну ногу 100 кОм резистор в ряду с базой транзистора и другой ножкой в пустая строка, и ваша макетная плата должна выглядеть, как на картинке ниже.

Теперь наденьте один конец желтой перемычки. провод в положительном ряду (рядом с красной линией), а другой конец — в ряд с ножкой резистора 100 кОм (конец не подключен к База).Снова подключите источник питания, транзистор включится и Загорится светодиод. Теперь переместите один конец желтой перемычки из положительный ряд к основному ряду (рядом с синей линией). Как только ты снимите желтую перемычку с плюса питания, есть ток не течет к базе. Это заставляет транзистор выключиться и ток не может течь через светодиод. Как мы увидим позже, очень через резистор 100 кОм протекает небольшой ток. Это очень важно потому что это означает, что мы можем контролировать большой ток в одной части цепи (ток, протекающий через светодиод) только с небольшим током от Вход.

Назад к закону Ома

Мы хотим использовать закон Ома, чтобы найти ток на пути от входа к базе транзистора и ток, протекающий через светодиод. Для этого нам нужно использовать два основных факты о конкретных транзисторах, которые мы используем:

1.) Если транзистор включен, тогда базовое напряжение на 0,7 вольт выше, чем напряжение эмиттера.

2.) Если транзистор включен, напряжение коллектора на 1,6 вольт выше, чем напряжение эмиттера.

Итак, когда резистор 100 кОм подключен к 5 В постоянного тока, схема будет выглядеть так:

Таким образом, ток, протекающий через резистор 100 кОм, равен (5 — 0,7) / 100000 = 0,000043 A = 0,043 мА.

Ток, протекающий через резистор 220 Ом, равен (3,1 — 1,6) / 220 = 0,0068 А = 6,8 мА.

Если мы хотим, чтобы ток протекал больше через светодиод, мы можем использовать меньший резистор (вместо 220) и мы будет получать больше тока через светодиод без изменения величины тока который идет от входной линии к базовому резистору 100 кОм.Это означает, что мы можем контролировать вещи, которые используют большая мощность (например, электродвигатели) с дешевыми транзисторными схемами малой мощности. Скоро вы узнаете, как использовать компьютер для управления событиями в реальном мире. Хотя Выходы стандартного компьютера под управлением Windows не могут обеспечить достаточный ток для включения света и двигателей включения и выключения, компьютер может включать и выключать транзисторы (поскольку для этого требуется слабый ток) и Транзисторы могут управлять большим током для ламп и двигателей. Эта концепция называется усилением и представляет собой фундаментальную концепцию компьютерного интерфейса для эксперименты в реальном мире.

Примечание :
Это руководство в значительной степени основано на том, что изначально появилось на несуществующем веб-сайте www.iguanalabs.com (Посмертное спасибо ребятам из лаборатории игуаны).

Множество простых светодиодных индикаторов напряжения и тока сети переменного тока

У нас есть много способов обозначить линию переменного тока. Во-первых, когда подается 230 В переменного тока, загорается неоновая лампа в сборе L1. Другой способ, схема индикатора сетевого напряжения переменного тока со светодиодом. Возможно, это лучший выбор.Если у вас в магазине больше нормальных комплектующих. Это поможет вам сэкономить деньги.

1 # Светодиодный индикатор сети переменного тока

Мне также нравится использовать светодиод для отображения линии питания переменного тока. Потому что это дешево и удобно, состоит всего из нескольких компонентов.

Один светодиод на сети переменного тока


Схема простейшего индикатора напряжения сети переменного тока

Как подключить светодиод к напряжению 230 В переменного тока.

Мы хорошо знаем, что светодиод потребляет около 2 В только при 10 мА. При подключении к сети переменного тока 230 В.Это требует снижения напряжения и перехода на постоянное напряжение. Впервые мы часто используем резистор для уменьшения тока в серии. Но он не подходит для высокого переменного напряжения. Почему?

Напряжение на резисторе слишком высокое, около 227В. Тогда ток будет 10 мА, как этот светодиод. Таким образом, мощность резистора составляет около 227 В x 0,01 А = 2,27 Вт. Слишком жарко.

Конденсатор C1 является ключевым в цепи. Не распространяет тепло. (В принципе)

Мы знаем, что конденсатор при работе работает от переменного напряжения.Он похож на резистор. Сопротивление конденсатора называется емкостным реактивным сопротивлением (символ Xc).
Мне очень важно объяснить функцию xc простым текстом. Я объясню вам позже.

У Xc есть взаимосвязь между частотой и емкостью. Если высокая емкость будет высокой Xc на той же частоте, 50 Гц линии переменного тока.

Конденсатор ограничивает ток через светодиод до безопасного значения.

R1 — ограничивающий резистор для уменьшения тока.Также именно защита от короткого замыкания похожа на предохранитель.

Конденсатор C1 снижает ток. Это работает хорошо. При использовании от сети переменного тока. И редко возникают проблемы с теплом.

Диод D1 защищает светодиод LED1 от отрицательного высокого напряжения или всплеска тока. Хотя LED1 не работает при обратном напряжении смещения. Но это высокое напряжение может убить его.

Важно! Вы должны выбрать конденсатор C1. Конденсаторы должны иметь рабочее напряжение постоянного тока (WVDC) не менее 630В.

Осторожно! Поскольку в этой схеме нет изолированного трансформатора, будьте осторожны при прямом подключении к цепи. Это вызывает у вас поражение электрическим током. Линия переменного тока очень опасна. Это может нас убить. Лучше использовать крошечный изолированный трансформатор .

Надеюсь, вам понравится этот световой дисплей для сети переменного тока 220 В или монитор основного напряжения.

2 # Схема индикатора линии переменного тока

Если вам нужен светодиодный дисплей для отображения мощности сети переменного тока.Это схема светодиодного индикатора линии переменного тока, совместимая с основным источником питания переменного тока 115 или 230 В переменного тока. На принципиальной схеме есть 2 светодиода для отображения 2 состояний. Во-первых, он показывает сеть переменного тока или электросеть. Во-вторых, покажите, что нагрузка по-прежнему удерживает мощность или нет. Это хорошая идея схемы, потому что использует несколько деталей и дешево.

Работа схемы

Это простая схема. Так интересно узнать, как он работает. Это основной индикатор питания, пока не нажата кнопка S1.Когда мы подаем 110 В переменного тока на шнур питания. Электрический ток проходит через R1, D1, LED1. Таким образом, LED1 загорается, чтобы отражать входную мощность.

Затем, когда мы нажимаем переключатель S1, электрический ток будет течь через R2, D2, LED2. Он заставляет светиться LED2 вместо LED1. В то же время некоторые части тока протекают на вывод B смещения транзистора Q1. Таким образом, это заставляет Q1 подключать весь ток LED1 к земле. Выключает LED1.

Функции компонентов

  • R1, R3 ограничивают ток через светодиоды LED1, LED2 до безопасного значения.
  • D1, D2 выпрямитель переменного тока в постоянный ток к LED1, LED2
  • R2 уменьшают предварительный ток до смещения Q1

Что еще? Вы хотите удаленную нагрузку переменного тока?

Посмотрите:

3 # Схема простого светодиодного индикатора питания переменного тока

Это светодиодный индикатор для цепи удаленных нагрузок переменного тока. Очень дешево и мало используют электронные детали. В этой схеме используется дешевизна диодного выпрямителя, только резистор и светодиод. В результате легко собрать схему, показывающую прохождение от источника переменного тока в нагрузке.

Несмотря на то, что эта идея предназначена для применения в офисном оборудовании с сетью электропитания, мы можем изменить эту идею, чтобы ее можно было использовать с низким уровнем напряжения, и это не составит труда, пожалуйста.

Принципиальная схема светодиодного индикатора для удаленных нагрузок переменного тока

Изначально мы используем способ проверки состояния нагрузки переменного тока с помощью напряжения переменного тока храма. Но при использовании этой простой светодиодной схемы индикатора питания переменного тока. Вы можете проверить, может ли событие сработать, проверив прохождение переменного тока через нагрузку.

Эта схема легко в случае, если нагрузка и контрольный переключатель остаются далеко от стойла. Потому что пропуски зажигания выдерживают электрическую линию от нагрузки снова группы. В этой схеме легко используются электронные компоненты, в том числе обычный выпрямительный диод 4 шт., Резисторы 1 шт. И только светодиод 1 шт.

Это, в результате, может знать, что текущее изменение нагрузки уже получено. Эта схема подойдет для дома переменного тока, но эта идея все еще может быть использована при использовании низковольтного устройства высокого класса.Сделайте так, чтобы напряжение всегда было ниже 1,5 В.

4 # Светодиодный индикатор нагрузки переменного тока трансформатора тока

Это простая схема светодиодного индикатора нагрузки переменного тока трансформатора тока. Светодиод покажет переменный ток нагрузки, в которой используются трансформатор и светодиод в зависимости от схемы.

Иногда нам нужно обнаружить большой переменный ток. Один из способов — соединение светодиода с резисторами и диодом 1N4001 в сети. Но его недостаток в том, что напряжение на них будет падать слишком сильно.

Но лучше всего использовать трансформатор тока.Преимущество этого способа в том, что ток, который будет проверять, можно преобразовать в аккуратный инструмент. Трансформатор также помогает разделить ток, который нужно измерить с помощью измерителя.

Которые очень полезны при измерении высокого тока или высокого напряжения.

Этот трансформатор может использовать обычный трансформатор. Катушка низкого напряжения подключается к высокому току. Затем первичная катушка подключается к светодиоду или измерителю.

В выборе трансформатора.

Максимальный ток вторичной катушки и максимальный ток светодиода определяется следующим образом.

Пример: датчик тока 0,6 А. Таким образом, нижняя катушка выдержит этот ток. Предполагая, что максимальный ток для измерения составляет 30 мА. Итак, следует выбирать трансформатор 220 вольт — это 12 вольт. Чтобы получить точный коэффициент конверсии (600/30).

Потеря напряжения на катушке трансформатора очень мала. А ток утечки через катушку трансформатора очень мал и может от него отказаться.

Таким образом, потеря напряжения равна напряжению светодиода, разделенному на коэффициент трансформатора.

Вторичная обмотка трансформатора всегда должна быть подключена к нагрузке. Итак, у нас есть четыре диода в качестве моста для отображения как положительной, так и отрицательной формы волны. Если нет нагрузки, вторичная обмотка будет нормальной обмоткой.

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

200, 600 светодиодных цепочек цепей от сети 220 В

В сообщении подробно рассказывается о конструкции проекта от 200 до 600 светодиодов с использованием последовательно параллельных светодиодов для создания вывески с алфавитным дисплеем.Идея была предложена г-ном Мубараком Идрисом.

Цели и требования схемы

Мне нужен мигающий светодиод, который показывает мигание «ДОБРО ПОЖАЛОВАТЬ», а затем «ИНЖЕНЕРНЫЙ КОЛЛЕДЖ», по моей приблизительной оценке. Я собираюсь использовать около 696 светодиодов, например, для «ДОБРО ПОЖАЛОВАТЬ» = 216 СВЕТОДИОДЫ «ИНЖЕНЕРНЫЙ КОЛЛЕДЖ» 480 СВЕТОДИОДОВ название «Добро пожаловать» и «Инженерный колледж» перевернется, и я подумываю подключить их к сети переменного тока и использовать реле только для переключения «добро пожаловать» и «инженерный колледж» поочередно.надеюсь получить известие от вас, сэр, очень скоро и заранее спасибо.

The Design

Я уже обсуждал одну связанную статью, в которой мы узнали, как рассчитать последовательное и параллельное соединение светодиодов, в этом посте мы собираемся включить ту же концепцию и формулы для оценки деталей подключения предлагаемых от 200 до 600. Светодиодный проект для изготовления указанной вывески.
Поскольку предполагается, что светодиоды будут работать от сети 220 В, после выпрямления и фильтрации уровень будет составлять 310 В постоянного тока.

Таким образом, нам необходимо настроить группы светодиодов в соответствии с вышеупомянутым уровнем постоянного тока. Для этого сначала необходимо оценить общее прямое падение серии светодиодов, которое будет удобно в пределах предела 310 В.
Предположим, что светодиоды рассчитаны на 20 мА / 3,3 В, если мы разделим значение 3,3 В на 310 В, мы получим:
310 / 3,3 = 93 NO.

Это означает, что 93 светодиода могут быть соединены последовательно со входом 310 для комфортного получения оптимального освещения, однако с учетом возможного низкого напряжения и обеспечения того, чтобы светодиоды продолжали светиться даже при низких напряжениях, мы можем пойти на 50% меньше. Светодиоды последовательно, то есть может быть около 46 светодиодов.

Согласно запросу, приветственный знак должен иметь 216 светодиодов, разделив эти 216 на 46, мы получим примерно 5 цепочек, в которых 4 цепочки содержат около 46 светодиодов последовательно, а 5-й может иметь 32 светодиода.

Таким образом, теперь у нас есть 4 цепочки из 46 светодиодов и 1 цепочка из 32 светодиодов, все эти цепочки теперь необходимо соединить параллельно.

Но, как мы знаем, для того, чтобы обеспечить правильное распределение тока по цепочкам и обеспечить равномерное освещение, эти светодиодные цепочки должны иметь рассчитанные резисторы, последовательно соединенные с ними.

Расчет резистора ограничения тока светодиода

Это можно вычислить с помощью следующей формулы:

R = Питание — общее напряжение FWD светодиода / ток светодиода

= 310 — (46 x 3,3) / 0,02

здесь 310 — напряжение питания постоянного тока после выпрямления источника переменного тока 220 В, 46 — общее количество светодиодов, 3,3 — прямое рабочее напряжение каждого светодиода, 0,02 — ток в амперах для каждого светодиода (20 мА), а 4 — количество цепочек .

Решение вышеуказанного дает нам: 7910 Ом или 7.9К, или просто стандартный резистор 8к2.

мощность будет = 310 — (46 x 3,3) x 0,02 = 3,164 Вт, или просто стандартный резистор на 5 Вт выполнит свою работу

Указанный выше резистор 8k2 5 Вт необходимо будет подключить к каждой из цепочек с 46 светодиодами.

Теперь для отдельных 32 светодиодов нам, возможно, придется выполнить описанные выше процедуры отдельно, как показано ниже:

R = 310 — (32 x 3,3) / 0,02 = 10220 Ом или 10,2 кОм или просто стандартный 10 кОм подойдет для job

мощность будет 310 — (32 х 3.3) x 0,02 = 4,088 или снова 5 Вт.

Принципиальная схема

С помощью приведенных выше формул мы вычислили последовательные параллельные соединения с резистором для настройки 216-светодиодного дисплея, однако теперь вышеуказанные строки необходимо расположить соответствующим образом в форме алфавитов, соответствующих слову «ДОБРО ПОЖАЛОВАТЬ». Это может потребовать некоторых усилий, немного времени и некоторого терпения и навыков.

Для второй группы светодиодов, состоящей из 696 светодиодов, процесс будет аналогичным.Сначала мы разделим 696 на 46, что дает нам около 15,13, ​​что означает, что 14 струн могут быть сконфигурированы с серией из 46 светодиодов и одна струна с 52 светодиодами … все эти струны также необходимо будет соединить параллельно и физически расположить для представления фраза «ИНЖЕНЕРНЫЙ КОЛЛЕДЖ».

Значения резисторов для 46 светодиодных цепочек могут быть рассчитаны в соответствии с приведенными выше разделами, а для 52 светодиодов это можно сделать, как указано ниже:

R = 310 — (52 x 3.3) / 0,02 = 6920 Ом или просто стандартный резистор 6k9.

мощность будет = R = 310 — (52 x 3,3) x 0,02 = 2,76 Вт или 3 Вт

Приведенное выше объяснение дает нам информацию о том, как построить любой проект на основе светодиодов от 200 до 400 для досок или демонстрационных вывесок с использованием напряжение сети без трансформатора.

Теперь, чтобы два набора светодиодных групп мигали попеременно с помощью реле, можно использовать следующую простую мигалку IC 555:

Схема светодиодной мигалки

R1, R2 и C можно соответствующим образом отрегулировать для получения желаемая частота мигания подключенных от 200 до 400 светодиодных цепочек.

Обновлено: 31.08.2021 — 19:22

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *