Светодиод схема подключения: Правильная схема подключения светодиодов: последовательно или параллельно

Содержание

Правильная схема подключения светодиодов: последовательно или параллельно

Самое правильное подключение нескольких светодиодов — последовательное. Сейчас объясню почему.

Дело в том, что определяющим параметром любого светодиода является его рабочий ток. Именно от тока через светодиод зависит то, какова будет мощность (а значит и яркость) светодиода. Именно превышение максимального тока приводит к чрезмерному повышению температуры кристалла и выходу светодиода из строя — быстрому перегоранию либо постепенному необратимому разрушению (деградации).

Ток — это главное. Он указан в технических характеристиках светодиода (datasheet). А уже в зависимости от тока, на светодиоде будет то или иное напряжение. Напряжение тоже можно найти в справочных данных, но его, как правило, указывают в виде некоторого диапазона, потому что оно вторично.

Для примера, заглянем в даташит светодиода 2835:

Как видите, прямой ток указан четко и определенно — 180 мА. А вот напряжение питания светодиодов при таком токе имеет некоторый разброс — от 2.

9 до 3.3 Вольта.

Получается, что для того, чтобы задать требуемый режим работы светодиода, нужно обеспечить протекание через него тока определенной величины. Следовательно, для питания светодиодов нужно использовать источник тока, а не напряжения.

Источник тока (или генератор тока) — источник электрической энергии, который поддерживает постоянное значение силы тока через нагрузку с помощью изменения напряжения на своем выходе. Если сопротивление нагрузки, например, возрастает, источник тока автоматически повышает напряжение таким образом, чтобы ток через нагрузку остался неизменным и наоборот. Источники тока, которыми запитывают светодиоды, еще называют драйверами.

Конечно, к светодиоду можно подключить источник стабилизированного напряжения (например, выход лабораторного блока питания), но тогда нужно точно знать какой величины должно быть напряжение для получения заданного тока через светодиод.

Например, в нашем примере со светодиодом 2835, можно было бы подать на него где-то 2. 5 В и постепенно повышать напругу до тех пор, пока ток не станет оптимальным (150-180 мА).

Так делать можно, но в этом случае придется настраивать выходное напряжение блока питания под каждый конкретный светодиод, т.к. все они имеют технологический разброс параметров. Если, подключив к одному светодиоду 3.1В, вы получили максимальный ток в 180 мА, то это не значит, что поменяв светодиод на точно такой же из той же партии, вы не сожжёте его (т.к. ток через него при напряжении 3.1В запросто может превысить максимально допустимое значение).

К тому же необходимо очень точно поддерживать напряжение на выходе блока питания, что накладывает определенные требования к его схемотехнике. Превышение заданного напряжения всего на 10% почти гарантированно приведет к перегреву и выходу светодиода из строя, так как ток при этом превысит все мыслимые значения.

Вот прекрасная иллюстрация к вышесказанному:

А самое неприятное то, что проводимость любого светодиода (который по сути является p-n-переходом) находится в очень сильной зависимости от температуры.

На практике это приводит к тому, что по мере разогрева светодиода, ток через него начинает неумолимо возрастать. Чтобы вернуть ток к требуемому значению, придется понижать напряжение. В общем, как ни крути, а без контроля тока никак не обойтись.

Поэтому самым правильным и простым решением будет использовать для подключения светодиодов драйвера тока (он же источник тока). И тогда будет совершенно неважно, какой вы возьмете светодиод и каким будет прямое напряжение на нем. Нужно просто найти драйвер на нужный ток и дело в шляпе.

Теперь, возвращаемся к главному вопросу статьи — почему все-таки последовательное подключение, а не параллельное? Давайте посмотрим, в чем разница.

Параллельное подключение

При параллельном подключении светодиодов, напряжение на них будет одинаковым. А так как не существует двух диодов с абсолютно одинаковыми характеристиками, то будет наблюдаться следующая картина: через какой-то светодиод будет идти ток ниже номинального (и светить он будет так себе), зато через соседний светодиод будет херачить ток в два раза превышающий максимальный и через полчаса он сгорит (а может и быстрее, если повезет).

Очевидно, что такого неравномерного распределения мощностей нужно избегать.

Для того, чтобы существенно сгладить разброс в ТТХ светодиодов, лучше подключать их через ограничительные резисторы. Напряжение блока питания при этом может быть существенно выше прямого напряжения на светодиодах. Как подключать светодиоды к источнику питания показано на схеме:

Проблема такой схемы подключения светодиода в том, что чем больше разница между напряжением блока питания и напряжением на диодах, тем больше бесполезной мощности рассеивается на ограничительных резисторах и тем, соответственно, ниже КПД всей схемы.

Ограничение тока происходит по простой схеме: повышение тока через светодиод приводит к повышению тока и через резистор тоже (т.к. они включены последовательно). На резисторе увеличивается падение напряжения, а на светодиоде, соответственно, уменьшается (т.к. общее напряжение постоянно). Уменьшение напряжения на светодиоде автоматически приводит к снижению тока.

Так все и работает.

В общем, сопротивление резисторов рассчитывается по закону Ома. Разберем на конкретном примере. Допустим, у нас есть светодиод с номинальным током 70 мА, рабочее напряжение при таком ток равно 3.6 В (это все берем из даташита к светодиоду). И нам нужно подключить его к 12 вольтам. Значит, нам нужно рассчитать сопротивление резистора:

Получается, что для питания светодиода от 12 вольт нужно подключить его через 1-ваттный резистор на 120 Ом.

Точно таким же образом, можно посчитать, каким должно быть сопротивление резистора под любое напряжение. Например, для подключение светодиода к 5 вольтам сопротивление резистора надо уменьшить до 24 Ом.

Значения резисторов под другие токи можно взять из таблицы (расчет производился для светодиодов с прямым напряжением 3.3 вольта):

UпитILED
5 мА10 мА20 мА30 мА50 мА70 мА
100 мА
200 мА300 мА
5 вольт340 Ом170 Ом85 Ом57 Ом34 Ом24 Ом17 Ом8. 5 Ом5.7 Ом
12 вольт1.74 кОм870 Ом435 Ом290 Ом174 Ом124 Ом87 Ом43 Ом29 Ом
24 вольта4.14 кОм2.07 кОм1.06 кОм690 Ом414 Ом296 Ом207 Ом
103 Ом
69 Ом

При подключении светодиода к переменному напряжению (например, к сети 220 вольт), можно повысить КПД устройства, взяв вместо балластного резистора (активного сопротивления) неполярный конденсатор (реактивное сопротивление). Подробно и с конкретными примерами мы разбирали этот момент в статье про подключение светодиода к 220 В.

Последовательное подключение

При последовательном же подключении светодиодов через них протекает один и тот же ток. Количество светодиодов не имеет значение, это может быть всего один светодиод, а может быть 20 или даже 100 штук.

Например, мы можем взять один светодиод 2835 и подключить его к драйверу на 180 мА и светодиод будет работать в нормальном режиме, отдавая свою максимальную мощность. А можем взять гирлянду из 10 таких же светодиодов и тогда каждый светодиод также будет работать в нормальном паспортном режиме (но общая мощность светильника, конечно, будет в 10 раз больше).

Ниже показаны две схемы включения светодиодов, обратите внимание на разницу напряжений на выходе драйвера:

Так что на вопрос, каким должно быть подключение светодиодов, последовательным или параллельным, может быть только один правильный ответ — конечно, последовательным!

Количество последовательно подключенных светодиодов ограничено только возможностями самого драйвера.

Идеальный драйвер может

бесконечно повышать напряжение на своем выходе, чтобы обеспечить нужный ток через нагрузку, поэтому к нему можно подключить бесконечное количество светодиодов. Ну а реальные устройства, к сожалению, имеют ограничение по напряжению не только сверху, но и снизу.

Вот пример готового устройства:

Мы видим, что драйвер способен регулировать выходное напряжение только лишь в пределах 64…106 вольт. Если для поддержания заданного тока (350 мА) нужно будет поднять напряжение выше 106 вольт, то облом. Драйвер выдаст свой максимум (106В), а уж какой при этом будет ток — это от него уже не зависит.

И, наоборот, к такому led-драйверу нельзя подключать слишком мало светодиодов. Например, если подключить к нему цепочку из 10-ти последовательно включенных светодиодов, драйвер никак не сможет понизить свое выходное напряжение до необходимых 32-36В. И все десять светодидов, скорее всего, просто сгорят.

Наличие минимального напряжения объясняется (в зависимости от схемотехнического решения) ограничениями мощности выходного регулирующего элемента либо выходом за предельные режимы генерации импульсного преобразователя.

Разумеется, драйверы могут быть на любое входное напряжение, не обязательно на 220 вольт. Вот, например, драйвер превращающий любой источник постоянного напряжения (блок питания) от 6 до 20 вольт в источник тока на 3 А:

Вот и все. Теперь вы знаете, как включить светодиод (один или несколько) — либо через токоограничительный резистор, либо через токозадающий драйвер.

Как выбрать нужный драйвер?

Тут все очень просто. Выбирать нужно всего лишь по трем параметрам:

  1. выходной ток;
  2. максимальное выходное напряжение;
  3. минимальное выходное напряжение.

Выходной (рабочий) ток драйвера светодиодов — это самая важная характеристика. Ток должен быть равен оптимальному току для светодиодов.

Например, в нашем распоряжении оказалось 10 штук полноспектральных светодиодов для фитолампы:

Номинальный ток этих диодов — 700 мА (берется из справочника). Следовательно, нам нужен драйвер тока на 700 мА. Ну или чуточку меньше, чтобы продлить срок жизни светодиодов.

Максимальное выходное напряжение драйвера должно быть больше, чем суммарное прямое напряжение всех светодиодов. Для наших фитосветодиодов прямое напряжение лежит в диапазоне 3. ..4 вольта. Берем по-максимуму: 4В х 10 = 40В. Наш драйвер должен быть в состоянии выдать не менее 40 вольт.

Минимальное напряжение, соответственно, рассчитывается по минимальному значению прямого напряжения на светодиодах. То есть оно должно быть не более 3В х 10 = 30 Вольт. Другими словами, наш драйвер должен уметь снижать выходное напряжение до 30 вольт (или ниже).

Таким образом, нам нужно подобрать схему драйвера, рассчитанного на ток 650 мА (пусть будет чуть меньше номинального) и способного по необходимости выдавать напряжение в диапазоне от 30 до 40 вольт.

Следовательно, для наших целей подойдет что-нибудь вроде этого:

Разумеется, при выборе драйвера диапазон напряжений всегда можно расширять в любую сторону. Например, вместо драйвера с выходом на 30-40 В прекрасно подойдет тот, который выдает от 20 до 70 Вольт.

Примеры драйверов, идеально совместимых с различными типами светодиодов, приведены в таблице:

СветодиодыКакой нужен драйвер
60 мА, 0. 2 Вт (smd 5050, 2835)см. схему на TL431
150мА, 0.5Вт (smd 2835, 5630, 5730)драйвер 150mA, 9-34V (можно одновременно подключить от 3 до 10 светодиодов)
300 мА, 1 Вт (smd 3528, 3535, 5730-1, LED 1W)драйверы 300мА, 3-64V (на 1-24 последовательно включенных светодиода)
700 мА, 3 Вт (led 3W, фитосветодиоды)драйвер 700мА (для 6-10 светодиодов)
3000 мА, 10 Ватт (XML2 T6)драйвер 3A, 21-34V (на 7-10 светодиодов) или см. схему

Кстати, для правильного подключения светодиодов вовсе не обязательно покупать готовый драйвер, можно просто взять какой-нибудь подходящий блок питания (например, зарядник от телефона) и прикрутить к нему простейший стабилизатор тока на одном транзисторе или на LM317.

Готовые схемы стабилизаторов тока для светодиодов можно взять из этой статьи.

Схемы подключения светодиодов к 220В и 12В

Рассмотрим способы включения лед диодов средней мощности к наиболее популярным номиналам 5В, 12 вольт, 220В. Затем их можно использовать при изготовлении цветомузыкальных устройств, индикаторов уровня сигнала, плавное включение и выключение. Давно собираюсь сделать плавный искусственный рассвет , чтобы соблюдать распорядок дня. К тому же эмуляция рассвета позволяет просыпаться гораздо лучше и легче.

Про подключение светодиодов к 12 и 220В читайте в предыдущей статье, рассмотрены все способы от сложных до простых, от дорогих до дешёвых.

Содержание

  • 1. Типы схем
  • 2. Обозначение на схеме
  • 3. Подключение светодиода к сети 220в, схема
  • 4. Подключение к постоянному напряжению
  • 5. Самый простой низковольтный драйвер
  • 6. Драйвера с питанием от 5В до 30В
  • 7. Включение 1 диода
  • 8. Параллельное подключение
  • 9. Последовательное подключение
  • 10. Подключение RGB LED
  • 11. Включение COB диодов
  • 12. Подключение SMD5050 на 3 кристалла
  • 13. Светодиодная лента 12В SMD5630
  • 14. Светодиодная лента RGB 12В SMD5050

Типы схем

Схема подключения светодиодов бывает двух типов, которые зависят от источника питания:

  1. светодиодный драйвер со стабилизированным током;
  2. блок питания со стабилизированным напряжением.

В первом варианте применяется специализированный  источник, который имеет определенный стабилизированный ток, например 300мА. Количество подключаемых LED диодов ограничено только его мощностью. Резистор (сопротивление) не требуется.

Во втором варианте стабильно только напряжение. Диод имеет очень малое внутреннее сопротивление, если его включить без ограничения Ампер, то он сгорит. Для включения  необходимо использовать токоограничивающий резистор.
Расчет резистора для светодиода можно сделать на специальном калькуляторе.

Калькулятор учитывает 4 параметра:

  • снижение напряжения на одном LED;
  • номинальный рабочий ток;
  • количество LED в цепи;
  • количество вольт на выходе блока питания.

Разница кристаллов

Если вы используете недорогие LED элементы китайского производства, то скорее всего у них будет большой разброс параметров. Поэтому реальное значение Ампер цепи будет отличатся и потребуется корректировка установленного сопротивления. Чтобы проверить насколько велик разброс параметров, необходимо включить все последовательно. Подключаем питание светодиодов и  затем понижаем напряжение до тех пор, когда они будут едва светиться. Если характеристики отличаются сильно, то часть LED будет работать ярко, часть тускло.

Это приводит к тому, что на некоторых элементах электрической цепи мощность будет выше, из-за этого они будут сильнее нагружены.  Так же будет повышенный нагрев, усиленная деградация, ниже надежность.

Обозначение на схеме

Для обозначения на схеме используется две вышеуказанные пиктограммы. Две параллельные стрелочки указывают, что светит очень сильно, количество зайчиков в глазах не сосчитать.

Подключение светодиода к сети 220в, схема

Для подключения к сети 220 вольт используется драйвер, который является источником стабилизированного тока.

Схема драйвера для светодиодов бывает двух видов:

  1. простая на гасящем конденсаторе;
  2. полноценная с использованием микросхем стабилизатора;

Собрать драйвер на конденсаторе очень просто, требуется минимум деталей и времени. Напряжение 220В снижается за счёт высоковольтного конденсатора, которое затем выпрямляется и немного стабилизируется. Она используется в дешевых светодиодных лампах. Основным недостатком является высокой уровень пульсаций света, который плохо действует на здоровье. Но это индивидуально, некоторые этого вообще не замечают. Так же схему сложно рассчитывать из-за разброса характеристик электронных компонентов.

Полноценная схема с использованием специализированных микросхем обеспечивает лучшую стабильность на выходе драйвера. Если драйвер хорошо справляется с нагрузкой, то коэффициент пульсаций будет не выше 10%, а  в идеале 0%. Чтобы не делать драйвер своими руками, можно взять из неисправной лампочки или светильника, если проблема у них была  не с питанием.

Если у вас есть более менее подходящий стабилизатор, но сила тока меньше или больше, то её можно подкорректировать с минимум усилий. Найдите технические характеристики на микросхему из драйвера. Чаще всего количество Ампер на выходе задаётся резистором или несколькими резисторами, находящимися рядом с микросхемой. Добавив к ним еще сопротивление или убрав один из них можно получить необходимую силу тока. Единственное нельзя превышать указанную  мощность.

Подключение к постоянному напряжению

..

Далее будут рассмотрены  схемы подключения светодиодов к постоянному напряжению. Наверняка у вас дома найдутся блоки питания со стабилизированный  полярным напряжением на выходе. Несколько примеров:

  1. 3,7В – аккумуляторы от телефонов;
  2. 5В – зарядные устройства с USB;
  3. 12В – автомобиль, прикуриватель, бытовая электроника, компьютер;
  4. 19В – блоки от ноутбуков, нетбуков, моноблоков.

Самый простой низковольтный драйвер

Простейшая схема стабилизатора тока для светодиодов состоит из линейной микросхемы LM317 или его аналогов. На выходе таких стабилизаторов может быть от 0,1А до 5А. Основные недостатки это невысокий КПД и сильный нагрев. Но это компенсируется максимальной простотой изготовления.

Входное до 37В, до 1,5 Ампера для корпуса указанного на картинке.

Для рассчёта сопротивления, задающего рабочий ток используйте калькулятор стабилизатор тока на LM317 для светодиодов.

Драйвера с питанием от 5В до 30В

Если у вас есть подходящий источник питания от какой либо бытовой техники, то для включения лучше использовать низковольтный драйвер. Они бывают повышающие и понижающие.  Повышающий даже из 1,5В сделает 5В, чтобы светодиодная цепь работала. Понижающий из 10В-30В сделает более низкое, например 15В.

В большом ассортименте они продаются у китайцев, низковольтный драйвер отличается двумя регуляторами от простого стабилизатора Вольт.

Реальная мощность такого стабилизатора будет ниже, чем указал китаец. У параметрах модуля пишут характеристику микросхемы и не всей конструкции. Если стоит большой радиатор, то такой модуль потянет 70% — 80% от обещанного. Если радиатора нет, то 25% — 35%.

Особенно популярны модели на LM2596, которые уже прилично устарели из-за низкого КПД. Еще они сильно греются, поэтому без системы охлаждения не держат более 1 Ампера.

Более эффективны XL4015, XL4005, КПД гораздо выше. Без радиатора охлаждения выдерживают до 2,5А. Есть совсем миниатюрные модели на MP1584 размером 22мм на 17мм.

Включение 1 диода

Чаще всего используются 12 вольт, 220 вольт и 5В. Таким образом делается маломощная светодиодная подсветка настенных выключателей на 220В. В заводских стандартных выключателях чаще всего ставится неоновая лампа.

Параллельное подключение

При параллельном соединении  желательно на каждую последовательную цепь диодов использовать отдельный резистор, чтобы получить максимальную надежность. Другой вариант, это ставить одно мощное сопротивление на несколько LED. Но при выходе одного LED из строя увеличится ток на других оставшихся. На целых будет выше номинального или заданного, что значительно сократит ресурс и увеличит нагрев.

Рациональность применений каждого способа  рассчитывают исходя из требований к изделию.

Последовательное подключение

Последовательное подключение при питании от 220в используют в филаментных диодах и светодиодных лентах на 220 вольт.  В длинной цепочке из 60-70 LED на каждом  падает 3В, что и позволяет подсоединять напрямую  к высокому напряжению. Дополнительно используется только выпрямитель тока, для получения плюса и минуса.

Такое соединение применяют в любой светотехнике:

  1. светодиодные лампах для дома;
  2. led светильники;
  3. новогодние гирлянды на 220В;
  4. светодиодные ленты на 220.

В лампах для дома обычно используется до 20 LED включенных последовательно, напряжение на них получается около 60В. Максимальное количество используется в китайских лампочках кукурузах, от 30 до 120 штук LED. Кукурузы не имеют защитной колбы, поэтому электрические контакты на которых до 180В полностью открыты.

Соблюдайте осторожность, если видите длинную последовательную цепочку, к тому же на них не всегда есть заземление.  Мой сосед схватил кукурузу голыми руками и потом рассказывал увлекательные стихи из нехороших слов.

Подключение RGB LED

Маломощные трёхцветные RGB светодиоды состоят из трёх независимых кристаллов, находящихся в одном корпусе. Если 3 кристалла (красный, зеленый, синий) включить одновременно, то получим белый свет.

Управление каждым цветом происходит независимо от других при помощи RGB контроллера. В блоке управления есть готовые программы и ручные режимы.

Включение COB диодов

Схемы подключения такие же, как у однокристальных и трехцветных светодиодов SMD5050, SMD 5630, SMD 5730. Единственное отличие, вместо 1 диода включена последовательная цепь из нескольких кристаллов.

Мощные светодиодные матрицы имеют в своём составе множество кристаллов включенных последовательно и параллельно. Поэтому питание требуется от 9 до 40 вольт, зависит от мощности.

Подключение SMD5050 на 3 кристалла

От обычных диодов SMD5050 отличается тем, что состоит из 3 кристаллов  белого света, поэтому имеет 6 ножек.  То есть он равен трём SMD2835, сделанным на этих же кристаллах.

При параллельном включении с использованием одного резистора надежность будет ниже. Если один их кристаллов выходит из строя, то увеличивается сила тока через оставшиеся 2. Это приводит к ускоренному выгоранию оставшихся.

При использовании отдельного сопротивления для каждого кристалла, выше указанный недостаток устраняется. Но при этом в 3 раза возрастает количество используемых резисторов и схема подключения светодиода становится сложней. Поэтому оно не используется в светодиодных лентах и лампах.

Светодиодная лента 12В SMD5630

Наглядным примером подключения светодиода к 12 вольтам является светодиодная лента. Она состоит из секций по 3 диода и 1 резистора, включенных последовательно. Поэтому разрезать её можно только в указанных местах между этими секциями.

 

Светодиодная лента RGB 12В SMD5050

В RGB ленте используется три цвета, каждый управляется отдельно, для каждого цвета ставится резистор. Разрезать можно только по указанному месту, чтобы в каждой секции было по 3 SMD5050 и она могла подключатся к 12 вольт.

Как подключить светодиод? | Сила Тока .NET

Хотя светодиоды (светики) используются в мире ещё с 60-х годов, вопрос о том как их правильно подключать, актуален и сегодня.

Начнем с того, что все светодиоды работают исключительно от постоянного тока. Для них важна полярность подключения, или расположения плюса и минуса. При неправильном подключении. светодиод работать не будет.

Как определить полярность светодиода

Полярность светодиода можно определить тремя способами:

  1. У традиционного светодиода, длинная ножка (анод) является ПЛЮСом. А короткая (катод) соответственно МИНУСом. На пластиковом основании (головке) светодиода есть срез, он обозначает расположение катода или минуса.
  2. Присмотритесь внутрь светика. Контакт в виде флажка — минус. Тонкий контакт — плюс.
  3. Используйте мультиметр. Установите центральный переключатель в режим «прозвонки». Щупами прикоснитесь к контактам проверяемого светодиода. Если светодиод засветится — тогда красный щуп прижат к плюсу светодиода а черный, соответственно к минусу.

N.B. Хотя на практике последний способ иногда не подтверждается.

Как бы там ни было, следует заметить, что если кратковременно (1-2 секунды) не правильно подключить светодиод, то ничего не перегорит и плохого не произойдет. Так как диод сам по себе в одну сторону работает, а в обратную нет. Перегореть он может только из-за повышенного напряжения.

Номинальное напряжение для большинства светодиодов 2,2 — 3 вольта. Светодиодные ленты и модули, которые работают от 12 и более вольт, уже содержат в схеме резисторы.

Как подключить светодиод к 12 вольтам

Подключать светодиод напрямую к 12 вольт — запрещено, он сгорит в долю секунды.  Необходимо использовать ограничительный резистор (сопротивление). Размерность резистора высчитывается по формуле:

R= (Uпит-Uпад)/0,75I,

где  R –величина сопротивления резистора;

Uпит и Uпад – напряжение питания и падающее;

I – проходящий ток.

0.75 — коэффициент надёжности для светодиода (величина постоянная)

Для большей ясности, рассмотрим на примере подключения одного светодиода к автомобильному аккумулятору 12 вольт.

В данном случае:

  • Uпит — 12 вольт (напряжение в авто аккумуляторе)
  • Uпад — 2,2 вольта (напряжение питания светодиода)
  • I — 10 мА или 0,01 А (ток  одного светодиода)

По вышеуказанной формуле, получим R=(12-2.2)/0.75*0.01 = 1306 Ом или 1,306 кОм

Ближайшее стандартное значение резистора — 1,3 килоОм

Это еще не всё. Требуется вычислить требуемую минимальную мощность резистора.

Но для начала определим фактический ток I (он может отличаться от указанного выше)

Формула: I = U / (Rрез.+ Rсвет)

где:

  • Rсвет — Сопротивление светодиода:

Uпад.ном. / Iном. = 2.2 / 0,01 = 220 Ом,

из этого следует, что ток в цепи

I = 12 / (1300 + 220) = 0,007 А

Фактическое падение напряжения светодиода будет равно:

 Uпад.свет = Rсвет * I = 220 * 0,007 = 1,54 В

И наконец, мощность равна:

P = (Uпит. — Uпад.)² / R = (12 -1,54)²/ 1300 = 0,0841 Вт).

Следует взять чуть больше мощности стандартной величины. В данном случае лучше подойдет 0,125 Вт.

Итак, чтобы правильно подключить один светодиод к 12 вольтам, (авто аккумулятор) потребуется в цепь вставить резистор, сопротивлением 1,3 кОм и мощностью 0,125 Вт.

Резистор можно присоединять к любой ноге светодиода.

У кого в школе, по математике была твердая двойка — есть вариант попроще. При покупке светодиодов в радиомагазине, спросите у продавца какой резистор Вам нужно будет вставить в цепь. Не забудьте указать напряжение в цепи.

Как подключить светодиод к 220в

Размерность сопротивления в данном случае расчитывается подобным образом.

Исходные данные те же. Светодиод потреблением 10 мА и напряжением 2.2 вольт.

Только напряжение питания в сети 220 вольт переменного тока.

Итак:

R = (Uпит.-Uпад.) / (I * 0,75)

R = (220 — 2.2) / (0,01 * 0,75) = 29040 Ом или 29,040 кОм

Ближайший по номиналу резистор стандартного значения 30 кОм.

Мощность считается по то й же формуле.

Для начала определяем фактический ток потребления:

I = U / (Rрез.+ Rсвет)

где:

Rсвет = Uпад.ном. / Iном. = 2.2 / 0,01 = 220 Ом,

а из этого следует, что ток в цепи будет:

I = 220 / (30000 + 220) = 0,007 А

Таким образом реальное падение напряжения светодиода будет:

Uпад.свет = Rсвет * I = 220 * 0,007 = 1,54 В

И наконец мощность резистора:

P = (Uпит. — Uпад.)² / R = (220 -1,54)² / 30000 = 1,59 Вт)

Мощность сопротивления должна быть не менее 1,59 Вт, лучше немного больше. Ближайшее большее стандартное значение 2 Вт.

Итак для подключения одного светодиода к напряжению 220 вольт, нам потребуется в электрическую цепь примостить резистор номиналом 30 кОм и мощностью 2 Вт.

НО! Так как в данном случае ток переменный, то светодиод буде гореть только в одну полуфазу то есть будет очень быстро мигать, приблизительно со скоростью 25 вспышек в секунду. Человеческий глаз это не воспринимает и будет казаться, что светик обычно горит. Но на самом деле он все равно будет пропускать обратные пробои, хоть и работает только в одном направлении. Для этого требуется поставить в цепь обратно направленный диод, дабы сбалансировать сеть и уберечь светодиод от преждевременного выхода из строя.

Как подключить светодиод параллельно, последовательно: схемы, описания, нюансы

Светодиоды (они же led) на протяжении многих лет активно применяются как в производстве телевизоров, так и в качестве основного освещения дома или квартиры, однако вопрос о том, как правильно выполнить подключение светодиодов актуален и по сей день.

На сегодняшний день их существует огромное количество, различной мощности (сверхяркие Пиранья), работающих от постоянного напряжения, которые можно подключать тремя способами:

  1. Параллельно.
  2. Последовательно.
  3. Комбинированно.

Также существуют специально разработанные схемы, позволяющие подключить светодиод к стационарной бытовой сети 220В. Давайте рассмотрим более детально все варианты подключения led, их преимущества и недостатки, а также как это выполнить своими руками.

Основные принципы подключения

Как было сказано ранее, конструкция светоизлучающего диода подразумевает их подключение исключительно к источнику постоянного тока. Однако, поскольку рабочая часть светодиода – это полупроводниковый кристалл кремния, то очень важно соблюдать полярность, в противном случае светодиод не будет излучать световой поток.

Каждый светодиод имеет техническую документацию, в которой содержатся инструкции и указания по правильному подключению. Если документации нет, можно посмотреть маркировку светодиода. Маркировка поможет узнать производителя, а зная производителя, Вы сможете найти нужный даташит, в котором и содержится информация по подключению. Вот, такой не хитрый совет.

Как определить полярность?

Для решения вопроса существует всего 3 способа:

  1. Конструктивно. Согласно нормам, принятым во всем мире, на обычном светодиоде (не SMD типа), длинная ножка всегда является «+» или же анодом. Для работы светодиода на него должна подаваться положительная полуволна. А короткая – катодом. 
  2. С помощью мультиметра. Для проверки необходимо переключатель прибора поставить в режим «Прозвонка» и установить красный щуп мультиметра на анод, а черный – на катод. В результате светодиод должен засветиться. Если этого не произошло, необходимо поменять полярность (черный на анод, а красный на катод). Если результат не меняется, тогда led вышел из строя (для установления более точного диагноза, читайте как проверить светодиод).  
  3. Визуально. Если присмотреться к светодиоду, то можно увидеть 2 кончика возле кристалла. Тот, который больше – катод, тот, что меньше – анод. 

С полярностью разобрались, теперь нам нужно определиться с тем, как подключить LED к сети. Для тех, кто не понял, читайте подробную и интересную статью определения полярности у светодиода. В ней мы собрали все возможные способы проверки, и даже при помощи батарейки.

Способы подключения

Условно, подключение происходит по 2 способам:

  1. К стационарной сети промышленной частоты (50Гц) напряжением 220В;
  2. К сети с безопасным напряжением величиной 12В.

Если необходимо подключить несколько led к одному источнику питания, тогда нужно выбрать последовательное или параллельное подключение.

Рассмотрим каждый из вышеприведенных примеров по отдельности.

Подключение светодиодов к напряжению 220В

Первое, что нужно знать при подключении к сети 220В, — для номинального свечения через светодиод должен проходить ток в 20мА, а падение напряжения на нем не должно превышать 2,2-3В. Исходя из этого, необходимо рассчитать номинал токоограничивающего резистора по следующей формуле:

в которой 0,75 – коэффициент надежности led, U пит – это напряжения источника питания, U пад – напряжение, которое падает на светоизлучающем диоде и создает световой поток, I – номинальный ток, проходящий через него, и R – номинал сопротивления для регулирования проходящего тока. После соответствующих вычислений, номинал сопротивления должен соответствовать 30 кОм.

Однако не стоит забывать, что на сопротивлении будет выделятся большое количество тепла за счет падения напряжения. По этой причине дополнительно необходимо рассчитать мощность этого резистора по формуле:

Для нашего случая U – это будет разность напряжения питающей сети и напряжения падения на светодиоде. После соответствующих вычислений, для подключения одного led мощность сопротивления должна равняться 2Вт.

После определения номинала и мощности сопротивления можно собрать схему для подключения одного светодиода к 220В. Для ее надежной работы необходимо ставить дополнительный диод, который будет защищать светоизлучающий диод от пробоя, при возникновении амплитудного напряжения на выводах светодиода в 315В (220*√2).

Схема практически не применяется, поскольку в ней возникают очень большие потери из-за выделения тепла в сопротивлении. Рассмотрим более эффективную схему подключения к 220 В:

На схеме, как видим, установлен обратный диод VD1, пропускающий обе полуволны на конденсатор C1 емкостью 220 нФ, на котором происходит падение напряжение до необходимого номинала.

Сопротивление R1 номиналом 240 кОм, разряжает конденсатор при выключенной сети, а во время работы схемы не играет никакой роли.

Но это упрощенная модель для подключения LED, в большинстве светодиодных ламп уже встроенный драйвер (схема), который преобразует переменное напряжение 220В в постоянное с величиной 5-24В для их надежной работы. Схему драйвера Вы можете видеть на следующем фото:

Подключение светодиодов к сети 12В

12 вольт – это безопасное напряжение, которое применяется в особо опасных помещениях. Именно к таким и относятся ванные комнаты, бани, смотровые ямы, подземные сооружения и другие помещения.

Для подключения к источнику постоянного напряжения номиналом 12В, аналогично, подключению к сетям 220В необходимо гасящее сопротивление. В противном случае, если подключить его напрямую к источнику, из-за большего проходящего тока светодиод мгновенно сгорит.

Номинал этого сопротивления и его мощность рассчитываются по тем же формулам:

В отличии от цепей 220В, для подключения одного светодиода к сети 12В нам потребуется сопротивление со следующими характеристиками:

  • R = 1,3 кОм;
  • P = 0,125Вт.

Еще одним достоинством напряжения 12В, является то, что в большинстве случаев оно уже выпрямленное (постоянное), что значительно упрощает схему подключения. Рекомендуется дополнительно монтировать стабилизатор напряжения типа КРЭН или аналога.

Как мы уже знаем, светоизлучающий диод можно подключить как к цепям 12В, так и к цепям 220В, однако существует и несколько вариаций их соединения между собой:

  • Последовательное.
  • Параллельное.

Последовательное подключение

При последовательном соединении через токоограничивающий резистор в одну цепочку собираются несколько светодиодов, причем катод предыдущего припаивается к аноду последующего:

В схеме, по всем светодиодам будет проходить один ток (20мА), а уровень напряжения будет состоять из сумм падения напряжения на каждом. Это означает, используя данную схему подключения, нельзя включить в цепь любое количество светодиодов, т.к. оно ограничено падением напряжения.

Падение напряжения – это уровень напряжения, которое светоизлучающий диод преобразует в световую энергию (свечение).

Например, в схеме падение напряжения на одном светодиоде составит 3 Вольта. Всего в схеме 3 светодиода. Источник питания 12В. Считаем, 3 Вольта * 3 led = 9 В — падение напряжения.

После несложных расчетов, мы видим, что не сможем включить в схему параллельного подключения более 4 светодиодов (3*4=12В), запитывая их от обычного автомобильного аккумулятора (или другого источника с напряжением 12В).

Если захотим последовательно подключить большее количество LEd, то понадобится источник питания с большим номиналом.

Данная схема довольно часто встречалась в елочных гирляндах, однако из-за одного существенного недостатка в современных светодиодных гирляндах применяют смешанное подключение. Что за недостаток, разберем ниже.

Недостатки последовательного подключения
  1. При выходе из строя хотя бы одного элемента, не рабочей становится вся схема;
  2. Для питания большого количества led нужен источник с высоким напряжением.

Параллельное подключение

В данной ситуации все происходит наоборот. На каждом светодиоде уровень напряжения одинаковый, а сила тока состоит из суммы токов, проходящих через них.

 

Следуя из вышесказанного делаем вывод, если у нас есть источник в 12В и 10 светодиодов, блок питания должен выдерживать нагрузку в 0,2А (10*0,002).

Исходя из вышеупомянутых расчетов — для параллельного подключения потребуется токоограничивающий резистор с номиналом 2,4 Ом (12*0,2).

Это глубокое заблуждение!!! Почему? Ответ Вы найдете ниже

Характеристики каждого светодиода даже одной серии и партии всегда разные. Если другими словами: чтобы засветился один, необходимо пропустить через него ток с номиналом 20 мА, а для другого этот номинал может составлять уже 25 мА.

Таким образом, если в схеме установить только одно сопротивление, номинал которого был рассчитан ранее, через светодиоды будет проходить разный ток, что вызовет перегрев и выход из строя светодиодов, рассчитанных на номинал в 18мА, а более мощные будут светить всего на 70% от номинала.

Исходя из вышесказанного, стоит понимать, что при параллельном подключении, необходимо устанавливать отдельное сопротивление для каждого.

Недостатки параллельного подключения:
  1. Большое количество элементов;
  2. При выходе одного диода из строя увеличивается нагрузка на остальные.

Смешанное подключение

Подобный способ подключения является самым оптимальным. По такому принципу собраны все светодиодные ленты. Он подразумевает комбинацию параллельного и последовательного подключения. Как он выполняется можно увидеть на фото:

Схема подразумевает включение параллельно не отдельных светодиодов, а последовательных цепочек из них. В результате этого даже при выходе из строя одной или нескольких цепочек, светодиодная гирлянда или лента будут по-прежнему одинаково светить.

Мы рассмотрели основные способы подключения простых светодиодов. Теперь разберем методы соединения мощных светодиодов, и с какими проблемами можно столкнуться при неправильном подключении.

Как подключить мощный светодиод?

Для работоспособности мощных светоизлучающих диодов, так же, как и простых нам потребуется источник питания. Однако в отличии от предыдущего варианта, он должен быть на порядок мощней.

Чтобы засветить мощный светодиод номиналом 1W, источник питания должен выдерживать не менее 350 мА нагрузки. Если номинал 5W, то источник питания постоянного тока должен выдержать нагрузку тока не менее 1,4А.

Для корректной работы мощного светодиода обязательно необходимо использовать интегральный стабилизатор напряжения типа LM, который защищает его от скачков напряжения.

Если необходимо подключить не один, а несколько мощных LED, рекомендуем ознакомиться с правилами последовательного и параллельного подключения, которые были описаны выше.

Ошибки при подключении

  1. Прямое подключение к источнику питания. В данном случае светодиод моментально сгорит, поскольку отсутствует ограничивающий ток резистор.
  2. Параллельное подключение через один резистор. Светодиоды постепенно будут выходить из строя, поскольку рабочий ток у каждого разный.
  3. Последовательное подключение с различным током потребления. При такой схеме подключения есть 2 варианта: либо просто одни будут светить тусклее других, либо те, что рассчитаны на меньший ток – сгорят.
  4. Неправильно подобранный ограничивающий резистор. При неправильно подобранном сопротивлении через светодиоды будет проходить большой ток, в результате чего, они будут перегреваться и со временем перегорят. При большом сопротивлении они будут светить не в полную силу.
  5. Подключение к сети переменного напряжения номиналом 220В без диода или других компонентов защиты. Если при подключении с сети 220В, если не установить дополнительный диод, то на светодиоде возникнет амплитудное значение напряжения в 315В, которое моментально выведет его из строя.

Видео

Ошибки подключения могут повлечь за собой неприятные последствия, от банальной поломки светодиодов, до нанесения себе повреждений. Поэтому, настоятельно рекомендуем посмотреть видео, где разбирают часто встречающиеся ошибки.

Заключение

Прочитав статью можно сделать вывод, что все светодиоды, вне зависимости от рабочего напряжения, всегда подключаются параллельно или последовательно — школьный курс физики. Еще стоит помнить, что никакой светодиод не подключается напрямую в сеть 220В, всегда нужно использовать защитные элементы в схеме подключения. Тип применяемых защитных элементов зависит от вида подключаемого светоизлучающего диода.

Схема подключения светодиода

Введение

Использование светодиодов для освещения и индикации — это надежное и экономичное решение. Светодиоды имеют очень высокий КПД, надежны, экономичны, безопасны, долговечны в сравнении с лампами накаливания и люминесцентными лампами. В данной статье рассматриваются способы включения светодиодов. Описываются способы питания светодиода от компьютера.

Что такое светодиод и как он работает

Светодиод — это, во-первых, диод. И точно так же как у обычного диода, у светодиода есть два вывода (контакта питания): анод (плюс) и катод (минус). Это связано с тем, что светодиод является полупроводником, то есть, проводит электрический ток только в одну сторону (от анода к катоду), и не проводит в обратную (от катода к аноду).

Итак, для того, чтобы светодиод засветился, надо пропускать через него электрический ток в направлении от анода к катоду. Для этого следует подать на его анод положительное, а на катод — отрицательное напряжение.

Тут и начинается самое неприятное. Оказывается, что светодиод нельзя подключать к источнику питания напрямую, поскольку это приводит к немедленному сгоранию светодиода. Причина сего поведения кроется в следующем. Выражаясь простым бытовым языком, светодиод является очень жадной и неразумной личностью: получив неограниченное питание он начинает потреблять такую мощность, которую физически не способен выдержать.

Как мы все уже догадались, для нормальной работы светодиоду нужен строгий ограничитель. Именно с этой целью последовательно со светодиодом устанавливают резистор, который служит надежным ограничителем тока и мощности. Этот резистор называют ограничительным.

Какие бывают светодиоды

Во-первых, светодиоды можно разделить по цветам: красный, желтый, зеленый, голубой, фиолетовый, белый. Большинство современных светодиодов выполнено из бесцветного прозрачного пластика, поэтому невозможно определить цвет светодиода не включив его.

Во-вторых, светодиоды можно разделить по номинальному току потребления. Широко распространены модели с током потребления 10 миллиампер (мА) и 20 мА. Следует помнить, что светодиод не в состоянии контролировать потребляемый ток. Именно поэтому мы вынуждены использовать ограничительные резисторы.

В-третьих, светодиоды можно разделить по такому параметру, как падение напряжения в открытом состоянии при номинальном токе. Несмотря на то, что про этот параметр нередко забывают — его влияние весьма и весьма значительно. Благодаря этому параметру иногда можно избавиться от ограничительного резистора.

Светодиод(ы) можно подключить к компьютеру разными способами.

Для подключения светодиодов в качестве простого освещения удобно использовать разъемы блока питания, выдающие 5 и 12 вольт. Для подключения светодиодов в качестве светомузыки удобно использовать LPT порт компьютера.

Подключение светодиодов к блоку питания

Блок питания компьютера — это замечательный источник питания для светодиода или линейки из светодиодов, поскольку он вырабатывает стабилизированное напряжение +5 вольт (В) и +12 В.

Итак, разъем имеет четыре контакта, к которым подходят четыре же провода: два из них черные — это «ноль», один красный выдает напряжение +5 вольт, и один желтый выдает +12 вольт.

Рассмотрим схему подключения одного светодиода.

При питании от 5 В последовательно со светодиодом необходимо включить ограничительный резистор номиналом от 100 до 200 Ом.
При питании от 12 В последовательно со светодиодом требуется включить ограничительный резистор номиналом от 400 до 900 Ом.

Рассмотрим схему подключения двух светодиодов.

При питании двух светодиодов от 5 вольт, в схему надо включить резистор до 100 Ом. Некоторые светодиоды в такой схеме будут светиться слишком тускло (даже без резистора).
При питании двух светодиодов от 12 В, в схему надо включить резистор от 250 до 600 Ом.

 

Рассмотрим схему подключения трех и четырех светодиодов.

При питании трех светодиодов от 12 В, следует использовать резистор номиналом от 100 до 250 Ом.
Некоторые светодиоды в такой схеме включения будут светиться слишком тускло (даже без резистора).

Универсальный принцип расчета ограничительного резистора описан в статье «Методика расчета питания светодиода».

Выше приведены схемы последовательного включения светодиодов. Существуют также способы параллельного включения светодиодов. Обратите внимание, что под параллельным включением подразумевается схема в которой, когда аноды и катоды всех светодиодов непосредственно сходятся в две точки (два пучка).

Такие схемы, как правило, не экономичны и небезопасны, как для блока питания, так и для светодиодов. Кроме того, схемы параллельного включения более сложны в расчетах, требовательны к источнику питания, поэтому мы будем пользоваться ими только в особых случаях. Просто посмотрим как выглядит такая схема.

При паралельном включении светодиодов следует использовать только одинаковые светодиоды, с минимальным разбросом характеристик. Сопротивление ограничительного резистора должно быть рассчитано и подобрано с высокой степенью точности. В случае выхода из строя одного из светодиодов — остальные могут выгореть по очереди друг за другом в считанные минуты.

Рекомендую никогда не использовать эту схему включения светодиодов. Но если все же условия требуют параллельного включения то советую использовать следующий вариант.

Такая схема параллельного включения светодиодов практически избавлена от опасности последовательного выгорания светодиодов. В данном случае вместо ограничиельного резистора включено несколько обычных выпрямительных диодов разных марок (НЕ светодиодов).

Благодаря падению напряжения на этих диодах, до светодиодов доходит напряжение уже не 5 Вольт, а значительно меньше. Ограничительные диоды подбираются так, чтобы до светодиодов доходило напряжение равное их падению напряжения в открытом состоянии.

Эта схема используется используется автором для круглосуточного светодиодного освещения квартиры.

Подключение светодиодов к LPT порту

При питании светодиода от LPT порта необходимо последовательно со светодиодом можно включить резистор номиналом до 100 Ом. В большинстве случаев, при питании светодиода от LPT порта резистор бывает не нужен. LPT порт предварительно должен быть переведен в режим EPP. Подробное описание способа подключения светодиодов к LPT порту содержится в статье «LPT порт и 12 светодиодов».

 

Универсальный принцип расчета ограничительного резистора описан в статье «Универсальная методика рассчета питания светодиодов».

Правильное подключение светодиода. Схемы подключения.

  1. Подключение светодиода к низковольтному напряжению постоянного тока.
       Если у Вас появилась задача подключения светодиода, то постараюсь Вам в этом помочь в этой статье. При подключении светодиодов необходимо правильно подключать светодиод, соблюдать полярность. Что бы узнать, где у светодиода плюс (+) , а где минус (-) достаточно посмотреть на светодиод одна из ножек светодиода длиннее, чем вторая, соответственно самая длинная ножка будет плюс (+), а короткая минус (-). Начнем с подключения одинарных обычных светодиодов с рабочим напряжением 2-3В с рабочим током 10-20мА, как правило, напряжение светодиодов 2 вольта и что бы подключить светодиод,  скажем к 12 вольтам постоянного напряжения (схема подключения светодиода к 12 вольтам представлена на рисунке 1), нам необходимо подобрать резистор.

Рисунок 1 — Схема подключения светодиода

 

     Чтобы подобрать резистор для светодиода, будем пользоваться следующим способом: нам известно, что напряжение светодиода 2В, соответственно при подключении светодиода к 12 вольтам (например, светодиод будем использовать в автомобиле) нам надо ограничить 10В, в принципе в случаях светодиодов правильней говорить ограничить ток светодиода, но мы при выборе резистора будем пользоваться простым проверенным многими годами  способом  без всяких математических формул.  На каждый вольт  необходим резистор сопротивлением 100 Ом, т.е. если светодиод с рабочим напряжением 2В,  и мы подключаем к 12 вольтам, нам нужен резистор 100Ом х 10В=1000 Ом или 1кОм обычно на схемах обозначается 1К, мощность резистора зависит от тока светодиода, но если мы используем обычный не мощный светодиод, как правило, его ток 10-20мА и в этом случае достаточно резистора на 0,25Вт самого маленького резистора по размеру.
    
     Резистор с большей мощностью  нам понадобится в 2х случаях: 1) если ток светодиода будет больше и 2) если напряжение будет выше, чем 24В и соответственно в случаях подключения светодиода к напряжению 36-48В и выше нам понадобится резистор с большей мощностью 0,5 – 2Вт, а в случае подключения светодиода к сети 220В лучше использовать резистор на 2Вт, но при подключении светодиода к сети переменного тока нам потребуется еще ряд элементов, но об этом чуть позже.

     
      А если нам надо будет подключить светодиод к напряжению 24В, то резистор нужен будет 100Ом х 22В = 2,2кОм. Т.е. при помощи данного способа можно рассчитать резистор для подключения 2-3 вольтового светодиода и с током 5-20мА на любое напряжение постоянного тока. Для удобства приведу ряд номиналов резисторов (рисунок 2) для разных напряжений постоянного тока:
5В – R1 = 300 Ом; 9В – R1 = 750 Ом; 12В – R1 = 1 кОм; 15В – R1 = 1,3кОм; 18В – R1 = 1,6 кОм; 24В – R1 =2,2 кОм; 28В – 2,6 кОм
       

Рисунок 2 — Подключение светодиодов к различному напряжению

     Если требуется светодиод подключить к батарейке, скажем на 3В, то можно поставить резистор последовательно на 100 Ом, а если батарейка пальчиковая на 1,5В, то можно подключить и без резистора.
При расчете мы можем выбрать только резисторы из стандартных номиналов, поэтому нет ничего страшного, если сопротивление резистора, будет чуть больше или меньше расчетного.

     Если вы используете очень яркий светодиод, а светодиод используется, к примеру, для индикации в каких-либо устройствах, то можно сопротивление резистора увеличить, и тем самым яркость светодиода уменьшится, и светодиод не будет ослеплять.  Но лучше всего в таких случаях если не требуется большая яркость светодиода, то при покупке в магазине или заказе в Китае можно выбрать матовый светодиод нужного  цвета и током, как правило, 6-20мА, угол обзора у данных светодиодов, как правило, составляет 60 градусов, они отлично подходят для индикации, не ослепляют и от них не устают глаза, даже если долго на них смотреть. Прозрачные белые светодиоды для данных целей, как правило, не подходят.

     В случае подключения светодиода к микроконтроллеру или плате ARDUINO, как правило, рабочее  напряжение составляет 5В, соответственно резистор можно взять 300-470 Ом можно и еще с большим сопротивлением. Главное учитывать, что ток не может превышать предельного тока вывода микроконтроллера, как правило, не более 10мА, поэтому сопротивление резистора 300-470 Ом для подключения светодиода является золотой серединой. Схема подключения светодиода к микроконтроллеру или плате ARDUINO представлена на рисунке 3. Стоит обратить Ваше внимание, что светодиод может быть подключен как анодом, так и катодом к микроконтроллеру и от этого будет зависеть программный способ управления светодиодом.  

Рисунок 3 — Подключение светодиода к плате ARDUINO


         3. Последовательное подключение нескольких светодиодов
       При последовательном соединении светодиодов чтобы их яркость не отличалась, друг от друга надо, чтобы светодиоды были одного типа. При последовательном соединении светодиодов сопротивление резистора будет меньше в отличие от случая, когда мы подключаем один светодиод. Для расчета резистора мы так же можем использовать ранее рассмотренный способ.

К примеру, нам необходимо последовательно подключить четыре светодиода  к напряжению постоянного тока 12В, соответственно рабочее напряжение светодиодов 2В при последовательном соединении будет 2В х 4шт. = 8В. Тогда мы можем выбрать резистор из стандартного ряда на 470-510 Ом. При последовательном соединении светодиодов ток, протекающий через все светодиоды, будет одинаковым.
 
                     Рисунок 5 — Последовательное соединение светодиодов
     Одним из недостатков последовательного соединения светодиодов  является тот факт, что в случае выхода одного из светодиодов из строя, все светодиоды перестанут светится. Ниже приведена схема с последовательным соединением двух, трех и четырех светодиодов.

        4.Параллельное подключение светодиодов
      При параллельном подключении светодиодов  резистор выбираем так же, как в случае одиночного светодиода. На каждый светодиод должен быть свой резистор при этом, если резисторы по сопротивлению будут отличаться или светодиоды будут различных марок, то будет очень заметно неравномерность свечения одного светодиода от другова. Ток при параллельном соединении будет складываться в зависимости от количества светодиодов.

Рисунок 6 — Параллельное соединение светодиодов

     5. Подключение мощных светодиодов с большим рабочим током, как правило, применяемых для освещения. При использовании мощных светодиодов лучше всего не использовать обычные резисторы, а применять специальные импульсные источники питания для светодиодов в них, как правило, уже установлены цепи стабилизации тока, данные источники питания обеспечивают равномерность свечения светодиодов и более долговечный срок службы. Светодиоды, применяемые для освещения  необходимо устанавливать на теплоотвод (радиатор).

           6. Подключение светодиода к переменному напряжению 220В.
      (Внимание!!! Опасное напряжение все работы по подключению к сети 220В необходимо производить только при выключенном, снятом напряжении и при этом необходимо убедится, что напряжение отсутствует.  Будьте внимательны. Ко всем элементам схемы не должно быть прямого доступа).
     При подключении светодиода к переменному напряжению 220В нам понадобится не только резистор, но и диод для выпрямления напряжения, так как светодиод работает от постоянного тока. Без диода на переменное напряжение лучше не включать. Схема подключения светодиода к сети 220В представлена на рисунке 7. Благодаря тому что мы используем два резистора вместо одного, мы можем использовать резисторы мощностью 1Вт.  Так же лучше всего установить конденсатор особено если будет заметно мерцание светодиода. Конденсатор может быть керамический или пленочный главное нельзя использовать электролитический конденсатор.

Рисунок 7 — Схема подключения светодиода к сети 220В.


      7. Подключение двухцветных светодиодов.
Если мы возьмем двухцветный светодиод, то увидим, что у данного светодиода не два, а три вывода, соответственно, один вывод по центру является общим, а два вывода по бокам каждый отвечает за свой цвет.

       Немного математики :
Расчет сопротивления ограничивающего резистора при 5В и токе светодиода 20мА:
R = U / Imax = 5 / 0.020 = 250 Ом — соответственно сопротивление резистора при 5В должно быть не меньше 250 Ом


 

Схема подключения светодиода

электрика, сигнализация, видеонаблюдение, контроль доступа (СКУД), инженерно технические системы (ИТС)

Схема подключения светодиода очень проста. Это можно видеть на рисунке 1. Однако, для того чтобы правильно подключить светодиод необходимо произвести некоторые расчеты.

Как видно из приведенной схемы светодиод (VD) подключается последовательно c резистором (R), образуя с ним делитель напряжения. Также резистор можно рассматривать как элемент, обеспечивающий номинальный рабочий ток светодиода.

Для расчета величины его сопротивления нам необходимо знать:

  1. падение напряжения на светодиоде (Uvd),
  2. уже упомянутый его рабочий ток (Iраб).

Если подходить строго, то эти значения следует брать из паспорта светодиода, но для дальнейших примеров я приму их за 2 Вольта (В) и 15 милиАмпер (мА) соответственно. Это достаточно реальные величины.

Далее берем закон Ома и на его основании пишем формулу:

R=U/I=(Uпит-Uvd)/Iраб=(Uпит-2)/15

Заметьте, я указал ток в мА, поэтому сопротивление получится в килоОмах (кОм). Для небольших токов так удобнее. Остается определиться с напряжением питания. Для 12 Вольт сопротивление резистора будет:

R=(12-2)/15=0,666 кОм. Ближайшее по ряду, если не ошибаюсь, 0,68 кОм или 680 ом. Округлять надо в большую сторону.

Кроме того, надо определить мощность, рассеиваемую резистором:

P=I*U=I2*R=152*0,68=153. Ток берем в мА, сопротивление в кОм, мощность получаем в милиВаттах (мВт). Ближайшая по ряду, округленная в большую сторону мощность резистора составляет 0,250 Вт.

Обратили внимание не некоторую некорректность? Расчетное значение сопротивления мы округлили в большую сторону, значит ток в цепи будет меньше, то есть мы получили завышенное значение мощности. Желающие могут посчитать точно, но разница будет незначительная.

Примем эту схему за базовую и на ее основе рассмотрим варианты подключения нескольких светодиодов:

Параллельное подключение светодиодов (рис.2) большинством специалистов не рекомендуется по следующим основным объективным причинам:

  • из-за разброса параметров токи, протекающие через светодиоды, будут различны, что может привести к выходу из строя того светодиода, где окажется превышенным максимально допустимое значение тока,
  • при неисправности любого светодиода (обрыв) его ток поделится между оставшимися, далее по сценарию предыдущего пункта. Потом цепная реакция и вся линейка выходит из строя.
  • ток потребления такой схемы равен сумме токов всех светодиодов, то есть при их значительном количестве имеет достаточно большое значение.

Негативные последствия такого подключения можно отчасти избежать, если уменьшить рабочий ток процентов на 30% от номинального, правда яркость сечения светодиодов при этом снизится.

Если сказанное Вас не пугает можете рассчитать сопротивление и мощность резистора по приведенной ранее методике при условии что Iраб=Ivd1+…+Ivdn или просто умножьте ток любого светодиода на их количество. Почему? Потому, что для этих двух случаев светодиоды должны иметь максимально близкие параметры, то есть быть однотипными, кроме того, желательно из одной партии.

Последовательное подключение светодиодов (рис.3) более корректно, недостатком может явиться разная яркость их свечения (опять же из за разброса параметров).

Кстати, такое соединение используется в светодиодной ленте.

Для расчета этой схемы следует взять Uvd=Uvd1+…+Uvdn

Еще одно, общее для всех схем подключения ограничение, Uvd должно быть меньше Uпит на величину, позволяющую установить токоограничивающий резистор.

Например, для схемы на рис.3 при напряжении питания 12В и падении напряжения на светодиоде 2В можно взять пять светодиодов, суммарным падением напряжения 10В. Если их будет 6 штук, то Ur =0, что означает отсутствие резистора, а такого быть не должно.

Последнее, как быть, если при последовательном соединении не удается соблюсти указанное условие?

Выход — использовать смешанное подключение (рис.4). Расчет схемы в этом случае производится для каждой последовательной цепи подключения, а при одинаковом количестве светодиодов и их типов в каждой цепи расчет можно сделать один раз для любой последовательной группы светодиодов.

Напоминаю — все светодиоды должны быть однотипные, по крайней мере, для общей последовательной цепи.

© 2012-2021 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Общие сведения о драйверах светодиодов от LEDSupply

Драйверы светодиодов

могут сбивать с толку светодиодную технологию. Существует так много разных типов и вариаций, что временами это может показаться немного подавляющим. Вот почему я хотел написать небольшой пост с объяснением разновидностей, их различий и вещей, на которые следует обратить внимание при выборе драйвера (ов) светодиодов для вашего освещения.

Что такое драйвер светодиода, спросите вы? Драйвер светодиода — это электрическое устройство, которое регулирует мощность светодиода или цепочки светодиодов.Это важная часть светодиодной цепи, и работа без нее приведет к отказу системы.

Использование одного из них очень важно для предотвращения повреждения светодиодов, поскольку прямое напряжение (V f ) мощного светодиода изменяется в зависимости от температуры. Прямое напряжение — это количество вольт, которое светоизлучающий диод требует для проведения электричества и зажигания. По мере увеличения температуры прямое напряжение светодиода уменьшается, в результате чего светодиод потребляет больше тока. Светодиод будет продолжать нагреваться и потреблять больше тока, пока светодиод не перегорит сам себя, это также известно как термический побег.Драйвер светодиода — это автономный источник питания, выходы которого соответствуют электрическим характеристикам светодиода (-ов). Это помогает избежать теплового разгона, поскольку драйвер светодиода с постоянным током компенсирует изменения прямого напряжения, обеспечивая при этом постоянный ток к светодиоду.

На что следует обратить внимание перед выбором драйвера светодиода

  • Какие типы светодиодов используются и сколько?
    • Узнать прямое напряжение, рекомендуемый ток возбуждения и т. Д.
  • Нужен ли мне драйвер светодиода постоянного тока или драйвер светодиода постоянного напряжения?
    • Здесь мы сравниваем постоянный ток с постоянным напряжением.
  • Какая мощность будет использоваться? (Постоянный ток, переменный ток, батареи и т. Д.)
  • Какие ограничения по площади?
    • Работаете в тесноте? Не слишком много напряжения для работы?
  • Каковы основные цели приложения?
    • Размер, стоимость, эффективность, производительность и т. Д.
  • Нужны какие-то специальные функции?
    • Диммирование, импульсное, микропроцессорное управление и т. Д.

Прежде всего, вы должны знать…

Существует два основных типа драйверов: те, которые используют входное питание постоянного тока низкого напряжения (обычно 5–36 В постоянного тока), и те, которые используют входное питание переменного тока высокого напряжения (обычно 90–277 В переменного тока). Драйверы светодиодов, которые используют высокое напряжение переменного тока, называются автономными драйверами или драйверами светодиодов переменного тока. В большинстве приложений рекомендуется использовать драйвер светодиода с низким напряжением постоянного тока.Даже если ваш вход представляет собой переменный ток высокого напряжения, использование дополнительного импульсного источника питания позволит использовать входной драйвер постоянного тока. Рекомендуются низковольтные драйверы постоянного тока, поскольку они чрезвычайно эффективны и надежны. Для небольших приложений доступно больше вариантов регулировки яркости и вывода по сравнению с высоковольтными драйверами переменного тока, так что у вас есть больше возможностей для работы в вашем приложении. Однако если у вас есть большой проект общего освещения для жилого или коммерческого освещения, вы должны увидеть, какие драйверы переменного тока могут быть лучше для этого типа работы.

Вторая вещь, которую вы должны знать

Во-вторых, вам необходимо знать ток возбуждения, который вы хотите подать на светодиод. Более высокие токи возбуждения приведут к большему количеству света от светодиода, а также потребуют большей мощности для освещения. Важно знать характеристики своего светодиода, чтобы знать рекомендуемые токи возбуждения и требования к радиатору, чтобы не сжечь светодиод слишком большим током или чрезмерным нагревом. Наконец, хорошо знать, что вы ищете от своего осветительного приложения.Например, если вы хотите регулировать яркость, вам нужно выбрать драйвер с возможностью регулировки яркости.

Немного о затемнении

Регулировка яркости светодиодов зависит от используемой мощности; поэтому я рассмотрю варианты диммирования как постоянного, так и переменного тока, чтобы мы могли лучше понять, как регулировать яркость всех приложений, будь то постоянный или переменный ток.

Диммирование постоянного тока

Низковольтные драйверы с питанием от постоянного тока могут легко регулироваться несколькими способами. Самым простым решением для этого является использование потенциометра.Это дает полный диапазон затемнения от 0 до 100%.

Потенциометр 20 кОм

Обычно это рекомендуется, когда у вас есть только один драйвер в вашей цепи, но если несколько драйверов диммируются от одного потенциометра, значение потенциометра можно найти из — KΩ / N — где K — значение вашего потенциометра, а N количество используемых вами драйверов. У нас есть подключенные BuckPucks, которые поставляются с потенциометром с поворотной ручкой 5K для регулирования яркости, но у нас также есть потенциометр 20K, который можно легко использовать с нашими драйверами BuckBlock и FlexBlock.Просто подключите провод заземления затемнения к центральному штырю, а провод затемнения к одной или другой стороне (выбор стороны просто определяет, каким образом вы поворачиваете ручку, чтобы уменьшить яркость).

Второй вариант регулировки яркости — использование настенного светорегулятора 0–10 В, например, нашего низковольтного регулятора яркости A019. Это лучший способ диммирования, если у вас несколько устройств, поскольку диммер 0-10 В может работать с несколькими драйверами одновременно. Просто подключите диммерные провода прямо ко входу драйвера, и все готово.

Диммирование переменного тока

Для высоковольтных драйверов переменного тока существует несколько вариантов регулировки яркости в зависимости от вашего драйвера. Многие драйверы переменного тока работают с регулировкой яркости 0-10 В, как мы уже говорили выше. У нас также есть светодиодные драйверы Mean Well и Phihong, которые предлагают диммирование TRIAC, поэтому они работают со многими передними и задними диммерами. Это полезно, поскольку позволяет светодиодам работать с очень популярными системами затемнения в жилых помещениях, такими как Lutron и Leviton.

Сколько светодиодов можно запустить с драйвером?

Максимальное количество светодиодов, которые вы можете запустить от одного драйвера, определяется делением максимального выходного напряжения драйвера на прямое напряжение ваших светодиодов.При использовании драйверов LuxDrive максимальное выходное напряжение определяется путем вычитания 2 вольт из входного напряжения. Это необходимо, потому что драйверы нуждаются в накладных расходах 2 вольта для питания внутренней схемы. Например, при использовании драйвера Wired 1000mA BuckPuck со входом 24 В у вас будет максимальное выходное напряжение 22 В.

Что мне нужно для питания?

Это приводит нас к определению того, какое входное напряжение нам нужно для наших светодиодов. В конце концов, входное напряжение равно нашему максимальному выходному напряжению для нашего драйвера после того, как мы учтем служебное напряжение схемы драйвера.Убедитесь, что вы знаете минимальное и максимальное входное напряжение для драйверов светодиодов. В качестве примера мы возьмем Wired 1000mA BuckPuck, который может принимать входное напряжение от 7 до 32 В постоянного тока. Чтобы определить, каким должно быть ваше входное напряжение для приложения, вы можете использовать эту простую формулу.

V o + (V f x LED n ) = V дюйм

Где:

В o = Накладные расходы по напряжению для драйверов — 2, если вы используете драйвер DC LuxDrive или 4, если вы используете драйвер AC LuxDrive

В f = прямое напряжение светодиодов, которые вы хотите запитать

LED n = количество светодиодов, которые вы хотите запитать

В в = Входное напряжение на драйвер

Технические характеристики продукта со страницы продукта Cree XPG2

Например, если вам нужно запитать 6 светодиодов Cree XPG2 от источника постоянного тока, и вы используете проводную шайбу BuckPuck, указанную выше, то V в должно быть не менее 20 В постоянного тока на основе следующего расчета.

2 + (3,0 х 6) = 20

Определяет минимальное необходимое входное напряжение. Нет никакого вреда в использовании более высокого напряжения вплоть до максимального номинального входного напряжения драйвера, поэтому, поскольку у нас нет источника питания на 20 В постоянного тока, вы, вероятно, будете использовать источники питания 24 В постоянного тока для работы этих светодиодов.

Теперь это помогает нам убедиться, что напряжение работает, но для того, чтобы найти правильный источник питания, нам также необходимо определить мощность всей цепи светодиода.Расчет мощности светодиода:

В f 900 10 x Управляющий ток (в амперах)

Используя 6 светодиодов XPG2 сверху, мы можем определить наши ватты.

3,0 В x 1 А = 3 Вт на светодиод

Общая мощность цепи = 6 x 3 = 18 Вт

При расчете мощности источника питания, подходящей для вашего проекта, важно предусмотреть 20% «амортизатора» при расчете мощности. Добавление этой 20% -ной подушки предотвратит перегрузку источника питания.Перегрузка блока питания может привести к мерцанию светодиодов или преждевременному отказу блока питания. Просто рассчитайте подушку, умножив общую мощность на 1,2. Таким образом, для нашего примера выше нам потребуется не менее 21,6 Вт (18 x 1,2 = 21,6). Ближайший общий размер блока питания будет 25 Вт, поэтому в ваших интересах получить блок питания на 25 Вт и выходное напряжение 24 В.

Что делать, если у меня недостаточно напряжения?

Использование LED Boost Driver (FlexBlock)

Драйверы светодиодов FlexBlock — это повышающие драйверы, что означает, что они могут выдавать более высокое напряжение, чем то, что на них подается.Это позволяет подключать больше светодиодов последовательно с одним драйвером светодиода. Это очень полезно в приложениях, где ваше входное напряжение ограничено, и вам нужно получить

FlexBlock На

больше мощности для светодиодов. Как и в случае с драйвером BuckPuck, максимальное количество светодиодов, которое вы можете подключить с помощью одного последовательно подключенного драйвера, определяется делением максимального выходного напряжения драйвера на прямое напряжение ваших светодиодов. FlexBlock может быть подключен в двух различных конфигурациях и может варьироваться в зависимости от входного напряжения.В режиме Buck-Boost (стандартный) FlexBlock может обрабатывать светодиодные нагрузки, которые находятся выше, ниже или равны напряжению источника питания. Вы найдете максимальное выходное напряжение драйвера в этом режиме по следующей формуле:

48 В постоянного тока — В в

Итак, при использовании источника питания 12 В постоянного тока и светодиодов XPG2 сверху, сколько мы могли бы работать с 700 мА FlexBlock? Максимальное выходное напряжение составляет 36 В постоянного тока (48–12), а прямое напряжение XPG2, работающего при 700 мА, составляет 2,9, поэтому, разделив 36 В постоянного тока на это, мы видим, что этот драйвер может питать 12 светодиодов.В режиме Boost-Only FlexBlock может выдавать до 48 В постоянного тока от всего лишь 10 В постоянного тока. Таким образом, если вы были в режиме Boost-Only, вы могли включить до 16 светодиодов (48 / 2,9). Здесь мы рассмотрим использование повышающего драйвера FlexBlock для более глубокого питания ваших светодиодов.

Проверка мощности для входных драйверов переменного тока большой мощности

Теперь с драйверами входа переменного тока они выделяют определенное количество ватт для работы, поэтому вам нужно определить мощность ваших светодиодов. Вы можете сделать это по следующей формуле:

[Vf x ток (в амперах)] x LEDn = мощность

Итак, если мы пытаемся запитать те же 6 светодиодов Cree XPG2 на 700 мА, ваша мощность будет…

[2.9 x 0,7] x 6 = 12,18

Это означает, что вам нужно найти драйвер переменного тока, который может работать до 13 Вт, как наш светодиодный драйвер Phihong 15 Вт.

ПРИМЕЧАНИЕ: При разработке приложения важно учитывать минимальное выходное напряжение автономных драйверов. Например, приведенный выше драйвер имеет минимальное выходное напряжение 15 вольт. Поскольку минимальное выходное напряжение больше, чем у нашего одиночного светодиода XPG2 (2,9 В), для работы с этим конкретным драйвером вам потребуется соединить не менее 6 из них последовательно.

Инструменты для понимания и поиска правильного драйвера светодиода

Итак, теперь у вас должно быть довольно хорошее представление о том, что такое драйвер светодиода и что вам нужно искать при выборе драйвера с источником питания, достаточным для вашего приложения. Я знаю, что вопросы по-прежнему будут, и для этого вы можете связаться с нами по телефону (802) 728-6031 или [email protected].

У нас также есть этот инструмент выбора драйверов, который помогает рассчитать, какой драйвер будет лучше всего, введя спецификации вашей схемы.

Если ваше приложение требует нестандартного размера и вывода, обратитесь в LEDdynamics. Их подразделение LUXdrive быстро разработает и изготовит нестандартные светодиодные драйверы прямо здесь, в Соединенных Штатах.

Спасибо за внимание, и я надеюсь, что этот пост поможет всем тем, кто задается вопросом, что такое драйверы светодиодов.

BuckBlock DC LED Driver

Выходной ток: 2100 мА, 1400 мА и 1000 мА Диапазон входного напряжения: 10Vdc-32Vdc
Затемнение: 0-10 В Защита выхода: Короткое замыкание и разрыв цепи
Защита входа: Обратная полярность с Polarifet Размер: 2.0 дюймов (Д) X 1,2 дюйма (Ш) X 0,38 дюйма (В)
Внешнее управление: Аналоговый / цифровой контроль интенсивности Управление потенциометром: 0-100% интенсивность
КПД: 90% Подключение: Провода 18 AWG

Модули питания светодиодов BuckBlock ™ серии LuxDrive ™ A009 представляют собой высокомощные драйверы постоянного тока с широким диапазоном мощности для питания светодиодов высокой яркости (HB) при постоянных высоких выходных токах.В тех случаях, когда стандартные блоки питания подают на выход фиксированное напряжение, BuckBlock спроектирован для выработки фиксированного тока. Выходное напряжение будет регулироваться по мере необходимости для поддержания указанного выходного тока с различными падениями прямого напряжения светодиодов. BuckBlock имеет схему измерения тока с быстрым откликом, позволяющую устройству мигать или стробировать светодиоды, а выход BuckBlock включает внешнее затемнение с использованием обычных диммеров низкого напряжения 0-10 В. Форм-фактор BuckBlock чрезвычайно низкопрофильный, полностью герметизирован и поставляется с шестидюймовыми цветными выводами 18AWG, что делает установку в ограниченном пространстве быстрой и простой.

Выбор продукции

Деталь
Номер
Вход постоянного тока (В DC ) Выход Управление
Регулировка яркости
(В)
Соединение
Тип
Мин. Макс. Ток
мА
Допуск
(±)
КПД
(%)
Максимальное напряжение
A009-D-V-1000 10 32 1000 10% 90 80% от Vin 0-10 (6) 18AWG 6 «Провода
A009-D-V-1400 10 32 1400 10% 90 75% от Vin 0-10 (6) 18AWG 6 «Провода
A009-D-V-2100 10 32 2100 10% 90 50% от Vin 0-10 (6) 18AWG 6 «Провода

Абсолютные максимальные рейтинги

Параметр Максимальная производительность
Вход затемнения, порог включения 1.7 В ± 5%
Вход регулирования яркости, полный порог 9 В ± 5%
Диапазон регулировки внешнего горшка 0%, 5-100%
Время нарастания мощности <1,5 мс
Время спада мощности <100 s = "" td = "">
Ток покоя (DIM = 0 В) <4.5 ma = "" td = "">
Температура хранения -40 ° С — 125 ° С
Рабочая температура -40 ° С — 80 ° С

Информация о приложении: Высокоэффективный светодиодный силовой модуль BuckBlockTM — это высокоэффективный преобразователь постоянного тока в постоянный, который обеспечивает фиксированный выходной ток путем изменения выходного напряжения, необходимого для поддержания заданного тока.Поскольку прямое напряжение светодиодов может изменяться в зависимости от нескольких факторов окружающей среды, а также от возраста светодиода, важно использовать этот тип драйвера в светодиодной системе. Более высокие выходные токи идеальны для управления несколькими цепочками светодиодов или мощных светодиодных модулей. Схема измерения тока с быстрым откликом позволяет использовать устройство в приложениях, где требуется мигание или пульсация светодиодов. Доступно несколько опций, позволяющих использовать со многими типами светодиодов и в различных режимах работы.

Привод с фиксированным током: Когда провода регулятора яркости (фиолетовый / серый) остаются неподключенными, A009 предназначен для подачи номинального тока на один или несколько переходов светодиодов. Например, блок с номиналом 2100 мА будет управлять до четырех белых светодиодов 2100 мА, соединенных последовательно при 24 В постоянного тока. Из-за природы понижающего стабилизатора входное напряжение всегда должно быть выше, чем полное прямое падение напряжения на переходе (-ах) светодиодов, соединенных последовательно. Таким образом, для последовательной колонны из четырех соединений, имеющей среднее прямое падение 3.15 В каждое, необходимое минимальное входное напряжение будет 24 В постоянного тока. Стандартный источник питания 24 В постоянного тока — хороший выбор для этого приложения. См. Стр. 3 для получения информации о максимальных номинальных значениях Vout / Vin для различных приводных токов.

На рисунках 10 и 11 показаны блоки 1400 мА и 2100 мА, управляющие несколькими светодиодами. Обратите внимание, что параллельные цепочки светодиодов могут управляться напрямую без дополнительных схем, необходимых для распределения тока. Природа самих светодиодов будет обеспечивать достаточное разделение тока, если параллельные цепочки содержат три или более переходов каждая и имеют одинаковую длину.

Регулируемый ток — внешнее управление — модель «V»: На рисунках 14 и 15 показано, как легко регулировать яркость модуля питания светодиодов высокой мощности A009 BuckBlockTM. На рисунке 14 показана простейшая конфигурация диммирования с использованием потенциометра 20 кОм. Это дает диапазон затемнения от 0 до 100%. Если несколько модулей A009 должны быть уменьшены с помощью одного потенциометра, значение потенциометра должно быть приблизительно (20KÎ © / N), где N — количество модулей.

На рисунке 15 показан настенный диммер на 0–10 В, такой как LEDdynamics A019 Low Voltage Dimming Control, используемый для управления яркостью светодиода.Это предпочтительный выбор для диммирования нескольких устройств, поскольку диммер 0-10 В может работать с несколькими драйверами. Вход 0-10 В также может быть запитан коммерческим контроллером освещения, имеющим токовые выходы 0-10 В, что позволяет интегрировать светодиоды с другими формами освещения в больших автоматизированных системах.

Для больших систем, в которых несколько удаленных модулей BuckBlock будут затемнены вместе, важно использовать провод большего сечения (например, 18AWG) для прокладки линий DIM по схеме звездообразной проводки (где каждый модуль проходит весь путь назад до диммер).Это поможет нейтрализовать любые падения напряжения на проводах DIM, которые могут привести к тому, что некоторые лампы будут тускнеть не так, как другие.

Для более расширенного управления вход 0-10 В может иметь широтно-импульсную модуляцию (ШИМ). На рисунке 18 показано, как легко выполнить сопряжение с микроконтроллером с помощью транзистора 2N3904 или аналогичного. Рекомендуется частота ШИМ 200 Гц. Эта конфигурация также может использоваться для стробирования или импульса светодиодов с помощью логического сигнала TTL или CMOS.

В дополнение к конфигурациям, описанным выше, BuckBlock также может управляться цифро-аналоговым преобразователем.Цифро-аналоговый преобразователь должен иметь возможность потреблять не менее 1 мА тока со входа 0–10 В BuckBlock. Если цифро-аналоговый преобразователь не может потреблять ток, следует использовать повторитель напряжения с выходом с открытым коллектором между цифро-аналоговым преобразователем и входом 0–10 В.

Если в цепи управления затемнением, используемой с BuckBlock, есть потенциал, превышающий 10 В, ток на входе DIM необходимо ограничить до 10 мА или меньше. См. Рисунок 8.

Внешнее включение / выключение: Если требуется ручное включение / выключение, потенциометр на Рисунке 14 можно заменить кнопочным или тумблером.Выходной ток будет равен нулю, а входной ток упадет до уровня покоя, когда переключатель замкнут. На рисунках 16 и 17 показано внешнее управление затемнением в сочетании с управлением включением / выключением.

Управление температурой: BuckBlock может работать со многими конфигурациями светодиодной нагрузки без дополнительного теплоотвода при температуре окружающей среды 25 ° C. В ситуациях с повышенными температурами окружающей среды, например, в закрытых светильниках, может потребоваться дополнительный теплоотвод.Если температура драйвера (измеренная по метке T на этикетке) превышает 60 ° C, рекомендуется дополнительный теплоотвод. Если температура драйвера превышает 80 ° C, требуется дополнительный теплоотвод.

Лучшая поверхность для отвода тепла от BuckBlock — это задняя сторона (противоположная стороне с надписью). Модуль может быть прикреплен к радиатору с термопастой и монтажным кронштейном, который плотно прижимает устройство к радиатору, или с помощью двусторонней ленты, которая обеспечивает как тепловой путь, так и механический монтаж.При использовании ленты (такой как 3M F9469PC, лента с очень высоким сцеплением (VHB), подходящая для постоянного монтажа) использование более тонкой разновидности (толщиной 0,005 дюйма или меньше) поможет отвести тепло через ленту к радиатору. Следует соблюдать осторожность при установке модуля BuckBlock с лентой VHB, так как высокая прочность сцепления очень затрудняет снятие или повторное расположение модуля.

Если BuckBlock становится слишком горячим во время использования, он снижает выходной ток для ограничения рассеиваемой мощности. Если температура продолжит расти, драйвер выключится, пока температура не упадет до безопасного уровня.

Подключения: Во всех случаях управляемые светодиоды должны быть расположены как можно ближе к выходу светодиода A009. Провод 18AWG должен подходить для большинства проводов, но если требуются длинные провода, следует рассмотреть вариант более толстого сечения

Провода подачи питания также должны быть короткими. Если источник питания расположен в нескольких футах от устройства, на входных клеммах может потребоваться конденсатор емкостью 100 мкФ или более, 50 В, как показано на Рисунке 20.

Примечание: Выше представлены основные характеристики продукта, а не полное техническое описание производителя.Пожалуйста, просмотрите .pdf для получения полных спецификаций.

Схема подключения светодиодов

и неоновых ламп | Top Forum Picks

Что касается этих диаграмм, важно отметить, что черные точки, представленные на первой диаграмме (см. Внизу страницы), означают, что провода подключены.

Для информации, когда на схеме изображен провод, который выглядит так, как будто он «перепрыгивает», это означает, что в реальной жизни они не подключены.

Чтобы подключить провод, как показано на схеме, вы можете разрезать и сращивать или использовать соединители 3M Scotchlok, которые обжимаются на проводе для соединения.

В качестве альтернативы вы можете снять изоляцию, обернуть вокруг нее другой провод и припаять соединение изолентой или термоусадочной трубкой. Вы также можете использовать проволочные гайки для фиксации соединения, обжимные колпачки или клеммные колодки.



Дополнительная информация

Это спасибо PTCruzr !!!

Схема подключения неоновой акцентной лампы №1
(для неоновых ламп БЕЗ внешнего трансформатора). ПРИМЕЧАНИЕ. Если используется выключатель с подсветкой, подключите 3-е соединение выключателя к земле.

Схема подключения неоновой акцентной трубки №2
(для неоновых ламп с внешним трансформатором). ПРИМЕЧАНИЕ. Если используется выключатель с подсветкой, подключите 3-е соединение выключателя к земле.

Схема неонового комплекта днища № 1
(для комплектов БЕЗ внешнего трансформатора). ПРИМЕЧАНИЕ. Если используется выключатель с подсветкой, подключите 3-е соединение выключателя к земле.

Схема неонового комплекта днища №2
(для комплектов С внешним трансформатором). ПРИМЕЧАНИЕ. При использовании выключателя освещения подключите 3-е соединение переключателя к заземлению.

Форсунки омывателя неонового цвета Схема
ПРИМЕЧАНИЕ. При использовании выключателя освещения подключите 3-е соединение переключателя к земле.

Схема неоновых педалей
Схема неоновых педалей

Схема проводов EL
ПРИМЕЧАНИЕ: При использовании выключателя с подсветкой подключите 3-е соединение переключателя к земле.

Схема подключения светодиода


Обратите внимание на нагрузочный резистор, который НЕОБХОДИМ. Также обратите внимание, что анод светодиода подключен к плюсу. Анод — БОЛЬШЕ свинца.
ПРИМЕЧАНИЕ. При использовании светового переключателя подключите 3-е соединение переключателя к земле.

Схема подключения аналогичных светодиодов
Вот аналогичная схема подключения светодиодов, показывающая 4 отдельных светодиода (НЕ подключенных).Обратите внимание на нагрузочный резистор, необходимый для каждого светодиода. Также обратите внимание, что анод светодиода подключен к плюсу. Анод — БОЛЬШЕ свинца. ПРИМЕЧАНИЕ. Если используется выключатель с подсветкой, подключите 3-е соединение выключателя к земле.

Схема подключения нескольких светодиодов
Обратите внимание, что нагрузочный резистор НЕ требуется. Также обратите внимание на соединения анода и катода. Анод — БОЛЬШЕ свинца. Светодиоды ДОЛЖНЫ быть подключены последовательно, а НЕ параллельно.
ПРИМЕЧАНИЕ. Если используется выключатель с подсветкой, подключите 3-е соединение на выключателе к земле.

Схема подключения 12 светодиодов
Обратите внимание, что нагрузочный резистор НЕ требуется.Также обратите внимание на соединения анода и катода. Анод — БОЛЬШЕ свинца. Светодиоды ДОЛЖНЫ быть подключены последовательно, а НЕ параллельно.
ПРИМЕЧАНИЕ. При использовании светового переключателя подключите 3-е соединение переключателя к земле.


Последние сообщения в блоге


Устранение неполадок со светодиодами — Проблемы с проводами и проводкой

DO

МОЖНО использовать многожильный провод

Многожильный провод обеспечивает более плотный контакт, что снижает падение напряжения и потери мощности. Плохое соединение может лишить систему значительной части производимой энергии.Многожильный провод будет сжиматься и расплющиваться, что увеличивает площадь контакта. Это снижает падение напряжения и сводит к минимуму нагрев в месте подключения.

НЕОБХОДИМО использовать чистые прямые выводы

Наличие чистых и прямых проводов важно для любой установки светодиодов. Если ваши провода чистые и прямые, вы получите наилучшее соединение и уменьшите падение напряжения. Если вы хотите, вы можете припаять концы проводов, чтобы они оставались вместе и были уверены, что вы получаете достаточный контакт на ваших соединениях.

DO Термоусадочный или используйте соединители

При соединении двух проводов вместе всегда лучше использовать подходящие соединители для проводов или спаять провод вместе и применить термоусадку для защиты. Существует множество соединителей для разных типов проводов, поэтому очень важно, чтобы ваши соединители были сделаны для того провода, который вы используете, и надежно закреплены.

НЕОБХОДИМО использовать разветвители проводов

Распространенная ошибка, которую делают люди при подключении светодиодных осветительных приборов, — это упростить установку, вставляя 10 проводов в гайку для проводов или соединитель типа «феникс».Вместо этого лучше использовать несколько разветвителей проводов, клеммные колодки или спаять провода вместе, чтобы разделить провода, а не пытаться перегрузить соединитель, что может стать серьезной опасностью возгорания.

DO Использовать параллельные соединения

При установке более крупных светодиодных установок или установок с большим количеством проводов, идущих к нескольким точкам, необходимо подключить ваши светильники параллельно к контроллеру или источнику питания, чтобы уменьшить падение напряжения. Подумайте о параллельном подключении, как о том, что ваши светодиодные фонари работают независимо от источника питания, или проложите домашний провод к источнику питания и соедините его в разных местах проводки.Проверьте с помощью мультиметра, чтобы проверить падение напряжения.

НЕ

НЕ ИСПОЛЬЗУЙТЕ сплошной провод

При использовании сплошного провода в системе низкого напряжения вы заметите, в лучшем случае, что у вас будут три небольшие контактные площадки между сплошным проводом и соединением устройства при использовании типичной винтовой клеммы. Это также относится к блокам распределения питания или проволочным гайкам, у которых есть только две контактные площадки, которые могут вызвать нагревание.

Не портите провода

Когда ваши провода изношены и расходятся во всех направлениях, вы рискуете столкнуться с множеством проблем с проводкой.Во-первых, вы заметите падение напряжения, если только несколько пар многожильного провода входят в электрический контакт, во-вторых, вы подвергаете свою установку риску короткого замыкания и потенциальной опасности возгорания.

НЕ оставляйте сращивания неизолированных проводов

При подключении вашего проекта светодиодного освещения очень важно не оставлять оголенными сращивания проводов. Оставление оголенных стыков проводов подвергает вашу установку опасности короткого замыкания и потенциальной опасности возгорания.Всегда используйте подходящие соединители для проводов и никогда не оставляйте оголенные стыки проводов.

НЕ ПЕРЕГРУЖАЙТЕ соединители проводов

Перегрузка разъемов проводов — наиболее частая ошибка при установке светодиодной осветительной продукции. Когда в разъеме, предназначенном для одного провода, слишком много проводов, это может вызвать серьезные проблемы с пожароопасностью в случае короткого замыкания или возникновения дуги в проводах. Это также может вызвать проблемы с падением напряжения, если некоторые провода имеют более безопасное соединение, чем другие.

НЕ ИСПОЛЬЗУЙТЕ последовательные соединения

Для тех, кто впервые установил светодиодные светильники, последовательные соединения кажутся здравым смыслом при подключении светодиодных фонарей. Чего люди не понимают, так это того, что каждый маленький светодиод и его компоненты забирают немного напряжения от следующего в серии. Таким образом, чем дольше вы включаете свои светодиодные фонари последовательно, тем больше будет падение напряжения и тем менее равномерным будет ваше освещение. Если вы устанавливаете фонари на высоте более 20 футов или в нескольких местах, всегда используйте параллельные соединения.

Общее руководство по установке жгутов реле с выключателем — iJDMTOY.com

Это общее руководство по подключению жгута реле и комплекта переключателей. Эти инструкции применимы к любому автомобилю, но в данном руководстве мы будем использовать Ford F-250 в качестве эталонного автомобиля для подключения светодиодной планки.

Прежде чем мы начнем, обратите внимание на эту схему реле, чтобы узнать, как подключить переключатель к светодиодной лампе. Вы заметите, что провод имеет 2 выхода, но для этой светодиодной полосы нам понадобится только 1 выход.

Вот краткий обзор того, какие числа соответствуют какому месту подключения, а также видеоурок по руководству по подключению. Мы пройдемся по каждому из номеров в руководстве по подключению и объясним, где каждый из проводов будет подключен.

# 1: Отключить
# 2: Отключить
# 3: Прикоснуться к положительному выводу светодиодной световой полосы
# 4: Коснуться к отрицательному выводу светодиодной световой полосы
# 5: Коснуться к положительному полюсу аккумулятора
# 6: Коснуться к отрицательному полюсу аккумулятора
# 7: Нарисуйте на салоне автомобиля и установите на плоской поверхности
# 8: коснитесь положительного полюса фары
# 9: коснитесь отрицательного полюса фары


Шаг 1: Соберите более короткие отрезки выходных проводов (белые и черные провода) и отключите клеммы.Вы можете сделать это, используя черную ленту, чтобы приклеить каждый терминал отдельно, чтобы они не соприкасались. Затем закройте обе клеммы вместе.

Шаг 2: Теперь возьмите другие выходные клеммы и подключите белый контактный провод к положительному красному проводу, а черный контактный провод к отрицательному черному проводу. Закрепите соединения черной лентой.

Шаг 3: На жгуте реле коснитесь красного провода к плюсу аккумулятора, а черного провода к массе.

Шаг 4: Проведите часть проводки переключателя со стороны пассажира на сторону водителя.

Шаг 5: Найдите резиновую крышку со стороны водителя и откройте крышку брандмауэра.

Шаг 6: Вставьте выключатель моторного отсека в салон автомобиля.

Шаг 7: Коснитесь красного пускового провода к плюсу фары и черного провода к минусу фары.Мы подключаем эти провода к положительному / отрицательному положению фары, поэтому светодиодная полоса загорается при включенных фарах. Это защищает от разрядки аккумулятора, потому что, когда автомобиль выключен, фары также автоматически выключаются. Так что даже если вы забыли выключить выключатель, светодиодная полоса погаснет вместе с фарами.

Шаг 8: Прикрепите переключатель в подходящем месте. Для закрепления используйте двусторонний скотч.

Проверьте, все ли работает, и наслаждайтесь своей новой светодиодной лампой для грузовиков.

Светодиодные фонари

~ Подключение — База знаний ~ 12Volt-Travel.com

Использование автомобильных светодиодных фонарей немного отличается от использования автомобильных ламп накаливания. Можно ожидать, что цвета проводов и энергопотребление немного удивят. Поскольку светодиодные фонари потребляют гораздо меньше энергии, чем стандартные автомобильные лампы, если вы планируете установить светодиодные фонари в качестве указателей поворота / указателей поворота, вам следует заменить стандартное реле теплового мигания на светодиодное или электронное реле мигающего сигнала.Светодиодные лампы потребляют настолько мало энергии, что не выделяют достаточно тепла, чтобы сработать стандартную тепловую вспышку.

Итак, приступим!

Светодиодные фонари с одним проводом обычно заземляются (-) через основание корпуса фонаря и будут однофункциональным фонарем. Это означает габаритный свет, ходовой свет, стоп-сигнал или указатель поворота. В этом случае одиночный провод белого, черного или красного цвета будет работать как положительный (+) провод питания.

Светодиодные фонари с 2 проводами, как правило, будут однофункциональными.Это означает габаритный свет, ходовой свет, стоп-сигнал или указатель поворота. В этом случае один из проводов будет заземлен (-), а другой — положительным (+). Обычно предоставляются белый и черный провод. Белый цвет обычно является заземлением (-), а черный — плюсом (+).

Светодиодные фонари с 3 проводами будут многофункциональными. Их можно (в большинстве случаев) использовать в любой конфигурации, подходящей для вашего приложения. Например, бег и тормоз, бег и поворотник или тормоз и поворотник.Эти светодиоды обычно имеют черный, красный и белый провод. В этом случае белый цвет является заземлением (-), красный — положительным (+), а черный — вторым положительным (+).

Таким образом, для светодиодов с 3 проводами, установленных в качестве тормоза и мигалки, подключение черного провода светодиода к положительному проводу стоп-сигнала автомобиля, а красный провод светодиодных огней к положительному (+) проводу мигалки, идущему от реле мигающего сигнала, будет верный.

Поскольку на самом деле не существует отраслевого стандарта для окраски проводов в этих светодиодных лампах для вторичного рынка, тестирование с помощью мультиметра всегда является хорошей идеей.Чаще всего на светодиодах указывается какая-то информация о проводке, но не всегда.

Проверка светодиодных индикаторов на правильную полярность с батареей 9 В также является отличным способом определения того, какие провода являются положительными, а какие — отрицательными. Например, если у вас трехжильный светодиодный светильник, прикоснитесь предполагаемым отрицательным (-) проводом к отрицательной (-) стороне батареи 9 В и одновременно коснитесь одним из оставшихся проводов к положительному полюсу батареи 9 В (+ ) боковая сторона. Если вы случайно ошиблись и в итоге оба положительных провода были подключены к батарее 9 В (светодиод + к 9 В (-) и светодиод + к 9 В (+)), повреждений не должно быть.

Автомобильный грузовик — Светодиодные фонари для прицепов

Инструкции по замене светодиодной лампы

T8, спецификации с www.lc-led.com

ОПАСНОСТЬ: ОПАСНОСТЬ ПОРАЖЕНИЯ ТОКОМ: ОТКЛЮЧИТЕ ПИТАНИЕ ПЕРЕД УСТАНОВКОЙ

ВАЖНАЯ БЕЗОПАСНОСТЬ ИНСТРУКЦИЯ

1) Этот продукт должен быть установлен профессионал или квалифицированный специалист, знающий о применимой установке кодов,
операций с этим продуктом и связанных с этим опасностей

2) Опасность возгорания или поражения электрическим током. амортизатор , Установщик должен определить, что светильник работает от 120 В переменного тока перед установкой

.

3) Опасность возгорания или поражения электрическим током. амортизатор , Установить требуется знание электрических систем люминесцентных светильников. квалифицированный,
не пытайтесь установить, обратитесь к квалифицированному электрику

4) Предупреждение , Установите эту светодиодную лампу T8 замена в светильниках, которые имеют характеристики и размеры (в частности, дизайн для лампы T8 (замена
) показано на нашем чертеже и техническом паспорте

5) Предупреждение , Во избежание повреждения проводки или истиранию, не допускайте контакта проволоки с острыми краями (листовой металл) или другими острыми объекты

6) Предупреждение , Не производите и не изменяйте никаких открытых отверстия в корпусе проводки или электрических компонентов во время установки

Схема подключения светодиода T8 (с балластом и стартером)

1) Удалить оригинальную люминесцентную лампу T8

2) Снять или укоротить балласт и стартер при наличии

3) Вставьте сменный светодиод T8 в светильник

4) См. Схему ниже для правильного подключения Информация

А) Примечание: только один PIN-код — Hot Wire, остальные PIN-коды — это холодная проволока

Светильники с балластом и стартером

Схема подключения светодиода T8 (без балласта)

1) Горячий (черный) провод (провод под напряжением 120 В) к любой штифт на одном конце troffer

2) Холодный (нейтральный, белый) провод к любому из остальные три штифта на троффере

3) Вставьте сменный светодиод T8 в светильник

Светильники без балласта

Схема подключения светодиода T8 для нескольких пробирок

.
Обновлено: 25.08.2021 — 04:20

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *