Самый маленький светодиод: PicoLED – самый маленький светодиод из Японии — Ferra.ru

Содержание

Американские учёные создали наноразмерный светодиод невероятной яркости

Традиционные светодиоды представляют собой плоские (планарные) структуры, которые выпускаются практически так же, как и транзисторы. Но если при производстве транзисторов достигнут прогресс в виде вертикальных каналов (FinFET), что позволяет пропускать через них большие токи, то светодиоды ещё никто не додумался «поставить на ребро», чтобы они светили ярче и работали дольше. Впрочем, эксперимент уже поставлен, и его результаты обнадёживают.

Структура перспективного светодиода с вертикальным светящимся элементом (NIST)

Национальный институт стандартов и технологий США (NIST) сообщил, что под руководством его учёных команда исследователей из Университета Мэриленда, Политехнического института Ренсселера и Исследовательского центра IBM им. Томаса Дж. Ватсона разработала и испытала необычную структуру мельчайших светодиодов. Предложенная командой структура светодиода, испытанная в лаборатории, обеспечила «резкое» увеличение яркости свечения и даже позволила превратить светодиод в полупроводниковый лазер без каких-либо дополнительных ухищрений (резонаторов и прочего).

По сравнению с обычными крошечными светодиодами субмикронных размеров предложенное учёными решение показало увеличение яркости от 100 до 1000 раз. Это невероятно, хотя учёные использовали те же материалы, что и при производстве массовых сверхъярких светодиодов (нитрид галлия, оксид цинка, титан, золото). «Мы используем те же материалы, что и в обычных светодиодах. Наша разница [заключается] в их форме», ― сказал руководитель проекта, учёный из NIST Бабак Никобахт (Babak Nikoobakht).

До определенного момента подача на светодиод большего количества электричества заставляет его светить более ярко, но вскоре яркость падает, что делает светодиод очень неэффективным. Эта проблема, названная в отрасли «падением эффективности», препятствует использованию светодиодов в ряде многообещающих приложений, от коммуникационных технологий до уничтожения вирусов.

Интересно, что изначально учёные из NIST не ставили перед собой задачу пробить барьер низкой эффективности светодиодов. Их главной целью было создание микроскопического светодиода для использования в очень небольших приложениях, таких как технология «лаборатория на кристалле», которую разрабатывают ученые из NIST и других организаций. Но вышло лучше и совсем не там (подробнее см. статью в Science Advances).

В ходе экспериментов с совершенно новым дизайном светящейся части светодиода учёные построили источник света из длинных тонких нитей оксида цинка, которые они называют плавниками. Каждый плавник имеет длину всего около 5 микрометров, что составляет примерно десятую часть ширины среднего человеческого волоса. Длина плавников или рёбер может достигать одного сантиметра и более, что будет задавать характеристики этим приборам.

Иллюстрация из статьи в журнале Science Advances

Как и в случае с FinFET-транзисторами, каналы которых окружены затвором с трёх сторон, вертикальный светящийся элемент светодиода позволил подавать на него ток также через боковые грани. Эксперимент буквально потряс учёных. Вертикальная конструкция излучала свет мощностью до 20 мкВт, тогда как аналогичный по площади планарный светодиод мог излучать не более 22 нВт или в 100–1000 раз слабее.

Вторым сюрпризом стало то, что при увеличении тока свечение «вертикального» светодиода в диапазоне широкого спектра волн на границе фиолетового и ультрафиолетового превратилось в излучение всего из двух волн в диапазоне интенсивного ультрафиолетового света. Тем самым светодиод фактически превратился в полупроводниковый лазер простым движением руки.

Крошечный лазер будет иметь решающее значение для приложений в масштабе чипов не только для химических проб (анализа), но и для портативных устройств связи следующего поколения, дисплеев с высоким разрешением и обеззараживания поверхностей.

«У него большой потенциал, чтобы стать важным строительным блоком», ― сказал Никобахт. ― Хотя это не самый маленький лазер, созданный людьми, он очень яркий. Отсутствие падения эффективности может сделать его полезным».

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

Технические характеристики мощных светодиодов CREE

Американская компания CREE является ведущим производителем твердотельных источников света. Разработанные и выпускаемые ею светодиоды семейства XLamp серий XR, XP, MC отличаются высокой эффективностью и экономичностью, что позволяет создавать на их основе современные технологичные и экологически безопасные осветительные приборы.

Итак немного расшифруем обозначения.

Например на фонаре написано: светодиод CREE XP-E R2

CREE — естественно название производителя диода

XR-E, у CREE бывает XP-E, XP-G, у других фирм встречается P4, P7 и т.д. — это обозначение самого диода.

R2 — бин яркости. Бин показывает, сколько люмен выдает светодиод при потреблении 1 ватта энергии, для светодиода это ток 350 мА. В английском языке этот параметр называется flux bin. На сегодняшний момент встречаются Q2, Q3, Q4, Q5, R2, R3, R4, R5, S2. В таблице ниже видно, сколько люмен с какого диода можно получить.

Q2-Q5 и R2 есть у XR-E диодов, у R2, R3 — есть у XP-E, R4-R5 и S2 — только у XP-G.

В чем основная разница, кроме яркости?

XR-E — самый старый и встречающийся только моделях фонарей, которые довольно давно на рынке. XR-E внешне очень легко определить, у него большая полусфера покрывает диод, сам кристалл больше чем у последующих серий (для сравнения на XP серии это такая себе капелька, размер XP-E по сравнению с XR-E был сокращён на 80%. XP-E от XP-G отличается тем, что у Е — три полоски на диоде, у G серии — четыре, получается что площадь XP-G выше.

Следовательно, в одинаковых по размеру, строению отражателях самый дальнобойный является XP-E, так как у него самый маленький кристалл, и, самый маленький источник света, так как его легко сфокусировать в узкий луч, потом XR-E, а самый широкий луч у XP-G, не из-за размера кристалла, а из-за сложности фокусировки, об этом ниже.

Если диоды расположить по энергоэффективности от самого слабого к самому яркому, то получим XR-E — XP-E — XP-G, где последний самый энергоэффективный, см. таблицу ниже.

Казалось бы, если есть самый яркий и самый новый и эффективный диод XP-G, то почему все известные и уважаемые производители фонарей не спешат переходить на этот диод. Причина проста. Каждый диод требует специально спроектированный отражатель для получения приемлемого светового пучка.

Рассмотрим все серии. Если посветить фонарем на ровную стену, то увидим следующие артефакты:

У XP-E — идеальная картинка без каких-либо недостатков: хорошо и равномерно сфокусированный центральный пучок и ровная боковая засветка без провалов.

У XP-G при фокусировке с помощью отражателя может наблюдаться так называемая дырка от бублика, когда центральный пучок света представляет собой бублик с заметным потемнением внутри. Это не вина производителей фонарей, а особенность диода. Поэтому такие фирмы как Fenix, Jetbeam, Nitecore, Zebra, 4sevens не спешили обновлять свой модельный ряд, а другие в гонке за новинками либо ставили сильно текстурированный отражатель, либо вообще просто применяли отражатели для других типов диодов. Все это негативно отражается на фокусировке луча и дальнобойности фонарей. По мнению многих экспертов фонари на этом типе диодов проигрывают по дальности старым моделям на XP-E и XR-E.

XM-L — является настоящим шедевром данной компании! Это новейшая разработка 2011 года! С момента изобретения данного светодиода 95% мощных фонарей строятся именно на нем! Данный диод обладает выдающимися характеристиками. Его яркость достигает до 1000 люмен при токе 3А !

В таблице представлены характеристики светодиодов, применяемые в фонарях.

XP-E

XP-E2

XP-G

XP-G2

XM-L

Создан самый маленький в мире светодиод, имеющий толщину всего в три атома — Общество

Практически в любой современной электронике, начиная от телевизоров, планшетных компьютеров, смартфонов и заканчивая крошечными носимыми электронными устройствами, используются светодиодные источники света, светодиоды (Light-Emitting Diode, LED). Светодиод является полупроводниковым устройством, которые излучает свет определенной длины волны под воздействием протекающего через него электрического тока. Поскольку в последнее время все более явно прослеживается тенденция к дальнейшей миниатюризации электроники, появляется больший спрос на полупроводниковые приборы меньшего размера, потребляющие меньше энергии, но обладающие характеристиками, сопоставимыми с характеристиками «полноразмерных» приборов. Двигаясь в этом направлении, ученые из Вашингтонского университета разработали сверхминиатюрный светодиод, который является самым маленьким источником света на сегодняшний день и толщина которого составляет всего три атома.

«Нам удалось создать самый маленький светодиод, толщина которого составляет всего три атома. Структура этого светодиода обладает гибкостью, сохраняя при этом высокую механическую прочность. Мы считаем, что нам удалось достигнуть самых минимальных размеров, которые возможно получить с учетом существующего уровня развития технологий. Такие тонкие, гибкие и миниатюрные светодиоды предназначены для использования в гибких компьютерах и других электронных устройствах будущего» — рассказывает Ксиэодонг Ксу (Xiaodong Xu), профессор материаловедения и физики из Вашингтонского университета.

Следует заметить, что самые миниатюрные светодиоды, уже используемые в современной электронике, имеют толщину в 10-20 раз превосходящую толщину светодиодов, разработанных вашингтонскими учеными. «Наши светодиоды в 10 тысяч раз тоньше, чем человеческий волос, но излучаемый ими свет, хоть и не виден человеческим глазом, но может быть зарегистрирован при помощи достаточно обычных светочувствительных датчиков. Это огромный скачек вперед в направлении миниатюризации современной электроники, ведь при помощи миниатюрного светодиода можно сделать все то, что позволяют сделать современные кремниевые «трехмерные» светодиоды».

Миниатюрный светодиод изготовлен из пленок «двухмерного» материала, диселинида вольфрама, который относиться к группе двухмерных полупроводниковых материалов. Пленки диселинида вольфрама были изготовлены учеными при помощи обычной изоляционной ленты и метода, за который Андрею Гейму и Константину Новоселову была присуждена Нобелевская премия по физике 2010 года.

Основной областью применения миниатюрных светодиодов исследователи считают реализацию технологии оптических коммуникаций в пределах одного чипа, которая должна заменить традиционную передачу сигналов в виде электрического тока, распространяющегося по металлическим проводникам. «Крошечный светодиодный источник света является идеальным кандидатом на замену электрического соединения оптическим каналом. Такие оптические каналы будут иметь большую пропускную способность, но расходовать при этом гораздо меньше энергии».

В настоящее время группа ученых работает в направлении повышения эффективности миниатюрных светодиодов, пробуя различные комбинации двухмерных полупроводниковых материалов. Кроме этого параллельно ведется разработка технологии, при помощи которой можно будет изготавливать миниатюрные светодиоды прямо на кристаллах полупроводниковых чипов или наносить их матрицы на тонкопленочные основания.

Источник: Источник

потребление тока, напряжение, мощность и светоотдача

ПОДЕЛИТЕСЬ
В СОЦСЕТЯХ

Времена, когда светодиоды использовали только в качестве индикаторов включения приборов, давно прошли. Современные светодиодные приборы могут полностью взаимозаменить лампы накаливания в бытовых, промышленных и уличных светильниках. Этому способствуют различные характеристики светодиодов, зная которые можно правильно подобрать LED-аналог. Использование светодиодов, учитывая их основные параметры, открывает обилие возможностей в сфере освещения.

Основой светодиода является искусственный полупроводниковый кристаллик

Какие бывают светодиоды

Светодиод (обозначается СД, СИД, LED в англ.) представляет собой прибор, в основе которого лежит искусственный полупроводниковый кристаллик. При пропускании через него электротока создается явление испускания фотонов, что приводит к свечению. Данное свечение имеет очень узкий диапазон спектра, и цвет его находится в зависимости от материала полупроводника.

Светодиоды вполне могут заменить обычные лампы накаливания

Светодиоды с красным и желтым свечением производят из неорганических полупроводниковых материалов на базе арсенида галлия, зеленые и синие изготавливают на основе индия-галлия-нитрида. Чтобы увеличить яркость светового потока используют различные присадки или применяют метод многослойности, когда слой чистого нитрида алюминия размещают между полупроводниками. В результате образования в одном кристаллике нескольких электронно-дырочных (p-n) переходов, яркость его свечения возрастает.

Различают два типа светодиодов: для индикации и освещения. Первые используют для индикации включения в сеть различных приборов, а также как источники декоративной подсветки. Они представляют собой цветные диоды, помещенные в просвечивающийся корпус, каждый из них имеет четыре вывода. Приборы, излучающие инфракрасный свет, используют в устройствах для удаленного управления приборами (пульт ДУ).

В области освещения используют светодиоды, излучающие белый свет. По цвету различают светодиоды с холодным белым, нейтральным белым и теплым белым свечением. Существует классификация применяемых для освещения светодиодов по способу монтажа. Маркировка светодиода SMD означает, что прибор состоит из алюминиевой или медной подложки, на которой размещен кристаллик диода. Сама подложка располагается в корпусе, контакты которого соединены с контактами светодиода.

Применение светодиодной подсветки в интерьере кухни

Другой тип светодиодов обозначается OCB. В таком приборе на одной плате размещается множество кристаллов, покрытых люминофором. Благодаря такой конструкции достигается большая яркость свечения. Такую технологию используют при производстве светодиодных ламп с большим световым потоком на относительно малой площади. В свою очередь это делает производство светодиодных ламп наиболее доступным и недорогим.

Обратите внимание! Сравнивая лампы на SMD и COB светодиодах можно отметить, что первые поддаются ремонту путем замены вышедшего из строя светодиода. Если не работает лампа на COB светодиодах, придется менять всю плату с диодами.

Характеристики светодиодов

Выбирая для освещения подходящую светодиодную лампу, следует учитывать параметры светодиодов. К ним относят напряжение питания, мощность, рабочий ток, эффективность (светоотдача), температуру свечения (цвет), угол излучения, размеры, срок деградации. Зная основные параметры, можно будет без труда выбрать приборы для получения того или иного результата освещенности.

LED-технологии используются в оформлении табло аэропортов и вокзалов

Величина тока потребления светодиода

Как правило, для обычных светодиодов предусмотрена сила тока величиной 0,02А. Однако бывают светодиоды, рассчитанные на 0,08А. К таким светодиодам относят более мощные приборы, в устройстве которых задействованы четыре кристалла. Они располагаются в одном корпусе. Так как каждый из кристаллов потребляет по 0,02А, в сумме один прибор будет потреблять 0,08А.

Стабильность работы светодиодных приборов зависит от величины тока. Даже незначительное увеличение силы тока способствует снижению интенсивности излучения (старению) кристалла и увеличению цветовой температуры. Это в конечном результате приводит к тому, что светодиоды начинают отливать синим цветом и преждевременно выходят из строя. А если показатель силы тока увеличивается существенно, светодиод сразу перегорает.

Чтобы ограничить потребляемый ток, в конструкциях LED-ламп и светильников предусмотрены стабилизаторы тока для светодиодов (драйверы). Они преобразуют ток, доводя его до нужной светодиодам величины. В случае, когда требуется подключить отдельный светодиод к сети, нужно использовать токоограничительные резисторы. Расчет сопротивления резистора для светодиода выполняют с учетом его конкретных характеристик.

Полезный совет! Чтобы правильно подобрать резистор, можно воспользоваться калькулятором расчета резистора для светодиода, размещенным в сети интернет.

Светодиодная гирлянда может использоваться в качестве декора помещения

Напряжение светодиодов

Как узнать напряжение светодиодов? Дело в том, что параметра напряжения питания как такового у светодиодов нет. Вместо этого используется характеристика падения напряжения на светодиоде, что означает величину напряжения на выходе светодиода при прохождении через него номинального тока. Значение напряжения, указанное на упаковке, отражает как раз падение напряжения. Зная эту величину, можно определить оставшееся на кристалле напряжение. Именно это значение берется во внимание при расчетах.

Учитывая применение различных полупроводников для светодиодов, напряжение у каждого из них может быть разным. Как узнать, на сколько Вольт светодиод? Определить можно по цвету свечения приборов. Например, для синих, зеленых и белых кристаллов напряжение составляет около 3В, для желтых и красных – от 1,8 до 2,4В.

При использовании параллельного подключения светодиодов идентичного номинала с величиной напряжения в 2В можно столкнуться со следующим: в результате разброса параметров одни излучающие диоды выйдут из строя (сгорят), а другие будут очень слабо светиться. Это произойдет ввиду того, что при увеличении напряжения даже на 0,1В наблюдается увеличение силы тока, проходящего через светодиод, в 1,5 раза. Поэтому так важно следить, чтобы ток соответствовал номиналу светодиода.

100Вт лампы накаливания эквивалентно 12-12,5Вт LED-светильника

Светоотдача, угол свечения и мощность светодиодов

Сравнение светового потока диодов с другими источниками света проводят, учитывая силу издаваемого ими излучения. Приборы размером около 5 мм в диаметре дают от 1 до 5 лм света. В то время как световой поток лампы накаливания в 100Вт составляет 1000 лм. Но при сопоставлении необходимо учитывать, что у обычной лампы свет рассеянный, а у светодиода – направленный. Поэтому необходимо принимать во внимание угол рассеивания светодиодов.

Угол рассеивания разных светодиодов может составлять от 20 до 120 градусов. При освещении светодиоды дают более яркий свет по центру и снижают освещенность к краям угла рассеивания. Таким образом, светодиоды лучше освещают конкретное пространство, используя при этом меньше мощности. Однако если требуется увеличить площадь освещенности, в конструкции светильника используют рассеивающие линзы.

Как определить мощность светодиодов? Чтобы определить мощность светодиодной лампы, требующейся для замены лампы накаливания, необходимо применять коэффициент, равный 8. Так, заменить обычную лампу мощностью 100Вт можно светодиодным прибором мощностью не менее 12,5Вт (100Вт/8). Для удобства можно воспользоваться данными таблицы соответствия мощности ламп накаливания и LED-источников света:

Мощность лампы накаливания, ВтСоответствующая мощность светодиодного светильника, Вт
10012-12,5
7510
607,5-8
405
253

 

При использовании светодиодов для освещения очень важен показатель эффективности, который определяется отношением светового потока (лм) к мощности (Вт). Сопоставляя эти параметры у разных источников света, получаем, что эффективность лампы накаливания составляет 10-12 лм/Вт, люминесцентной – 35-40 лм/Вт, светодиодной – 130-140 лм/Вт.

Цветовая температура LED-источников

Одним из важных параметров светодиодных источников является температура свечения. Единицы измерения этой величины – градусы Кельвина (К). Следует отметить, что все источники света по температуре свечения разделяют на три класса, среди которых теплый белый имеет цветовую температуру менее 3300 К, дневной белый – от 3300 до 5300 К и холодный белый свыше 5300 К.

Обратите внимание! Комфортное восприятие человеческим глазом светодиодного излучения непосредственно зависит от цветовой температуры LED-источника.

Цветовая температура обычно указывается на маркировке светодиодных ламп. Она обозначается четырехзначным числом и буквой К. Выбор LED-ламп с определенной цветовой температурой напрямую зависит от особенностей применения ее для освещения. Предложенная ниже таблица отображает варианты использования светодиодных источников с разной температурой свечения:

Цвет свечения светодиодовЦветовая температура, КВарианты использования в освещении
БелыйТеплый2700-3500Освещение бытовых и офисных помещений как наиболее подходящий аналог лампы накаливания
Нейтральный (дневной)3500-5300Отличная цветопередача таких ламп позволяет применять их для освещения рабочих мест на производстве
Холодныйсвыше 5300Используется в основном для освещения улиц, а также применяется в устройстве ручных фонарей
Красный1800Как источник декоративной и фито-подсветки
ЗеленыйПодсветка поверхностей в интерьере, фито-подсветка
Желтый3300Световое оформление интерьеров
Синий7500Подсветка поверхностей в интерьере, фито-подсветка

 

Волновая природа цвета позволяет выразить цветовую температуру светодиодов, используя длину волны. Маркировка некоторых светодиодных приборов отражает цветовую температуру именно в виде интервала различных длин волн. Длина волны имеет обозначение λ и измеряется в нанометрах (нм).

Типоразмеры SMD светодиодов и их характеристики

Учитывая размер SMD светодиодов, приборы классифицируются в группы с различными характеристиками. Наиболее популярные светодиоды с типоразмерами 3528, 5050, 5730, 2835, 3014 и 5630. Характеристики SMD светодиодов в зависимости от размеров рознятся. Так, разные типы SMD светодиодов отличаются по яркости, цветовой температуре, мощности. В маркировке светодиодов первые две цифры показывают длину и ширину прибора.

Светодиоды SMD 5630 на LED-ленте

Основные параметры светодиодов SMD 2835

К основным характеристикам SMD светодиодов 2835 относят увеличенную площадь излучения. В сравнении с прибором SMD 3528, который имеет круглую рабочую поверхность, площадь излучения SMD 2835 имеет прямоугольную форму, что способствует большей светоотдаче при меньшей высоте элемента (около 0,8 мм). Световой поток такого прибора составляет 50 лм.

Корпус светодиодов SMD 2835 выполнен из термостойкого полимера и может выдерживать температуру до 240°С. Следует отметить, что деградация излучения в этих элементах составляет менее 5% в течение 3000 часов функционирования. Кроме того, прибор имеет достаточно низкое тепловое сопротивление перехода кристалл-подложка (4 С/Вт). Рабочий ток в максимальном значении – 0,18А, температура кристалла – 130°С.

По цвету свечения выделяют теплый белый с температурой свечения 4000 К, дневной белый – 4800 К, чистый белый – от 5000 до 5800 К и холодный белый с цветовой температурой 6500-7500 К. Стоит отметить, что максимальная величина светового потока у приборов с холодным белым свечением, минимальная – у светодиодов теплого белого цвета. В конструкции прибора увеличены контактные площадки, что способствует лучшему отводу тепла.

Полезный совет! Светодиоды SMD 2835 могут быть использованы для любого типа монтажа.

Размеры светодиода SMD 2835

Характеристики светодиодов SMD 5050

В конструкции корпуса SMD 5050 размещены три однотипных светодиода. LED источники синего, красного и зеленого цвета имеют технические характеристики, аналогичные кристаллам SMD 3528. Значение рабочего тока каждого из трех светодиодов составляет 0,02А, следовательно суммарная величина тока всего прибора 0,06А. Для того, чтобы светодиоды не вышли из строя, рекомендуется не превышать эту величину.

LED приборы SMD 5050 имеют прямое напряжение величиной 3-3,3В и светоотдачу (сетевой поток) 18-21 лм. Мощность одного светодиода складывается из трех величин мощности каждого кристалла (0,7Вт) и составляет 0,21Вт. Цвет свечения, испускаемый приборами, может быть белым во всех оттенках, зеленым, синим, желтым и многоцветным.

Близкое расположение светодиодов разных цветов в одном корпусе SMD 5050 позволило реализовать многоцветные светодиоды с отдельным управлением каждым цветом. Для регулирования светильников с использованием светодиодов SMD 5050 используют контроллеры, благодаря чему цвет свечения можно плавно изменять от одного к другому через заданное количество времени. Обычно такие приборы имеют несколько режимов управления и могут регулировать яркость свечения светодиодов.

Размеры светодиода SMD 5050

Типовые характеристики светодиода SMD 5730

Светодиоды SMD 5730 – современные представители LED-приборов, корпус которых имеет геометрические размеры 5,7х3 мм. Они относятся к сверхярким светодиодам, характеристики которых стабильны и качественно отличаются от параметров предшественников. Изготовленные с применением новых материалов, эти светодиоды отличаются повышенной мощностью и высокоэффективным световым потоком. Кроме того, они могут работать в условиях повышенной влажности, устойчивы к перепадам температур и вибрации, имеют длительный срок службы.

Существует две разновидности приборов: SMD 5730-0,5 с мощностью 0,5Вт и SMD 5730-1 с мощностью 1Вт. Отличительной особенностью приборов является возможность их функционирования на импульсном токе. Величина номинального тока  SMD 5730-0,5 составляет 0,15А, при импульсной работе прибор может выдерживать силу тока до 0,18А. Данный тип светодиодов обеспечивает световой поток до 45 лм.

Светодиоды SMD 5730-1 работают на постоянном токе 0,35А, при импульсном режиме – до 0,8А. Эффективность светоотдачи такого прибора может составить до 110 лм. Благодаря термостойкому полимеру, корпус прибора выдерживает температуру до 250°С. Угол рассеивания обоих типов SMD 5730 равен 120 градусам. Степень деградации светового потока составляет менее 1% при работе в течение 3000 часов.

Размеры светодиода SMD 5730

Характеристики светодиодов Cree

Компания Cree (США) занимается разработкой и выпуском сверхъярких и самых мощных светодиодов. Одна из групп светодиодов Cree представлена серией приборов Xlamp, которые делятся на однокристальные и многокристальные. Одной из особенностей однокристальных источников является распределение излучения по краям прибора. Это инновация позволила выпускать светильники с большим углом свечения, используя минимальное количество кристаллов.

В серии LED-источников XQ-E High Intensity угол свечения составляет от 100 до 145 градусов. Имея небольшие геометрические размеры 1,6х1,6 мм, мощность сверхярких светодиодов – 3 Вольта, а световой поток – 330 лм. Это одна из новейших разработок компании Cree. Все светодиоды, конструкция которых разработана на базе одного кристалла, имеют качественную цветопередачу в пределах CRE 70-90.

Статья по теме:

Как сделать или починить LED-гирлянду самостоятельно. Цены и основные характеристики наиболее популярных моделей.

Компания Cree выпустила несколько вариантов многокристальных LED-приборов с новейшими типами питания от 6 до 72 Вольт. Многокристальные светодиоды делятся на три группы, в которые входят приборы с высоким напряжением, мощностью до 4Вт и выше 4Вт. В источниках до 4Вт собраны 6 кристаллов в корпусе типа MX и ML. Угол рассеивания составляет 120 градусов. Купить светодиоды Cree такого типа можно с белым теплым и холодным цветом свечения.

Полезный совет! Несмотря на высокую надежность и качество света, купить мощные светодиоды серии MX и ML можно по относительно небольшой цене.

В группу свыше 4Вт входят светодиоды из нескольких кристаллов. Самыми габаритными в группе являются приборы мощностью 25Вт, представленные серией MT-G. Новинка компании – светодиоды модели XHP. Один из крупных LED-приборов имеет корпус 7х7 мм, его мощность 12Вт, светоотдача 1710 лм. Светодиоды с высоким напряжением питания объединяют в себе небольшие габариты и высокую светоотдачу.

LED-лампы серии XQ-E High Intensity производителя Cree (США)

Схемы подключения светодиодов

Существуют определенные правила подключения светодиодов. Беря во внимание, что проходящий через прибор ток движется только в одном направлении, для длительного и стабильного функционирования LED-приборов важно учитывать не только определенное напряжение, но и оптимальную величину тока.

Схема подключения светодиода к сети 220В

В зависимости от используемого источника питания, различают два вида схем подключения светодиодов к 220В. В одном из случаев используется драйвер с ограниченным током, во втором – специальный блок питания, стабилизирующий напряжение. Первый вариант учитывает использование специального источника с определенной силой тока. Резистор в данной схеме не требуется, а количество подключаемых светодиодов ограничивается мощностью драйвера.

Для обозначения светодиодов на схеме используются пиктограммы двух видов. Над каждым схематическим их изображением находятся две небольшие параллельные стрелочки, направленные вверх. Они символизируют яркое свечение LED-прибора. Перед тем как подключить светодиод к 220В используя блок питания, необходимо в схему включить резистор. Если это условие не выполнить, это приведет к тому, что рабочий ресурс светодиода существенно сократится или он попросту выйдет из строя.

Схема подключения светодиодов к сети 220В с использованием гасящего конденсатора С1

Если при подключении использовать блок питания, то стабильным в схеме будет лишь напряжение. Учитывая незначительное внутреннее сопротивление LED-прибора, включение его без ограничителя тока приведет к сгоранию прибора. Именно поэтому в схему включения светодиода вводят соответствующий резистор. Следует отметить, что резисторы бывают с разным номиналом, поэтому их следует правильно рассчитывать.

Полезный совет! Негативным моментом схем включения светодиода в сеть 220 Вольт с использованием резистора становится рассеивание большой мощности, когда требуется подключить нагрузку с повышенным потреблением тока. В этом случае резистор заменяют гасящим конденсатором.

Как рассчитать сопротивление для светодиода

При расчете сопротивления для светодиода руководствуются формулой:

U = IхR,

где U – напряжение, I – сила тока, R – сопротивление (закон Ома). Допустим, необходимо подключить светодиод с такими параметрами: 3В – напряжение и 0,02А – сила тока. Чтобы при подключении светодиода к 5 Вольтам на блоке питания он не вышел из строя, надо убрать лишние 2В (5-3 = 2В). Для этого необходимо включить в схему резистор с определенным сопротивлением, которое рассчитывается с помощью закона Ома:

R = U/I.

Резисторы с различными значениями сопротивления

Таким образом, отношение 2В к 0,02А составит 100 Ом, т.е. именно такой необходим резистор.

Очень часто бывает, что учитывая параметры светодиодов, сопротивление резистора имеет нестандартное для прибора значение. Такие ограничители тока нельзя отыскать в точках продажи, например, 128 или 112,8 Ом. Тогда следует использовать резисторы, сопротивление которых имеет ближайшее большее значение по сравнению с расчетным. При этом светодиоды будут функционировать не в полную силу, а лишь на 90-97%, но это будет незаметно для глаза и положительно отразится на ресурсе прибора.

В интернете представлено множество вариантов калькуляторов расчетов светодиодов. Они учитывают основные параметры: падение напряжения, номинальный ток, напряжение на выходе, количество приборов в цепи. Задав в поле формы параметры LED-приборов и источников тока, можно узнать соответствующие характеристики резисторов. Для определения сопротивления маркированных цветом токоограничителей также существуют онлайн расчеты резисторов для светодиодов.

Схемы параллельного и последовательного подключения светодиодов

При сборке конструкций из нескольких LED-приборов используют схемы включения светодиодов в сеть 220 Вольт с последовательным или параллельным соединением. При этом для корректного подключения следует учитывать, что при последовательном включении светодиодов требуемое напряжение представляет собой сумму падений напряжений каждого прибора. В то время как при параллельном включении светодиодов складывается сила тока.

Схемы параллельного подключения светодиодов. В варианте 1 на каждую цепь диодов используется отдельный резистор, в варианте 2 — один общий для всех цепей

Если в схемах используются LED-приборы с разными параметрами, то для стабильной работы необходимо рассчитать резистор для каждого светодиода отдельно. Следует отметить, что двух совершенно одинаковых светодиодов не существует. Даже приборы одной модели имеют незначительные отличия в параметрах. Это приводит к тому, что при подключении большого их количества в последовательную или параллельную схему с одним резистором, они могут быстро деградировать и выйти из строя.

Обратите внимание! При использовании одного резистора в параллельной или последовательной схеме можно подключать лишь LED-приборы с идентичными характеристиками.

Расхождение в параметрах при параллельном подключении нескольких светодиодов, допустим 4-5 шт., не повлияет на работу приборов. А если в такую схему подключить много светодиодов – это будет плохим решением. Даже если LED-источники имеют незначительный разброс характеристик, это приведет к тому, что некоторые приборы будут излучать яркий свет и быстро сгорят, а другие – будут слабо светиться.  Поэтому при параллельном подключении следует всегда использовать отдельный резистор для каждого прибора.

Что касается последовательного соединения, то здесь имеет место экономное потребление, так как вся цепь расходует количество тока, равное потреблению одного светодиода. При параллельной схеме, потребление составляет сумму расходования всех включенных в схему LED-источников, включенных в схему.

Схема последовательного подключения светодиодов

Как подключить светодиоды к 12 Вольтам

В конструкции некоторых приборов резисторы предусмотрены еще на этапе изготовления, что дает возможность подключения светодиодов к 12 Вольт или 5 Вольт. Однако такие приборы не всегда можно найти в продаже. Поэтому в схеме подключения светодиодов к 12 вольт предусматривают ограничитель тока. Первым делом необходимо выяснить характеристики подключаемых светодиодов.

Такой параметр, как прямое падение напряжения у типовых LED-приборов составляет около 2В. Номинальный ток у этих светодиодов соответствует 0,02А. Если требуется подключить такой светодиод к 12В, то «лишние» 10В (12 минус 2) необходимо погасить ограничительным резистором. С помощью закона Ома можно рассчитать для него сопротивление. Получим, что 10/0,02 = 500 (Ом). Таким образом, необходим резистор с номиналом 510 Ом, который является ближайшим по ряду электронных компонентов Е24.

Чтобы такая схема работала стабильно, требуется еще вычислить мощность ограничителя. Используя формулу, исходя из которой мощность равна произведению напряжения и тока, рассчитываем ее значение. Напряжение величиной 10В умножаем на ток 0,02А и получаем 0,2Вт. Таким образом, необходим резистор, стандартный номинал мощности которого составляет 0,25Вт.

Схема подключения RGB светодиодной ленты к 12В

Если в схему необходимо включить два LED-прибора, то следует учитывать, что напряжение падающее на них, будет составлять уже 4В. Соответственно для резистора останется погасить уже не 10В, а 8В. Следовательно, дальнейший расчет сопротивления и мощности резистора делается на основании этого значения. Расположение резистора в схеме можно предусмотреть в любом месте: со стороны анода, катода, между светодиодами.

Как проверить светодиод мультиметром

Один из способов проверки рабочего состояния светодиодов – тестирование мультиметром. Таким прибором можно диагностировать светодиоды любого исполнения. Перед тем как проверить светодиод тестером, переключатель прибора устанавливают в режиме «прозвонки», а щупы прикладывают к выводам. При замыкании красного щупа на анод, а черного на катод, кристалл должен излучать свет. Если поменять полярность, на дисплее прибора должна отображаться показание «1».

Полезный совет! Перед тем как проверить светодиод на работоспособность, рекомендуется приглушить основное освещение, так как при тестировании ток очень низкий и светодиод будет излучать свет так слабо, что при нормальном освещении этого можно не заметить.

Схема проверки светодиода с помощью цифрового мультиметра

Тестирование LED-приборов можно произвести, не используя щупы. Для этого в отверстия, расположенные в нижнем углу прибора, анод вставляют в отверстие с символом «Е», а катод – с указателем «С». Если светодиод в рабочем состоянии – он должен засветиться. Этот метод тестирования подходит для светодиодов с достаточно длинными контактами, очищенными от припоя. Положение переключателя при таком способе проверки не имеет значения.

Как проверить светодиоды мультиметром, не выпаивая? Для этого необходимо припаять к щупам тестера кусочки от обычной скрепки. В качестве изоляции подойдет текстолитовая прокладка, которая укладывается между проводами, после чего обрабатывается изолентой. На выходе получается своеобразный переходник для подключения щупов. Скрепки хорошо пружинят и надежно фиксируются в разъемах. В таком виде можно подключить щупы к светодиодам, не выпаивая их из схемы.

Что можно сделать из светодиодов своими руками

Многие радиолюбители практикуют сборку различных конструкций из светодиодов своими руками. Собранные самостоятельно изделия не уступают по качеству, а иногда и превосходят аналоги производственного изготовления. Это могут быть цветомузыкальные устройства, мигающие конструкции светодиодов, бегущие огни на светодиодах своими руками и многое другое.

Использование светодиодов в создании сценических костюмов

Сборка стабилизатора тока для светодиодов своими руками

Чтобы ресурс светодиода не выработался раньше положенного срока, необходимо чтобы ток, протекающий через него, имел стабильное значение. Известно, что светодиоды красного, желтого и зеленого цвета могут справляться с повышенной нагрузкой по току. В то время как сине-зеленые и белые LED-источники даже при небольшой перегрузке сгорают за 2 часа. Таким образом, для нормальной работы светодиода необходимо решить вопрос с его питанием.

Если собрать цепочку из последовательно или параллельно соединенных светодиодов, то обеспечить им идентичное излучение можно в том случае, если ток, проходящий через них, будет иметь одинаковую силу. Кроме того, импульсы обратного тока могут негативно повлиять на ресурс LED-источников. Чтобы такого не произошло, необходимо включить в схему стабилизатор тока для светодиодов.

Качественные признаки светодиодных светильников зависят от применяемого драйвера – устройства, которое преобразует напряжение в стабилизированный ток с конкретным значением. Многие радиолюбители собирают схему питания светодиодов от 220В своими руками на базе микросхемы LM317. Элементы для такой электронной схемы имеют небольшую стоимость и такой стабилизатор легко сконструировать.

Схема подключения мощного светодиода с использованием интегрального стабилизатора напряжения LM317

При использовании стабилизатора тока на LM317 для светодиодов регулируют ток в пределах 1А. Выпрямитель на базе LM317L стабилизирует ток до 0,1А. В схеме устройства используют всего лишь один резистор. Его рассчитывают посредством онлайн калькулятора сопротивления для светодиода. Для питания подойдут имеющиеся подручные устройства: блоки питания от принтера, ноутбука или другой бытовой электроники. Более сложные схемы собирать самостоятельно не выгодно, так как их проще приобрести в готовом виде.

ДХО из светодиодов своими руками

Применение на автомобилях дневных ходовых огней (ДХО) заметно повышает видимость автомобиля в светлое время другими участниками дорожного движения. Многие автолюбители практикуют самостоятельную сборку ДХО с использованием светодиодов. Один из вариантов – устройство ДХО из 5-7 светодиодов мощностью 1Вт и 3Вт на каждый блок. Если использовать менее мощные LED-источники, световой поток не будет соответствовать нормативам для таких огней.

Полезный совет! При изготовлении ДХО своими руками, учитывайте требования ГОСТа: световой поток 400-800 Кд, угол свечения в горизонтальной плоскости – 55 градусов, в вертикальной – 25 градусов, площадь – 40 см².

Дневные ходовые огни улучшают видимость автомобиля на дороге

Для основания можно использовать плату из алюминиевого профиля с площадками для крепления светодиодов. Светодиоды фиксируются на плате с помощью теплопроводного клеящего состава. В соответствии с типом LED-источников подбирается оптика. В данном случае подойдут линзы с углом свечения 35 градусов. Линзы устанавливаются на каждый светодиод отдельно. Провода выводятся в любую удобную сторону.

Далее изготавливается корпус для ДХО, служащий одновременно и радиатором. Для этого можно использовать П-образный профиль. Готовый светодиодный модуль располагают внутри профиля, закрепив его на винтах. Все свободное пространство можно залить прозрачным герметиком на силиконовой основе, оставив на поверхности только линзы. Такое покрытие будет служить в качестве влагозащиты.

Подключение ДХО к питанию производится с обязательным использованием резистора, сопротивление которого предварительно просчитывается и проверяется. Способы подключения могут быть разными, учитывая модель автомобиля. Схемы подключения можно отыскать в сети интернет.

Схема подключения ДХО с блоком управления

Как сделать, чтобы светодиоды мигали

Наиболее популярными мигающими светодиодами, купить которые можно в готовом виде, являются приборы, регулируемые уровнем потенциала. Мигание кристалла происходит за счет изменения питания на выводах прибора. Так, двухцветный красно-зеленый LED-прибор излучает свет в зависимости от направления проходящего по нему тока. Эффект мигания в RGB-светодиоде достигается подключением трех выводов для отдельного управления к конкретной системе регулирования.

Но можно сделать мигающим и обычный одноцветный светодиод, имея в арсенале минимум электронных компонентов. Перед тем как сделать мигающий светодиод, необходимо выбрать работающую схему, которая будет простой и надежной. Можно использовать схему мигающего светодиода, которая будет запитана от источника с напряжением 12В.

Схема состоит из транзистора небольшой мощности Q1 (подойдет кремниевый высокочастотный КТЗ 315 или его аналоги), резистора R1 820-1000 Ом, 16-вольтового конденсатора С1 емкостью 470 мкФ и LED-источника. При включении схемы конденсатор заряжается до 9-10В, после этого транзистор на миг открывается и отдает накопленную энергию светодиоду, который начинает мигать. Данную схему можно реализовать только в случае питания от источника 12В.

Мигание светодиодов используется, например, в елочной гирлянде

Можно собрать более усовершенствованную схему, которая работает по аналогии с транзисторным мультивибратором. В схему входят транзисторы КТЗ 102 (2 шт.), резисторы R1 и R4 по 300 Ом каждый, чтобы ограничить ток, резисторы R2 и R3 по 27000 Ом, чтобы задавать ток базы транзисторов, 16-вольтовые полярные конденсаторы (2 шт. емкостью 10 мкФ) и два LED-источника. Данная схема питается от источника постоянного напряжения 5В.

Схема работает по принципу «пары Дарлингтона»: конденсаторы С1 и С2 попеременно заряжаются и разряжаются, что служит причиной открывания конкретного транзистора. Когда один транзистор отдает энергию С1, загорается один светодиод. Далее плавно заряжается С2, а ток базы VT1 снижается, что приводит к закрытию VT1 и открытию VT2 и загорается другой светодиод.

Полезный совет! Если использовать напряжение питания свыше 5В, потребуется применить резисторы с другим номиналом, чтобы исключить выход из строя светодиодов.

Схема вспышек на светодиоде

Сборка цветомузыки на светодиодах своими руками

Чтобы реализовать достаточно сложные схемы цветомузыки на светодиодах своими руками, необходимо сначала разобраться, как работает простейшая схема цветомузыки. Она состоит из одного транзистора, резистора и LED-прибора. Такую схему можно запитать от источника с номиналом от 6 до 12В. Функционирование схемы происходит за счет каскадного усиления с общим излучателем (эмиттером).

На базу VT1 поступает сигнал с изменяющейся амплитудой и частотой. В том случае, когда колебания сигнала превышают заданный порог, транзистор открывается и загорается светодиод. Минусом данной схемы является зависимость мигания от степени  звукового сигнала. Таким образом эффект цветомузыки будет проявляться только при определенной степени громкости звука. Если звук увеличить. светодиод будет все время гореть, а при уменьшении – чуть вспыхивать.

Чтобы добиться полноценного эффекта, используют схему цветомузыки на светодиодах с разбивкой диапазона звука на три части. Схема с трехканальным преобразователем звука питается от источника напряжением 9В. Огромное количество схем цветомузыки можно найти в интернете на различных форумах радиолюбителей. Это могут быть схемы цветомузыки с использованием одноцветной ленты, RGB-светодиодной ленты, а также схемы плавного включения и выключения светодиодов. Так же в сети можно отыскать схемы бегущих огней на светодиодах.

Схема для сборки цветомузыки своими руками

Конструкция индикатора напряжения на светодиодах своими руками

Схема индикатора напряжения включает резистор R1 (переменное сопротивление 10 кОм), резисторы R1, R2 (1кОм), два транзистора VT1 КТ315Б, VT2 КТ361Б, три светодиода – HL1, HL2 (красные), HLЗ (зеленый). X1, X2 – 6-вольтовые источники питания. В данной схеме рекомендуется использовать LED-приборы с напряжением 1,5В.

Алгоритм работы самодельного светодиодного индикатора напряжения представляет собой следующее: когда подается напряжение, светится центральный LED-источник зеленого цвета. В случае падения напряжения, включается светодиод красного цвета, расположенный слева. Увеличение напряжения заставляет светиться красный светодиод, размещенный справа. При среднем положении резистора все транзисторы будут в закрытом положении, и напряжение поступит лишь на центральный зеленый светодиод.

Открытие транзистора VT1 происходит, когда ползунок резистора передвигают вверх, тем самым повышая напряжение. В этом случае поступление напряжения на HL3 прекращается, и оно подается на HL1. При перемещении ползунка вниз (понижение напряжение) происходит закрытие транзистора VT1 и открытие VT2, что даст питание светодиоду HL2. С незначительной задержкой LED HL1 погаснет, HL3 один раз мелькнет и засветится HL2.

Схема сборки индикатора напряжения на светодиодах своими руками

Такую схему можно собрать, используя радиодетали от устаревшей техники. Некоторые собирают ее на текстолитовой плате, соблюдая масштаб 1:1 c размерами деталей, чтобы все элементы могли разместиться на плате.

Безграничный потенциал LED-освещения дает возможность самостоятельно конструировать из светодиодов различные светотехнические приборы с отличными характеристиками и достаточно низкой стоимостью.

«Тайный код» производителей светодиодов / Статьи и обзоры / Элек.ру

В массовых моделях светильников и ламп-ретрофитов сейчас очень часто применяются так называемые SMD-светодиоды. А светодиодная лента, вообще (за редким исключением) выпускается только с их использованием. В описании светотехнической продукции весьма редко сообщают о параметрах, установленных в ней SMD-светодиодов, ограничиваются лишь указанием четырех цифр — они официально считаются типоразмером светодиода, то есть несут информацию о длине и ширине его корпуса. Но, на самом деле, типоразмер дает ориентировочную информацию и о некоторых других параметрах SMD-светодиода. Поэтому опытные специалисты могут сравнивать между собой светильники и делать выбор только на основе указанных типоразмеров.

К концу 80-х годов XX века электронные устройства стали настолько сложными, что ремонт их стал осуществляться не пайкой отдельных компонентов, а заменой целых функциональных блоков. Поэтому задача обеспечения ремонтопригодности отдельной печатной платы стала не актуальной, зато потребовалось удешевить монтаж и увеличить его скорость, чтобы замена целой платы была экономически выгодной. Традиционный способ монтажа, предусматривающий использование ручного труда, оказался для решения этой задачи непригоден.

Выход был найден в виде технологии SMD (Surface Mounting Devices — компоненты, монтируемые на поверхность платы). Полностью автоматизированный монтаж осуществляется на той же стороне платы, где находятся токопроводящие дорожки, путем припа-ивания контактных площадок непосредственно к ним. При этом в плате не требуется делать отверстия для выводов. Компоненты поступают в машину для пайки, закрепленными на лентах. В свою очередь, эти ленты наматываются на специальные бобины. Дополнительное преимущество SMD-технологии — высокая плотность монтажа, недостижимая для традиционного подхода. Главный недостаток — низкая ремонтопригодность изделия, но, как уже отмечалось, в современных устройствах ремонт электроники осуществляется заменой готового блока.

В 2000-х годах произошел переход в жидкокристаллических дисплеях и телевизорах от подсветки матрицы люминесцентными лампами с холодным катодом к светодиодной подсветке. Для этого были созданы специальные SMD-светодиоды, так как светодиоды в распространенных тогда DIP-корпусах для подсветки дисплеев не подходили. В производство SMD-свето-диодов были вложены значительные средства, в результате к концу 2000-х годов предложение на рынке стало опережать спрос. И тогда производители обратили свой взор в сторону быстро развивающегося рынка светодиодного освещения.

Полупроводниковая светотехника в конце 2000-х развивалась в направлении применения в светильнике или лампе-ретрофите как можно меньшего числа светодиодов с как можно большей мощностью каждый. Тогда казалось, что это приведет к удешевлению светильников: чем меньше светодиодов, тем меньше затрат на их установку. Уже тогда были освоены в массовом производстве светодиоды мощностью до 3 Вт каждый, и, казалось, можно наращивать мощность отдельного светодиода. Но обнаружилось, что такой подход ведет только к удорожанию светильника, так как нужно использовать высокоэффективные теплоотводы, а также специальные оптические системы, чтобы не слепило глаза мощное световое излучение, исходящее от точечного источника.

Следует помнить, что SMD — это всего лишь технология монтажа и она может использоваться для самых разных типов светодиодов. Корпус, пригодный для SMD-монтажа, могут иметь и некоторые модели мощных светодиодов (порядка 3 Вт). Для таких SMD-светодиодов рассматриваемая здесь система обозначения типоразмера обычно не применяется, производители светильников приводят полное название светодиода.

На основе SMD-светодиодов стали строить по-настоящему массовые светильники и лампы-ретро-фиты. Если использовать большое количество светодиодов малой мощности (не более 0,2 Вт), то для их охлаждения будет достаточно естественной циркуляции воздуха вдоль платы. Для получения мягкого, рассеянного освещения достаточно простейшего рассеивателя, а в ряде случаев можно обойтись и без него. При этом необходимость в монтаже десятков, а то и сотен светодиодов в одном светильнике не является проблемой, так как процесс монтажа SMD-светодио-дов полностью автоматизирован.

Типоразмер SMD-светодиода обозначается четырьмя цифрами. Первые две цифры — округленное до целого значение длины корпуса в миллиметрах, умноженное на 10. Следующие две цифры — округленное до целого значение ширины корпуса в миллиметрах, умноженное на 10. Например, корпус светодиода SMD 3528 имеет размеры 3,5 х 2,8 мм.

В одном корпусе SMD-светодиода может располагаться не один, а несколько кристаллов. Они могут иметь отдельные выводы или же быть соединены последовательно.

Причины зависимости параметров от типоразмера

Безусловно, размеры корпуса косвенно влияют, например, на такой параметр, как максимально допустимая мощность, подаваемая на светодиод. Или на напряжение питания (в большем корпусе можно разместить большее количество кристаллов, соединенных последовательно). Но могут ли они оказать влияние, скажем, на индекс цветопередачи? И, если да, чем обусловлено такое влияние?

Помимо уже упомянутых физических параметров, напрямую зависящих от размеров корпуса светодиода, есть еще как минимум два фактора, определяющих его характеристики. Во-первых, это то, для каких применений изначально разрабатывались SMD-све-тодиоды данного типоразмера. Ситуация на рынке светотехники быстро меняется. Разработали, например, хорошие SMD-светодиоды специально для замены люминесцентных ламп, а тут случилось перепроизводство ретрофитов. Тогда вместо ретрофитов эти светодиоды идут в светильники. Во-вторых, время появления данного типоразмера на рынке. Для SMD-светодиодов каждый типоразмер жестко привязан к технологическим процессам. Причем для определенного типоразмера эти процессы у разных производителей практически одинаковы. Если технологию усовершенствовали, то в результате, как правило, хоть на долю миллиметра, но размеры корпуса изменились. Именно это обстоятельство и позволяет указывать в данных по светильникам в качестве основного параметра светодиодов их типоразмер.

Для снижения себестоимости готовой продукции компании, производящие светильники, практикуют закупки SMD-светодиодов от разных производителей, какие в данный момент стоят дешевле. В разных партиях светильника одной и той же модели могут применяться светодиоды различного происхождения, но их типоразмер остается неизменным.

Рассмотрим наиболее распространенные типоразмеры SMD-светодиодов и свойственные им особенности.

SMD 3528

Самый «древний» типоразмер SMD-светодиодов, появился еще в середине 2000-х годов. Изначально разрабатывался для подсветки ЖК-матриц, для чего он используется до сих пор. Именно на его примере были перенесены технологии из подсветки ЖК-матриц в освещение.

Из-за особенностей конструкции мощность SMD 3528 ограничена значением 0,1 Вт

Внутри светодиода SMD 3528 находится только один кристалл, поэтому падение напряжения в прямом направлении для белого светодиода лежит в пределах от 2,8 до 3,5 В. Корпус, как правило, имеет два вывода.

Недостатком светодиодов типоразмера 3528 является плохой отвод тепла от кристалла. По сути, отвод тепла возможен только в воздух, обтекающий корпус небольших размеров, а также в плату через паяные соединения, но размер контактных площадок тоже очень маленький. Все эти обстоятельства ограничивают подводимую к светодиоду мощность значением 0,1 Вт.

Основным преимуществом типоразмера 3528 является исключительная дешевизна светодиодов. Главным образом это связано с тем, что используются уже давно существующие производственные линии, затраты на которые уже многократно окупились. При этом, как правило, используются морально устаревшие технологии, из-за чего светоотдача таких светодиодов составляет порядка 70 лм/Вт.

Оптимальное применение SMD 3528 в светотехнике — светодиодные ленты для декоративной подсветки. Малые размеры корпуса в сочетании с дешевизной позволяют размещать светодиоды на ленте с большой плотностью, в результате чего при взгляде издалека светодиоды сливаются в непрерывную линию.

Светодиоды SMD 3528 — удачный выбор для декоративных светодиодных лент

Но для мощных осветительных лент, светильников, а также ретрофитов типоразмер 3528 не подходит, хотя в самой дешевой продукции малоизвестных производителей и применяется. Обычно для достижения приемлемых для светильника параметров светодиоды SMD 3528 «разгоняют», то есть вводят в форсированный режим, не предусмотренный разработчиками. Обратной стороной «разгона» является снижение времени службы светодиода против заявленного производителем.

SMD 2835

Тем не менее, размеры светодиода 3,5 х 2,8 мм оказались удобными для лент и ретрофитов. В результате в 2011 году была предложена конструкция корпуса такого светодиода, отличающаяся пониженным тепловым сопротивлением (4°С/Вт). Такой корпус имеет контактные площадки увеличенного размера, что обеспечивает эффективный теплообмен с платой. Нижняя поверхность корпуса ровная, в некоторых моделях светодиодов, в дополнение к контактным площадкам, через которые подается питание, есть еще и контактная площадка для теплоотвода.

Типоразмер 2835 пригоден не только для лент, но и для офисных светильников

Новый типоразмер назвали SMD 2835. То есть размеры те же, но изменения отражены перестановкой двух групп цифр в обозначении.

Максимальная подводимая мощность для типоразмера 2835, в зависимости от модификации, может составлять от 0,2 до 1 Вт. Светоотдача составляет около 100 лм/Вт.

Обычно в корпусе 2835 только один кристалл, но для мощных светодиодных лент выпускаются светодиоды SMD 2835 стремя кристаллами, включенными последовательно, прямое напряжение на таком светодиоде составляет 9-10 В.

Основное предназначение светодиодов SMD 2835 — ретрофиты и мощные осветительные ленты. Есть удачные примеры использования данного типоразмера и в недорогих офисных светильниках.

SMD 5050

Размер корпуса увеличен до 5×5 мм, что позволило разместить в нем три кристалла. Корпус имеет шесть выводов, то есть у каждого светодиода есть своя пара выводов. Выпускаются белые или монохромные светодиоды типоразмера 5050, а также RGB светодиоды. Для белых или монохромных можно реализовать последовательное соединение кристаллов, в результате чего прямое напряжение на белом светодиоде, в зависимости от модификации, составляет от 8,4 до 11,5 В. Данная возможность оказалась очень востребованной производителями светодиодных лент, так как позволяет использовать в ленте только параллельное соединение светодиодов. А это, в свою очередь, при напряжении питания 12 В уменьшает шаг резки ленты до одного светодиода против треху SMD 3528.

Отличительная особенность SMD 5050 — возможность размещения в корпусе трех кристаллов разных цветов

Недостатком типоразмера 5050 заключается в том, что в конструкции такого корпуса был «законсервирован» технологический уровень конца 2000-х годов, когда он был разработан. Тепло может отводиться за счет обтекания корпуса воздухом или за счет передачи на плату через контактные площадки небольшого размера, используемые для подачи питания. Суммарная подводимая мощность для всех кристаллов такого светодиода не превышает 0,2 Вт, хотя, конечно, производители бюджетных светильников и ретрофи-тов широко применяют «разгон». Наличие трех кристаллов в одном корпусе дает повышенный нагрев, так что при «разгоне» светодиоды типоразмера 5050 очень быстро выходят из строя. Производители сверхбюджетных светильников очень любят типоразмер 5050 за повышенное прямое напряжение, что упрощает построение светильника по бездрайверной схеме, характеризующейся высоким уровнем пульсации.

Светодиоды типоразмера 5050 продолжают совершенствоваться, так как для недорогих декоративных светодиодных лент, особенно RGB, ничего лучше пока не придумали. Светоотдача для светодиодов белого свечения составляет 80-90 лм/Вт. Но для светильников и ретрофитов типоразмер светодиодов 5050 безнадежно устарел.

SMD 5060

На самом деле, этот типоразмер должен по правилам называться SMD 5055, так как размер корпуса составляет 5 х 5,5 или 5 х 5,4 мм. Но по маркетинговым причинам его назвали SMD 5060, чтобы подчеркнуть принадлежность к следующему поколению по сравнению с предшественником SMD 5050.

Помимо небольшого увеличения размера корпуса, снижено температурное сопротивление, что обеспечило лучший тепловой режим для светодиодов. Это позволило повысить надежность светодиодов и увеличить светоотдачу до 100 лм/Вт. Верхний предел подводимой мощности поднялся до 0,3 Вт. Улучшение температурного режима работы коснулось и люминофора, что повысило стабильность его параметров. Поэтому белые светодиоды SMD 5060 обладают более высоким CRI (около 80) по сравнению с SMD 5050.

В остальном конструкция сохранила прежние особенности: 3 кристалла, 6 выводов, возможность создания RGB-светодиодов в данном типоразмере.

Основное применение SMD 5060 — осветительные светодиодные ленты. Как правило, такие светодиоды устанавливают в современные ленты с напряжением питания 24 В, шаг резки составляет 2 светодиода.

SMD 5630

Предыдущие типоразмеры предусматривали квадратную или схожую с ней форму. Но, с точки зрения эффективности теплоотвода, предпочтительно соотношение сторон корпуса SMD-светодиода, близкое к 2:1. Когда этот факт был установлен учеными, производители SMD-светодиодов стали разрабатывать типоразмеры с данным соотношением. Люминофор в таких светодиодах занимает почти всю лицевую поверхность, что обеспечивает более мягкий свет. Большие контактные площадки, гладкая нижняя поверхность и наличие (опционально) специальной дополнительной площадки для отвода тепла позволяют повысить подводимую мощность до 0,3 Вт.

Светодиоды SMD 5630 широко используются в лампах-ретрофитах

В светодиодах типоразмера SMD 5630 используется только один чип, но контактных площадок предусмотрено четыре, что улучшает тепловой контакт и делает более прочным крепление. Последнее обстоятельство делает удобным применение SMD 5630 в лампах типа «кукуруза», где светодиоды располагаются на поверхности корпуса лампы. Другой сферой применения SMD 5630 являются мощные осветительные ленты.

SMD 5730

Относительно современный типоразмер. По сравнению с SMD 5630 имеет немного большие размеры и только два вывода. Подводимая мощность может достигать, в зависимости от модификации, 0,5 или даже 1 Вт. Светоотдача составляет 100-130 лм/Вт. Всего этого удалось достичь благодаря расположению светодиода на металлической подложке, которая с нижней стороны корпуса находится в непосредственном контакте с платой.

Наиболее распространенные типоразмеры SMD-светодиодов

Типоразмер

Подводимая мощность, не более, Вт

Светоотдача, лм/Вт

Особенности

Оптимальные сферы применения

2835

0,1

Около 70

Низкая цена

Декоративные светодиодные ленты

3014

0,1

100-140

CRI до 90

Дизайнерские светильники, осветительные и декоративные светодиодные ленты

3528

1

Около 100

Большая мощность

Осветительные светодиодные ленты, офисные светильники

5050

0,2

80-90

Три кристалла, возможность RGB

Декоративные светодиодные ленты

5060

0,3

Около 100

Высокая надежность, три кристалла, возможность RGB

Осветительные светодиодные ленты

5630

0,3

Около 100

Прочное крепление, хороший теплоотвод

Лампы- ретроф иты, осветительные светодиодные ленты

5730

1

100-130

Большая мощность

Промышленные светильники, осветительные светодиодные ленты

Благодаря высокой светоотдаче, светодиоды SMD 5730 нашли свое применение в модулях для промышленного освещения. Также светодиоды типоразмера SMD 5730 иногда используются в мощных осветительных лентах.

Пример мощной осветительной ленты со светодиодами SMD 5730

SMD3014

Наиболее современный типоразмер, такие светодиоды массово выпускаются с 2013 года. Изначально этот типоразмер разрабатывался для решения задачи замены люминесцентных ламп Т5 на светодиодные ретрофиты. Это предъявляло повышенные требования к светодиодам, так как указанный тип ламп имел светоотдачу более 100 лм/Вт, а также высококачественный трехполосный люминофор, обеспечивающий превосходную точность цветопередачи. Поэтому светодиоды типоразмера SMD 3014 имеют светоотдачу 100-140 лм/Вт и CRI, достигающий 90. Позже выпуск светодиодных ретрофитов Т5 для широкого применения был признан экономически нецелесообразным, тем не менее, светодиоды SMD 3014 продолжили свою жизнь в качестве источника света с высокими характеристиками.

В корпусе размещается один, реже — два кристалла, соединенных последовательно. Прямое напряжение составляет приблизительно 3 или 6 В, в зависимости от количества кристаллов.

Металлические контактные площадки, через которые подводится электропитание, занимают почти всю площадь нижней поверхности, что обеспечивает отличный теплоотвод. SMD 3014 — самый маленький типоразмер для SMD-светодиодов, предназначенных для освещения, подводимая мощность не превышает 0,1 Вт. Но зато эти светодиоды можно размещать близко друг к другу, что открывает новые возможности для дизайнеров. Благодаря своим особенностям, SMD 3014 используются также в светильниках и светодиодных лентах с переменной цветовой температурой.

Типоразмер 3014 создавался изначально для замены люминесцентных ламп Т5, но потом его сфера применения была расширена

Заключение

Безусловно, параметры SMD-светодиодов определяются не только типоразмерами, но еще и качеством кристаллов, а также люминофора. Тем не менее, знание особенностей тех или иных типоразмеров позволяет избежать грубой ошибки при выборе светильника или же светодиодной лампы, когда, ради удешевления, в устройство установлены светодиоды, явно непредназначенные для такого применения.

©Алексей Васильев

Самые маленькие светодиоды | Предания и легенды

Компания Kingbright Electronic вывела на рынок самые маленькие SMD светодиоды. Диоды серии KPG-0603 от Kingbright имеют площадь всего 0.65 mm x 0.35 mm при толщине 0.2 mm . Эти сверхмалые SMD LED имеют угол обзора от 135° до 145° и обеспечивают на удивление высокую яркость.

Новая серия KPG-0603 доступна в красном, оранжевом, 624nm красно-оранжевом, желто-зеленом  чистом зеленом, желтом и синем цвете.

Форм-фактор 0.65 mm x 0.35 mm x 0.20 mm отлично подходит для использования в мобильных телефонах и портативных электронных устройствах, носимых компьютерах , цифровых фото- и видеокамерах, клавиатурах, наушниках, колонках и микрофонах, слуховых аппаратах и медицинских гаджетах, словом в тех портативных электронных аппаратах, где жестко лимитирован размер светодиода и форм-фактор 0402 уже оказывается слишком велик.

Основные характеристики:

  • Размеры 0.65 mm x 0.35 mm x 0.2 mm
  • Широкий угол обзора
  • Низкое энергопотребление
  • Класс чувствительности к влаге: 2
  • RoHS-совместимость
  • для внутреннего использования при температурах от -40°C до +85°C

Если представить себе диод, получится очень простое электронное устройство, которое позволяет току с легкостью течь из одного места в конкретно определенное другое. Это – фундаментальная часть современной электроники, а теперь самый маленикий диод в мире был изготовлен прямо из ДНК.

Новый микродиод был создан исследователями Университетов имени Бен-Гуриона в Негеве, Израиль и Университета штата Джорджии, США. О том, чтобы сделать диод совершенным, конечно, никто не говорит. Если бы мир был совершенен, бесконечный ток мог бы течь по компонентам устройства в одном направлении, и нулевой – в другом. В реальности эти устройства не способны пропускать через себя бесконечный поток, а также, пропускают хотя бы немного в обратном направлении.

Новый диод изготовлен из единственной нити ДНК, состоящей из всего лишь одиннадцати пар нуклеотидов с небольшой молекулой под названием коралин, внедренной в определенных местах по всей длине нити.

То, насколько хорошо работает диод, характеризуется – по крайней мере, частично – соотношением прямого и обратного тока. Однако, до этого команда из Колумбийскго Университета создала диод, который позволяет только одной из 250 частей тока проходить назад. Таким образом, в этом отношении, настоящая находка – не настолько впечатляющая.

Однако, устройство ученых Университетов Негевы и Джорджии действительно является самым маленьким в мире диодом, а также предполагает возможность уменьшить размеры современной электроники, практически, до молекулярного уровня. А это уже интересно.

Avago начинает серийный выпуск самых маленьких светодиодов

Миниатюрные светодиоды выпускались и раньше: например, в прошлом году компания Agilent представила трехцветные светодиоды в корпусах для поверхностного монтажа размерами 2,5 x 1,0 х 1,0 мм и даже 1,6 x 1,5 x 0,35 мм. Однако сегодня специалисты Avago Technologies превзошли это достижение. Новые светодиоды ChipLED HSMR-CL25, которые предназначены, прежде всего, для подсветки в карманных устройствах, имеют размеры всего лишь 1,6 х 0,8 х 0,25 мм. По сути дела, это самый маленький стандартный корпус для поверхностного монтажа.

Крохи доступны в двух вариантах: синего и белого цвета свечения. Несмотря на маленькие размеры, светят светодиоды довольно ярко: яркость синего светодиода – 11,2-45 микрокандел, белого – 28,5-112,5. Указанные величины достигаются при токе потребления 5 мА и с учетом рассеивающих свойств корпуса.

Производитель полагает, что светодиоды HSMR-CL25 найдут применение в подсветке клавиатур и индикаторах состояния самых компактных сотовых телефонов и других электронных устройств. Цена миниатюрных «светлячков» — 0,14 доллара в партии из 10000 штук.

Невидимый свет

От большого к малому, именно такого принципа придерживается история развития всевозможной техники. Так на смену огромным и массивным ЭВМ на смену пришли мини-буки, да чего уж говорить, даже некоторые модели телефонов сегодня могут выполнять практически те же функции. Развитие технологий идет своим чередом и не удивительно, что недавно ученые из Вашингтона объявили о создании сверхминиатюрных светодиодов.

На данный момент, эти светодиоды являются самыми маленькими искусственными источниками света, а их толщина составляет всего лишь три атома. Данное изобретение довольно последовательно, особенно если учитывать тенденции к миниатюризации электроники, поэтому разработчики открыто говорят, что за судьбу светодиодов не беспокоятся и уже знают, где их применять.

По словам разработчиков, новый светодиод обладает отличной гибкостью и при этом сохраняет механическую прочность и добавляет, что сделать светодиод еще меньше вряд ли у кого получится, так как современный уровень развития технологий этого сделать не позволит.

Предполагается, что подобные сверхминиатюрные светодиоды будут использоваться в гибких компьютерах и иных устройствах будущего на которые возлагаются большие надежды. В свою очередь основная область применения светодиодов, это, несомненно, реализация технологии оптических коммуникаций в пределах одного чипа, которая заменит традиционную передачу сигналов в виде электрического тока.

«Наши светодиоды в 10 тысяч раз тоньше, чем человеческий волос, но излучаемый ими свет, хоть и не виден человеческим глазом, но может быть зарегистрирован при помощи достаточно обычных светочувствительных датчиков. Это огромный скачек вперед в направлении миниатюризации современной электроники, ведь при помощи миниатюрного светодиода можно сделать все то, что позволяют сделать современные кремниевые «трехмерные» светодиоды. Крошечный светодиодный источник света является идеальным кандидатом на замену электрического соединения оптическим каналом. Такие оптические каналы будут иметь большую пропускную способность, но расходовать при этом гораздо меньше энергии» — Ксиэодонг Ксу, профессор материаловедения и физики из Вашингтонского университета.

Для изготовления светодиода, ученые использовали пленки диселинида вольфрама, относящийся к двухмерной полупроводниковой группе материалов, которые изготовили из изоляционной ленты. Однако более интересно то, что при изготовлении использовали метод Андрея Гейма и Константина Новоселова, которым за данный метод была присуждена Нобелевская премия по физики в 2010 году.

Несмотря на то, что на данном этапе разработки все складывается положительно, ученым необходимо сделать еще много. Так, например, команда всерьез взялась за повышение эффективности своей разработки. Параллельно с этим ведется разработка технологии позволяющей изготавливать светодиоды сразу на кристаллах.

Источники: www.alfael.ru, forum.efind.ru, engnews.ru, www.ixbt.com, www.sciencedebate2008.com, www.svetorezerv.ru, govorim-vsem.ru

«Коалиция-СВ»

Новейшая самоходная артиллерийская установка 2С35 Коалиция-СВ превзошла зарубежные аналоги по дальности стрельбы, установив рекорд, а также целому ряду других показателей. Разработчики самоходной …


Роботы с искусственным интеллектом

Понимая это, американская фирма UGOBE разработала игрушку динозавра Pleo с искусственным интеллектом. Динозаврик с первых же дней своей жизни начинает …


Преимущества каркасного дома

Активизировалось строительство загородной недвижимости. Наряду с деревянными и кирпичными строениями приобретают популярность строения по новым каркасным технологиям. Весомую роль при …


Гора Тахтали в регионе Анталии на побережье Турции

Часто описываемый, как космополитический, регион Анталия на средиземноморском побережье Турции может похвастаться многочисленными песчаными пляжами и местами с неописуемой …


Китай в средние века

В древние времена существовало государство в нижнем течении рек Янцзы и Хуанхэ, которое в III веке до нашей эры, объединилось …


Плавучий остров

Неподалёку от высокогорного озера Титикака, что находится на границе Перу и Боливии, расположено несколько небольших, но очень необычных островков, которые считаются …


Бородинское сражение

Бородинское сражение – крупнейшее сражение Отечественной войны 1812 года между русской и французской армиями — состоялось 7 сентября 1812 …


Самый маленький в мире светодиодный куб

Я уверен, что этот светящийся куб самый маленький в мире. Есть кубики поменьше, но они либо одноцветные, либо в них меньше светодиодов (3х3х3).

Мой LED cube меньше 2 см, в нём используется 64 светодиода 3.2×2.7 мм типа SMD RGB LED (Surface Mounted Device, Red+Green+Blue, Light Emitting Diode). Прочитав инструкцию, вы узнаете, как собрать такой куб.

Шаг 1: Материалы для куба

64 x светодиода RGB SMD

Вот светодиоды, которые я использовал в проекте, но вы можете поискать и другие варианты с квадратным профилем. Такой профиль упрощает пайку, позже вы узнаете почему.

Ардуино

Я использовал клон Ардуино Нано. Большинство Ардуино с 16 или более входами\выходами должны подойти. Если вам непривычно модифицировать PORT-команды, то лучше используйте настоящий Ардуино, основанный на ATMega (не используйте ESP8266, Arduino M0, Arduino Due, и т.д.)

Кастомная печатная плата

Ввиду чрезвычайно малых размеров, с которыми приходится работать, ручная пайка точечных соединений очень сложна, поэтому я спроектировал печатную плату. Найти её вы можете здесь.

Шаг 2: Спаиваем светодиоды столбиками

Светодиодный куб состоит из 16 столбиков.

Каждый столбик состоит из 4 повёрнутых светодиодов, они расположены таким образом, что запитав любые две из 4 дорожек, вы зажжете всего 1 цвет на одном светодиоде. Ардуино переключается между светодиодами так быстро, что ваши глаза не успевают за этим уследить, и вы думаете, что множество светодиодов горит одновременно.

После многочисленных идей об оптимальном размещении светодиодов я пришел к выводу, что самым удобным для меня способом будет создание трёх картонных уровней. Вот где будет удобно использовать симметричные квадратные светодиоды. Чтобы сохранить симметрию, притом, что я поворачиваю светодиод на каждом уровне, мне пришлось создать картонный шаблон с разными углублениями!

  1. Первые два уровня одинаковы
  2. В третьем уровне есть отверстия, создающие разную глубину

Посмотрите фото и видео для большего понимания.

Как и любой проект по изготовлению светодиодного куба, он трудозатратен, так что я соблюдал все меры предосторожности, чтобы не допустить ошибку и прийти к успеху. Я проверял все светодиоды на каждом шаге, чтобы засечь любую ошибку на ранней стадии.

Шаг 3: Проектирование печатной платы

Первое фото – это нижняя часть проводки на моём кубе обычного размера – там много перемычек, которые не могут закоротить друг друга. Конструкция сложная, но выполнимая при таких размерах.

И я наивно полагал, что и с маленьким кубом смогу сделать также. Тем не менее, несмотря на маленький размер куба, проложить провода для всех 64 диодов понизу печатной платы (и при этом не закоротить их) – вполне реально. Я выучил Eagle CAD (в основном по урокам на Ютуб) и спроектировал свою первую кастомную печатную плату. Это не идеал проектирования, но плата работает.

Шаг 4: Паяем

Расстояние между столбиками составляет около 1 миллиметра! Чтобы столбики не закоротили друг друга, я покрасил соединения лаком для ногтей, так что столбики не замкнут друг друга, даже если будут соприкасаться.

Я решил припаять столбики поверх платы, а не снизу, так как беспокоился, что у меня не получится сохранить их прямоту и ровность по отношению друг к другу. Побочным эффектом такого решения стало то, что мне периодически приходилось лезть носиком паяльника между проводами. Но, несмотря на эту трудность, я считаю, что сделал правильное решение. Сначала я припаял внутренние столбики, а затем начал по кругу проходиться до внешних столбиков.

Шаг 5: Небольшой твик в коде

В моём оригинальном кубе светодиоды были катодными, а здесь оказались анодными! Поэтому пришлось изолировать код, контролирующий светодиоды. Для работоспособности теперь нужно лишь инвертировать биты в файле cubeplex.h.


// Версия кода для катодных диодов (-)
PORTB = pinsB[pin1];
PORTC = pinsC[pin1];
PORTD = pinsD[pin1];

// Модификация для анодных диодов (+)
PORTB = ~pinsB[pin1];
PORTC = ~pinsC[pin1];
PORTD = ~pinsD[pin1];

Оригинальный код вы можете найти здесь, а модификацию найдёте тут.

Я искренне надеюсь, что вы соберёте такой же куб или даже еще меньший. Тем не менее, помните, что при постройке любого светодиодного куба есть множество мест, в которых можно допустить ошибку, которую нельзя будет исправить. Так что запаситесь временем и делайте проверки на каждом шаге.

SunLED представляет самый маленький в мире светодиод SMD RGB

Представив самый маленький в мире светодиод RGB, компания SunLED в очередной раз произвела революцию в оптоэлектронной промышленности, разработав полноцветный SMD в корпусе размером 0202. Имея размеры 0,65 мм x 0,65 мм x 0,2 мм, этот пакет тщательно поддерживает постоянную интенсивность каждого цвета, чтобы соответствовать любой спецификации дизайна. Чтобы предоставить решение RGB следующего поколения для дискретных SMD в минимально возможном размере, SunLED открыла будущее в сегодняшнем мире с помощью сверхтонкого светодиода SMD 0202 RGB: XZBGRBBRMER158W.Этот светодиод позволит инженерам и дизайнерам уменьшить размер занимаемой площади на этапах проектирования, обеспечивая при этом широкий спектр цветов, необходимых для увеличения функциональности продукта.

Высота корпуса 0,2 мм позволяет создавать низкие потолки в сочетании с широким углом обзора 140 ° для создания однородного светового рисунка. Благодаря прямому току 5 мА XZBGRBBRMER158W работает с высокой эффективностью, предоставляя инженерам экономичное решение для конструкций с RGB-подсветкой. Этот совершенно новый пакет будет лидером будущего в области подсветки и индикации в портативных устройствах, бытовой электронике, носимых устройствах, медицинском оборудовании и устройствах безопасности.

Характеристики продукта

  • Самый маленький в мире SMD RGB в корпусе 0,65 мм x 0,65 мм
  • Полноцветная подсветка для гибкого дизайна
  • Экономичный и высокоинтенсивный
  • Низкий ток: работа 5 мА
  • Широкий угол обзора: 140 °
  • Уровень чувствительности к влаге (MSL): 3

Применение продукта

  • Подсветка иконок и текста
  • Бытовая электроника
  • Приборы
  • Носимая электроника
  • Медицина и здравоохранение
  • Аудио и видео
  • Мобильные устройства и портативные устройства
  • Бытовая техника
  • Охрана и безопасность
  • Домашняя автоматизация

О SunLED

SunLED — один из ведущих мировых производителей оптоэлектронных компонентов.Компания предлагает обширную линейку светодиодных ламп, светодиодов для поверхностного монтажа и светодиодных дисплеев, которые соответствуют требованиям RoHS и REACH. SunLED, производящая продукцию с использованием самого современного оборудования, поддерживает крупных заказчиков, производящие мощности которых превышают 350 миллионов светодиодов в месяц. Компания неуклонно привержена сервису и качеству для поддержки инженерных требований, одновременно помогая в следующих достижениях в области электронных инноваций.

Контакт:

Компания «СанЛЭД», ООО

4010 Valley Blvd.# 100

Орех, Калифорния 91789-0935 США

+ 1-909-594-6000

Эл. Почта:

[email protected]

Веб-сайт:

www.SunLEDusa.com

Твиттер

[Native Advertising]

LED Cube Pendant — Самый маленький светодиодный куб в мире: 44 ступени (с изображениями)

Сначала схема может показаться сложной, но ее можно разбить на следующие части:

Controller & Charlieplexing:
Я надеялся найти микросхему, которая выполняет шарлиплексирование за меня, но не нашлось ни одной подходящей детали для 192 отдельных светодиодов.Хуже всего то, что требуется большое количество операций ввода-вывода, слишком много, чтобы использовать популярный ATMEGA328P и все дополнительные функции, которые я хотел. Таким образом, я остановился на довольно новом ATMEGA328PB, его прямом преемнике с большим количеством операций ввода-вывода в том же корпусе.

Управление питанием:
Еще одна проблема чарлиплексирования — его низкая яркость, которая в основном ограничивается выходным сопротивлением ввода-вывода. Чтобы избежать этого, напряжение питания должно быть как можно большим. TPS61220 — это очень высокоэффективный (обычно 95%) и небольшой (около 2×2 мм) повышающий преобразователь, обеспечивающий 5.5V, максимальное напряжение ATMEGA328PB. IO микроконтроллера используется для выбора между режимами высокой и низкой мощности для снижения энергопотребления в режимах глубокого сна.

Внутренние LiPo батареи:
Зарядка аккумуляторов полностью выполняется контроллером зарядки MCP72832-2, нам нужно только выбрать ток зарядки с помощью R6. Чтобы иметь возможность запускать устройство от USB-источника питания во время зарядки, я обычно выбираю двойной диод BAT54, но для увеличения срока службы батареи я отчаянно искал возможность уменьшить прямое напряжение.Это можно сделать с помощью P-канального МОП-транзистора в довольно необычной конфигурации. Когда питание USB отключено, Mosfet включается, снижая прямое напряжение до нескольких мВ. При подключенном USB-питании он отключается, и на цепь подается питание через D1. Этот специальный тип имеет очень низкую утечку GS (<1 мкА), чтобы уменьшить расход батареи в режимах низкого энергопотребления.

Определение мощности USB и напряжения батареи:
Для портативной системы хорошо знать, сколько энергии доступно.Резисторы с R7 по R9 образуют простую сеть, которая подключена к входу АЦП. Транзистор Q3.1 может отключать резисторы для экономии энергии в режиме пониженного энергопотребления. К сожалению, на данный момент нет кода, поддерживающего эту функцию.

Программирование через micro USB:
При такой небольшой сборке программирование контроллера может быть проблематичным. Поскольку в этом проекте мне не нужны линии передачи данных USB, я решил загрузить программу через этот разъем.См. «Макет схемы программирования» для более подробной информации.

Использование micro USB для других сигналов:
Разъем micro USB поддерживает различные аксессуары, даже некоторые без сигналов USB. Единственный резистор между землей и выводом ID определяет функцию. Подключенная к нему схема предназначена для обнаружения этого резистора с минимальным энергопотреблением. Общедоступной информации по этому вопросу очень мало, что требует разработки совместимого решения.Я буду держать вас в курсе.

Акселерометр:
Он был добавлен в основном, чтобы опробовать код и оборудование для предстоящего проекта, но я еще не успел его попробовать. Предполагается, что Mosfet Q1.1 и Q1.2 будут сдвигать уровень напряжения сигнала с 3,0 В до 5,5 В, транзистор Q4.2 может активировать прерывание при возникновении определенных событий (касание, двойное нажатие, бездействие).

Самый маленький светодиодный фонарик в мире, брелок для ключей, мини-тактический светодиодный латунный пуля 02, портативные фонарики, оборудование

Самый маленький в мире светодиодный фонарик Брелок Свет Мини-тактический светодиодный латунный пуля 02 Портативные фонарики Аппаратное обеспечение
  1. Дом
  2. Инструменты и товары для дома
  3. Аппаратное обеспечение
  4. Фонари
  5. Ручные фонарики
  6. Самый маленький светодиодный фонарик в мире Брелок Свет Мини-тактический светодиодный латунный пуля 02

Самый маленький в мире светодиодный фонарик, брелок для ключей, мини-тактическая светодиодная латунная пуля 02

Брелок для ключей Bullet 02 Самый маленький в мире светодиодный фонарик Тактический миниатюрный светодиодный светильник из латуни, Купить Bullet 02 — Мини-тактический светодиодный фонарик — Самый маленький в мире светодиодный фонарик-брелок для ключей (латунь): Ручные фонарики — ✓ БЕСПЛАТНАЯ ДОСТАВКА при подходящих покупках.Самый маленький светодиодный фонарик-брелок Light Mini Tactical LED Brass Bullet 02 Worlds, SLUGHAUS, Bullet 02 — Mini Tactical LED — Самый маленький светодиодный фонарик в мире брелок для ключей (латунь).



Самый маленький в мире светодиодный фонарик, брелок для ключей, мини-тактическая светодиодная латунная пуля 02

Bullet 02 — Mini Tactical LED — Самый маленький в мире светодиодный фонарик-брелок для ключей (латунь): Товары для дома. Купить Bullet 02 — Mini Tactical LED — Самый маленький в мире светодиодный фонарик-брелок для ключей (латунь): Ручные фонарики — ✓ БЕСПЛАТНАЯ ДОСТАВКА при подходящих покупках.Водонепроницаемый, огнестойкий, маленький, прочный, крошечный и яркий. . 2,5 см высотой. Легко носить. Меньше, чем другие наши фонарики. Совместимость с брелком. Два режима: включение / выключение функции поворота. Светит более 1 мили. Срок службы светодиода 100000 часов. . Отлично подходит для EDC, собачьих фонарей, кемпинга, пеших прогулок, аварийного освещения или аварийной ситуации. . Ударопрочный Micro Light LED. Анодированный алюминий Aerograde. . Использование аэрокосмического алюминия, самого функционального, минимального и изысканного фонарика EDC на рынке. Водонепроницаемый, огнестойкий, маленький, прочный, крошечный и яркий.Многофункциональный миниатюрный светодиодный фонарик для повседневного ношения. BULLET 02 имеет невероятные размеры 10 мм x 26 мм и вес всего 5 граммов. Это идеальный фонарик для повседневного ношения. Работает от трех батареек типа «таблетка» LR41, излучающих световой поток 20 люмен, всегда будет с вами, куда бы вы ни пошли. . . .



перейти к содержанию
  • Самый маленький в мире светодиодный фонарик, брелок для ключей, мини-тактическая светодиодная латунная пуля 02

    Drill America # 18 x 12 Сверло для удлинения самолетов из быстрорежущей стали DWDA / C Series DWDA / CX1218.KHCRAFT Профессиональный штангенциркуль Штангенциркуль Нержавеющая сталь Закаленная хромированная дюймовая / метрическая система 0-6 / 150 мм x 0,001 / 0,02 мм для прецизионных измерений снаружи / внутри / глубины / шага Упакован в кейс для хранения. 0,875 Длина, 0,312 OD Lyn-Tron с внутренней резьбой из оцинкованной латуни, размер винта 6-32, упаковка из 10 штук, 3dRose LSP_80547_1 Одинарный тумблерный переключатель Trunk Bay, Виргинские острова, 1080 нм, стиль 5 532 нм 450 нм 1100 нм Лазер 808 нм, 980 нм, наружный диаметр 1064 нм 6+ 190–550 нм / Профессиональные лазерные защитные очки с длиной волны 800–1100 нм для 405 нм. Inc M-132476 M-132476 6 дюймов x 8 x отверстий, вентилируемых HV № 100 Ekablue Алюминиево-оксидная бумага шлифовальные диски для неровных петель и петель Uneeda Enterprizes.Adesso 1502-15 Quinn 17 Table Lantern Smart Outlet Совместимость с Adesso — DROPSHIP. Самый маленький в мире светодиодный фонарик брелок Light Mini Tactical LED латунная пуля 02 , упаковка из 5 шестигранных гаек из нержавеющей стали 316, ширина 3/4 по плоскости, гладкая поверхность 1 / 2-13, размер резьбы 7/16, толстая, ASME B18.2.2 и ASTM A194. Оригинальные запасные части Supco B51. Westbrass 3-1 / 2 Фланец и заглушка для раковины с креплением EZ D2105-11 Античная медь, CHANNELLOCK T6 x 2 Отвертка Torx Occidental Leather T062A. Halco Lighting Technologies MR16WFL35 / L / AL T8U2FR12 / 850 / DIR / LED 70706 35W MR16 WFL LNS 12V GU5.3 Призма. Серый / Diecast Slide-Co 14572 Раздвижная дверь Универсальная наружная тяга. C2030SD2 ‐ SS Imperial C2000 Powered Liner Series 18-1 / 8 Depth 6 High 360 + CFM 2.5-4.9 Son 7RD 30W. Самый маленький в мире светодиодный фонарик Брелок Light Mini Tactical LED Brass Bullet 02 , Radnor 6 X 0,0400 X 7/8 A60O Оксид алюминия R.

Самый маленький в мире светодиодный фонарик, брелок для ключей, мини-тактическая светодиодная латунная пуля 02

Полотенце полностью восстановится после первой стирки.Thorsten Deer STAG Antlers Animal Reindeer Deer Stag Head Print Ring Плоское черное кольцо из вольфрама шириной 8 мм Обручальное кольцо от Roy Rose Jewelry: Clothing. Водонепроницаемость: закрытая структура ячеек, комбинация верха из кожи и текстиля для воздухопроницаемости и поддержки. с защитой от пузырей из закаленного стекла и тканью Atom для Samsung Galaxy J3 Star Black Slim Advanced Armor Двухслойный прочный противоударный гибридный чехол, наш широкий выбор элегантен для бесплатной доставки и бесплатного возврата. Тема: пейзажи деревенское очарование лето лесной настенный гобелен, легкая быстросохнущая обувь для воды Nebwe, мужская модная повседневная однотонная обувь Деловое лето, провод и кабели NAC Mini RG59 RCA PermaSeal II Compression Coaxial Connector 10 Pack 360 Degree Connect High Performance Gold Plated Brass 6- Цветные полосы Аудио / видео Разъемы A / V Perma Seal II RG-59.эта канистра веселого желтого цвета станет акцентом на декоре вашей кухни. Высокие внешние выступы предотвращают попадание жидкости на ковры. Услуга установки камней: Если вы хотите установить камни из стерлингового серебра (серебро 925 пробы), например, кольцо, Inovat Octopus 3,5 мм от 1 до 5 Стерео аудио наушники гарнитуры Наушники Разветвитель адаптер Конвертер Коннектор Устройство для обмена музыкой Музыкальный концентратор для Samsung iPhone iPod iPad MP3 / Планшеты MP4 Players, белые, красивая винтажная подставка для торта Crinolin Lady Raised 1936 года. Верхняя часть вазы была аккуратно изменена, чтобы придать ей овальную форму.это вне нашего контроля, и мы рекомендуем вам приобрести транспортную страховку. Жесткая дорожная сумка EVA для JBL Flip 5 Водонепроницаемая портативная беспроводная Bluetooth-колонка Vanerdun JBL Flip 5 Чехол для переноски динамика Черный, пуля и кисточки свисают примерно на 8 дюймов с цепи. вырез и низ отделан тонким женским шнурком. __________________________________________________________, Использует технологию TipExchange для одновременной зарядки до четырех устройств Quad 4-портовая настенная зарядка с прилагаемым наконечником для Kodak EasyShare M550 Компактный дизайн с откидными выступами, пожалуйста, позвольте небольшой размер ошибка из-за ручного измерения, не вызовет раздражения даже у самых чувствительных типов кожи и будет держать малышей в тепле и уюте в течение всего дня. Пакет из 100% переработанного пенополистирола, экструдированные белые сердечные венки на День святого Валентина и украшения. Кухня, телескоп 7X18 Mini Pocket HD Портативный монокуляр Высокоскоростной на открытом воздухе Путешествия Приключения Альпинизм Кемпинг Essential Li ght Telescope, доставка внутри страны: Товар может быть доставлен в пределах США.Эти магниты широко используются в выставочных витринах торговых точек и рекламных дисплеях. Honda CR-V MK IV 2012-2016 SUV 2, чехол для объектива Kalahari Swave, 11 см, черный, внешняя клетка для пятки оборачивается вокруг задней части обуви и обеспечивает поддержку в области пятки, фиолетовый Количество: пара (2 шт.) Примечание: переход: cm = 0mm = 0, мы гордимся тем, что производим этот высококачественный и прочный коаксиальный кабель.

Самый маленький в мире светодиодный фонарик-брелок для ключей Мини-тактический светодиодный латунный пуля 02
Купить Bullet 02 — Мини-тактический светодиодный фонарик — Самый маленький в мире светодиодный фонарик-брелок для ключей (латунь): портативные фонарики — ✓ БЕСПЛАТНАЯ ДОСТАВКА при соответствующих критериях покупки.

Vivid Wave Mini — наш самый маленький светодиодный неоновый гибкий кабель!

Продукция LED Neon Flex бывает разных профилей для различных применений. Некоторым проектам требуется меньший по размеру и более сдержанный свет, поэтому Vivid Wave Mini здесь, чтобы обеспечить это!

Этот светильник с плоским профилем идеально подходит для встраиваемого освещения. Меньший профиль позволяет использовать это приспособление на небольших полках, например, на торговой витрине, не выглядя неуместным.

Vivid Wave RGB (слева) с обрезанным концом для демонстрационных целей по сравнению с образцом Plug & Play Vivid Wave Mini 2400K (справа).

Благодаря разнообразию цветовых решений Vivid Wave Mini станет идеальным акцентом для любой ситуации. Продукция LED Neon Flex также отлично подходит для освещения границ! Этот небольшой профиль идеально подходит для проектов, которые хотят получить более элегантный и утонченный вид. В Vivid Wave Mini мы используем те же материалы и микросхемы, что и другие наши профили LED Neon Flex. Из-за этого вы не жертвуете яркостью или качеством ради этого меньшего прибора! Вы также можете установить на этот продукт диммер. Это позволяет вам контролировать, сколько света излучают ваши светильники.

Как и все наши продукты LED Neon Flex, Vivid Wave Mini имеет специально разработанное монтажное оборудование. Наши специально разработанные каналы удерживают светильник, чтобы убедиться, что ваши светильники надежно закреплены после установки.

Ознакомьтесь с основными характеристиками этого универсального прибора ниже!

Vivid Wave Mini — Краткие характеристики

Vivid Wave Mini — это светильник квадратного профиля с углом луча 160 градусов. Само приспособление имеет размер всего 0,39 дюйма x 0,39 дюйма (10 мм x 10 мм). Его рабочее напряжение составляет 24 В постоянного тока.

Мы производим этот светильник из тех же высококачественных и прочных материалов, что и другие наши продукты LED Neon Flex. Печатная плата проходит по боковой или нижней стороне ПВХ, позволяя этому приспособлению изгибаться как в горизонтальном, так и в вертикальном направлении.

Vivid Wave Mini имеет регулируемую яркость и доступен в статических цветах: красный, зеленый, синий, янтарный. Он также доступен со статической белой цветовой температурой в диапазоне от 2400K до 5700K.

Привлекательная Многофункциональная маленькая светодиодная полоса

Навигация по Alibaba.com и наткнулся на широкий выбор феноменального. Самая маленькая светодиодная лента . Их сенсационные особенности помогут вам оживить освещение в вашем помещении. Файл. Самая маленькая светодиодная лента имеет привлекательный дизайн не только из-за эффективности, но и из-за привлекательного внешнего вида. Файл. Самая маленькая светодиодная лента может использоваться в самых разных местах, от домашнего использования до промышленных помещений. Соответственно, они являются бесспорным лучшим выбором для световых решений.

На Alibaba.com расширение. Самая маленькая светодиодная лента поставляется в огромном ассортименте различных форм и размеров, учитывающих различные предпочтения пользователей. Файл. Самая маленькая светодиодная лента впечатляюще эластична, что обеспечивает очень долгий срок службы. Стоимость их обслуживания относительно невысока из-за нечастой потребности в замене. Мгновенное переключение этих. Самая маленькая светодиодная лента даже при очень низких температурах делает их очень привлекательными.

The. Самая маленькая светодиодная лента чрезвычайно энергоэффективна. Использование очень небольшого количества электроэнергии при получении более яркого света, чем традиционные лампочки. Для этого файл. Самая маленькая светодиодная лента поможет вам сэкономить на счетах за электроэнергию и обеспечит более высокую окупаемость инвестиций в долгосрочной перспективе. Их очень легко установить и использовать. В отличие от старых лампочек на основе ртути. Самая маленькая светодиодная лента не содержит ртути, следовательно, экологически безопасна.

Просмотрите Alibaba.com и откройте для себя лучшее. Самая маленькая светодиодная лента для вас. Их долговечность, энергосбережение и применимость в различных регионах гарантируют вам наилучшее соотношение цены и качества. Экономьте время, совершая покупки в Интернете, и приобретайте товары с самым высоким рейтингом. Они помогут вам достичь ваших целей в области освещения, удовлетворив и, возможно, превзойдя ваши ожидания.

AAXA HD Pico Самый маленький в мире светодиодный проектор 720P


HD Pico — это самый крошечный в мире светодиодный проектор 720P с собственным разрешением.С размерами всего 2,3 дюйма x 2,3 дюйма x 2,3 дюйма и весом всего 6 унций сердцем этого миниатюрного пикопроектора является оптический модуль с высоким разрешением 1280×720 пикселей, управляемый жидкими кристаллами на кремнии (LCoS), который обеспечивает иммерсивное изображение с высоким разрешением 80 дюймов (HD ) отображаются в темных областях. HD Pico имеет небольшие размеры, но обладает огромной производительностью и включает в себя литий-ионную батарею на 150 минут работы, светодиоды на 20000 часов работы, мощный динамик на 1 Вт и встроенный медиаплеер. Варианты подключения включают Mini-HDMI, AV и 3.Разъем для наушников 5 мм. HD Pico — настоящий проектор в любое время и в любом месте.


True 1280×720 High Definition


«Стандартные» проекторы Pico обычно используют оптические механизмы с разрешением 480×320 или 854×480. HD Pico более чем вдвое увеличивает разрешение пикселей за счет использования тепловизора с собственным разрешением 1280×720 пикселей.


Ультрамаленький и портативный


HD Pico объединяет усовершенствованный формирователь изображения 0,25 дюйма с разрешением 6 микрон на пиксель, соединенный с высокоэффективными 1 мм светодиодами последнего поколения, которые производят потрясающую яркость 50 люмен при 5 Вт (источник света не на экране).Комбинация этих двух технологий в сочетании с достижениями в области обработки поляризованного света и оптического рециклинга позволяет создать мощный оптический механизм высокой четкости, размер которого не превышает двух четвертей, сложенных вместе.

Светодиодный оптический двигатель на 20000 часов работы


В HD Pico используются высокопроизводительные светодиоды, способные работать 20 000 часов. HD Pico может работать 8 часов в день в течение почти 7 лет, прежде чем потребуется новый источник света.


Встроенный медиаплеер


HD Pico — настоящее мобильное проекционное решение. Помимо цифровых и композитных входов, HD Pico включает встроенный медиаплеер и возможности воспроизведения цифровых изображений. Мощный встроенный медиаплеер декодирует файлы непосредственно с USB-накопителя или карты Micro SD и способен обрабатывать видео с высоким разрешением, фильмы и изображения с высоким разрешением. Эта функция позволяет пользователю смотреть фильмы и просматривать изображения в любое время и в любом месте.


Бортовая литий-ионная батарея на 150 минут


В HD Pico используется литий-ионный аккумулятор премиум-класса на 150+ минут (экономичный режим), способный поддерживать высокую емкость даже после 1000 циклов зарядки. Встроенный аккумулятор означает полноценную работу «в любое время и в любом месте».


Твердотельный светодиодный источник света


Короткое (мгновенное) время разогрева и охлаждения.Благодаря светодиодным проекторам больше не нужно ждать длительного прогрева и охлаждения лампы.

Светодиодный источник света HD Pico LED Pico Projector позволяет достичь полной яркости за секунды. Он также мгновенно отключается.

Длительный срок службы


Обычные ламповые проекторы требуют частой замены лампы на очень дорогие лампы, которые стоят сотни долларов.

Светодиодный источник света HD Pico служит в 10 раз дольше, чем обычные лампы, поэтому замена ламп накаливания осталась в прошлом!


Несколько вариантов подключения


Пико-проектор AAXA HD оснащен множеством входов, включая HDMI и композитное видео, что позволяет пользователям подключать массив источников данных, включая смартфоны, непосредственно к проектору.С AAXA HD Pico профессиональные пользователи могут проводить презентации, воспроизводить видео и смотреть цифровое телевидение с одного устройства с автономным питанием.


ПРИМЕЧАНИЕ:

  • Для подключения Apple iPhone / iPad требуется специальный кабель-адаптер Apple.
  • Для подключения смартфона / планшета Android требуется специальный переходной кабель (MHL, Slimport и т. Д.).
  • Убедитесь, что ваше мобильное устройство поддерживает вывод видео.

  • Входы и разъемы


    HD Pico — это устройство с широкими возможностями подключения и имеет множество входов / выходов, включая mini-HDMI, композитный AV, разъем для наушников, а также входные порты для цифровых данных с карты памяти micro SD или USB-накопителя.

    Экологически чистый



    Источник света для пикопроектора AAXA HD потребляет меньше энергии.Светодиод также на 100% не содержит ртути, и, поскольку лампа никогда не требует замены, нет отбракованных ламп.

    Устройства

    Luminus Pico-CoB предлагают самый маленький LES и позволяют использовать крошечные осветительные приборы с перфорацией — LED professional

    Маленькие, 6 мм LES, CoB обычно ограничены углом обзора примерно 9 градусов. Новые Pico-CoB от Luminus позволяют использовать светильники с углами обзора до 5 градусов и создавать высокую плотность потока, или яркость, что так важно для приложений направленного освещения с высоким качеством света для музеев, жилых домов, гостиниц и других помещений.

    CXM-3 имеет LES 3,5 мм и излучает до 675 люмен при минимальном теплом свете 3000K 90 CRI, что делает его идеальной заменой галогенного прожектора мощностью 50 Вт. CXM-4 имеет LES 4,5 мм и генерирует до 1255 люмен, и, как и все Luminus CoB, эти новые устройства специфицированы и проходят 100% заводские испытания при температуре перехода 85 ° C, чтобы гарантировать производительность и стабильность, соответствующие требованиям. ожидания пользователей в реальных условиях применения.

    «Наши Pico-CoB с технологией Gen4 действительно вдохновляют дизайнеров светильников, потому что они могут использовать наши более высокие максимальные температуры корпуса и максимальные токи возбуждения для создания инновационных новых конструкций с меньшими форм-факторами», — сказал Том Джори, вице-президент по маркетингу освещения в Luminus Devices.«Это означает, что дизайнеры освещения могут определять светильники с нашими Pico-CoB и создавать уникальные драматические эффекты с более длинными лучами и более узкими лучами, создаваемыми крошечными светильниками, включающими в себя гладкий дизайн, который скрыт в архитектуре».

    Для получения дополнительной информации посетите www.luminus.com

    О компании Luminus Devices, Inc:

    Luminus, Inc. разрабатывает и продает решения для твердотельного освещения (SSL), чтобы помочь своим клиентам перейти от традиционных ламповых технологий к долговечному и энергоэффективному светодиодному освещению.

    Обновлено: 21.04.2021 — 17:51

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *