Теплопроводность материала это: Что такое теплопроводность и коэффициент теплопроводности. |

Содержание

Что такое теплопроводность и коэффициент теплопроводности. |

Теплопроводность.

Так что же такое теплопроводность? С точки зрения физики теплопроводность – это молекулярный перенос теплоты между непосредственно соприкасающимися телами или частицами одного тела с различной температурой, при котором происходит обмен энергией движения структурных частиц (молекул, атомов, свободных электронов).

Можно сказать проще, теплопроводность – это  способность материала проводить тепло. Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Передача тепла происходит за счет передачи энергии при столкновении молекул вещества. Происходит это до тех пор, пока температура внутри тела не станет одинаковой. Такой процесс может происходить в твердых, жидких и газообразных веществах.

На практике, например в строительстве при теплоизоляции зданий, рассматривается другой аспект теплопроводности, связанный с передачей тепловой энергии. В качестве примера возьмем «абстрактный дом». В «абстрактном доме» стоит нагреватель, который поддерживает внутри дома постоянную температуру, скажем, 25 °С. На улице температура тоже постоянная, например, 0 °С. Вполне понятно, что если выключить обогреватель, то через некоторое время в доме тоже будет 0 °С. Все тепло (тепловая энергия) через стены уйдет на улицу.

Чтобы поддерживать температуру в доме 25 °С, нагреватель должен  постоянно работать. Нагреватель постоянно создает тепло, которое постоянно уходит через стены на улицу.

 

Коэффициент теплопроводности.

Количество тепла, которое проходит через стены (а по научному — интенсивность теплопередачи за счет теплопроводности) зависит от разности температур (в доме и на улице), от площади стен и теплопроводности материала, из которого сделаны эти стены.

Для количественной оценки теплопроводности существует коэффициент теплопроводности материалов. Этот коэффициент отражает свойство вещества проводить тепловую энергию. Чем больше значение коэффициента теплопроводности материала, тем лучше он проводит тепло. Если мы собираемся утеплять дом, то надо выбирать материалы с небольшим значением этого коэффициента. Чем он меньше, тем лучше. Сейчас  в качестве материалов для утепления зданий  наибольшее распространение получили утеплители из минеральной ваты, и различных пенопластов. Набирает популярность новый материал с улучшенными теплоизоляционными качествами — Неопор.

Коэффициент теплопроводности материалов обозначается буквой ? (греческая строчная буква лямбда)  и выражается в Вт/(м2*К). Это означает, что если взять стену из кирпича, с коэффициентом теплопроводности 0,67 Вт/(м2*К), толщиной 1 метр и площадью 1 м2., то при разнице температур в 1 градус, через стену будет проходить 0,67 ватта тепловой энергии. Если разница температур будет 10 градусов, то будет проходить уже 6,7 ватта. А если при такой разнице температур  стену сделать 10 см, то потери тепла будут уже 67 ватт. Подробней о методике расчета теплопотерь зданий можно посмотреть здесь.

Следует отметить, что значения коэффициента теплопроводности материалов указываются для толщины материала в 1 метр. Чтобы определить теплопроводность материала для любой другой толщины, надо коэффициент теплопроводности разделить на нужную толщину, выраженную в метрах.

В строительных нормах и расчетах часто используется понятие «тепловое сопротивление материала». Это величина обратная теплопроводности.  Если, на пример, теплопроводность пенопласта толщиной 10 см — 0,37 Вт/(м2*К), то его тепловое сопротивление будет равно 1 / 0,37 Вт/(м2*К) = 2,7 (м2*К)/Вт.

 

 

Коэффициент теплопроводности материалов.

Ниже в таблице приведены значения коэффициента теплопроводности для некоторых материалов применяемых в строительстве.

МатериалКоэфф. тепл. Вт/(м2*К)
Алебастровые плиты0,470
Алюминий230,0
Асбест (шифер)0,350
Асбест волокнистый0,150
Асбестоцемент1,760
Асбоцементные плиты0,350
Асфальт0,720
Асфальт в полах0,800
Бакелит0,230
Бетон на каменном щебне1,300
Бетон на песке0,700
Бетон пористый1,400
Бетон сплошной1,750
Бетон термоизоляционный
0,180
Битум0,470
Бумага0,140
Вата минеральная легкая0,045
Вата минеральная тяжелая0,055
Вата хлопковая0,055
Вермикулитовые листы0,100
Войлок шерстяной0,045
Гипс строительный0,350
Глинозем2,330
Гравий (наполнитель)0,930
Гранит, базальт3,500
Грунт 10% воды1,750
Грунт 20% воды2,100
Грунт песчаный1,160
Грунт сухой
0,400
Грунт утрамбованный1,050
Гудрон0,300
Древесина — доски0,150
Древесина — фанера0,150
Древесина твердых пород0,200
Древесно-стружечная плита ДСП0,200
Дюралюминий160,0
Железобетон1,700
Зола древесная0,150
Известняк1,700
Известь-песок раствор0,870
Ипорка (вспененная смола)0,038
Камень1,400
Картон строительный многослойный0,130
Каучук вспененный0,030
Каучук натуральный0,042
Каучук фторированный0,055
Керамзитобетон0,200
Кирпич кремнеземный0,150
Кирпич пустотелый0,440
Кирпич силикатный0,810
Кирпич сплошной0,670
Кирпич шлаковый0,580
Кремнезистые плиты0,070
Латунь110,0
Лед 0°С2,210
Лед -20°С2,440
Липа, береза, клен, дуб (15% влажности)0,150
Медь380,0
Мипора0,085
Опилки — засыпка0,095
Опилки древесные сухие0,065
ПВХ0,190
Пенобетон0,300
Пенопласт ПС-10,037
Пенопласт ПС-40,040
Пенопласт ПХВ-10,050
Пенопласт резопен ФРП0,045
Пенополистирол ПС-Б0,040
Пенополистирол ПС-БС0,040
Пенополиуретановые листы0,035
Пенополиуретановые панели0,025
Пеностекло легкое0,060
Пеностекло тяжелое0,080
Пергамин0,170
Перлит0,050
Перлито-цементные плиты0,080
Песок 0% влажности0,330
Песок 10% влажности0,970
Песок 20% влажности1,330
Песчаник обожженный1,500
Плитка облицовочная1,050
Плитка термоизоляционная ПМТБ-20,036
Полистирол0,082
Поролон0,040
Портландцемент раствор0,470
Пробковая плита0,043
Пробковые листы легкие0,035
Пробковые листы тяжелые0,050
Резина0,150
Рубероид0,170
Сланец2,100
Снег1,500
Сосна обыкновенная, ель, пихта (450…550 кг/куб.м, 15% влажности)0,150
Сосна смолистая (600…750 кг/куб.м, 15% влажности)0,230
Сталь52,0
Стекло1,150
Стекловата0,050
Стекловолокно0,036
Стеклотекстолит0,300
Стружки — набивка0,120
Тефлон0,250
Толь бумажный0,230
Цементные плиты1,920
Цемент-песок раствор1,200
Чугун56,0
Шлак гранулированный0,150
Шлак котельный0,290
Шлакобетон0,600
Штукатурка сухая0,210
Штукатурка цементная0,900
Эбонит0,160

Теплопроводность — это… Что такое Теплопроводность?

Теплопрово́дность — это процесс переноса внутренней энергии от более нагретых частей тела (или тел) к менее нагретым частям (или телам), осуществляемый хаотически движущимися частицами тела ( атомами, молекулами, электронами и т.п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества. Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передаётся из более нагретых областей тела к менее нагретым областям. Иногда теплопроводностью называется также количественная оценка способности конкретного вещества проводить тепло.

Численная характеристика теплопроводности материала равна количеству теплоты, проходящей через материал площадью 1 кв.м за единицу времени (секунду) при единичном температурном градиенте. Данная численная характеристика используется для расчета теплопроводности для калибрования и охлаждения профильных изделий.

Исторически считалось, что передача тепловой энергии связана с перетеканием теплорода от одного тела к другому. Однако более поздние опыты, в частности, нагрев пушечных стволов при сверлении, опровергли реальность существования теплорода как самостоятельного вида материи. Соответственно, в настоящее время считается, что явление теплопроводности обусловлено стремлением объектов занять состояние более близкое к термодинамическому равновесию, что выражается в выравнивании температуры.

Закон теплопроводности Фурье

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

где  — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси,  — коэффициент теплопроводности (иногда называемый просто теплопроводностью),  — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad T (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.[1]

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

где  — полная мощность тепловых потерь,  — площадь сечения параллелепипеда,  — перепад температур граней,  — длина параллелепипеда, то есть расстояние между гранями.

Коэффициент теплопроводности измеряется в Вт/(м·K).

Коэффициент теплопроводности вакуума

Коэффициент теплопроводности вакуума почти ноль (чем глубже вакуум, тем ближе к нулю). Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, тепло в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотери стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

Связь с электропроводностью

Связь коэффициента теплопроводности с удельной электрической проводимостью в металлах устанавливает закон Видемана — Франца:

где  — постоянная Больцмана,  — заряд электрона.

Коэффициент теплопроводности газов

Коэффициент теплопроводности газов определяется формулой[2]

Где: i — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5, для одноатомного i=3), k — постоянная Больцмана, M — молярная масса, T — абсолютная температура, d — эффективный диаметр молекул, R — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из не радиоактивных газов — у ксенона).

Обобщения закона Фурье

Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье не применим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т.п. Инерционность в уравнения переноса первым ввел Максвелл[3], а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:[4]

Если время релаксации пренебрежимо мало, то это уравнение переходит в закон Фурье.

Коэффициенты теплопроводности различных веществ

МатериалТеплопроводность, Вт/(м·K)
Графен(4840±440) — (5300±480)
Алмаз1001—2600
Графит278,4—2435
Карбид кремния490
Серебро430
Медь382—390
Оксид бериллия370
Золото320
Алюминий202—236
Нитрид алюминия200
Нитрид бора180
Кремний150
Латунь97—111
Хром93,7
Железо92
Платина70
Олово67
Оксид цинка54
Сталь47
Кварц8
Стекло1-1,15
КПТ-80,7
Вода при нормальных условиях0,6
Кирпич строительный0,2—0,7
Силиконовое масло0,16
Пенобетон0,14—0,3
Древесина0,15
Нефтяные масла0,12
Свежий снег0,10—0,15
Вата0,055
Воздух (300 K, 100 кПа)0,026
Вакуум (абсолютный)0 (строго)

другие вещества

МатериалТеплопроводность, Вт/(м·K)
Кальций201
Бериллий201
Вольфрам173
Магний156
Родий150
Иридий147
Молибден138
Рутений117
Хром93,9
Осмий87,6
Титан21,9
Тефлон0,25
Бумага0,14
Полистирол0,082
Шерсть0,05
Минеральная вата0,045
Пенополистирол0,04
Стекловолокно0,036
Пробковое дерево0,035
Пеноизол0,035
Каучук вспененный0,03
Аргон0,0177
Аэрогель0,017
Ксенон0,0057

На практике нужно также учитывать проводимость тепла за счет конвекции молекул и проникаемости излучений. Например, при полной нетеплопроводности вакуума, тепло может передаваться за счет излучения (пример — Солнце, установки инфракрасного излучения). А газ или жидкость могут обмениваться нагретыми или охлажденными слоями самостоятельно или искусственно (пример — фен, греющие вентиляторы). Так же в конденсированных средах возможно «перепрыгивание» фононов из одного твердого тела в другое через субмикронные зазоры, что способствует распространению звуковых волн и тепла, даже если зазоры представляют собой идеальный вакуум.

Примечания

См. также

Ссылки

Коэффициент теплопроводности материалов таблица, формулы

Термин «теплопроводность» применяется к свойствам материалов пропускать тепловую энергию от горячих участков к холодным. Теплопроводность основана на движении частиц внутри веществ и материалов. Способность передавать энергию тепла в количественном измерении – это коэффициент теплопроводности. Круговорот тепловой энергопередачи, или тепловой обмен, может проходить в любых веществах с неравнозначным размещением разных температурных участков, но коэффициент теплопроводности зависим от давления и температуры в самом материале, а также от его состояния – газообразного, жидкого или твердого. Эквивалентная теплопроводимость строительных материалов и утеплителей

 

Физически теплопроводность материалов равняется количеству тепла, которое перетекает через однородный предмет установленных габаритов и площади за определенный временной отрезок при установленной температурной разнице (1 К). В системе СИ единичный показатель, который имеет коэффициент теплопроводности, принято измерять в Вт/(м•К).

Как рассчитать теплопроводность по закону Фурье

В заданном тепловом режиме плотность потока при передаче тепла прямо пропорциональна вектору максимального увеличения температуры, параметры которой изменяются от одного участка к другим, и по модулю с одинаковой скоростью увеличения температуры по направлению вектора:

q = − ϰ х grad х (T), где:

  • q – направление плотности предмета, передающего тепло, или объем теплового потока, который протекает по участку за заданную временную единицу через определенную площадь, перпендикулярный всем осям;
  • ϰ – удельный коэффициент теплопроводности материала;
  • T – температура материала.
Перенос тепла в неравновесной термодинамической системе

 

Знак «-» в формуле перед «ϰ» указывает, что тепло движется в противоположном направлении от вектора grad х (T)/ – в направлении уменьшения температуры предмета. Эта формула отражает закон Фурье. В интегральном выражении коэффициент теплопередачи согласно закону Фурье будет выглядеть как формула:

  • P = − ϰ х S х ΔT / l, выражается в (Вт/(м•К) х (м2•К) / м = Вт/(м•К) х (м•К) = Вт), где:
  • P ­– общая мощность потерь теплоотдачи;
  • S – сечение предмета;
  • ΔT – разница температуры по стыкам сторон предмета;
  • l – расстояние между стыками сторон предмета – длина фигуры.
Связь коэффициента теплопроводимости с электропроводностью материалов

 

Электропроводность и коэффициент теплопередачи

Собственно, коэффициент теплопроводности металлов «ϰ» связан с их удельной электропроводимостью «σ» согласно закону Видемана-Франца, в соответствии с которым коэффициент теплопроводности металлов зависит от удельной электропроводимости прямо пропорционально температуре:

Κ / σ = π2 / 3 х (К / e)2 х T, где:

  • К – постоянный коэффициент Больцмана, устанавливающий закономерность между тепловой энергией тела и его температурой;
  • e – заряд электрона;
  • T – термодинамическая температура предмета.

Коэффициент теплопроводности газовой среды

В газовой среде коэффициент теплопроводности воздуха может рассчитываться по приблизительной формуле:

ϰ ~ 1/3 х p х cv х Λλ х v, где:

  • pv – плотность газовой среды;
  • cv – удельная емкость тепловой энергии при одном и том же объеме тела;
  • Λλ – расстояние свободного перемещения молекул в газовой среде;
  • v – скорость передачи тепла.
Что такое теплопроводимость

 

Или:

ϰ = I x К / 3 x π3/3 x d2 √ RT / μ, где:

  • i – результат суммирования уровней свободы прямого движения и вращения молекул в газовой среде (для 2-атомных газов i=5, для 1-атомных i=3;
  • К – коэффициент Больцмана;
  • μ – отношение массы газа к количеству молей газа;
  • T – термодинамическая температура;
  • d – ⌀ молекул газа;
  • R – универсальный коэффициент для газовой среды.

Согласно формуле минимальная теплопроводность материалов существует у тяжелых инертных газов, максимально эффективная теплопроводность строительных материалов – у легких.

Теплопроводимость в газовой разреженной среде

Газовая среда и теплопроводность

 

Результат по выкладкам выше, по которым делают расчет теплопроводности для газовой среды, от давления не зависит. Но в очень разреженной газовой среде расстояние свободного перемещения молекул зависит не от столкновений частиц, а от препятствий в виде стен резервуара. При этом ограничение перемещения молекул в соответствующих единицах измерения называют высоковакуумной средой, при которой степень теплообмена уменьшается в зависимости от плотности материала и прямо пропорциональна значению давления в резервуаре:

ϰ ~ 1/3 х p х cv х l х v, где:

i – объем резервуара;

Р – уровень давления в резервуаре.

Согласно этой формуле теплопроводность в вакуумной среде стремится к нулевой отметке при глубоком вакууме. Это объясняется тем, что в вакууме частицы, которые передают тепловую энергию, имеют низкую плотность на единицу площади. Но тепловая энергия в вакуумной среде перетекает посредством излучения. В качестве примера можно привести обычный термос, в котором для уменьшения потерь тепловой энергии стенки должны быть двойными и посеребренными, без воздуха между ними. Что такое тепловое излучение

 

При применении закона Фурье не принимают во внимание инерционность перетекания тепловой энергии, а это значит, что имеется в виду мгновенная передача тепла из любой точки на любое расстояние. Поэтому формулу нельзя использовать для расчетов передачи тепла при протекании процессов, имеющих высокую частоту повторения. Это ультразвуковое излучение, передача тепловой энергии волнами ударного или импульсного типа и т.д. Существует решение по закону Фурье с релаксационным членом:

τ х ∂q / ∂t = − (q + ϰ х ∇T) .

Если ре­лак­са­ция τ мгновенная, то формула превращается в закон Фурье.

Ориентировочная таблица теплопроводности материалов:

ОсноваЗначение теплопроводности, Вт/(м•К)
Жесткий графен4840 +/ 440 – 5300 +/ 480
Алмаз1001-2600
Графит278,4-2435
Бора арсенид200-2000
SiC490
Ag430
Cu401
BeO370
Au320
Al202-236
AlN200
BN180
Si150
Cu3Zn297-111
Cr107
Fe92
Pt70
Sn67
ZnO54
 Черная сталь47-58
Pb35,3
НержавейкаТеплопроводность стали – 15
SiO28
Высококачественные термостойкие пасты5-12
Гранит

(состоит из SiO2 68-73 %; Al2O3 12,0-15,5 %; Na2O 3,0-6,0 %; CaO 1,5-4,0 %; FeO 0,5-3,0 %; Fe2O3 0,5-2,5 %; К2О 0,5-3,0 %; MgO 0,1-1,5 %; TiO2 0,1-0,6 %)

2,4
Бетонный раствор без заполнителей1,75
Бетонный раствор со щебнем или с гравием1,51
Базальт

(состоит из SiO2 – 47-52%, TiO2 – 1-2,5%, Al2O3 – 14-18%, Fe2O3 – 2-5%, FeO – 6-10%, MnO – 0,1-0,2%, MgO – 5-7%, CaO – 6-12%, Na2O – 1,5-3%, K2O – 0,1-1,5%, P2O5 – 0,2-0,5 %)

1,3
Стекло

(состоит из SiO2, B2O3, P2O5, TeO2, GeO2, AlF3 и т.д.)

1-1,15
Термостойкая паста КПТ-80,7
Бетонный раствор с наполнителем из песка, без щебня или гравия0,7
Вода чистая0,6
Силикатный

или красный кирпич

0,2-0,7
Масла

на основе силикона

0,16
Пенобетон0,05-0,3
Газобетон0,1-0,3
ДеревоТеплопроводность дерева – 0,15
Масла

на основе нефти

0,125
Снег0,10-0,15
ПП с группой горючести Г10,039-0,051
ЭППУ с группой горючести Г3, Г40,03-0,033
Стеклянная вата0,032-0,041
Вата каменная0,035-0,04
Воздушная атмосфера (300 К, 100 кПа)0,022
Гель

на основе воздуха

0,017
Аргон (Ar)0,017
Вакуумная среда0

Приведенная таблица теплопроводности учитывает теплопередачу посредством теплового излучения и теплообмена частиц. Так как вакуум не передает тепло, то оно перетекает при помощи солнечного излучения или другого типа генерации тепла.  В газовой или жидкой среде слои с разной температурой смешиваются искусственно или естественным способом.

Таблица теплопроводимости стройматериалов

 

Проводя расчет теплопроводности стены, необходимо принимать во внимание, что теплопередача сквозь стеновые поверхности меняется от того, что температура в здании и на улице всегда разная, и зависит от площади всех поверхностей дома и от теплопроводности стройматериалов.

Чтобы количественно оценить теплопроводность, ввели такое значение, как коэффициент теплопроводности материалов. Он показывает, как тот или иной материал способен передавать тепло. Чем выше это значение, например, коэффициент теплопроводности стали, тем эффективнее сталь будет проводить тепло.

  • При утеплении дома из древесины рекомендуется выбирать стройматериалы с низким коэффициентом.
  • Если стена кирпичная, то при значении коэффициента 0,67 Вт/(м2•К) и толщине стены 1 м при ее площади 1 м2 при разнице наружной и внутридомовой температуры 10С кирпич будет пропускать 0,67 Вт энергии. При разнице температур 100С кирпич будет пропускать 6,7 Вт и т.д.

Стандартное значение коэффициента теплопроводимости теплоизоляции и других строительных материалов верно для толщины стены 1 м. Чтобы провести расчет теплопроводности поверхности другой толщины, следует коэффициент поделить на выбранное значение толщины стены (метры). Ориентировочные показатели коэффициентов теплопроводимости

 

В СНиП и при проведении расчетов фигурирует термин «тепловое сопротивление материала», он означает обратную теплопроводность. То есть при теплопроводности листа пенопласта 10 см и его теплопроводности 0,35 Вт/(м2•К) тепловое сопротивление листа – 1 / 0,35 Вт/(м2•К) = 2,85 (м2•К)/Вт.

Ниже – таблица теплопроводности для востребованных строительных материалов и теплоизоляторов:

СтройматериалыКоэффициент теплопроводимости, Вт/(м2•К)
Плиты из алебастра0,47
Al230
Шифер асбоцементный0,35
Асбест (волокно, ткань)0,15
Асбоцемент1,76
Асбоцементные изделия0,35
Асфальт0,73
Асфальт для напольного покрытия0,84
Бакелит0,24
Бетон с заполнителем щебнем1,3
Бетон с заполнителем песком0,7
Пористый бетон – пено- и газобетон1,4
Сплошной бетон1,75
Термоизоляционный бетон0,18
Битумная масса0,47
Бумажные материалы0,14
Рыхлая минвата0,046
Тяжелая минвата0,05
Вата – теплоизолятор на основе хлопка0,05
Вермикулит в плитах или листах0,1
Войлок0,046
Гипс0,35
Глиноземы2,33
Гравийный заполнитель0,93
Гранитный или базальтовый заполнитель3,5
Влажный грунт, 10%1,75
Влажный грунт, 20%2,1
Песчаники1,16
Сухая почва0,4
Уплотненный грунт1,05
Гудроновая масса0,3
Доска строительная0,15
Фанерные листы0,15
Твердые породы дерева0,2
ДСП0,2
Дюралюминиевые изделия160
Железобетонные изделия1,72
Зола0,15
Известняковые блоки1,71
Раствор на песке и извести0,87
Смола вспененная0,037
Природный камень1,4
Картонные листы из нескольких слоев0,14
Каучук пористый0,035
Каучук0,042
Каучук с фтором0,053
Керамзитобетонные блоки0,22
Красный кирпич0,13
Пустотелый кирпич0,44
Полнотелый кирпич0,81
Сплошной кирпич0,67
Шлакокирпич0,58
Плиты на основе кремнезема0,07
Латунные изделия110
Лед при температуре 00С2,21
Лед при температуре -200С2,44
Лиственное дерево при влажности 15%0,15
Медные изделия380
Мипора0,086
Опилки для засыпки0,096
Сухие опилки0,064
ПВХ0,19
Пенобетон0,3
Пенопласт марки ПС-10,036
Пенопласт марки ПС-40,04
Пенопласт марки ПХВ-10,05
Пенопласт марки ФРП0,044
ППУ марки ПС-Б0,04
ППУ марки ПС-БС0,04
Лист из пенополиуретана0,034
Панель из пенополиуретана0,024
Облегченное пеностекло0,06
Тяжелое вспененное стекло0,08
Пергаминовые изделия0,16
Перлитовые изделия0,051
Плиты на цементе и перлите0,085
Влажный песок 0%0,33
Влажный песок 0%0,97
Влажный песок 20%1,33
Обожженный камень1,52
Керамическая плитка1,03
Плитка марки ПМТБ-20,035
Полистирол0,081
Поролон0,04
Раствор на основе цемента без песка0,47
Плита из натуральной пробки0,042
Легкие листы из натуральной пробки0,034
Тяжелые листы из натуральной пробки0,05
Резиновые изделия0,15
Рубероид0,17
Сланец2,100
Снег1,5
Хвойная древесина влажностью 15%0,15
Хвойная смолистая древесина влажностью 15%0,23
Стальные изделия52
Стеклянные изделия1,15
Утеплитель стекловата0,05
Стекловолоконные утеплители0,034
Стеклотекстолитовые изделия0,31
Стружка0,13
Тефлоновое покрытие0,26
Толь0,24
Плита на основе цементного раствора1,93
Цементно-песчаный раствор1,24
Чугунные изделия57
Шлак в гранулах0,14
Шлак зольный0,3
Шлакобетонные блоки0,65
Сухие штукатурные смеси0,22
Штукатурный раствор на основе цемента0,95
Эбонитовые изделия0,15
Влажность и теплопроводимость – зависимость

 

Кроме того, необходимо учитывать теплопроводность утеплителей из-за их струйных тепловых потоков. В плотной среде возможно «переливание» квазичастиц из одного нагретого стройматериала в другой, более холодный или более теплый, через поры субмикронных размеров, что помогает распространять звук и тепло, даже если в этих порах  будет абсолютный вакуум.

Теплопроводность строительных материалов, их плотность и теплоемкость: таблица теплопроводности материалов

ABS (АБС пластик)1030…10600.13…0.221300…2300
Аглопоритобетон и бетон на топливных (котельных) шлаках1000…18000.29…0.7840
Акрил (акриловое стекло, полиметилметакрилат, оргстекло) ГОСТ 17622—721100…12000.21
Альфоль20…400.118…0.135
Алюминий (ГОСТ 22233-83)2600221897
Асбест волокнистый4700.161050
Асбестоцемент1500…19001.761500
Асбестоцементный лист16000.41500
Асбозурит400…6500.14…0.19
Асбослюда450…6200.13…0.15
Асботекстолит Г ( ГОСТ 5-78)1500…17001670
Асботермит5000.116…0.14
Асбошифер с высоким содержанием асбеста18000.17…0.35
Асбошифер с 10-50% асбеста18000.64…0.52
Асбоцемент войлочный1440.078
Асфальт1100…21100.71700…2100
Асфальтобетон (ГОСТ 9128-84)21001.051680
Асфальт в полах0.8
Ацеталь (полиацеталь, полиформальдегид) POM14000.22
Аэрогель (Aspen aerogels)110…2000.014…0.021700
Базальт2600…30003.5850
Бакелит12500.23
Бальза110…1400.043…0.052
Береза510…7700.151250
Бетон легкий с природной пемзой500…12000.15…0.44
Бетон на гравии или щебне из природного камня24001.51840
Бетон на вулканическом шлаке800…16000.2…0.52840
Бетон на доменных гранулированных шлаках1200…18000.35…0.58840
Бетон на зольном гравии1000…14000.24…0.47840
Бетон на каменном щебне2200…25000.9…1.5
Бетон на котельном шлаке14000.56880
Бетон на песке1800…25000.7710
Бетон на топливных шлаках1000…18000.3…0.7840
Бетон силикатный плотный18000.81880
Бетон сплошной1.75
Бетон термоизоляционный5000.18
Битумоперлит300…4000.09…0.121130
Битумы нефтяные строительные и кровельные (ГОСТ 6617-76, ГОСТ 9548-74)1000…14000.17…0.271680
Блок газобетонный400…8000.15…0.3
Блок керамический поризованный0.2
Бронза7500…930022…105400
Бумага700…11500.141090…1500
Бут1800…20000.73…0.98
Вата минеральная легкая500.045920
Вата минеральная тяжелая100…1500.055920
Вата стеклянная155…2000.03800
Вата хлопковая30…1000.042…0.049
Вата хлопчатобумажная50…800.0421700
Вата шлаковая2000.05750
Вермикулит (в виде насыпных гранул) ГОСТ 12865-67100…2000.064…0.076840
Вермикулит вспученный (ГОСТ 12865-67) — засыпка100…2000.064…0.074840
Вермикулитобетон300…8000.08…0.21840
Воздух сухой при 20°С1.2050.02591005
Войлок шерстяной150…3300.045…0.0521700
Газо- и пенобетон, газо- и пеносиликат280…10000.07…0.21840
Газо- и пенозолобетон800…12000.17…0.29840
Гетинакс13500.231400
Гипс формованный сухой1100…18000.431050
Гипсокартон500…9000.12…0.2950
Гипсоперлитовый раствор0.14
Гипсошлак1000…13000.26…0.36
Глина1600…29000.7…0.9750
Глина огнеупорная18001.04800
Глиногипс800…18000.25…0.65
Глинозем3100…39002.33700…840
Гнейс (облицовка)28003.5880
Гравий (наполнитель)18500.4…0.93850
Гравий керамзитовый (ГОСТ 9759-83) — засыпка200…8000.1…0.18840
Гравий шунгизитовый (ГОСТ 19345-83) — засыпка400…8000.11…0.16840
Гранит (облицовка)2600…30003.5880
Грунт 10% воды1.75
Грунт 20% воды17002.1
Грунт песчаный1.16900
Грунт сухой15000.4850
Грунт утрамбованный1.05
Гудрон950…10300.3
Доломит плотный сухой28001.7
Дуб вдоль волокон7000.232300
Дуб поперек волокон (ГОСТ 9462-71, ГОСТ 2695-83)7000.12300
Дюралюминий2700…2800120…170920
Железо787070…80450
Железобетон25001.7840
Железобетон набивной24001.55840
Зола древесная7800.15750
Золото19320318129
Известняк (облицовка)1400…20000.5…0.93850…920
Изделия из вспученного перлита на битумном связующем (ГОСТ 16136-80)300…4000.067…0.111680
Изделия вулканитовые350…4000.12
Изделия диатомитовые500…6000.17…0.2
Изделия ньювелитовые160…3700.11
Изделия пенобетонные400…5000.19…0.22
Изделия перлитофосфогелевые200…3000.064…0.076
Изделия совелитовые230…4500.12…0.14
Иней0.47
Ипорка (вспененная смола)150.038
Каменноугольная пыль7300.12
Камень керамический поризованный Braer 14,3 НФ и 10,7 НФ810…8400.14…0.185
Камни многопустотные из легкого бетона500…12000.29…0.6
Камни полнотелые из легкого бетона DIN 18152500…20000.32…0.99
Камни полнотелые из природного туфа или вспученной глины500…20000.29…0.99
Камень строительный22001.4920
Карболит черный11000.231900
Картон асбестовый изолирующий720…9000.11…0.21
Картон гофрированный7000.06…0.071150
Картон облицовочный10000.182300
Картон парафинированный0.075
Картон плотный600…9000.1…0.231200
Картон пробковый1450.042
Картон строительный многослойный (ГОСТ 4408-75)6500.132390
Картон термоизоляционный (ГОСТ 20376-74)5000.04…0.06
Каучук вспененный820.033
Каучук вулканизированный твердый серый0.23
Каучук вулканизированный мягкий серый9200.184
Каучук натуральный9100.181400
Каучук твердый0.16
Каучук фторированный1800.055…0.06
Кедр красный500…5700.095
Кембрик лакированный0.16
Керамзит800…10000.16…0.2750
Керамзитовый горох900…15000.17…0.32750
Керамзитобетон на кварцевом песке с поризацией800…12000.23…0.41840
Керамзитобетон легкий500…12000.18…0.46
Керамзитобетон на керамзитовом песке и керамзитопенобетон500…18000.14…0.66840
Керамзитобетон на перлитовом песке800…10000.22…0.28840
Керамика1700…23001.5
Керамика теплая0.12
Кирпич доменный (огнеупорный)1000…20000.5…0.8
Кирпич диатомовый5000.8
Кирпич изоляционный0.14
Кирпич карборундовый1000…130011…18700
Кирпич красный плотный1700…21000.67840…880
Кирпич красный пористый15000.44
Кирпич клинкерный1800…20000.8…1.6
Кирпич кремнеземный0.15
Кирпич облицовочный18000.93880
Кирпич пустотелый0.44
Кирпич силикатный1000…22000.5…1.3750…840
Кирпич силикатный с тех. пустотами0.7
Кирпич силикатный щелевой0.4
Кирпич сплошной0.67
Кирпич строительный800…15000.23…0.3800
Кирпич трепельный700…13000.27710
Кирпич шлаковый1100…14000.58
Кладка бутовая из камней средней плотности20001.35880
Кладка газосиликатная630…8200.26…0.34880
Кладка из газосиликатных теплоизоляционных плит5400.24880
Кладка из глиняного обыкновенного кирпича на цементно-перлитовом растворе16000.47880
Кладка из глиняного обыкновенного кирпича (ГОСТ 530-80) на цементно-песчаном растворе18000.56880
Кладка из глиняного обыкновенного кирпича на цементно-шлаковом растворе17000.52880
Кладка из керамического пустотного кирпича на цементно-песчаном растворе1000…14000.35…0.47880
Кладка из малоразмерного кирпича17300.8880
Кладка из пустотелых стеновых блоков1220…14600.5…0.65880
Кладка из силикатного 11-ти пустотного кирпича на цементно-песчаном растворе15000.64880
Кладка из силикатного 14-ти пустотного кирпича на цементно-песчаном растворе14000.52880
Кладка из силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе18000.7880
Кладка из трепельного кирпича (ГОСТ 648-73) на цементно-песчаном растворе1000…12000.29…0.35880
Кладка из ячеистого кирпича13000.5880
Кладка из шлакового кирпича на цементно-песчаном растворе15000.52880
Кладка «Поротон»8000.31900
Клен620…7500.19
Кожа800…10000.14…0.16
Композиты технические0.3…2
Краска масляная (эмаль)1030…20450.18…0.4650…2000
Кремний2000…2330148714
Кремнийорганический полимер КМ-911600.21150
Латунь8100…885070…120400
Лед -60°С9242.911700
Лед -20°С9202.441950
Лед 0°С9172.212150
Линолеум поливинилхлоридный многослойный (ГОСТ 14632-79)1600…18000.33…0.381470
Линолеум поливинилхлоридный на тканевой подоснове (ГОСТ 7251-77)1400…18000.23…0.351470
Липа, (15% влажности)320…6500.15
Лиственница6700.13
Листы асбестоцементные плоские (ГОСТ 18124-75)1600…18000.23…0.35840
Листы вермикулитовые0.1
Листы гипсовые обшивочные (сухая штукатурка) ГОСТ 62668000.15840
Листы пробковые легкие2200.035
Листы пробковые тяжелые2600.05
Магнезия в форме сегментов для изоляции труб220…3000.073…0.084
Мастика асфальтовая20000.7
Маты, холсты базальтовые25…800.03…0.04
Маты и полосы из стеклянного волокна прошивные (ТУ 21-23-72-75)1500.061840
Маты минераловатные прошивные (ГОСТ 21880-76) и на синтетическом связующем (ГОСТ 9573-82)50…1250.048…0.056840
МБОР-5, МБОР-5Ф, МБОР-С-5, МБОР-С2-5, МБОР-Б-5 (ТУ 5769-003-48588528-00)100…1500.045
Мел1800…28000.8…2.2800…880
Медь (ГОСТ 859-78)8500407420
Миканит2000…22000.21…0.41250
Мипора16…200.0411420
Морозин100…4000.048…0.084
Мрамор (облицовка)28002.9880
Накипь котельная (богатая известью, при 100°С)1000…25000.15…2.3
Накипь котельная (богатая силикатом, при 100°С)300…12000.08…0.23
Настил палубный6300.211100
Найлон0.53
Нейлон13000.17…0.241600
Неопрен0.211700
Опилки древесные200…4000.07…0.093
Пакля1500.052300
Панели стеновые из гипса DIN 1863600…9000.29…0.41
Парафин870…9200.27
Паркет дубовый18000.421100
Паркет штучный11500.23880
Паркет щитовой7000.17880
Пемза400…7000.11…0.16
Пемзобетон800…16000.19…0.52840
Пенобетон300…12500.12…0.35840
Пеногипс300…6000.1…0.15
Пенозолобетон800…12000.17…0.29
Пенопласт ПС-11000.037
Пенопласт ПС-4700.04
Пенопласт ПХВ-1 (ТУ 6-05-1179-75) и ПВ-1 (ТУ 6-05-1158-78)65…1250.031…0.0521260
Пенопласт резопен ФРП-165…1100.041…0.043
Пенополистирол (ГОСТ 15588-70)400.0381340
Пенополистирол (ТУ 6-05-11-78-78)100…1500.041…0.051340
Пенополистирол Пеноплэкс22…470.03…0.0361600
Пенополиуретан (ТУ В-56-70, ТУ 67-98-75, ТУ 67-87-75)40…800.029…0.0411470
Пенополиуретановые листы1500.035…0.04
Пенополиэтилен0.035…0.05
Пенополиуретановые панели0.025
Пеносиликальцит400…12000.122…0.32
Пеностекло легкое100..2000.045…0.07
Пеностекло или газо-стекло (ТУ 21-БССР-86-73)200…4000.07…0.11840
Пенофол44…740.037…0.039
Пергамент0.071
Пергамин (ГОСТ 2697-83)6000.171680
Перекрытие армокерамическое с бетонным заполнением без штукатурки1100…13000.7850
Перекрытие из железобетонных элементов со штукатуркой15501.2860
Перекрытие монолитное плоское железобетонное24001.55840
Перлит2000.05
Перлит вспученный1000.06
Перлитобетон600…12000.12…0.29840
Перлитопласт-бетон (ТУ 480-1-145-74)100…2000.035…0.0411050
Перлитофосфогелевые изделия (ГОСТ 21500-76)200…3000.064…0.0761050
Песок 0% влажности15000.33800
Песок 10% влажности0.97
Песок 20% влажности1.33
Песок для строительных работ (ГОСТ 8736-77)16000.35840
Песок речной мелкий15000.3…0.35700…840
Песок речной мелкий (влажный)16501.132090
Песчаник обожженный1900…27001.5
Пихта450…5500.1…0.262700
Плита бумажная прессованая6000.07
Плита пробковая80…5000.043…0.0551850
Плита огнеупорная теплоизоляционная Avantex марки Board200…5000.04
Плитка облицовочная, кафельная20001.05
Плитка термоизоляционная ПМТБ-20.04
Плиты алебастровые0.47750
Плиты из гипса ГОСТ 64281000…12000.23…0.35840
Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74, ГОСТ 10632-77)200…10000.06…0.152300
Плиты из керзмзито-бетона400…6000.23
Плиты из полистирол-бетона ГОСТ Р 51263-99200…3000.082
Плиты из резольноформальдегидного пенопласта (ГОСТ 20916-75)40…1000.038…0.0471680
Плиты из стеклянного штапельного волокна на синтетическом связующем (ГОСТ 10499-78)500.056840
Плиты из ячеистого бетона ГОСТ 5742-76350…4000.093…0.104
Плиты камышитовые200…3000.06…0.072300
Плиты кремнезистые 0.07
Плиты льнокостричные изоляционные2500.0542300
Плиты минераловатные на битумной связке марки 200 ГОСТ 10140-80150…2000.058
Плиты минераловатные на синтетическом связующем марки 200 ГОСТ 9573-962250.054
Плиты минераловатные на синтетической связке фирмы «Партек» (Финляндия)170…2300.042…0.044
Плиты минераловатные повышенной жесткости ГОСТ 22950-952000.052840
Плиты минераловатные повышенной жесткости на органофосфатном связующем
(ТУ 21-РСФСР-3-72-76)
2000.064840
Плиты минераловатные полужесткие на крахмальном связующем125…2000.056…0.07840
Плиты минераловатные на синтетическом и битумном связующих0.048…0.091
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом и битумном связующих (ГОСТ 9573-82, ГОСТ 10140-80, ГОСТ 12394-66)50…3500.048…0.091840
Плиты пенопластовые на основе резольных фенолформальдегидных смол ГОСТ 20916-8780…1000.045
Плиты пенополистирольные ГОСТ 15588-86 безпрессовые30…350.038
Плиты пенополистирольные (экструзионные) ТУ 2244-001-47547616-00320.029
Плиты перлито-битумные ГОСТ 16136-803000.087
Плиты перлито-волокнистые1500.05
Плиты перлито-фосфогелевые ГОСТ 21500-762500.076
Плиты перлито-1 Пластбетонные ТУ 480-1-145-741500.044
Плиты перлитоцементные0.08
Плиты строительный из пористого бетона500…8000.22…0.29
Плиты термобитумные теплоизоляционные200…3000.065…0.075
Плиты торфяные теплоизоляционные (ГОСТ 4861-74)200…3000.052…0.0642300
Плиты фибролитовые (ГОСТ 8928-81) и арболит (ГОСТ 19222-84) на портландцементе300…8000.07…0.162300
Покрытие ковровое6300.21100
Покрытие синтетическое (ПВХ)15000.23
Пол гипсовый бесшовный7500.22800
Поливинилхлорид (ПВХ)1400…16000.15…0.2
Поликарбонат (дифлон)12000.161100
Полипропилен (ГОСТ 26996– 86)900…9100.16…0.221930
Полистирол УПП1, ППС10250.09…0.14900
Полистиролбетон (ГОСТ 51263)150…6000.052…0.1451060
Полистиролбетон модифицированный на активированном пластифицированном шлакопортландцементе200…5000.057…0.1131060
Полистиролбетон модифицированный на композиционном малоклинкерном вяжущем в стеновых блоках и плитах200…5000.052…0.1051060
Полистиролбетон модифицированный монолитный на портландцементе250…3000.075…0.0851060
Полистиролбетон модифицированный на шлакопортландцементе в стеновых блоках и плитах200…5000.062…0.1211060
Полиуретан12000.32
Полихлорвинил1290…16500.151130…1200
Полиэтилен высокой плотности9550.35…0.481900…2300
Полиэтилен низкой плотности9200.25…0.341700
Поролон340.04
Портландцемент (раствор)0.47
Прессшпан0.26…0.22
Пробка гранулированная техническая450.0381800
Пробка минеральная на битумной основе270…3500.073…0.096
Пробковое покрытие для полов5400.078
Ракушечник1000…18000.27…0.63835
Раствор гипсовый затирочный12000.5900
Раствор гипсоперлитовый6000.14840
Раствор гипсоперлитовый поризованный400…5000.09…0.12840
Раствор известковый16500.85920
Раствор известково-песчаный1400…16000.78840
Раствор легкий LM21, LM36700…10000.21…0.36
Раствор сложный (песок, известь, цемент)17000.52840
Раствор цементный, цементная стяжка20001.4
Раствор цементно-песчаный1800…20000.6…1.2840
Раствор цементно-перлитовый800…10000.16…0.21840
Раствор цементно-шлаковый1200…14000.35…0.41840
Резина мягкая0.13…0.161380
Резина твердая обыкновенная900…12000.16…0.231350…1400
Резина пористая160…5800.05…0.172050
Рубероид (ГОСТ 10923-82)6000.171680
Руда железная2.9
Сажа ламповая1700.07…0.12
Сера ромбическая20850.28762
Серебро10500429235
Сланец глинистый вспученный4000.16
Сланец2600…33000.7…4.8
Слюда вспученная1000.07
Слюда поперек слоев2600…32000.46…0.58880
Слюда вдоль слоев2700…32003.4880
Смола эпоксидная1260…13900.13…0.21100
Снег свежевыпавший120…2000.1…0.152090
Снег лежалый при 0°С400…5600.52100
Сосна и ель вдоль волокон5000.182300
Сосна и ель поперек волокон (ГОСТ 8486-66, ГОСТ 9463-72)5000.092300
Сосна смолистая 15% влажности600…7500.15…0.232700
Сталь стержневая арматурная (ГОСТ 10884-81)785058482
Стекло оконное (ГОСТ 111-78)25000.76840
Стекловата155…2000.03800
Стекловолокно1700…20000.04840
Стеклопластик18000.23800
Стеклотекстолит1600…19000.3…0.37
Стружка деревянная прессованая8000.12…0.151080
Стяжка ангидритовая21001.2
Стяжка из литого асфальта23000.9
Текстолит1300…14000.23…0.341470…1510
Термозит300…5000.085…0.13
Тефлон21200.26
Ткань льняная0.088
Толь (ГОСТ 10999-76)6000.171680
Тополь350…5000.17
Торфоплиты275…3500.1…0.122100
Туф (облицовка)1000…20000.21…0.76750…880
Туфобетон1200…18000.29…0.64840
Уголь древесный кусковой (при 80°С)1900.074
Уголь каменный газовый14203.6
Уголь каменный обыкновенный1200…13500.24…0.27
Фарфор2300…25000.25…1.6750…950
Фанера клееная (ГОСТ 3916-69)6000.12…0.182300…2500
Фибра красная12900.46
Фибролит (серый)11000.221670
Целлофан0.1
Целлулоид14000.21
Цементные плиты1.92
Черепица бетонная21001.1
Черепица глиняная19000.85
Черепица из ПВХ асбеста20000.85
Чугун722040…60500
Шевелин140…1900.056…0.07
Шелк1000.038…0.05
Шлак гранулированный5000.15750
Шлак доменный гранулированный600…8000.13…0.17
Шлак котельный10000.29700…750
Шлакобетон1120…15000.6…0.7800
Шлакопемзобетон (термозитобетон)1000…18000.23…0.52840
Шлакопемзопено- и шлакопемзогазобетон800…16000.17…0.47840
Штукатурка гипсовая8000.3840
Штукатурка известковая16000.7950
Штукатурка из синтетической смолы11000.7
Штукатурка известковая с каменной пылью17000.87920
Штукатурка из полистирольного раствора3000.11200
Штукатурка перлитовая350…8000.13…0.91130
Штукатурка сухая0.21
Штукатурка утепляющая5000.2
Штукатурка фасадная с полимерными добавками18001880
Штукатурка цементная0.9
Штукатурка цементно-песчаная18001.2
Шунгизитобетон1000…14000.27…0.49840
Щебень и песок из перлита вспученного (ГОСТ 10832-83) — засыпка200…6000.064…0.11840
Щебень из доменного шлака (ГОСТ 5578-76), шлаковой пемзы (ГОСТ 9760-75) и аглопорита (ГОСТ 11991-83) — засыпка400…8000.12…0.18840
Эбонит12000.16…0.171430
Эбонит вспученный6400.032
Эковата35…600.032…0.0412300
Энсонит (прессованный картон)400…5000.1…0.11
Эмаль (кремнийорганическая)0.16…0.27

Таблица теплопроводности строительных материалов: коэффициенты

ПОДЕЛИТЕСЬ
В СОЦСЕТЯХ

Любое строительство независимо от его размера всегда начинается с разработки проекта. Его цель – спроектировать не только внешний вид будущего строения, еще и просчитать основные теплотехнические характеристики. Ведь основной задачей строительства считается сооружение прочных, долговечных зданий, способных поддерживать здоровый и комфортный микроклимат, без лишних затрат на отопление. Несомненную помощь при выборе сырья, используемого для возведения постройки, окажет таблица теплопроводности строительных материалов: коэффициенты.

Тепло в доме напярямую зависит от коэффициента теплопроводности строительных материалов

Что такое теплопроводность?

Теплопроводность – это процесс передачи энергии тепла от нагретых частей помещения к менее теплым. Такой обмен энергией будет происходить, пока температура не уравновесится. Применяя это правило к ограждающим системам дома, можно понять, что процесс теплопередачи определяется промежутком времени, за который происходит выравнивание температуры в комнатах с окружающей средой. Чем это время больше, тем теплопроводность материала, применяемого при строительстве, ниже.

Отсутствие теплоизоляции дома скажется на температуре воздуха внутри помещения

Для характеристики проводимости тепла материалами используют такое понятие, как коэффициент теплопроводности. Он показывает, какое количество тепла за одну единицу временного промежутка пройдет через одну единицу площади поверхности. Чем выше подобный показатель, тем сильнее теплообмен, значит, постройка будет остывать значительно быстрее. То есть при сооружении зданий, домов и прочих помещений необходимо использовать материалы, проводимость тепла которых минимальна.

Сравнительные характеристики теплопроводности и термического сопротивления стен, возведенных из кирпича и газобетонных блоков

Что влияет на величину теплопроводности?

Тепловая проводимость любого материала зависит от множества параметров:

  1. Пористая структура. Присутствие пор предполагает неоднородность сырья. При прохождении тепла через подобные структуры, где большая часть объема занята порами, охлаждение будет минимальным.
  2. Плотность. Высокая плотность способствует более тесному взаимодействию частиц друг с другом. В результате теплообмен и последующее полное уравновешивание температур происходит быстрее.
  3. Влажность. При высокой влажности окружающего воздуха или намокании стен постройки, сухой воздух вытесняется капельками жидкости из пор. Теплопроводность в подобном случае значительно увеличивается.

Теплопроводность, плотность и водопоглощение некоторых строительных материалов

Применение показателя теплопроводности на практике

В строительстве все материалы условно подразделяются на теплоизоляционные и конструкционные. Конструкционное сырье отличается наибольшими показателями теплопроводности, но именно его применяют для постройки стен, перекрытий, прочих ограждений. Согласно таблице теплопроводности строительных материалов, при возведении стен из железобетона, для низкого теплообмена с окружающей средой толщина конструкции должна быть около 6 метров. В таком случае строение получится огромным, громоздким и потребует немалых затрат.

Наглядный пример — при какой толщине различных материалов их коэффициент теплопроводности будет одинаковым

Поэтому при возведении постройки следует отдельное внимание уделять дополнительным теплоизолирующим материалам. Слой теплоизоляции может не понадобиться только для построек из дерева или пенобетона, но даже при использовании подобного низкопроводного сырья толщина конструкции должна быть не менее 50 см.

Нужно знать! У теплоизоляционных материалов значения показателя теплопроводности минимальны.

Теплопроводность готового здания. Варианты утепления конструкций

При разработке проекта постройки необходимо учесть все возможные варианты и пути потери тепла. Большое его количество может уходить через:

  • стены – 30%;
  • крышу – 30%;
  • двери и окна – 20%;
  • полы – 10%.

Теплопотери неутепленного частного дома

При неверном расчете теплопроводности на этапе проектирования, жильцам остается довольствоваться только 10% тепла, получаемого от энергоносителей. Именно поэтому дома, возведенные из стандартного сырья: кирпича, бетона, камня рекомендуют дополнительно утеплять. Идеальная постройка согласно таблице теплопроводности строительных материалов должна быть выполнена полностью из теплоизолирующих элементов. Однако малая прочность и минимальная устойчивость к нагрузкам ограничивает возможности их применения.

Нужно знать! При обустройстве правильной гидроизоляции любого утеплителя высокая влажность не повлияет на качество теплоизоляции и сопротивление постройки теплообмену будет значительно выше.

Сравнительный график коэффициентов теплопроводности некоторых строительных материалов и утеплителей

Самым распространенным вариантом сочетание несущей конструкции из высокопрочных материалов с дополнительным слоем теплоизоляции. Сюда можно отнести:

  1. Каркасный дом. При его постройке каркасом из древесины обеспечивается жесткость всей конструкции, а укладка утеплителя производится в пространство между стойками. При незначительном уменьшении теплообмена в некоторых случая может потребоваться утепление еще и снаружи основного каркаса.
  2. Дом из стандартных материалов. При выполнении стен из кирпича, шлакоблоков, утепление должно проводиться по наружной поверхности конструкции.

Необходимая тепло- и гидроизоляция для сохранения тепла в частном доме

Таблица теплопроводности строительных материалов: коэффициенты

В этой таблице собраны показатели теплопроводности самых распространенных строительных материалов. Пользуясь подобными справочниками, можно без проблем рассчитать необходимую толщину стен и применяемого утеплителя.

Таблица коэффициента теплопроводности строительных материалов:

Таблица теплопроводности строительных материалов: коэффициенты

Теплопроводность строительных материалов (видео)

ОЦЕНИТЕ
МАТЕРИАЛ Загрузка… ПОДЕЛИТЕСЬ
В СОЦСЕТЯХ

СМОТРИТЕ ТАКЖЕ

REMOO В ВАШЕЙ ПОЧТЕ

теплопроводность строительных материалов

Теплопроводность строительных материалов это своего рода оценка , которая описывает способность того или иного тела проводить тепло. В данной статье пойдет речь именно об этом, а для большего представления о теплопроводности различных материалов и не только, ниже будет приведена таблица.

Как вы понимаете все материалы обладают разными свойствами и соответственно разную теплопроводность, которая в свою очередь влияет на температуру внутри помещения. Если теплопроводность низкая, значит и теплообмен будет низким. Другими словами, дома зимой тепло будет сохраняться, а летом будет прохладно.

Кстати, очень удобно что теперь все обувные интернет-магазины нижнего новгорода (http://rmau.ru/obuv) собраны на одном сайте. Перейдите по указанной ссылке и выберите обувь для себя и близких из очень большого ассортимента с разными ценовыми категориями.


Существует три вида процессов теплообмена

— Первое — конечно теплопроводность,
— Второе — конвекция,
— Третье — будет тепловым излучением.

Говоря о первом виде теплопроводности можно сказать что, это своего рода передача тепла от тела к телу либо частицами находящиеся внутри тела с разной температурой, за счет активного движения молекулы обмениваются энергией наименьших частиц в теле.

Все это проходит благодаря беспорядочному движению атомов и молекул. Так как данный теплообмен может протекать в разных физических телах, которые имеют неравномерное распределение температуры. Теплопередача будет зависеть от состояния тела в конкретный период времени.
Говоря о втором виде теплопроводности, а именно о конвекции, можно сказать что очень часто все виды теплопередачи протекают вместе. В этом процессе обязательно частицы с различными температурами будут соприкасаться, из чего следует, что конвекция сопровождается теплопроводностью. Конвекция происходит от перемещения участков среды с разными температурами. Само тепло переноситься только совместно с данной средой и зависит от нее. Так же данный процесс иногда называют конвективным теплообменом.

Теплоотдачу можно объяснить как конвективный теплообмен проходящий между стеной которая стоит неподвижно и меняющейся средой.

Третий вид тепловое излучение — благодаря которому происходит процесс передачи тепла между телами с участием электромагнитных волн.

Для того чтобы строить различного вида постройки необходимо обязательно знать теплопроводность утеплителей и строительных материалов, чтобы в итоге получить то что планировалось. Теплопроводность стен зависит от материалов из которых эти стены состоят.

Единицей измерения способности к проведению тепла, является коэффициент теплопроводности. Он равен такому количеству тепла которое пройдет через различные материалы или тела с толщиной 1 м и имеющий площадь 1кв.м/сек с одной температурой по периметру.

Интересный факт: теплопроводность кирпича в отличие от дерева ниже. К примеру- для того чтобы получить с помощью кирпича тот же эффект что от дерева, нужно выложить стену из кирпича толщиной в три раза превышающую толщину стены из дерева.

Теплопроводность пенопласта равна 0,31-0,33 Вт/м*К, с плотностью 15 кг/м3- 50 кг/м3

Теплопроводность стали равна 58 Вт/м*К, с плотностью 7850 кг/м3

Для более расширенного представления о теплопроводности разных материалов, обобщим все в таблицу.


Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

Теплопроводность строительных материалов — основные понятия, табличные значения, расчеты

Ведущие тенденции современного строительства – это возведение домов с максимальной энергоэффективностью. То есть с возможностью создания и поддержания комфортных условий проживания при минимальных затратах энергоносителей. Понятно, что многим нашим строителям, ведущим возведение своих жилых владений самостоятельно, до таких показателей пока далековато, но стремиться к этому – необходимо всегда.

Теплопроводность строительных материалов

Прежде всего, это касается минимизации тепловых потерь через строительные конструкции. Достигается такое снижение эффективной термоизоляцией, выполненной на основании теплотехнических расчетов. Проектирование в идеале должны проводить специалисты, но часто обстоятельства понуждают владельцев жилья и такие вопросы брать в свои руки. Значит, необходимо иметь общие представления о базовых понятиях строительной теплотехники. Прежде всего – что такое теплопроводность строительных материалов, в чем она измеряется, как просчитывается.

Если разобраться с этими «азами», то будет проще всерьез, со знанием дела , а не по наитию, заниматься вопросами утепления своего жилья.

Что такое теплопроводность, какими единицами измерения она описывается?

Если не рассматривать каких-то теоретических условий, то в реальности все физические тела, жидкости или газы обладают способностью к передаче тепла. Иными словами, чтобы было понятнее, если какой-то объект начинают нагревать с одной из сторон, он становится проводником тепла, нагреваясь сам и передавая тепловую энергию дальше. Точно так же – и при охлаждении, только с «обратным знаком».

Даже на простом бытовом уровне всем понятно, что эта способность выражена у разных материалов в очень отличающейся степени. Например, одно дело мешать готовящееся на плите кипящее блюдо деревянной лопаткой, и совсем другое – металлической ложкой, которая практически моментально разогреется до такой температуры, что ее невозможно будет держать в руках. Этот пример наглядно показывает, что теплопроводность металла во много раз выше, чем у дерева.

«Практическое применение» огромной разницы в теплопроводности материалов – пробка, подсунутая под скобу металлической крышки кастрюли. Снять такую крышку с кипящей на плите посуды можно голыми пальцами, не опасаясь ожога.

И таких примеров – масса, буквально на каждом шагу. Например, прикоснитесь рукой к обычной деревянной двери в комнате, и к металлической ручке, прикрученной на ней. По ощущениям – ручка холоднее. Но такого не может быть – все предметы в помещении имеют примерно равную температуру. Просто металл ручки быстрее отвел на себя тепло тела, что и вызвало ощущения более холодной поверхности.

Коэффициент теплопроводности материала

Существует специальная единица, которая характеризует любой материал, как проводник тепла. Называется она коэффициентом теплопроводности, обозначается обычно греческой буквой λ, и измеряется в Вт/(м×℃). (Во многих встречающихся формулах вместо градусов Цельсия ℃ указаны градусы Кельвина, К, но сути это не меняет).

Этот коэффициент показывает способность материала передавать определенное количество тепла на определённое расстояние за единицу времени. Причем, это показатель характеризует именно материал, то есть без привязки к каким бы то ни было размерам.

Такие коэффициенты рассчитаны для практически любых строительных и иных материалов. Ниже в данной публикации приведены таблицы для различных групп – растворов, бетонов, кирпичной и каменной кладки, утеплителей, древесины, металлов и т.д. Даже беглого взгляда на них достаточно, чтобы убедиться, насколько эти коэффициенты могут отличаться.

Очень часто производители стройматериалов того или иного предназначения в череде паспортных характеристик указывают и коэффициент теплопроводности.

Материалы, которые отличаются высокой проводимостью тепла, например, металлы, как раз и находят часто применение в роли теплоотводов или теплообменников. Классический пример – радиаторы отопления, в которых чем лучше их стенки будут передавать нагрев от теплоносителя, тем эффективнее их работа.

А вот для большинства строительных материалов – ситуация обратная. То есть чем меньше коэффициент теплопроводности материала, из которого возведена условная стенка, тем меньше тепла будет терять здание с приходом холодов. Или, тем меньше можно будет сделать толщину стены при одинаковых показателях теплопроводности.

И на титульной картинке к статье, и на иллюстрации ниже показаны весьма наглядные схемы, как будет различаться толщина стены из разных материалов при равных способностях удержать тепло в доме. Комментарии, наверное, не нужны.

Одинаковая термоизоляционная способность – и совершенно разные толщины. Хороший пример по разнице в теплопроводности.

В справочной литературе часто указывается не одно значение коэффициента теплопроводности для какого-то материала, а целых три. (А иногда – и больше, так как этот коэффициент может меняться с изменением температуры). И это – правильно, так как на теплопроводные качества влияют и условия эксплуатации. И в первую очередь – влажность.

Это свойственно большинству материалов – при насыщении  влагой коэффициент теплопроводности увеличивается. И если ставится цель выполнить расчеты максимально точно, с привязкой к реальным условиям эксплуатации, то рекомендуется не пренебрегать этой разницей.

Итак, коэффициент может даваться расчетный, то есть для совершенно сухого материала и лабораторных условий. Но для реальных расчетов берут его или для режима эксплуатации А, или для режима Б.

Эти режимы складываются консолидировано из климатических особенностей региона и из особенностей эксплуатации конкретного здания (помещения).

Тип своей климатической зоны по уровню влажности можно определить по предлагаемой карте-схеме:

Климатические зоны территории России по уровню влажности: 1 –влажная; 2 – нормальная; 3 – сухая.

Особенности влажностного режима помещений определяются по следующей таблице:

Таблица определения влажностного режима помещений

Влажностной режим помещенияОтносительная влажность внутреннего воздуха при температуре:
до 12°Сот 13 до 24°С 25°С и выше
Сухойдо 60%до 50%до 40%
Нормальныйот 61 до 75%от 51 до 60%от 41 до 50%
Влажный 76% и болееот 61 до 75%от 51 до 60%
Мокрый76% и более61% и более

Кстати, о влажности!..

А хорошо ли вы представляете себе, что такое относительная влажность воздуха. И какой она должна быть в помещениях для поддержания комфортного микроклимата? Если с этим ясности нет – добро пожаловать к специальной публикации нашего портала, посвященной приборам измерения относительной влажности.

Итак, имея данные карты-схемы и таблицы, можно по второй таблице определиться с выбором режима А или Б, от которого будет зависеть реальная величина коэффициента теплопроводности.

Таблица для выбора режима эксплуатации ограждающих конструкций

Влажностной режим помещения (по таблице)Зоны влажности (в соотвествии с картой-схемой)
3 — сухая2 — нормальная1 — влажная
СухойААБ
НормальныйАББ
Влажный или мокрыйБББ

Вот по этому режиму и выбирается из табличных данных наиболее близкий к реальности коэффициент теплопроводности.

Таблицы будут приведены ниже, под теоретической частью.

Сопротивление теплопередаче

Итак, коэффициент теплопроводности характеризует сам материал. Но с практической точки зрения, наверное, важнее иметь какую-то величину, которая будет описывать теплопроводные способности конкретной конструкции. То есть уже с учетом особенностей ее строения и размеров.

Такая единица измерения есть, и называется она сопротивлением теплопередаче. Ее можно считать обратной величиной коэффициенту теплопроводности, с одновременным учетом толщины материала.

Обозначается сопротивление теплопередаче (или, как его часто именуют, термическое сопротивление) латинской буквой R. Если «плясать» от коэффициента теплопроводности, то определяется оно по следующей формуле.

R = h/λ

где:

R — сопротивление теплопередаче однослойной однородной ограждающей конструкции, м²×℃/Вт;

h — толщина этого слоя, выраженная в метрах;

λ — коэффициент теплопроводности материала, из которого изготовлена эта ограждающая конструкция, Вт/(м×℃).

Очень часто в строительстве используются многослойные конструкции. В том числе одним из слоев нередко выступает утеплительный материал с очень низким коэффициентом теплопроводности – специально, чтобы максимально повысить значение термического сопротивления. Дело в том, что общее значение суммируется из сопротивлений всех слоев, составляющих ограждающую конструкцию. И к ним добавляется сопротивление приграничных слоев воздуха на внешней и внутренней поверхностях конструкции.

Формула сопротивления перегородки с n-слоев будет такой:

Rsum = R₁ + R₂ + …+Rn + Rai + Rao

где:

Rsum— суммарное термическое сопротивление ограждающей конструкции;

 R₁ … Rn— сопротивления слоев, от 1 до n;

Rai— сопротивление пристенного слоя воздуха внутри;

Rao— сопротивление пристенного слоя воздуха снаружи.

Для каждого из слоев сопротивление рассчитывается отдельно, исходя из коэффициента теплопроводности материала и толщины.

Есть специальная методика расчета и коэффициентов воздушных прослоек вдоль стены снаружи и внутри. Но для упрощенных расчётов их вполне можно взять равными суммарно 0,16 м²×℃/Вт – большой погрешности не будет.

Кстати, если в конструкции перегородки предусмотрена воздушная полость, не сообщающаяся с внешним воздухом, то она тоже дает весомую добавку к общему сопротивлению теплопередаче. Значения сопротивления теплопередаче воздушных изолированных прослоек показаны в таблице ниже:

Таблица термических сопротивлений замкнутых воздушных прослоек

Толщина воздушной прослойки, в метрахВ и Г ▲Г▼
tв > 0 ℃tв > 0 ℃
0.010.130.150.140.15
0.020.140.150.150.19
0.030.140.160.160.21
0.050.140.170.170.22
0.10.150.180.180.23
0.150.150.180.190.24
0,2-0,30.150.190.190.24
Примечания:
В и Г ▲ — воздушная прослойка вертикальная, или горизонтальная, с рапространением тепла снизу вверх
Г▼ — воздушная прослойка горизонтальная при распространении тепла сверху вниз
tв > 0 ℃ — положительная температура воздуха в прослойке
Если любая из поверхностей воздушной прослойки, или обе одновременно, оклеены алюминиесвой фольгой, то значение сопротивления теплопередаче принимают вдвое большим.

Таблицы коэффициентов теплопроводности различных групп строительных материалов
Таблица коэффициентов теплопроводности кирпичных кладок и каменных облицовок стен
Наименование материалаρ
Средняя плотность материала
кг/м³
λ₀
Коэффициент теплопроводности в идеальных условиях и в сухом состоянии
Вт/(м×℃)
λА
Коэффициент теплопроводности для условий эксплуатации А
Вт/(м×℃)
λБ
Коэффициент теплопроводности для условий эксплуатации Б
Вт/(м×℃)
Кирпичная кладка из сплошного кирпича на различных растворах
Стандартный керамический (глиняный) – на цементно-песчаном кладочном растворе18000,560,700,81
Стандартный керамический на цементно-шлаковом растворе17000,520,640,76
Стандартный керамический на цементно-перлитовом растворе16000,470,580,70
Силикатный на цементно-песчаном кладочном растворе18000,700,760,87
Трепельный термооизоляционный, на цементно-песчаном кладочном растворе12000,350,470,52
— то же, но с плотностью10000,290,410,47
Шлаковый, на цементно-песчаном кладочном растворе15000,520,640,70
Кладка из пустотного кирпича
Кирпич керамический, с плотностью 1400 кг/м³, на цементно-песчаном кладочном растворе16000,470,580,64
— то же, но с плотностью кирпича 1300 кг/м³14000,410,520,58
— то же, но с плотностью кирпича 1000 кг/м³12000,350,470,52
Кирпич силикатный, одиннадцатипустотный, на цементно-песчаном кладочном растворе15000,640,700,81
— то же, четырнадцатипустотный14000,520,640,76
Кладка или облицовка поверхностей натуральным камнем
Гранит или базальт28003,493,493,49
Мрамор28002,912,912,91
Туф20000,760,931,05
— то же, но с плотностью18000,560,700,81
— то же, но с плотностью16000,410,520,64
— то же, но с плотностью14000,330,430,52
— то же, но с плотностью12000,270,350,41
— то же, но с плотностью10000,210,240,29
Известняк20000,931,161,28
— то же, но с плотностью18000,700,931,05
— то же, но с плотностью16000,580,730,81
— то же, но с плотностью14000,490,560,58
Таблица коэффициентов теплопроводности бетонов различного типа
Наименование материалаρ
кг/м³
λ₀
Вт/(м×℃)
λА
Вт/(м×℃)
λБ
Вт/(м×℃)
Бетоны на плотном заполнителе
Железобетон25001.691.922.04
Бетон на натуральном гравии или щебне24001.511.741.86
Бетоны на натуральных пористых заполнителях
Пемзобетон16000.520.60.68
— то же, но с плотностью14000.420.490.54
— то же, но с плотностью12000.340.40.43
— то же, но с плотностью10000.260.30.34
— то же, но с плотностью8000.190.220.26
Туфобетон18000.640.870.99
— то же, но с плотностью16000.520.70.81
— то же, но с плотностью14000.410.520.58
— то же, но с плотностью12000.290.410.47
Бетон на вулканическом шлаке16000.520.640.7
— то же, но с плотностью14000.410.520.58
— то же, но с плотностью12000.330.410.47
— то же, но с плотностью10000.240.290.35
— то же, но с плотностью800200.230.29
Бетоны на искусственных пористых наполнителях
Керамзитобетон на кварцевом песке с поризацией12000.410.520.58
— то же, но с плотностью10000.330.410.47
— то же, но с плотностью8000.230.290.35
Керамзитобетон на керамзитовом песке или керамзитопенобетон1800660.80.92
— то же, но с плотностью16000.580.670.79
— то же, но с плотностью14000.470.560.65
— то же, но с плотностью12000.360.440.52
— то же, но с плотностью10000.270.330.41
— то же, но с плотностью8000.210.240.31
— то же, но с плотностью6000.160.20.26
— то же, но с плотностью5000.140.170.23
Керамзитобетон на перлитовом песке10000.280.350.41
— то же, но с плотностью8000.220.290.35
Перлитобетон12000.290.440.5
— то же, но с плотностью10000.220.330.38
— то же, но с плотностью8000.160.270.33
— то же, но с плотностью6000.120.190.23
Шлакопемзобетон18000.520.630.76
— то же, но с плотностью16000.410.520.63
— то же, но с плотностью14000.350.440.52
— то же, но с плотностью12000.290.370.44
— то же, но с плотностью10000.230.310.37
Шлакопемзопено и шлакопемзогазобетон16000.470.630.7
— то же, но с плотностью14000.350.520.58
— то же, но с плотностью12000.290.410.47
— то же, но с плотностью10000.230.350.41
— то же, но с плотностью8000.170.290.35
Вермикулетобетон8000.210.230.26
— то же, но с плотностью6000.140.160.17
— то же, но с плотностью4000.090.110.13
— то же, но с плотностью3000.080.090.11
Ячеистые бетоны
Газобетон, пенобетон, газосиликат, пеносиликат10000.290.410.47
— то же, но с плотностью8000.210.330.37
— то же, но с плотностью6000.140.220.26
— то же, но с плотностью4000.110.140.15
— то же, но с плотностью3000.080.110.13
Газозолобетон, пенозолобетон12000.290.520.58
— то же, но с плотностью10000.230.440.59
— то же, но с плотностью8000.170.350.41
Таблица коэффициентов теплопроводности строительных растворов на цементной, известковой, гипсовой основе
Наименование материалаρ
кг/м³
λ₀
Вт/(м×℃)
λА
Вт/(м×℃)
λБ
Вт/(м×℃)
Обычный цементно-песчаный раствор18000.580.760.93
Сложный раствор из цемента, песка, извести17000.520.70.87
Цементно-шлаковый раствор14000.410.520.64
Цементно-перлитовый раствор10000.210.260.3
— то же, но с плотностью8000.160.210.26
Известково-песчаный раствор16000.470.70.81
— то же, но с плотностью12000.350.470.58
Гипсово-перлитовый раствор6000.140.190.23
Гипсово-перлитовый поризованный раствор5000.120.150.19
— то же, но с плотностью4000.090.130.15
Гипсовые плиты литые конструкционные12000.350.410.47
— то же, но с плотностью10000.230.290.35
Листы гипсокартона (сухая штукатурка)8000.150.190.21
Таблица коэффициентов теплопроводности дерева, изделий на основе древесины, а также других природных материалов
Наименование материалаρ
кг/м³
λ₀
Вт/(м×℃)
λА
Вт/(м×℃)
λБ
Вт/(м×℃)
Хвойная древесина (сосна иди ель) поперек волокон5000,090,140,18
— они же — вдоль волокон5000,180,290,35
Древесина плотных лиственных пород (дуб, бук, ясень) поперек волокон7000,10,180,23
— они же — вдоль волокон7000,230,350,41
Клееная фанера6000,120,150,18
Облицовочный картон10000,180,210,23
Картон строительный многослойный6500,130,150,18
Плиты древесно-волокнистые (ДВП), древесно-стружечные (ДСП), ориентированно-стружечные (ОСП)10000,150,230,29
— то же, но для плотности8000,130,190,23
— то же, но для плотности6000,110,130,16
— то же, но для плотности4000,080,110,13
— то же, но для плотности2000,060,070,08
Плиты фибролитовые, арболит на основе портландцемента8000,160,240,3
— то же, но для плотности6000,120,180,23
— то же, но для плотности4000,080,130,16
— то же, но для плотности3000,070,110,14
Плиты камышитовые3000,070,090,14
— то же, но для плотности2000,060,070,09
Плиты торфяные термоизоляционные3000,0640,070,08
— то же, но для плотности2000,0520,060,064
Пакля строительная1500,050,060,07
Таблица коэффициентов теплопроводности материалов, применяемых в термоизоляционных целях
Наименование материалаρ
кг/м³
λ₀
Вт/(м×℃)
λА
Вт/(м×℃)
λБ
Вт/(м×℃)
Минеральная вата, стекловата
Маты минеральной ваты прошивные или на синтетическом связующем1250.0560.0640.07
— то же, но для плотности750.0520.060.064
— то же, но для плотности500.0480.0520.06
Плиты минеральной ваты на синтетическом и битумном связующих — мягкие, полужесткие и жесткие3500.0910.090.11
— то же, но для плотности3000.0840.0870.09
— то же, но для плотности2000.070.0760.08
— то же, но для плотности1000.0560.060.07
— то же, но для плотности500.0480.0520.06
Плиты минеральной ваты на органофосфатном связующем — повышенной жесткости2000.0640.070.076
Плиты из стеклянного штапельного волокна на синтетическом связующем500.0560.060.064
Маты и полосы из стеклянного волокна прошивные1500.0610.0640.07
Синтетические утеплители
Пенополистирол1500.050.0520.06
— то же, но для плотности1000.0410.0410.052
— то же, но для плотности400.0380.0410.05
Пенопласт ПХВ-1 и ПВ-11250.0520.060.064
— то же, но для плотности100 и менее0.0410.050.052
Пенополиуретан плитный800.0410.050.05
— то же, но для плотности600.0350.0410.041
— то же, но для плотности400.0290.040.04
Пенополиуретан напылением350.0270.0330.035
Плиты из резольноформальдегидного пенопласта1000.0470.0520.076
— то же, но для плотности750.0430.050.07
— то же, но для плотности500.0410.050.064
— то же, но для плотности400.0380.0410.06
Пенополиэтилен300.030.0320.035
Плиты из полиизоцианурата (PIR)350.0240.0280.031
Перлитопласт-бетон2000.0410.0520.06
— то же, но для плотности1000.0350.0410.05
Перлитофосфогелевые изделия3000.0760.080.12
— то же, но для плотности2000.0640.070.09
Каучук вспененный850.0350.040.045
Утеплители на натуральной основе
Эковата600.0410.0540.062
— то же, но для плотности450.0380.050.055
— то же, но для плотности350.0350.0420.045
Пробка техническая500.0370.0430.048
Листы пробковые2200.0350.0410.045
Плиты льнокостричные термоизоляционные2500.0540.0620.071
Войлок строительный шерстяной3000.0570.0650.072
— то же, но для плотности1500.0450.0510.059
Древесные опилки4000.0921.051.12
— то же, но для плотности2000.0710.0780.085
Засыпки минеральные
Керамзит — гравий8000.180.210.23
— то же, но для плотности6000.140.170.2
— то же, но для плотности4000.120.130.14
— то же, но для плотности3000.1080.120.13
— то же, но для плотности2000.0990.110.12
Шунгизит — гравий8000.160.20.23
— то же, но для плотности6000.130.160.2
— то же, но для плотности4000.110.130.14
Щебень из доменного шлака, шлаковой пемзы и аглоперита8000.180.210.26
— то же, но для плотности6000.150.180.21
— то же, но для плотности4001.1220.140.16
Щебень и песок из вспученного перлита6000.110.1110.12
— то же, но для плотности4000.0760.0870.09
— то же, но для плотности2000.0640.0760.08
Вермикулит вспученный2000.0760.090.11
— то же, но для плотности1000.0640.0760.08
Песок строительный сухой16000.350.470.58
Пеностекло или газостекло
Пеностекло или газо-стекло4000.110.120.14
— то же, но для плотности3000.090.110.12
— то же, но для плотности2000.070.080.09
Таблица коэффициентов теплопроводности кровельных, гидроизоляционных, облицовочных, рулонных и наливных напольных покрытий
Наименование материалаρ
кг/м³
λ₀
Вт/(м×℃)
λА
Вт/(м×℃)
λБ
Вт/(м×℃)
Асбестоцементные
Листы асбестоцементные плоские («плоский шифер»)18000.350.470.52
— то же, но для плотности16000.230.350.41
На битумной основе
Битумы нефтяные строительные и кровельные14000.270.270.27
— то же, но для плотности12000.220.220.22
— то же, но для плотности10000.170.170.17
Асфальтобетон21001.051.051.05
Изделия из вспученного перлита на битумном связующем4000.1110.120.13
— то же, но для плотности3000.0670.090.099
Рубероид, пергамин, толь, гибкая черепица6000.170.170.17
Линолеумы и наливные полимерные полы
Линолеум поливинилхлоридный многослойный18000.380.380.38
— то же, но для плотности16000.330.330.33
Линолеум поливинилхлоридный на тканевой подоснове18000.350.350.35
— то же, но для плотности16000.290.290.29
— то же, но для плотности14000.230.230.23
Пол наливной полиуретановый15000.320.320.32
Пол наливной эпоксидный14500.0290.0290.029
Таблица коэффициентов теплопроводности металлов и стекла
Наименование материалаρ
кг/м³
λ₀
Вт/(м×℃)
λА
Вт/(м×℃)
λБ
Вт/(м×℃)
Сталь, в том числе — арматурная стержневая7850585858
Чугун7200505050
Алюминий2600221221221
Медь8500407407407
Бронза7500÷930025÷10525÷10525÷105
Латунь8100÷880070÷12070÷12070÷120
Стекло кварцевое оконное25000.760.760.76

Сейчас для утепления различных строений используются, преимущественно, синтетические материалы. Они имеют отличные характеристики, а также в большинстве своем очень удобны в монтаже.

Исходя из значений в таблицах выше, из категории синтетических утеплителей одним из самых энергоэффективных является PIR-плита. При плотности всего 35 кг/м³ коэффициент теплопроводности у нее в среднем составляет 0,024 Вт/м*К. Но он может быть и меньше в зависимости от технологии производства PIR-плиты у того или иного производителя.

Сравнение теплопроводности PIR-плит и других материалов

Так, например, PIR-плиты LOGICPIR от российского производителя ТЕХНОНИКОЛЬ имеют показатель теплопроводности всего 0,022 Вт/м*К. Почему значение так снижается? Дело в том, что этот вид утеплителя с обеих сторон имеет фольгированный слой. Фольга, как известно, сама по себе способна отлично отражать тепловую энергию в обратную сторону, то есть в помещение. Благодаря этому свойству энергоэффективность материала растет, а теплопотери в доме снижаются. Таким образом PIR-утеплитель, имеющий такой слой с одной и другой стороны, гораздо лучше выполняет свои функции, чем, например, PIR-материал с бумажным технологическим покрытием.

В целом же LOGICPIR — обычная PIR-плита, которая представляет собой пористый материал с множеством микроячеек, наполненных воздухом. Она очень тонкая (толщина варьируется в пределах 2-5 см), легкая, не нагружает строительные конструкции, но при этом прочная и достаточно плотная, чтобы выдерживать некоторые физические воздействия. Инертна к химическим воздействиям, биологически устойчива и, кроме того, не склонна к возгораниям.

PIR-плита ТЕХНОНИКОЛЬ

Во время эксплуатации (а срок использования PIR-плит LOGICPIR составляет 50 лет) материал не теряет своих свойств. Его коэффициент теплопроводности не меняется даже при намокании: сам по себе утеплитель не впитывает воду. Дополнительную парозащиту обеспечивает и тот самый фольгированный слой — если при монтаже плит проклеить все стыки алюминиевым скотчем, то формируется непрерывный слой пароизоляции, не пропускающий влагу. Словом, это неплохой вариант синтетического утеплителя с одними из самых высоких характеристик.

Видео: Утепление каркасного дома PIR плитами

Для чего используются такие расчеты в практическом приложении?

Оценка эффективности имеющейся термоизоляции

А для чего бывает необходимо вычислять это сопротивление, какая от этого практическая польза?

Такими расчетами можно очень точно оценить степень термоизоляции своего жилья.

Дело в том, что для различных климатических регионов России специалистами рассчитаны так называемые нормативные показатели этого сопротивления теплопередаче, отдельно для стен, перекрытий и покрытий. То есть если сопротивление конструкции отвечает этой норме, то за утепление можно быть спокойным.

Значение этих нормированных сопротивлений для разных строительных конструкций можно найти, воспользовавшись предлагаемой картой схемой.

Карта-схема территории России для определения нормированных значений сопротивлений теплопередаче.

Если не дотягивает – надо принимать меры, усиливать термоизоляцию, чтобы минимизировать потери тепла. И, стало быть, решить обратную задачу. То есть с использованием той же формулы (сопротивление от коэффициента теплопроводности и толщины) найти ту толщину утепления, которая восполнит имеющийся «дефицит» до нормы.

Термоизоляционную конструкцию сразу следует делать с опорой на проведенные теплотехнические расчеты.

Ну а если термоизоляции пока нет, то тут и вовсе все просто. Тогда потребуется определить, какой слой выбранного утеплительного материала обеспечит выход на нормированное значение сопротивления теплопередаче.

Определение уровня тепловых потерь

Еще одна важная задача – это определение величины тепловых потерь через ограждающую конструкцию. Такие вычисления бывают необходимы когда, например, определяется требуемая мощность системы отопления. Как по помещениям — для правильной расстановки обогревательных приборов (радиаторов), так и общая — для выбора оптимальной модели котла.

Каждая конструкция характеризуется своим уровнем тепловых потерь, которые необходимо определять и для правильного планирования системы отопления, и для совершенствования системы термоизоляции.

Дело в том, что это сопротивление описывается еще одной формулой, уже от разницы температур и количества тепла, уходящего через ограждающую конструкцию площадью один квадратный метр.

R = Δt / q

Δt — разница температур по обе стороны конструкции, ℃.

q — удельное количество теряемого тепла, Вт.

То есть если известна площадь ограждающей конструкции и ее термическое сопротивление (определенное, например, через толщину и коэффициент теплопроводности), если известно, для каких условий производится расчет (например, нормальная температура в помещении и самые сильные морозы, присущие данной местности), то можно спрогнозировать и тепловые потери через эту конструкцию.

Q = S × Δt/R

Q — теплопотери через ограждающую конструкцию, Вт.

S — площадь этой конструкции, м².

Такие расчеты в помещении проводятся для всех ограждающих конструкций, контактирующих с холодом, и затем определяется суммарные потери, которые должны компенсироваться системой отопления. Или, если эти потери получаются слишком большими – это становится побудительным мотивом к усовершенствованию системы термоизоляции – что-то с ней не так.

Еще одна ремарка. Это мы говорили о конструкциях, состоящих из нескольких слоев разных строительных и утеплительных материалов. А как быть с окнами? Как для них просчитывается сопротивление теплопередаче?

Методика здесь – несколько иная, и самостоятельно заниматься такими расчетами вряд ли имеет смысл. Можно воспользоваться таблицей, в которой уже имеются готовые значения сопротивления для различных типов конструкций окон.

Таблица приведенных значений сопротивления теплопередаче для окон, остекленных балконных дверей, световых проемов (фонарей)

Материал и схема запонения проемаПриведенное термическое Ro, м ² × °С/Вт
Д и ПВХА
Двойное остекление в спаренных переплетах0.4
Двойное остекление в раздельных переплетах0.440,34*
Тройное остекление в раздельно-спаренных переплетах0.550.46
Однокамерный стеклопакет:
— из обычного стекла0.380.34
— из стекла с твердым селективным покрытием0.510.43
— из стекла с мягким селективным покрытием0.560.47
Двухкамерный стеклопакет:
— из обычного стекла (с межстекольным расстоянием 6 мм)0.510.43
— из обычного стекла (с межстекольным расстоянием 12 мм)0.540.45
— из стекла с твердым селективным покрытием0.580.48
— из стекла с мягким селективным покрытием0.680.52
— из стекла с твердым селективным покрытием и заполнением аргоном0.650.53
Обычное стекло и однокамерный стеклопакет в раздельных переплетах:
— из обычного стекла0.56
— из стекла с твердым селективным покрытием0.65
— из стекла с мягким селективным покрытием0.72
— из стекла с твердым селективным покрытием и заполнением аргоном0.69
Обычное стекло и двухкамерный стеклопакет в раздельных переплетах:
— из обычного стекла0.68
— из стекла с твердым селективным покрытием0.74
— из стекла с мягким селективным покрытием0.81
— из стекла с твердым селективным покрытием и заполнением аргоном0.82
Два однокамерных стеклопакета в спаренных переплетах0.7
Два однокамерных стеклопакета в раздельных переплетах0.74
Четырехслойное остекление в двух спаренных переплетах0.8
Блоки стеклянные пустотные (с шириной кладочных швов 6 мм) размером:
-200×200 ×100 мм0,31 (без переплета)
-250×250 ×100 мм0,33 (без переплета)
Примечания:
Д и ПВХ — переплеты из дерева или пластика (поливинилхлорида)
А — переплеты из алюмииия
* — перепеты из стали
все указанные значения даны для площади остекления 75% от площади светового проема

Понятно, что тепловые потери будут считаться,  исходя из площади остекления и разницы температур.

Надо заметить, что профессиональные теплотехнические расчеты учитывают еще и множество различных поправочных коэффициентов, в том числе на инсоляцию (воздействие солнечных лучей), светопоглощающие и отражающие свойства поверхностей, неоднородность конструкций и другие. Но для самостоятельной первичной оценки достаточно и того алгоритма, что приведен выше.

Для любителей же более обстоятельного подхода можно порекомендовать следующий видеосюжет:

Видео: Алгоритмы профессионального расчета сопротивления теплопередаче стен

Мы же завершим публикацию онлайн-калькулятором, который вполне позволяет на бытовом уровне решить ряд задач, о которых шла речь выше.

Калькулятор расчета термического сопротивления ограждающей конструкции

Перейти к расчётам

Пояснения по работе с калькулятором

Программа несложна, но все же требует некоторых пояснений.

Предлагаемый алгоритм расчета позволяет провести вычисления сопротивления теплопередаче для любой ограждающей конструкции, включающей от одного до пяти различных слоев.

  • Первый слой пусть будет считаться по умолчанию основным. Для него указывается:

— его толщина в миллиметрах (так сделано для удобства, а перевод в метры программа выполнит самостоятельно).

— коэффициент теплопроводности материала, из которого создан этот слой. Значение берется из таблиц, с учетом режима эксплуатации А или Б. При вводе значения в калькулятор вместо запятой в качестве десятичного разделителя используется точка.

  • Вторым слоем предлагается указать имеющуюся (если есть) или планируемую термоизоляцию. Здесь уже на выбор – если оставить по умолчанию «нет», то программа проигнорирует этот слой. Если согласиться – появятся поля ввода данных, те же толщина и коэффициент теплопроводности.
  • Аналогично по выбору пользователя вводятся или игнорируются еще три произвольных слоя. Это, кстати, могут быть внешняя и внутренняя отделка, если она выполнена из значимых для теплопроводности материалов, многослойная кладка стены и т.п.
  • Если задача стоит только в определении сопротивления теплопередаче, то можно сразу переходить к клавише «РАССЧИТАТЬ…».
  • Ну а если есть желание еще и найти величину тепловых потерь через рассчитываемую ограждающую конструкцию, то ставится отметка «да, включить дополнительный расчёт». В этом случае появятся еще три поля ввода данных – площадь ограждающей конструкции, температура в помещении и температура на улице.

Уличную температуру для расчетов, как правило, берут минимальную, свойственную самой холодной декаде зимы в регионе проживания. Так задается необходимый запас мощности отопительного оборудования и эффективности системы утепления. Домашнюю температуру обычно считают в пределах 20÷24 ℃ для жилых помещений. Для нежилых (подъезды, коридоры, кладовые и т.п.) можно ограничиться +15 ℃. Для ванных, душевых, бань – порядка 35 ℃.

Рассчитанное термическое сопротивление показывается первой строкой появляющегося результата. Если был выбран вариант с вычислением тепловых потерь, то их значение (в ваттах) будет указано во второй строке.

Теплопроводность — обзор

3.2.4 Теплопроводность эпоксидных смол

Теплопроводность — это способность материала проводить тепло, и она представляет собой количество тепловой энергии, протекающей в единицу времени через единицу площади с температурным градиентом. 1 ° на единицу расстояния. Теплопроводность — необходимая характеристика для рассеивания образовавшейся тепловой энергии в системе. До сих пор сообщалось о различных исследованиях по увеличению теплопроводности эпоксидных смол, и среди них исследования, основанные на микро- и наноматериалах, вызвали больший исследовательский интерес.Ganguli et al. [66] разработали химически функционализированные композиты из вспученного графита / эпоксидной смолы с конечной целью повышения теплопроводности. Композиты, состоящие из 20 мас.% Функционализированного графита, показали значительно улучшенную теплопроводность — 5,8 Вт / м К по сравнению с 0,2 Вт / м К чистой эпоксидной смолы, то есть примерно 28-кратное улучшение теплопроводности [66]. Veca et al. [67] также получили более высокую теплопроводность эпоксидной смолы за счет использования углеродных нанолистов, полученных из расширенного графита.

Yung et al. [68] достигли увеличения теплопроводности примерно на 217% для композита эпоксид / нитрид бора. Это было выполнено с помощью обработки поверхности силаном нитрида бора и смешивания многомодального размера частиц при синтезе композита [68]. Хуанг и др. [69] сообщили о существовании очень высокой теплопроводности эпоксидного композита на основе нанотрубок, функционализированного полиэдрическим олигосилсесквиоксаном (ПОСС). Улучшение теплопроводности примерно на 1360% было получено при введении 30 мас.% Функционализированного POSS нитрида бора [69].

Исследование Xu et al. [70] сообщили о более высокой теплопроводности эпоксидных композитов, содержащих нитрид бора (BN) и нитрид алюминия (AlN) с обработанной поверхностью, из-за пониженного сопротивления термического контакта между эпоксидной смолой и частицами из-за увеличения межфазного взаимодействия между ними. Было обнаружено, что обработка поверхности частиц с использованием силана более осуществима, чем обработка ацетоном и кислотой. Эпоксидные композиты с 57 об.% BN, обработанного силаном, показали теплопроводность 10.3 Вт / м К. Кроме того, добавление 60 об.% Обработанного силаном AlN привело к теплопроводности 11,0 Вт / м · К [70].

С точки зрения увеличения теплопроводности эпоксидной смолы, Teng et al. [71] использовали нековалентно функционализированные нанолисты графена, полученные путем π-π-стэкинга молекул пирена, сопровождаемого функциональной сегментированной полимерной цепью. Полученный эпоксидный композит имел превосходную теплопроводность за счет увеличенной площади поверхности в результате улучшенной дисперсии графена и взаимодействий графен-эпоксид.Композиты с 4 phr нанолистов нековалентно функционализированного графена показали примерно на 20% и 267% большую теплопроводность, чем соответствующие эпоксидные композиты на основе чистого графена и исходных MWCNTs [71]. В другом исследовании Song et al. [72] также разработали нековалентно функционализированный графен путем обработки 1-пиреномасляной кислотой, а затем использовали его для получения нанокомпозита эпоксид / графен. Полученный нанокомпозит показал отличную теплопроводность около 1,53 Вт / м · К [72]. Чаттерджи и др.[73] использовали расширенные нанопластинки графена, функционализированные амином, для обогащения теплопроводности эпоксидной смолы, и в результате было получено увеличение теплопроводности примерно на 36% для 2 мас.% Графена [73].

Moisala et al. [74] исследовали влияние SWCNTs и MWCNTs на теплопроводность эпоксидной смолы. Присутствие MWCNT действительно увеличивало теплопроводность эпоксидной смолы, но не в ожидаемом диапазоне. В то же время нанокомпозит эпоксид / ОСУНТ даже неожиданно показал более низкую теплопроводность, чем чистый эпоксид [74].Для получения положительного эффекта и полной эффективности ОУНТ Bryning et al. [75] изготовили нанокомпозиты эпоксид / ОУНТ с использованием ОУНТ, обработанных поверхностно-активными веществами и ДМФА. В результате обработанные композиты на основе ОСУНТ показали повышенную теплопроводность, а композит с обработанным поверхностно-активным веществом композитом содержал больше ОСУНТ и давал большее увеличение примерно на 65% для 0,1 об. Доли ОСУНТ [75]. Исследование Biercuk et al. [76] сообщили об увеличении теплопроводности примерно на 125% при комнатной температуре с добавлением 1 мас.% Неочищенных ОУНТ.В другом исследовании Yu et al. [77] сообщили о повышенной теплопроводности эпоксидной смолы за счет включения гибридного наполнителя из ОСУНТ и графитовых нанопластинок из-за снижения сопротивления интерфейса, вызванного дополнительной организованной перколяционной сеткой [77]. Исследование Du et al. [78] достигли примерно 220% улучшения теплопроводности за счет использования отдельно стоящих ОСУНТ в эпоксидной смоле. Эти отдельно стоящие ОУНТ обладали пониженным термическим сопротивлением поверхности раздела в эпоксидной матрице. Эти материалы были приготовлены из композита SWCNT / PMMA с 1 мас.% Путем удаления содержания PMMA с помощью газификации с последующей пропиткой эпоксидной смолой [78].

Чтобы расширить вклад теплопроводности МУНТ в эпоксидные смолы, Ян и др. [79] практиковали синтез эпоксидного композита с использованием привитых бензолэтрикарбоновой кислотой MWCNTs (BTC-MWCNTs), полученных после модификации Фриделя-Крафтса. Отмечена более высокая растворимость и совместимость BTC-MWCNT в эпоксидной матрице по сравнению с чистыми MWCNT. Композиты, содержащие 5 об.% BTC-MWCNT, показали выдающуюся теплопроводность 0,96 Вт / м · К, то есть улучшение примерно на 684% по сравнению с чистой эпоксидной смолой, и это показано на рис.3.3 [79]. Другое исследование Cui et al. [80] разработали МУНТ с диоксидом кремния, используя золь-гель метод, а затем внедрили в эпоксидную матрицу для улучшения ее теплопроводности. Наблюдалось увеличение теплопроводности примерно на 51% для нанокомпозитной системы с 0,5 мас.% МУНТ, покрытых диоксидом кремния, а также примерно на 67% для 1 мас.% МУНТ, покрытых диоксидом кремния [80].

Рис. 3.3. Теплопроводность композитов эпоксидная смола / MWCNT. (A) Теоретическая модель Нана и композиты с различным содержанием (B) первичных MWCNT, (C) обработанных кислотой MWCNT и (D) BTC-MWCNTs [79].

В другом исследовании Zhou et al. [81] использовали синергетический эффект MWCNT и микрокарбида кремния (SiC) в качестве гибридного наполнителя для улучшения теплопроводности эпоксидной смолы. Гибридный наполнитель, состоящий из 5 мас.% MWCNT и 55 мас.% Micro-SiC, дает примерно в 23 раза большую теплопроводность, чем у чистой эпоксидной смолы [81]. В другом исследовании Yang et al. [82] получили более высокую теплопроводность эпоксидной смолы за счет использования гибридного наполнителя, состоящего из МУНТ с привитыми триэтилентетрамином и нано-SiC, функционализированного силаном [82].Im et al. [83] также наблюдали улучшенную теплопроводность эпоксидной смолы за счет использования гибридного наполнителя из оксида графена и MWCNTs.

Shimazaki et al. [84] приготовили прозрачный нанокомпозит наноцеллюлоза / эпоксид, содержащий 58 мас.% Наноцеллюлозы с превосходной теплопроводностью> 1 Вт / м К. Это произошло из-за высококристаллической природы наноцеллюлозы, которая действовала как эффективные фононные пути в нанокомпозитах [84] ]. Повышенная теплопроводность некоторых выбранных эпоксидных композитов сведена в Таблицу 3.2.

Таблица 3.2. Сравнение теплопроводности некоторых выбранных эпоксидных композитов

Авторы Использованный наполнитель Количество наполнителя Достижения в теплопроводности
Ganguli et al. [66] Химически функционализированный расслоенный графит 20 мас.% Пример 5,8 Вт / м · К, в 28 раз выше
Huang et al. [69] Функционализированные полиэдрическими олигосилсесквиоксаном (POSS) нанотрубки нитрида бора (BN) 30 мас.% 1360% увеличение
Xu et al.[70] Обработанный силаном BN 57 об.% Образец 10,3 Вт / м K
Обработанный силаном нитрид алюминия (AlN) 60 об.% Образец 11,0 Вт / м K
Teng et al. [71] Обработанные пиреном нековалентно функционализированные нанолисты графена 4 phr На 20% больше, чем у композита на основе чистого графена и на 267% больше, чем у композита на основе нетронутых МУНТ
Song et al.[72] Обработанный 1-пиреномасляной кислотой нековалентно функционализированный графен 10% Образец 1,53 Вт / м K
Chatterjee et al. [73] Расширенные нанопластинки графена, функционализированные амином 2 мас.% Увеличение на 36%
Bryning et al. [75] ОУНТ, обработанные поверхностно-активными веществами 0,1 об. Фракции Увеличение на 65%
Biercuk et al. [76] Неочищенные ОСУНТ 1 мас.% Увеличение на 125%
Du et al.[78] Отдельно стоящие ОСУНТ Приготовлены из 1 мас.% ОСУНТ / композита ПММА Увеличение 220%
Yang et al. [79] Многослойные углеродные нанотрубки с привитыми бензолэтрикарбоновой кислотой (BTC-MWCNT) 5 об.% Пример 0,96 Вт / м К, увеличение на 684%
Cui et al. [80] MWCNTs, покрытые диоксидом кремния 1 мас.% 67% увеличение
Zhou et al. [81] Гибридный наполнитель из MWCNT и микрокарбида кремния (SiC) 5 мас.% MWCNT + 55 мас.% Micro-SiC в 23 раза выше
Shimazaki et al.[84] Наноцеллюлоза 58 вес.% Экспонаты более 1 Вт / м K

Что такое теплопроводность? Обзор

Вариация теплопроводности

Теплопроводность конкретного материала сильно зависит от ряда факторов. К ним относятся температурный градиент, свойства материала и длина пути, по которому следует тепло.

Теплопроводность окружающих нас материалов существенно отличается от материалов с низкой проводимостью, таких как воздух со значением 0.024 Вт / м • K при 0 ° C для металлов с высокой проводимостью, таких как медь (385 Вт / м • K).

Теплопроводность материалов определяет то, как мы их используем, например, материалы с низкой теплопроводностью отлично подходят для изоляции наших домов и предприятий, в то время как материалы с высокой теплопроводностью идеально подходят для приложений, где необходимо быстро и эффективно отводить тепло из одной области. к другому, например, в кухонных принадлежностях и системах охлаждения в электронных устройствах. Выбирая материалы с теплопроводностью, подходящей для области применения, мы можем достичь наилучших возможных характеристик.

Теплопроводность и температура

Так как движение молекул является основой теплопроводности, температура материала имеет большое влияние на теплопроводность. Молекулы будут двигаться быстрее при более высоких температурах, и поэтому тепло будет передаваться через материал с большей скоростью. Это означает, что теплопроводность одного и того же образца может резко измениться при повышении или понижении температуры.

Способность понимать влияние температуры на теплопроводность имеет решающее значение для обеспечения ожидаемого поведения продуктов при воздействии термического напряжения. Это особенно важно при работе с продуктами, выделяющими тепло, например электроникой, и при разработке материалов для защиты от огня и тепла.

Теплопроводность и структура

Значения теплопроводности существенно различаются в зависимости от материала и сильно зависят от структуры каждого конкретного материала.Некоторые материалы будут иметь разные значения теплопроводности в зависимости от направления распространения тепла; это анизотропные материалы. В этих случаях тепло легче перемещается в определенном направлении из-за того, как устроена конструкция.

При обсуждении тенденций теплопроводности материалы можно разделить на три категории; газы, неметаллические твердые тела и металлические твердые тела. Различия в способностях этих трех категорий к теплопередаче можно объяснить различиями в их структурах и молекулярных движениях.

Газы имеют более низкую относительную теплопроводность, поскольку их молекулы не так плотно упакованы, как в твердых телах, и поэтому теплопередача сильно зависит от свободного движения молекул и скорости молекул.

Газы — плохой теплопередатчик. Напротив, молекулы в неметаллических твердых телах связаны в сетку решетки, и поэтому теплопроводность в основном происходит за счет колебаний в этих решетках. Непосредственная близость этих молекул по сравнению с молекулами газов означает, что неметаллические твердые тела имеют более высокую теплопроводность по сравнению с двумя, однако в этой группе есть большие различия.

Это изменение частично объясняется количеством воздуха, присутствующего в твердом теле, материалы с большим количеством воздушных карманов являются отличными изоляторами, тогда как те, которые более плотно упакованы, будут иметь более высокое значение теплопроводности.

Теплопроводность металлических твердых тел еще раз отличается от предыдущих примеров. Металлы обладают самой высокой теплопроводностью среди любых материалов, за исключением графена, и обладают уникальной комбинацией теплопроводности и электропроводности.Оба эти атрибута передаются одними и теми же молекулами, и связь между ними объясняется законом Видемана-Франца. Этот закон свидетельствует о том, что при определенной температуре электропроводность будет пропорциональна теплопроводности, однако по мере увеличения температуры теплопроводность материала будет расти, а электропроводность — уменьшаться.

Тестирование и измерение теплопроводности

Теплопроводность — важнейший компонент взаимоотношений между материалами, и способность понимать это позволяет нам добиться наилучших характеристик материалов, которые мы используем во всех аспектах нашей жизни.Эффективное испытание и измерение теплопроводности имеют решающее значение для этих усилий. Методы измерения теплопроводности можно разделить на установившиеся или переходные. Это разграничение является определяющей характеристикой того, как работает каждый метод. Методы установившегося состояния требуют, чтобы образец и образец сравнения находились в тепловом равновесии до начала измерений. Для переходных методов это правило не требуется, поэтому результаты выдаются быстрее.

Исследования

Получение пористой муллитовой керамики с низкой теплопроводностью

В этом исследовании анализируется муллитовая керамика, образованная в результате вспенивания и отверждения крахмала муллитового порошка, а также то, как ее теплопроводность изменяется в зависимости от пористости керамики.Теплопроводность измерялась методом источника переходной плоскости Hot Disc (TPS) с TPS 2500 S. По мере увеличения пористости муллитовой керамики увеличивается и теплопроводность.

Материал с фазовым переходом нанографит / парафин с высокой теплопроводностью

Композиты нанографит (NG) / парафин были приготовлены в качестве композитных материалов с фазовым переходом. Добавление NG увеличило теплопроводность композитного материала. Материал, содержащий 10% NG, имел теплопроводность 0.9362 Вт / м • K

Артикул:

Нейв Р. Гиперфизика. «Теплопроводность». Государственный университет Джорджии.
Доступно по адресу: http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/thercond.html#c1

Материалы курса по неразрушающему контролю. «Теплопроводность». Ресурсный центр по неразрушающему контролю.
Доступно по адресу: https://www.ndeed.org/EducationResources/CommunityCollege/Materials/Physical_Chemical/ThermalConductivity.htm

Уильямс, М. «Что такое теплопроводность?». Phys.Org. 9 декабря 2014 г.
Доступно по адресу: http://phys.org/news/2014-12-what-is-heat-conduction.html

Что вы подразумеваете под теплопроводностью? Получено из определения теплопроводности

Thermtest База данных термических свойств материалов. Список значений теплопроводности

Теплопроводность — выбранные материалы и газы

Теплопроводность — это свойство материала, которое описывает способность проводить тепло.Теплопроводность может быть определена как

«количество тепла, передаваемого через единицу толщины материала в направлении, нормальном к поверхности единицы площади — из-за градиента единичной температуры в условиях устойчивого состояния»

Теплопроводность единицы — [Вт / (м · К)] в системе СИ и [БТЕ / (час фут ° F)] в британской системе мер.

См. Также изменения теплопроводности в зависимости от температуры и давления , для: воздуха, аммиака, двуокиси углерода и воды

Теплопроводность для обычных материалов и продуктов:

900 0,19 9033 (газ) Изоляция 9033 9033 900 900 Фтор (газ) Стекло, Жемчуг Оксид железа .58 0,5 пена021
Теплопроводность
k —
Вт / (м · К)

Материал / вещество Температура
25 o C
(77 o F)
125 o32
(257 o F)
225 o C
(437 o F)
Ацетали 0.23
Ацетон 0,16
Ацетилен (газ) 0,018
Акрил 0,2
Воздух, атмосфера 41 (газ) 0,0333 0,0398
Воздух, высота над уровнем моря 10000 м 0,020
Агат 10,9
Спирт 0.17
Глинозем 36 26
Алюминий
Алюминий Латунь 121
Оксид алюминия 30 Аммиак (газ) 0,0249 0,0369 0,0528
Сурьма 18,5
Яблоко (85.6% влаги) 0,39
Аргон (газ) 0,016
Асбестоцементная плита 1) 0,744
Асбестоцементные листы 1) 0,166
Асбестоцемент 1) 2,07
Асбест в рыхлой упаковке 1) 0.15
Асбестовая плита 1) 0,14
Асфальт 0,75
Древесина бальза 0,0481
Слои битума / войлока 0,5
Говядина постная (влажность 78,9%) 0.43 — 0,48
Бензол 0,16
Бериллий
Висмут 8,1
Битум 0,17 0,02
Весы котла 1,2 — 3,5
Бор 25
Латунь
Бризовый блок 0.10 — 0,20
Кирпич плотный 1,31
Кирпич огнеупорный 0,47
Кирпич изоляционный 0,15
Кирпичная кладка, обычная ) 0,6 -1,0
Кирпичная кладка плотная 1,6
Бром (газ) 0,004
Бронза
Коричневая железная руда 0.58
Масло (содержание влаги 15%) 0,20
Кадмий
Силикат кальция 0,05
Углерод 9033
Двуокись углерода (газ) 0,0146
Окись углерода 0,0232
Чугун
Целлюлоза, хлопок, древесная масса и регенерированная 0.23

Ацетат целлюлозы, формованный, лист

0,17 — 0,33
Нитрат целлюлозы, целлулоид 0,12 — 0,21
Цемент, Портленд
Цемент, строительный раствор 1,73
Керамические материалы
Мел 0.09
Древесный уголь 0,084
Полиэфир хлорированный 0,13
Хлор (газ) 0,0081
Хром Никель 16,3
Хром
Оксид хрома 0,42
Глина, от сухой до влажной 0.15 — 1,8
Глина насыщенная 0,6 — 2,5
Уголь 0,2
Кобальт
Треска (влажность 83% содержание) 0,54
Кокс 0,184
Бетон, легкий 0,1 — 0,3
Бетон, средний 0.4 — 0,7
Бетон, плотный 1,0 — 1,8
Бетон, камень 1,7
Константан 23,3
Медь
Кориан (керамический наполнитель) 1,06
Пробковая плита 0,043
Пробка, повторно гранулированная 0.044
Пробка 0,07
Хлопок 0,04
Вата 0,029
Углеродистая сталь
0,029
Купроникель 30% 30
Алмаз 1000
Диатомовая земля (Sil-o-cel) 0.06
Диатомит 0,12
Дуралий
Земля, сухая 1,5
Эбонит 0,17 11,6
Моторное масло 0,15
Этан (газ) 0.018
Эфир 0,14
Этилен (газ) 0,017
Эпоксидная смола 0,35
Этиленгликоль
Перья 0,034
Войлок 0,04
Стекловолокно 0.04
Волокнистая изоляционная плита 0,048
Фиброволокнистая плита 0,2
Огнеупорный кирпич 500 o C 1,4
0,0254
Пеностекло 0,045
Дихлордифторметан R-12 (газ) 0.007
Дихлордифторметан R-12 (жидкость) 0,09
Бензин 0,15
Стекло 1,05
0,18
Стекло, жемчуг, насыщенный 0,76
Стекло, окно 0.96
Стекло-вата Изоляция 0,04
Глицерин 0,28
Золото
Гранит3 1,7 — 4,0
Графит 168
Гравий 0,7
Земля или почва, очень влажная зона 1.4
Земля или почва, влажная зона 1,0
Земля или почва, сухая зона 0,5
Земля или почва, очень засушливая зона 0,33
Гипсокартон 0,17
Волос 0,05
ДВП высокой плотности 0.15
Лиственные породы (дуб, клен ..) 0,16
Hastelloy C 12
Гелий (газ) 0,142
Мед ( 12,6% влажности) 0,5
Соляная кислота (газ) 0,013
Водород (газ) 0,168
Сероводород (газ) 0.013
Лед (0 o C, 32 o F) 2,18
Инконель 15
Слиток железа 47-58 9003
Изоляционные материалы 0,035 — 0,16
Йод 0,44
Иридий 147
Железо
Капок изоляция 0,034
Керосин 0,15
Криптон (газ) 0,0088
Свинец 9003 Кожа , сухой 0,14
Известняк 1,26 — 1,33
Литий
Магнезиальная изоляция (85%) 0.07
Магнезит 4,15
Магний
Магниевый сплав 70-145
Мрамор 2,08 — 2,94
Ртуть, жидкость
Метан (газ) 0,030
Метанол 0.21
Слюда 0,71
Молоко 0,53
Изоляционные материалы из минеральной ваты, шерстяные одеяла .. 0,04
90 Молибден
Монель
Неон (газ) 0,046
Неопрен 0.05
Никель
Оксид азота (газ) 0,0238
Азот (газ) 0,024
Закись азота (газ)
Нейлон 6, Нейлон 6/6 0,25
Масло, машинное смазывание SAE 50 0,15
Оливковое масло 0.17
Кислород (газ) 0,024
Палладий 70,9
Бумага 0,05
Парафиновый воск 0,25 900 Торф 0,08
Перлит, атмосферное давление 0,031
Перлит, вакуум 0.00137
Фенольные литые смолы 0,15
Фенолформальдегидные формовочные смеси 0,13 — 0,25
Фосфорбронза 110 9026 Фосфорбронза 110 159
Шаг 0,13
Каменный уголь 0.24
Штукатурка светлая 0,2
Штукатурка металлическая 0,47
Штукатурка песочная 0,71
Штукатурка деревянная 0,28
Пластилин 0,65 — 0,8
Пластмассы вспененные (изоляционные материалы) 0.03
Платина
Плутоний
Фанера 0,13
Поликарбонат 0,19 9033 9033
Полиэтилен низкой плотности, PEL 0,33
Полиэтилен высокой плотности, PEH 0.42 — 0,51
Полиизопреновый каучук 0,13
Полиизопреновый каучук 0,16
Полиметилметакрилат 0,17 — 0,25 Полипропилен 0,17 — 0,25 0,1 — 0,22
Полистирол вспененный 0,03
Полистирол 0.043
Пенополиуритан 0,03
Фарфор 1,5
Калий 1
Картофель, сырая мякоть
Пропан (газ) 0,015
Политетрафторэтилен (ПТФЭ) 0,25
Поливинилхлорид, ПВХ 0.19
Стекло Pyrex 1.005
Кварц минеральный 3
Радон (газ) 0,0033
Красный металл 9035 Рений
Родий
Порода, твердая 2-7
Порода, вулканическая порода (туф) 0.5 — 2,5
Изоляция из каменной ваты 0,045
Канифоль 0,32
Резина, ячеистая 0,045
Каучук натуральный 0,13
Рубидий
Лосось (влажность 73%) 0,50
Песок сухой 0.15 — 0,25
Песок влажный 0,25 — 2
Песок насыщенный 2 — 4
Песчаник 1,7
Опилки 0,08
Селен
Овечья шерсть 0,039
Аэрогель кремнезема 0.02
Кремниевая литая смола 0,15 — 0,32
Карбид кремния 120
Кремниевое масло 0,1
Серебро
Серебро 9033
Шлаковая вата 0,042
Сланец 2,01
Снег (температура <0 o C) 0.05 — 0,25
Натрий
Хвойные породы (пихта, сосна ..) 0,12
Почва, глина 1,1
Почва, с органическими вещество 0,15 — 2
Грунт насыщенный 0,6 — 4

Припой 50-50

50

Сажа

0.07

Пар, насыщенный

0,0184
Пар низкого давления 0,0188
Стеатит 2
Сталь, углеродистая 9003
Сталь, нержавеющая
Изоляция из соломенных плит, сжатая 0,09
Пенополистирол 0.033
Диоксид серы (газ) 0,0086
Сера кристаллическая 0,2
Сахара 0,087 — 0,223
9033
Тантал
Смола 0,19
Теллур 4,9
Торий
Древесина, ольха 0.17
Древесина, ясень 0,16
Древесина, береза ​​ 0,14
Древесина, лиственница 0,12
Древесина, клен
Древесина дубовая 0,17
Древесина осина 0,14
Древесина осина 0.19
Древесина, бук красный 0,14
Древесина, сосна красная 0,15
Древесина, сосна белая 0,15
Древесина ореха 0,15
Олово
Титан
Вольфрам
Уран 03341 900ретан
Вакуум 0
Гранулы вермикулита 0,065
Виниловый эфир 0,25 9003 9033 0,606
Вода, пар (пар) 0,0267 0,0359
Пшеничная мука 0.45
Белый металл 35-70
Древесина поперек волокон, сосна белая 0,12
Древесина поперек волокон, бальза 0,055
Древесина поперек волокон, сосна желтая, древесина 0,147
Древесина дуба 0,17
Шерсть, войлок 0.07
Древесная вата, плита 0,1 — 0,15
Ксенон (газ) 0,0051
Цинк

Astos 1 плохо для здоровья человека, когда крошечные абразивные волокна попадают в легкие, где они могут повредить легочную ткань. Это, по-видимому, усугубляется курением сигарет, в результате чего возникают мезотелиома и рак легких.

Пример — кондуктивная теплопередача через алюминиевый бак по сравнению с баком из нержавеющей стали

Кондуктивная теплопередача через стенку ванны может быть рассчитана как

q = (k / s) A dT (1)

или, альтернативно,

q / A = (к / с) dT

где

q = теплопередача (Вт, БТЕ / ч)

A = площадь поверхности (м 2 , фут 2 )

q / A = теплопередача на единицу площади (Вт / м 2 , Btu / (h ft 2 ))

k = теплопроводность ( Вт / мК, БТЕ / (ч фут ° F) )

dT = t 1 — t 2 = разница температур ( o C, o F)

с = толщина стены (м, фут)
9000 5

Калькулятор теплопроводности

k = теплопроводность (Вт / мК, БТЕ / (час фут ° F) )

s = толщина стенки (м, фут)

A = площадь поверхности (м 2 , фут 2 )

dT = t 1 — t 2 = разница температур ( o C, o F)

Примечание! — общая теплопередача через поверхность определяется «общим коэффициентом теплопередачи », который в дополнение к кондуктивной теплопередаче зависит от

Кондуктивная теплопередача через алюминиевую стенку горшка толщиной 2 мм — разница температур 80
o C

Теплопроводность алюминия составляет 215 Вт / (м · К) (из таблицы выше).Кондуктивная теплопередача на единицу площади может быть рассчитана как

q / A = [(215 Вт / (м · K)) / (2 10 -3 м)] (80 o C)

= 8600000 (Вт / м 2 )

= 8600 (кВт / м 2 )

Кондуктивная теплопередача через стенку емкости из нержавеющей стали толщиной 2 мм — разница температур 80
o C

Теплопроводность нержавеющей стали 17 Вт / (м · К) (из таблицы выше).Кондуктивная теплопередача на единицу площади может быть рассчитана как

q / A = [(17 Вт / (м · K)) / (2 10 -3 м) ] (80 o C)

= 680000 (Вт / м 2 )

= 680 (кВт / м 2 )

Теплопроводность — обзор

Теплопроводность

Теплопроводность — это свойство материала, которое связывает от скорости теплопроводности до температурного градиента.Теплопроводность продукта зависит от многих факторов, включая состав, структуру и температуру продукта.

Ранние работы по моделированию теплопроводности пищевых продуктов включали адаптацию уравнения Максвелла. Эта модель основана на теплопроводности разбавленных дисперсий малых сфер в непрерывной фазе:

18k = kc1−1 − akd / kcb1 + a − 1b,

, где k — проводимость смеси, k c — проводимость непрерывной фазы, k d — проводимость дисперсной фазы, a = 3kc / 2kc + kd, b = Vd / Vc + Vd, V d — объем дисперсной фазы, а V c объем непрерывной фазы.

Чтобы учесть различные структурные особенности пищевых продуктов, были разработаны модели теплопроводности как для однородных, так и для волокнистых пищевых продуктов. В этих моделях теплопроводности пищевых волокон учитываются различия в теплопроводности параллельно и перпендикулярно пищевым волокнам.

Для изотропной однородной двухкомпонентной системы, состоящей из непрерывных и прерывистых фаз, в которой теплопроводность не зависит от направления теплового потока, для определения теплопроводности можно использовать следующее выражение: k :

19k = kc [1-L21-L2 (1-L)],

, где k c — теплопроводность непрерывной фазы, а L 3 — объемная доля прерывной фазы.В уравнении (19) предполагается, что теплопроводность непрерывной фазы намного больше, чем теплопроводность прерывистой фазы.

Для анизотропной волокнистой двухкомпонентной системы, в которой теплопроводность зависит от направления теплового потока, были разработаны два выражения для теплопроводности. Для теплового потока, параллельного пищевым волокнам, для определения теплопроводности можно использовать следующее выражение: k :

20k∥ = kc1-N21-kdkc,

, где N 2 — объемная доля прерывистой фазы в волокнистом пищевом продукте.Если тепловой поток перпендикулярен пищевым волокнам, применяется следующее выражение для теплопроводности: k :

21k⊥ = kc1 − P1 − P1 − N,

, где P = N1 − kd / kc. .

Для многокомпонентных систем многие исследователи предложили использовать параллельные и перпендикулярные (или последовательные) модели теплопроводности на основе аналогий с электрическим сопротивлением. Параллельная модель представляет собой просто сумму теплопроводности компонентов пищи, умноженную на их объемные доли:

22k = ∑i = 1nϕiki,

, где ϕ i — объемная доля составляющей i .Объемная доля компонента i может быть найдена из следующего уравнения:

23ϕi = wiρi∑j = 1nwiρi.

Перпендикулярная модель является обратной величиной суммы объемных долей, деленной на их теплопроводность:

24k = 1∑i = 1nϕiki.

Было обнаружено, что эти две модели предсказывают верхнюю и нижнюю границы теплопроводности большинства пищевых продуктов.

Теплопроводность обычных материалов

В этой статье представлены данные о теплопроводности для ряда распространенных материалов.Теплопроводность измеряет способность материала пропускать тепло через проводимость.

Теплопроводность измеряет способность материала пропускать тепло через проводимость. Теплопроводность материала сильно зависит от состава и структуры. Вообще говоря, плотные материалы, такие как металлы и камень, являются хорошими проводниками тепла, в то время как вещества с низкой плотностью, такие как газ и пористая изоляция, плохо проводят тепло.

Теплопроводность материалов требуется для анализа сетей теплового сопротивления при изучении теплопередачи в системе.

Дополнительную информацию см. В статье «Значения теплопроводности для других металлов и сплавов».

В следующих таблицах показаны значения теплопроводности для обычных веществ.

Почвы и Земля 0.600 900 1,329
Материал Температура
Теплопроводность
Температура
Теплопроводность
Почвы и земля
68 0,347
Гравий 20 2,50 68 1,44
Недра (Влажность 8%) 20 0,900 68 0,520
Грунт, сухой песок 20 0,300 68 0,173
Влажный песок (Влажность 8%) 20 0,600 68 0,347
Строительные материалы
Кирпич (здание) 20 0.720 68 0,416
Кирпич (глинозем) 430 3,10 806 1,79
Клинкер (цемент) 20 0,700 68 0,404
Бетон, тяжелый 20 1,30 68 0,751
Бетон, изоляция 20 0,207 68 0,120
Бетон легкий 20 0.418 68 0,242
Стекло 20 0,935 68 0,540
Дерево 20 0,170 68 0,098
Изоляция
Асбест 0 0,160 32 0,092
100 0,1902 0,110
200 0.210 392 0,121
Силикат кальция 20 0,046 68 0,027
Пробка 30 0,043 86 0,025
Стекловолокно 20 0,042 68 0,024
Магнезия 85% 20 0,070 68 0,040
Магнезит 200 3.80 392 2,20
Слюда 50 0,430 122 0,248
Rockwool 20 0,034 68 0,020
Резина, мягкая 20 0,130 68 0,075
Твердая резина 0 0,150 32 0,087
Опилки 20 0.052 68 0,030
Уретановая пена (жесткая) 20 0,026 68 0,015
Прочие твердые вещества
Алмаз 20 2300 68
Графит 0 151 32 87,2
Кожа человека 20 0,370 68 0.214
Жидкости
Уксусная кислота, 50% 20 0,350 68 0,202
Ацетон 30 0,170 86 0,098
Анилин 20 0,170 68 0,098
Бензол 30 0,160 86 0,092
Хлорид кальция, 30% 30 0.550 86 0,318
Этанол, 80% 20 0,240 68 0,139
Глицерин, 60% 20 0,380 68 0,220
Глицерин, 40% 20 0,450 68 0,260
Гептан 30 0,140 86 0,081
Ртуть 20 8.54 68 4,93
28 8,36 82 4,83
Серная кислота, 90% 30 0,360 86 0,208
Серная кислота, 60 % 30 0,430 86 0,248
Вода 20 0,613 68 0,354
30 0.620 86 0,358
60 0,660 140 0,381
Газы
Воздух 0 0,024 32 0,014
20 0,026 68 0,015
100 0,031212 0,018
Углекислый газ 0 0,015 32 0.009
Этан 0 0,018 32 0,010
Этилен 0 0,017 32 0,010
Гелий 20 0,152 68 0,088
Водород 0 0,170 32 0,098
Метан 0 0,029 32 0.017
Азот 0 0,024 32 0,014
Кислород 0 0,024 32 0,014
Вода (пар) 100 0,025212 0,014
Статья создана: 5 ноября 2013 г.
Теги статьи

Теплопроводность

Материал Теплопроводность
(кал / сек) / (см 2 C / см)
Теплопроводность
(Вт / м · К) *
Алмаз 1000
Серебро 1.01 406.0
Медь 0.99 385.0
Золото314
Латунь 109,0
Алюминий 0,50 205,0
Железо 0,163 79,5
Сталь 50.2
Свинец 0,083 34,7
Ртуть 8,3
Лед 0,005 1,6
Стекло обычное 0,0025 0,8
Бетон 0,002 0,8
Вода при 20 ° C 0,0014 0,6
Асбест 0,0004 0.08
Снег (сухой) 0,00026
Стекловолокно 0,00015 0,04
Кирпич изоляционный 0,15
Кирпич красный 0,6
Пробковая плита 0,00011 0,04
Шерстяной войлок 0,0001 0,04
Минеральная вата 0,04
Полистирол (пенополистирол) 0,033
Полиуретан 0,02
Дерево 0,0001 0,12-0,04
Воздух при 0 ° C 0,000057 0,024
Гелий (20 ° C) 0,138
Водород (20 ° C) 0,172
Азот (20 ° C) 0,0234
Кислород (20 ° C) 0,0238
Аэрогель кремнезема 0,003

* Большая часть от Янга, Хью Д., Университетская физика, 7-е изд. Таблица 15-5. Значения для аэрогеля алмаза и диоксида кремния из Справочника по химии и физике CRC.

Обратите внимание, что 1 (кал / сек) / (см 2 C / см) = 419 Вт / м K. С учетом этого два приведенных выше столбца не всегда совпадают.Все значения взяты из опубликованных таблиц, но не могут считаться достоверными.

Значение 0,02 Вт / мК для полиуретана можно принять как номинальное значение, которое определяет пенополиуретан как один из лучших изоляторов. NIST опубликовал процедуру численного приближения для расчета теплопроводности полиуретана на http://cryogenics.nist.gov/NewFiles/Polyurethane.html. Их расчет для полиуретана, наполненного фреоном, плотностью 1,99 фунт / фут 3 при 20 ° C дает теплопроводность 0.022 Вт / мК. Расчет для полиуретана с наполнителем CO 2 с плотностью 2,00 фунт / фут 3 дает 0,035 Вт / мК.

Индекс

Таблицы

Ссылка
Young
Ch 15.

Теплопроводность — образование в области энергетики

Теплопроводность , часто обозначаемая как [математика] \ каппа [/ математика], является потеря тепла на единицу площади материала зависит от скорости его изменения температуры. [1] По сути, это значение, которое учитывает любое свойство материала, которое может изменить способ, которым он проводит тепло.{\ circ} F} \ right) [/ math]. [3] Материалы с более высокой теплопроводностью являются хорошими проводниками тепловой энергии.

Поскольку теплопередача посредством теплопроводности включает в себя передачу энергии без движения материала, логично, что скорость передачи тепла будет зависеть только от разницы температур между двумя точками и теплопроводности материала.

Для получения дополнительной информации о теплопроводности см. Гиперфизика.

Значения для общих материалов

Теплопроводность, [математика] \ каппа [/ математика] [4]
Материал Электропроводность при 25 o C
Акрил 0.2
Воздух 0,024
Алюминий 205
Битум 0,17
Латунь 109
Цемент 1,73
Медь 401
Алмаз 1000
Войлок 0,04
Стекло 1,05
Утюг 80
Кислород 0.024
Бумага 0,05
Кремнеземный аэрогель 0,02
Вакуум 0
Вода 0,58


Из таблицы справа видно, что большинство материалов, которые обычно считаются хорошими проводниками, обладают высокой теплопроводностью. В основном металлы обладают очень высокой теплопроводностью, которая хорошо сопоставима с тем, что известно о металлах.Кроме того, изоляционные материалы, такие как аэрогель и изоляция, используемые в домах, имеют низкую теплопроводность, что указывает на то, что они не пропускают тепло через себя легко. Таким образом, низкая теплопроводность свидетельствует о хорошем изоляционном материале.

Промежуточные материалы не обладают значительными изолирующими или проводящими свойствами. Цемент и стекло не проводят слишком большое количество тепла и не обладают хорошей изоляцией.

Идея о том, что теплопроводность определенных материалов связана с тем, насколько хорошо они изолируют, обеспечивает связь между теплопроводностью и R-значениями / U-значениями.Поскольку значения U и R отражают, насколько хорошо определенный материал сопротивляется потоку тепла, теплопроводность играет роль в формировании этих значений. Однако значения U и R также зависят от толщины материала, тогда как теплопроводность этого не учитывает.

Для дальнейшего чтения

Список литературы

  1. ↑ HyperPhysics. (12 мая 2015 г.). Теплопроводность [Онлайн]. Доступно: http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/thercond.html
  2. ↑ Р. Чабай, Б. Шервуд. (12 мая 2015 г.). Материя и взаимодействия , 3-е изд., Хобокен, Нью-Джерси, США: John Wiley & Sons, 2011
  3. ↑ Д. Грин, Р. Перри. (12 мая 2015 г.). Справочник инженеров-химиков Перри , 7-е изд., McGraw-Hill, 1997.
  4. ↑ The Engineering Toolbox. (12 мая 2015 г.). Теплопроводность обычных материалов и газов [Онлайн]. Доступно: http://www.engineeringtoolbox.com/thermal-conductivity-d_429.html
.
Обновлено: 29.07.2021 — 07:57

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *