Как подключить Солнечные Панели (Схемы соединения)
Последовательное соединение, параллельное соединение и последовательно-параллельное соединение солнечных модулей
Возможные варианты подключения солнечных панелей
При монтаже солнечных электростанций неизбежно возникает вопрос – как соединять солнечные панели и чем отличаются варианты подключения. Именно об этом мы и поговорим в этой статье.
Существуют 3 варианта соединения солнечных панелей между собой:
-Последовательное соединение
-Параллельное соединение
-Последовательно-параллельное соединение солнечных панелей
Для того чтобы разобраться чем они отличаются, обратимся к основным характеристикам солнечных панелей:
• Номинальное напряжение солнечной батареи – как правило 12В или 24В, но существуют и исключения
• Напряжение при пиковой мощности Vmp – напряжение при которой панель выдает максимальную мощность
• Напряжение холостого хода Voc – напряжение в отсутствии нагрузки (важно при выборе контроллера заряда АКБ)
• Напряжение максимальное в системе Vdc – определяет максимальное количество панелей объединенных вместе
• Ток Imp – ток при максимальной мощности панели
• Ток Isc – ток короткого замыкания, максимально возможный ток панели
Мощность солнечной панели определяется как произведение Напряжения и тока в точке максимальной мощности – Vmp* Imp
В зависимости от того какая схема подключения солнечных панелей выбрана, будут определяться характеристики системы солнечных панелей и подбираться соответствующий контроллер заряда.
Теперь предметно рассмотрим каждую схему соединения:
1) Последовательное соединение солнечных панелей
При таком соединении минусовая клемма первой панели соединяется с плюсовой клеммой второй, минусовая второй с клеммой третьей и так далее.
При последовательном соединении нескольких панелей, напряжение всех панелей будет складываться. Ток системы будет равен току панели с минимальным током. По этой причине не рекомендуется соединять последовательно панели с различным значением ток максимальной мощности, поскольку работать они будут не в полную силу.
Рассмотрим на примере:
Имеем 4 солнечных монокристаллических панели со следующими характеристиками:
• Номинальное напряжение солнечной батареи: 12В
• Напряжение при пиковой мощности Vmp: 18.46 В
• Напряжение холостого хода Voc: 22.48В
• Напряжение максимальное в системе Vdc: 1000В
• Ток в точке максимальной мощности Imp: 5.42А
• Ток короткого замыкания Isc: 5.65А
Соединив последовательно 4 таких панели мы получим на выходе номинальное напряжение 12В*4=48В. Напряжение холостого хода = 22,48В*4=89,92В и Ток в точке максимальной мощности равный 5,42А. Эти три параметра задают нам ограничения при выборе контроллера заряда.
2) Параллельное соединение солнечных панелей
В данном случае панели соединяются при помощи специальных Y — коннекторов. У таких коннекторов имеется два входа и один выход. К входам подключаются клеммы одинакового знака.
При таком соединении напряжение на выходе каждой панели будет равны между собой и равны напряжению на выходе из системы панелей. Ток от всех панелей будет складываться. Такое соединение позволяет, не поднимая напряжения увеличить ток от панелей.
Рассмотрим на примере все тех же 4х панелей:
Соединив параллельно 4 таких панели мы получим номинальное напряжение на выходе равное 12В, Напряжение холостого хода останется 22,48В, но ток при этом будет равен 5,42А*4=21,68А.
3) Последовательно-параллельное соединение солнечных панелей
Последний тип соединения объединяет в себе два предыдущих. Применяя данную схему соединения панелей, мы можем регулировать напряжение и ток на выходе из системы нескольких панелей, что позволит подобрать наиболее оптимальный режим работы всей солнечной электростанции.
В случае такого подключения соединенные последовательно цепочки панелей объединяют параллельно.
Вернемся к нашему примеру с 4мя панелями:
Соединив по 2 панели последовательно и затем объединим их соединив цепочки панелей параллельно мы получим следующее. Номинальное напряжение на выходе будет равно сумме двух последовательно соединенных панелей 12В*2=24В, напряжение холостого хода будет равно 22,48В*2=44,96В, а ток при этом будет равен 5,42А*2=10,84А.
Такое соединение позволит максимально сэкономить на покупке контроллера заряда, поскольку от него не потребуется выдерживать больших напряжений как в случае последовательного соединения или больших токов как в случае параллельного соединения. Именно поэтому соединяя панели между собой необходимо стремится к балансу между токами и напряжениями.
О том как подобрать контроллер заряда можно прочитать тут –
А если вы хотите купить солнечную электростанцию ― позвоните по телефону 8-800-100-82-43 (+7-499-709-75-09) или оставьте заявку на сайте и мы сделаем все необходимые расчеты и подберем оптимальную комплектацию для вас!
Солнечная батарея 5В: описание, подключение, схема, характеристики
В процессе эволюции человечество научилось добывать электрическую энергию, используя природные ресурсы.
СодержаниеОбзор солнечной батареи 5В
В процессе эволюции человечество научилось добывать электрическую энергию, используя природные ресурсы. Это могут быть полезные ископаемые (теплоэлектростанции, использующие нефть, уголь или атомные, использующие ядерное топливо), водные ресурсы (гидроэлектростанции), поток ветра (ветроэлектростанции). Солнечные батареи – это набирающий популярность источник дешевого электричества, получаемого из солнечных лучей. Солнечная батарея состоит из фотоэлементов на основе кремния, которые прямо преобразуют солнечную энергию в постоянный электрический ток.
К преимуществам солнечных батарей относятся:
- высокая экологичность;
- безшумность;
- доступность;
- постоянство – если полезные ископаемые могут закончиться, то наcчет солнечной энергии беспокоиться не стоит;
- обширная область использования – могут применяться как в сельской местности, так и в космосе.
Однако у солнечных батарей есть и недостатки:
- дороговизна;
- cсолнечное освещение – непостоянная величина и КПД (коэффициент полезного действия) батареи будет снижаться в пасмурную погоду.
Солнечная батарея 5В 1.
Рисунок 1
Технические характеристики
- Максимальная выходная мощность: 1.2 Вт;
- Напряжения холостого хода: 5 В;
- Рабочий ток: 200 мА;
- Коэффициент полезного действия (КПД) : 17%;
- Размеры: 70 х 55 х 3 (±0.2) мм;
- Вес : 17 г.
Пример использования
Перейдем к практическому использованию батареи. Проверяем напряжение холостого хода – 5 В, как и заявлено. Попробуем подключить к батарее светодиод (рис. 2).
Рисунок 2.
Мощность естественно зависит от освещенности. Ток КЗ на окне при ярком солнце 50-70 мА.
Проверим, насколько эффективно можно использовать данные солнечные батареи, точнее нескольких батарей, соединенных параллельно, для зарядки Li-ion аккумулятора 18650.
Список деталей:
- солнечная батарея 5 В, 1.2 Вт — 4 шт;
- Li-ion аккумулятор 18650 — 1 шт;
- Модуль для зарядки Li-ion батарей на микросхеме TP4056 — 1 шт;
По документации рабочий ток 200 мА на одну батарею. Соединим 4 данных солнечных батареи параллельно и проверим ток кз. На окне при ярком солнце 150-220 мА. Для зарядки аккумулятора 18650 будем использовать модуль для зарядки Li-ion батарей на микросхеме TP4056 (рис. 3).
Рисунок 3.
Контроллер заряда TP4056 отключается от аккумулятора при достижении на аккумуляторе заряда в 4.2 В, при заряде сила тока постепенно понижается.
Схема подключения показана на рисунке 4.
Рисунок 4
Собираем схему (рис. 5) и приступаем к испытаниям.
Рисунок 5,6,7.
Выставляем устройство на солнце. Пошел процесс зарядки. Об окончании зарядки сигнализирует синий светодиод. Скорость зарядки очень сильно зависит от освещения.
Рисунок 8,9.
Контакты OUT+ и OUT- выводим на USB-разъем и можем использовать заряженный аккумулятор, например для зарядки телефона.
Часто задаваемые вопросы FAQ
Батарея выдает недостаточный ток- Ток батареи зависит от солнечного освещения, найдите более солнечное место;
- Объедините несколько батарей, подключив их параллельно.
Схема автономного питания от солнечных батарей без контроллера заряда.
Схема автономного питания от солнечных батарей без контроллера заряда
отличается от типовой схемы подключения солнечных батарей простотой, надёжностью и эффективностью использования альтернативной энергии.
При всей своей простоте, и отсутствии контроллера заряда, позволяет зарядить аккумуляторные батареи на 100%.
Поскольку солнечные батареи являются полупроводником, обратный ток солнечных батарей в тёмное время суток ничтожно мал. Тем не менее, установка низковольтного диода в цепь между солнечной батареей и аккумулятором, весьма желательна, в целях безопасности короткого замыкания.
Для самой солнечной батареи короткое замыкание абсолютно безопасно.
Опасно замыкание аккумуляторной батареи.
Многим доводилось видеть, как плавиться автомобильная проводка в случае короткого замыкания. Более 90% возгорания автомобилей происходит по этой причине.
Включение в цепь диода осуществляется возможно ближе к аккумуляторной батарее, чтобы обезопасить весь отрезок проводки от солнечной батареи до аккумулятора.
Разумеется, можно поставить плавкий автомобильный предохранитель или блок предохранителей.
В этом случае мы не отсекаем обратный ток, исключаем возможность подключения «дневной нагрузки» непосредственно к солнечным батареям и усложняем проверку работоспособности солнечной батареи.
При наличии в цепи диода, достаточно убедиться в его нагреве при достаточной инсоляции.
При обрыве он будет холодным, а напряжение на входе диода отсутствовать.
Рекомендуется устанавливать диод с теплоотводом, радиатором.
Нагрев до 60°С считается нормальным.
Низковольтный диод, порядка 40 вольт, выбирается ввиду низкого падения напряжения на p-n переходе, 0,3 — 0,4 v.
В более высоковольтных диодах, 0,6 – 1,0 v. Вследствие чего, при равном токе, на низковольтном диоде происходит меньший нагрев, с соответствующими потерями мощности. Из школьной программы помним: I x U = W.
Далее..
* Все объёмные картинки являются ссылками по теме.
схема монтажа и подключения панелей, как собрать китайских вариант своими руками
Альтернативные источники получения энергии в последние десятилетия становятся все более популярными, особенно распространены солнечные батареи.
Особенности
По своему КПД они эффективнее, чем поликристаллические модификации, однако, их стоимость гораздо выше, а монтаж значительно сложнее. Такие панели характеризуются многоугольной формой заполняющих элементов.
Солнечные батареи, которые изготовлены с использованием аморфного кремния, отличаются довольно низкой эффективностью. Однако их цены несколько ниже, чем стоимость аналогов, поэтому модель пользуется спросом у собственников загородных домов. На данный момент подобные изделия составляют 85% рынка. Они не могут похвастаться высокой мощностью и модификации из теллурида кадмия, в основе их производства лежит высокотехнологичная пленочная методика: несколько сотен микрометров вещества наносят тончайшим слоем на прочную поверхность.
Еще одним вариантом батарей, работающих от солнечной энергии, являются разновидности на базе полупроводника CIGS. Как и предыдущий вариант, они производятся по пленочной технологии, однако, показатель их эффективности гораздо выше. Отдельно стоит остановиться на механизме работы солнечных источников тепла и света. Главное – это четко осознавать, что общее количество вырабатываемой энергии никак не может находиться в зависимости от степени эффективности самого устройства, поскольку обычно все типы подобных устройств дают примерно идентичную мощность. Основная разница состоит лишь в том, что панели, которые имеют максимальную эффективность, требуют меньше места для своей установки.
К примеру, 8 квадратных метров монокристаллических изделий дают 1 кВт энергии, а вот для получения этого же количества тепла батареям из кремния потребуется уже 20 кв. м. Ну и, конечно же, интенсивность и время воздействия солнечного света оказывает большое значение на окончательную выработку тепла.
Солнечные батареи имеют следующие преимущества:
- экологичность установки;
- длительный срок использования, на протяжении которого эксплуатационные особенности панелей остаются неизменно высокими;
- технологии довольно редко ломаются, поэтому не нуждаются в сервисном и техническом обслуживании, а также дорогостоящем ремонте;
- использование батарей на основе энергии солнца позволяет сократить расходы на электричество и газ в доме;
- солнечные батареи отличаются исключительной простотой в использовании.
Впрочем, без недостатков тоже не обошлось, среди наиболее существенных можно обозначить следующие:
- высокая сцена панелей;
- потребность в установке разнообразного дополнительного оборудования для эффективной синхронизации энергии, получаемой от батареи, и того что получается от традиционных источников;
- панели не могут использоваться в контакте с такими приборами, которые требуют высоких мощностей.
Схема подключения
Энергия, которая вырабатывается солнечными батареями, не имеет технической возможности напрямую использоваться для работы каких-либо электрических приборов. Для выделения необходимого для работы напряжения используют своеобразные инверторы, расположенные между панелью и основной сетью потребления.
При этом нужно знать три основных типа подключения солнечных панелей.
- Автономное подключение. Этот вариант чаще других применяется в тех территориальных зонах, где отсутствует какая-либо централизованная сеть электроснабжения. В этом случае конструкцию формируют аккумуляторные высокомощные батареи. Принцип их работы состоит в накапливании внутри себя энергии в светлое время. Когда наступает время недостаточного освещения, накопленные потоки и перенаправляются в сеть.
- Резервное подключение. Этот способ оптимален в местах, где проведено централизованное электроснабжение через сеть переменного тока. Создание резервной системы получения энергии в данном случае используется как запасной вариант, потребность в котором может возникнуть в случае аварийных ситуаций. Перебои с электроснабжением – это далеко не редкость для дачи и в загородных хозяйствах и территориях, поэтому многие домовладельцы создают дополнительные возможности получения тепла и света.
- Последовательное подключение к сети. Чтобы подключить систему к электросети, этот метод предполагает формирование избыточной солнечной энергии и ее дальнейшего поступления в сеть для окончательной продажи.
Монтаж
Солнечные панели крепятся на особую конструкцию, соединение с которой обуславливают способность фотоэлементов выдерживать любые неблагоприятные атмосферные воздействия, такие как сильный ветер, дождь или снег, а также способствует формированию корректного угла наклона.
Такая конструкция представлена в продаже в следующих вариантах:
- наклонная – подобные системы оптимальны для монтажа на скатной кровле;
- горизонтальная – эта конструкция крепится к плоским крышам;
- свободностоящая – установить батареи подобного типа можно на крышах различного типа и размера.
Непосредственно процесс установки батарей проводится по следующей схеме:
- для крепления каркаса панели необходимы угольники из металла размером 50х50 мм, а кроме того, потребуются угольники 25х25 мм, которые используют для распорных перекладин. Присутствие этих деталей позволяет добиться требуемой крепости и надежной устойчивости опорной конструкции, а также придает требуемую степень наклона;
- нужно собрать каркас, для этого понадобятся болты размером 6 и 8 м;
- конструкция крепится под покрытие кровли при помощи 12-миллиметровых шпилек;
- в подготовленных угольниках формируются небольшие отверстия, в них закрепляются панели, а для более прочного сцепления следует применять шурупы;
- во время монтажных работ следует особенное внимание уделить каркасу – в нем не должны возникать какие-либо перекосы. В противном случае может возникнуть перенапряжение системы, которое приведет к растрескиванию стекол.
Монтаж солнечных источников тепла и света на лоджии или на балконе происходит по подобной схеме. Единственным исключением является то, что каркас крепится на наклонной плоскости. Он монтируется между основной несущей стеной здания и торцом строения, обязательно на солнечной стороне. Самостоятельная сборка и установка солнечных батарей всех типов не требует опыта ведения строительных работ, однако, некоторые навыки монтажных работ все-таки потребуются. Если есть желание, то можно смело заняться установкой самостоятельно, однако, перед этим было бы неплохо почитать специальную литературу об особенностях установки палей и изучить мастер-классы, которые имеются в интернете, ну и, конечно же, запастись необходимыми инструментами.
Плюсы от работы своими руками очевидны – это экономия немалых денег на услугах специалистов, а также колоссальный опыт, который, возможно, понадобится в дальнейшем. В то же время если личных способностей окажется недостаточно, то можно не только потерять время, но и стать причиной поломки панелей либо их низкой эффективности.
Следует учитывать, что только специалисты могут оказать по-настоящему квалифицированную помощь по монтажу модулей конструкции. В случае поломок они будут нести ответственность за ремонт и замену вышедшего из строя оборудования.
Советы
Специалисты дают несколько рекомендаций о том, как правильно уложить и соединить солнечные батареи.
- Чаще всего изделия, использующие альтернативные источники энергии, крепят на кровле либо на стенах домостроения, реже используют специальные надежные опоры. В любом случае должны быть полностью исключены какие-либо затемнения, то есть батареи должны ориентироваться таким образом, чтобы на них не падала тень от высоких деревьев и расположенных по соседству зданий.
- Монтаж набора пластин проводят рядами, их расположение параллельное, в связи с этим крайне важно предусмотреть, чтобы вышерасположенные ряды не бросали тень на те, что находятся ниже. Это требование очень важно, поскольку полное или частичное затенение провоцирует сокращение и даже полное прекращение какой-либо выработки энергии, кроме того, может возникнуть эффект образования «обратных токов», что зачастую служит причиной поломки оборудования.
- Грамотная ориентация относительно солнечного света имеет принципиальное значение для эффективности и результативной работы панелей. Очень важно, чтобы поверхность получала весь возможный поток ультрафиолетовых лучей. Правильную ориентацию рассчитывают, основываясь на данных о географическом расположении строения. К примеру, если монтаж панелей производится с северной стороны здания, то панели следует ориентировать на юг.
- Не меньшее значение имеет и общий угол наклона конструкции, он также определяется географической ориентацией строения. Специалисты рассчитали, что этот показатель должен соответствовать широте расположения дома, а поскольку солнце в зависимости от времени года несколько раз меняет свое удаление расположения над горизонтом, то имеет смысл продумать корректировку окончательного угла монтажа батарей. Обычно коррекция не превышает 12 градусов.
- Батареи нужно укладывать таким образом, чтобы обеспечить к ним свободный доступ, поскольку в холодное зимнее время потребуется периодически очищать их от нападавшего снега, а в теплое время года – от дождевых разводов, которые существенно снижают эффективность использования батарей.
- На сегодняшний день в продаже имеется немало китайских и европейских моделей солнечных батарей, которые отличаются стоимостью, поэтому каждый может устанавливать оптимальную для своего бюджета модель.
В заключение следует обратить внимание на то, что наибольшую выгоду от применения солнечных батарей получит наша планета, поскольку данный источник энергии не причиняет абсолютно никакого вреда окружающей среде. Если вам как потребителю небезразлично будущее нашей Земли, потенциал ее земельных ресурсов и сохранение природных богатств, то солнечные батареи – это лучший выбор.
О том, как установить солнечную батерею на крышу дома, смотрите в следующем видео.
Солнечные батареи для яхты | ЭлектроФорс
Стоимость электрической энергии на катере или яхте очень высока. Особенно, если во время стоянки владелец заряжает аккумуляторы двигателем, на котором не установлен ни внешний регулятор напряжения ни DC-DС зарядное устройство. В этом случае любое оборудование, вырабатывающее электричество дешевле, чем ДВС становится экономически выгодным и быстро окупается.
Содержание статьи
Типы солнечных панелей
Солнечные батареи преобразуют в электричество бесплатный свет солнца, а с учетом того, что цена полупроводников, из которых они сделаны, с каждым годом снижается на яхте или катере панели окупаются в течении нескольких месяцев — года. Их экономически выгодно устанавливать на лодку как можно больше. Однако результат разочарует, если не правильно подобрать мощность батарей или смонтировать их не в тех местах.На катерах и яхтах используется три типа солнечных панелей:
В монокристаллических панелях каждая ячейка вырезана из одного кристалла кремния. Хотя некоторые полугибкие модели также используют монокристаллические ячейки, как правило панели этого типа жесткие и не переносят изгибов. Коэффициент преобразования света в электрическую энергию у них достигает 22%, но чаще всего составляет 16 — 18%.
У большинства монокристаллических панелей сплошная жесткая задняя стенка. Недавно появились двухсторонние модели, позволяющие собирать свет обоими сторонами. Это удобно, когда под панелью расположена отражающая поверхность, например, белая верхняя часть кабины.
Эффективность ячеек, % | 22,2-22,4 |
Мощность в рабочей точке (Pmpp), Wp | 310 |
Напряжение холостого хода (Uoc), B | 23,1 |
Напряжение в рабочей точке (Umpp), B | 18,8 |
Ток в рабочей точке (Impp), А | 16,46 |
Ток короткого замыкания, (Isc), A | 17.54 |
Тип | Монокристаллические. Гибкие. Материал поверхности ETFE или PET |
В поликристаллических солнечных батареях каждая ячейка состоит из нескольких небольших кристаллов. Такие панели менее эффективны, чем монокристаллические, особенно при низких уровнях освещенности, но зато легче и дешевле.
Во время производства аморфных пластин, испаренный кремний осаждается на подложке. Аморфные панели самые дешевые и очень гибкие, однако их эффективность наименьшая.
Каждая кремниевая ячейка, независимо от размера, при попадании на нее прямого солнечного света создает напряжение около 0,6 вольт. Напряжение всей батареи можно приблизительно определить умножив 0,6 на количество ячеек. Например, напряжение солнечной панели, состоящей из 30 ячеек — 18,0 вольт.
Выходной ток ячейки зависит от ее типа, качества и площади занимаемой поверхности. Поэтому чтобы получить одинаковую выходную мощность с помощью аморфных и монокристаллических панелей, аморфными придется занять в два раза большую площадь. Кроме того, мощность аморфных батарей примерно на 10% меньше номинальной в течение одного – двух лет после производства. В дальнейшем она стабилизируется.
Характеристики солнечных батарей
В спецификации на солнечную батарею производитель указывает следующие характеристики:
- Voc — напряжение разомкнутой цепи. Это напряжение отсоединенной от аккумулятора солнечной батареи
- Isc — ток короткого замыкания. Максимальный ток, который выдает панель, если замкнуть между собой ее клеммы. Выходное напряжение батареи в этом случае равно нулю
- Imp — максимальный ток нагрузки
- Vmp — напряжение при максимальной мощности
- Pmax — максимальная мощность солнечной батареи. Это произведение двух предыдущих параметров. Иногда приводят только максимальную мощность и соответствующее напряжение на нагрузке. В этом случае ток нагрузки можно найти, разделив мощность на напряжение.
Напряжение панели при максимальной мощности зависит от количества ячеек и их температуры. Оно всегда выше, чем рекомендуемое напряжение зарядки, но при подключении к аккумулятору снижается. Из-за этого даже при стандартных условиях тестирования выходная мощность при напряжении зарядки аккумулятора всегда меньше номинальной на 20-25%.Ни одна из приведенных характеристик не описывает реальную производительность солнечной батареи – выходной ток при напряжении зарядки аккумулятора
Солнечные батареи испытывают в стандартных условиях. С точки зрения владельца катера или яхты наиболее важные из них — это предположение о том, что лучи солнца падают на батарею под углом 90 градусов, а ее температура составляет 25 ° C. Результаты испытаний изображают в виде вольтамперной характеристики. Иногда производители приводят данные для нескольких разных температур. Максимальная мощность солнечной батареи соответствует изгибу вольтамперной характеристики при 25 ° C.
Два способа подключения солнечных панелей к электрической системе катера или яхты. Слева — распределительная коробка обеспечивает безопасное и надежное электрическое соединение и гарантированно выдерживает атмосферные воздействия. Устанавливается с тыльной стороны панели. Если предполагается поверхностный монтаж, распределительную коробку можно установлена на передней стороне панели. Справа — два кабеля с силиконовой изоляцией и пластиковый кабельный ввод, расположены сзади панели. Электрическая полярность четко указана цветом изоляции. Альтернатива распределительной коробке.Напряжение панели при максимальной мощности зависит от количества ячеек и их температуры. Оно всегда выше, чем рекомендуемое напряжение зарядки, но при подключении к аккумулятору снижается. Из-за этого даже при стандартных условиях тестирования выходная мощность при напряжении зарядки аккумулятора всегда меньше номинальной на 20-25%.
Точно узнать насколько падает мощность, можно если измерить ток, отдаваемый солнечной батареей во время зарядки аккумулятора. Например, 50-ваттная панель с номинальным напряжением 17 вольт обеспечивает ток 2,94 ампера (Вт / вольт = ампер). По вольтамперной характеристике при температуре 25-градусов находим, что при напряжении 13,0 вольт выходной ток солнечной батареи составляет 3,0 А (Напряжение 13 вольт подходит для зарядки разряженного аккумулятора и аккумулятора с подключенной нагрузкой). Хотя выходной ток изменился незначительно по сравнению со значением при номинальном напряжении, выходная мощность снизилась до 13,0 вольт × 3,0 ампер = 39 Вт. Это на 22% меньше номинальной мощности.
Существуют и другие потери, которые необходимо учесть перед установкой солнечных батарей на яхту или катер. На суше панели монтируют на опорах, расположенных под углом к горизонту. В этом случае на поверхность попадает максимальное количество лучей солнца. Но если таким образом установить панели на катере или яхте, после каждого поворота они будут терять солнце. Чтобы избежать этого панели на лодках почти всегда устанавливают в фиксированном месте горизонтально. Однако даже в тропиках солнечный полдень (время, когда солнце находится прямо над головой) продолжается всего несколько часов в день. В остальное время лучи солнца падают на панель при меньших углах и количество передаваемой ими энергии заметно уменьшается.
Мощность солнечных панелей
Связь между температурой и мощностью для трех солнечных панелей. Кривые представляют максимальную выходную мощность при ярком солнечном свете, а не реалистичный выход в нормальных условиях эксплуатации. При температуре поверхности 50 ° C выход панели с 36 ячейками уменьшается на 15 вольт, а на 30-элементной панели на 11 вольт. Это слишком мало для эффективной зарядки аккумулятора в жарком климате.Реальная мощность панели снижается еще больше, если облако заслоняет солнце или на поверхность батареи падает тень от такелажа, парусов или мачты. Даже частичное затенение одной ячейки в цепи соединенных последовательно значительно уменьшает выходной ток.
Резкие тени влияют на выходную мощность сильнее, чем тени с нечеткими краями. Если на ячейках не установлены шунтирующие диоды, то резкая тень на одной ячейке уменьшит выходной ток всей панели пропорционально затененной площади (например, 50% затенения только одной ячейки снизят выход всей панели на 50%). Ячейка, оказавшаяся в тени, потребляет ток от соседних и перегревается.
Шунтирующие диоды уменьшают проблемы от затенения. Они изолируют попавшую в тень ячейку и останавливают развитие «горячих точек». Однако каждая изъятая из общей цепи ячейка уменьшает напряжение всей панели. Поскольку из-за нагрева выходное напряжение панели снижается, то может возникнуть ситуация, когда оно окажется ниже уровня пригодного для зарядки аккумулятора. В этом случае выгода от шунтирующих диодов исчезает.
Резких теней, падающих на поверхность солнечной батареи на яхте или катере необходимо избегать
Даже в солнечном климате, энергия, реально генерируемая панелью в течении дня, редко превышает уровень 4-5 часов работы при максимальной мощности. Часто это значение еще меньше. Расчеты лучше основывать на предположение, что дневная выработка электричества соответствует 3-4 часам работы батареи на номинальной мощности.
Такой способ сопоставления реальной энергии, вырабатываемой солнечной батареей с максимальной называется пиковыми солнечными часами — Peak Solar Hours (PSH). Существуют веб-сайты, которые рассчитывают PSH для разных частей света и для разных периодов года. Однако почти все они предполагают, что солнечные панели установлены под углом к горизонту и на них не падает тень. В этом случае PSH получается значительно завышенным. Поскольку реалистичная оценка PSH – 3, то число, получаемое от онлайн-калькулятора, необходимо уменьшить минимум на 30%.
6-ваттная солнечная панель, работающая 3 часа в день, в 12-вольтовой электрической системе произведет 18 Втч = 1,5 ампер-часа электрической энергии в день. 30-ваттная — 90 ватт-час или 7,5 ампер-часов в день (количество ампер-часов в день при напряжении 12,0 вольт = номинальная мощность / 4). Если ежедневное потребление электрической энергии известно, например, 60 ампер-часов при напряжении 12 вольт, то мощность солнечной панели определяют умножив ампер-часы на 4 (60 Ач × 4 = 240 Вт)
Напряжение солнечной батареи
Выходное напряжение и сила тока солнечной батареи относительно «солнечного полдня». Напряжение падает при повышении температуры в солнечный полдень и в начале дня. Солнечная батарея работает на номинальной мощности в течении небольшого промежутка времени. Выходную мощность панели можно увеличить, если регулировать ее положение в течении дняЧтобы заряжать аккумулятор, напряжение солнечной батареи, как и любого другого зарядного устройства, должно быть выше напряжения аккумулятора. Причем разность должна существовать даже в том случае, когда напряжение аккумулятора вырастает до 14,0 вольт.
12-вольтовая солнечная панель, состоящая из 30 — 44 ячеек, при разомкнутой цепи обеспечивает номинальное напряжение от 18,0 до 26,0 вольт. На первый взгляд этого достаточно для зарядки аккумулятора. На самом деле это не всегда так.
В «солнечный полдень» черный кремний в солнечной батарее нагревается. Если температура панели превысит 25 ° C, то ее выходное напряжение уменьшится по сравнению с номинальным — 1,0 вольт на каждые 12 ° — 15 ° C роста температуры. При температуре поверхности 50 ° C выходное напряжение панели с 30 ячейками упадет до 13,3 вольт. У панели с 33 ячейками до 14,8 вольт, а у панели с 36 ячейками — до 16,3 вольт.
Гибкие солнечные панели установлены на крыше катера. Модули изготовлены под заказ, поэтому точно вписались в место, выбранное заказчикомСкорость заряда аккумуляторов, подключенных к солнечной батарее с 30 ячейками будет постоянно снижаться, поскольку напряжение на аккумуляторах будет расти, и такая панель не зарядит полностью аккумулятор.
Солнечные батареи, уложенные горизонтально, нагреваются сильнее — между их задней стороной и основанием на котором они установлены нет воздушного зазора. Чтобы компенсировать повышенное падение напряжения, в них увеличивают количество ячеек. В некоторых моделях до 42 штук.
Во время установки в цепь панели иногда добавляют блокирующий диод в дополнение к шунтирующим диодам, описанным ранее. На блокирующем диоде дополнительно падает около 0,6 вольт. Из-за этого 30-элементная панель с блокирующим диодом, особенно в жарком климате, плохо заряжает аккумуляторы. Эффективность панели с 33 ячейками также снижается по мере роста напряжения аккумуляторной батареи.
В южном климате для зарядки аккумуляторов в панели должно быть, как минимум 30 ячеек. 33-элементная солнечная батарея будет давать достаточное напряжение для зарядки, но запас на потери (падение напряжения на диодах, в кабелях, соединениях и плохой солнечный свет) у нее будет небольшой. Панель с 36 ячейками справится с зарядкой аккумуляторов практически в любой ситуации. В умеренном климате панель с 33 ячейками выдает подходящее для зарядки аккумуляторов напряжение всегда, кроме самых жарких дней.
Для эффективной зарядки аккумулятора в жарком климате минимальное напряжение панели (при стандартных условиях испытания), после вычитания падения напряжения на диодах должно составлять 16,0 — 17,0 В. В умеренном климате — 15,0 до 16,0 вольт.
Регуляторы напряжения солнечных батарей
По мере заряда аккумулятора саморегулируемая солнечная панель, состоящая из 30 ячеек уменьшает выходной ток. Если учесть нагрев панели в жарком климате, падение напряжения в блокирующем диоде и на других участках цепи, саморегулирующаяся солнечная панель будет плохо заряжать аккумуляторы независимо от ее номинальной мощности. Для эффективной зарядки требуется больше ячеек.
Pricing table with an Table ID of «classic-blue_11» is not defined.
Но панель, которая поддерживает напряжение, подходящее для зарядки аккумуляторов, медленно перезарядит их, в то время, пока катер или яхта не используются. Критическая точка возникает, если номинальная мощность панели при напряжении 14,0 вольт превышает 0,5% от емкости аккумуляторной батареи (например, панель с выходным током 1 А, подключена к аккумулятору емкостью 200 Ач).
Если мощность панели выше, необходимо установить регулятор напряжения или отключать панель, когда лодка остается на стоянке. Из-за чрезвычайной чувствительности литий-ионных аккумуляторов к перезарядке любая солнечная панель, используемая с любой литий-ионной батареей, всегда должна иметь регулятор напряжения.
Дешевый регулятор состоит из простой цепи, измеряющей напряжение, и реле. Когда напряжение достигает заданного значения, реле срабатывает и отключает солнечную батарею от аккумуляторов. Другие регуляторы переключают выход солнечных панелей на резистор (шунтирующий регулятор) или на нагрузку, например, водонагреватель (регулятор переадресации).
Более сложные регуляторы напряжения солнечных батарей имеют многоступенчатые программы зарядки аккумуляторов и отслеживают максимальную мощность(MPPT). Некоторые модели отключают аккумулятор, как только в цепи появляется отрицательный ток и заменяют таким образом блокирующий диод. Для выравнивания жидко-кислотных или AGM аккумуляторов предусматривается режим кондиционирования. Один из способов его активации — отключение регулятора и зарядка аккумуляторной батареи при полном напряжении солнечной панели.
Солнечные контроллеры MPPT
Регулятор с отслеживанием точки максимальной мощности – это расширенная версия шунтирующего регулятора с широтно-импульсной модуляцией. MPPT контроллер – это DC-DС конвертер. Он состоит из инвертора, преобразующего постоянное напряжение солнечной панели в высокочастотное переменное. Трансформатора, изменяющего это напряжение и выпрямителя, преобразующего переменное напряжение трансформатора обратно в постоянное.
Зачем нужно такое сложное устройство? Выходное напряжение солнечной панели определяется типом заряжаемого аккумулятора. Однако солнечная батарея работает с максимальной мощностью, когда ее напряжение существенно выше, чем допустимое напряжение зарядки аккумуляторов. Снижение оптимального выходного напряжения до безопасного для аккумулятора уровня уменьшает реальную мощность солнечной батареи на 25% по сравнению с номинальной. Контроллер MPPT делает выходное напряжение солнечной панели независимым от напряжения аккумулятора.
В сложных MPPT регуляторах микроконтроллер контролирует напряжение аккумулятора, уровень его заряда и выходной ток солнечной панели. На основании этих данных регулятор устанавливает выходное напряжение панели, так, чтобы ее мощность была максимальной при этом конкретном наборе условий. Для достижения желаемого результата используется цепь управления в преобразователе постоянного тока.
Установка солнечных батарей
Существует четыре типа морских солнечных батарей, изготавливаемых специально для катеров и яхт:
Полугибкие солнечные панели проще установить, они не требуют сложных приспособлений для монтажа и гораздо легче жестких. Если панели изготавливаются под заказ, то их можно сделать практически любого размера и разместить там, где это удобнее всегоУ жестких монокристаллических и поликристаллических панелей самая низкая стоимость 1 ватта вырабатываемой мощности, и максимальная мощность для данной площади. Однако установка этих панелей обходится дороже всего, так как приходится использовать жесткое крепление, защищающее панели от повреждения. Жесткие панели работают с максимальной мощностью когда они установлены на кронштейнах за кормой. Однако в этом случае солнечные батареи становятся уязвимыми для волн и могут быть повреждены при швартовке. Еще одно хорошее место -верхняя часть рулевой рубки.
Полугибкие поликристаллические панели устанавливают на верхнюю часть кабины и другие изогнутые поверхностях. Аморфные силиконовые панели располагают на любой поверхности, а при необходимости сворачивают и убирают для хранения. Во всех случаях потери на нагрев будут меньше, если под солнечной панелью организован воздушный зазор.
Подключение солнечных батарей к аккумулятору
Учитывая, что солнечные батареи сильно чувствительны даже к небольшим падениям напряжения, при монтаже необходимо использовать кабель и терминалы морского качества. Контакты на панели уязвимы для коррозии и их необходимо полностью герметизировать. Над палубой не должно быть никаких дополнительных соединений – один кусок кабеля прокладывают до уплотнения в палубе. Если без соединений не обойтись их выполняют внутри лодки.
Схема подключения нескольких аккумуляторов для зарядки от солнечных батарей. Используется бистабильное реле Sterling Power. Обычное реле потребляет в замкнутом состоянии ток до 0,5 А и может свести на нет работу солнечных панелей. Бистабильное реле потребляет ток только во время включения — 0,5 мА.Токонесущую способность кабеля получают умножив ток короткого замыкания панелей на 1,25. Затем по таблице подбирают сечение кабеля с учетом 3% падения напряжения.
Если панель подключают непосредственно к аккумулятору для поддерживающей зарядки, то как можно ближе к аккумулятору устанавливают предохранитель. Без него любая неисправность в проводке приведет к короткому замыканию аккумулятора и, возможно, пожару.
Если часть панели может попасть в тень, то вместо одной большой лучше использовать комплект из нескольких солнечных батарей меньшего размера, рассчитанных на тоже напряжение, но соединенных параллельно. В этом случае попавшая в тень панель уменьшит выход, но не повлияет на остальные в цепи. Затенение части большой панели снизит выходную мощность всей батареи.
Если на катере или яхте организована 24-вольтовая электрическая система, то соединять две 12-вольтовые солнечные батареи последовательно неправильно. Затенение любой области на любой панели повлияет на обе. Лучше соединить их параллельно, получить на выходе 12 вольт и использовать DC-DC конвертер для повышения напряжения до 24 вольт. В этом случае одна панель может полностью оказаться в тени, но это не окажет влияния на вторую.
Несколько аккумуляторов
Некоторые системы раздельной зарядки используют диодные изоляторы которые уменьшают напряжение на 0,6 вольт. Если солнечная батарея используется для зарядки нескольких аккумуляторов в системе с раздельной зарядкой, ее необходимо установить до разделительных диодов. Падение напряжения на диодах в этом случае необходимо учитывать при расчете выходной мощности панели.
Для обслуживания нескольких аккумуляторных групп на яхтах устанавливают зарядные устройства с двумя или тремя выходами. Некоторые модели солнечных регуляторов напряжения также имеют несколько выходов, позволяя заряжать две аккумуляторных батареи без дополнительных диодов или реле. Но такие устройства мало распространены и стоят дороже. Устройство развязки установленное между аккумуляторами, позволяет заряжать несколько аккумуляторных батарей одновременно без падения напряжения. Лучше использовать бистабильное реле, которое в замкнутом состоянии не потребляет ток и не снижает зарядную способность солнечных батарей.
Соединение батарей
- Категория: Поддержка по альтернативной энергии
- Опубликовано 21.08.2016 16:31
- Автор: Abramova Olesya
Наши сотрудники регулярно предоставляют консультации на предмет установки солнечных электростанций различных типов, а также компания Best Energy предоставляет полный комплекс услуг для установки солнечной электростанции «под ключ». Реже бывает применение автономной системы электроснабжения на основе солнечных батарей для автомобильного транспорта и недавно к нашим специалистам поступил интересный вопрос о том, как правильно соединить две солнечные батареи разной мощности: последовательно или параллельно? Ответ на этот вопрос было принято решение опубликовать на сайте в разделе поддержки по продукции альтернативных источников энергии, доработав его в полноценный формат статьи.
Схемы соединения солнечных батарейВсего существует три схемы соединения солнечных панелей, которые могут применяться: параллельное, последовательное и параллельно-последовательное. В зависимости от мощности солнечной электростанции и напряжения постоянного тока может применяться одна из выбранных схем. Остановимся подробнее на каждой и опишем принцип работы.
Параллельное соединение солнечных панелейДанная схема подходит для тех случаев, когда необходимо оставить напряжение на одном уровне, но повысить мощность солнечного PV-массива. Приведем пример на двух солнечных панелях мощность 100В с напряжением 12В. Соединение происходит путем подключения положительных соединений в одну группу, а отрицательных выводов – во вторую группу. Такими образом, напряжение остается прежним 12В, а мощность возрастает до 200 Вт.
Рисунок 1. Параллельное соединение солнечных панелей (12В 200Вт).
Последовательное соединение солнечных панелейПоследовательное соединение применяется в тех ситуациях, когда необходимо поднять уровень напряжения, но зафиксировать мощность на одном уровне. На схеме отражено соединение двух солнечных панелей мощностью 100Вт с напряжением 12В, когда в итоге получаем солнечный PV-массив 24В 100Вт.
Рисунок 2. Последовательное соединение солнечных панелей (24В 100Вт).
Параллельно-последовательное соединение солнечных панелейБолее сложной схемой соединения солнечных батарей будет параллельно-последовательный тип. Зачастую подобная схема применяется для относительно мощных солнечных массивов. Применение этой схемы дает возможность как поднять номинальное напряжение соединенных панелей, так и увеличить мощность. На примере показано, как можно соединить четыре панели с напряжением 12В и мощностью 100Вт. После соединения получаем солнечный PV-массив с напряжением 24В и мощностью 200Вт.
Рисунок 3. Параллельно-последовательное соединение солнечных панелей (24В 200Вт).
Соединение солнечных батарей разной мощностиКогда требуется соединить вместе солнечные батареи разной мощности, то может применяться две вышеописанные схемы: параллельная и последовательная. Однако необходимо учитывать возможности применяемого MPPT-контроллера. Так, чтобы подключить батареи параллельно, максимальный выходной ток должен соответствовать току MPPT-контроллера и наоборот, для соединения разных по мощности солнечных модулей последовательно, MPPT-контроллер обязательно должен иметь более высокое рабочее напряжение, чем сумма напряжения холостого хода двух модулей.
Рисунок 4. Параллельное и последовательной соединение солнечных панелей разной мощности.
Как видно по приведенным расчетам, производительность выше на 5,5% при последовательном соединении. Рекомендуем использовать этот вариант.
Внимание! Соединение солнечных батарей разной мощности несколько снижает производительность MPPT-контроллера и делает болеет трудным поиск точки максимальной мощности, но такая система также будет нормально работать при необходимости.
ЗаключениеСегодня было рассмотрено то, как правильно и эффективно соединять фотоэлектрические панели. Но если остались вопросы, наши специалисты по альтернативной энергетике проведут необходимые консультации.
Поддержка сети солнечными батареями
Очень часто нам задают вопрос – насколько эффективно и нужно ли вообще использовать солнечные батареи, если уже есть подключение к сети. Ответ на это вопрос зависит от многих факторов. Ниже рассмотрены некоторые типичные случаи и даны рекомендации по применению солнечных батарей в этих случаях.
1. Сеть есть, качество электроэнергии отличное, перерывов в электроснабжении не бывает.
Соединенная с сетью фотоэлектрическая система электроснабженияВы счастливчик! В этом случае экономического эффекта от применения солнечных батарей, скорее всего, сразу не будет. Стоимость электроэнергии, генерируемой от солнечных батарей, в настоящее время выше, чем при покупке от местных энергосетей. Поэтому возможна только экономия потребляемой электроэнергии, но не денег.
Точнее, стоимость электроэнергии выше, если брать срок окупаемости 10 лет. Если разделить затраты на покупку солнечных батарей на весь их срок службы, то стоимость 1 кВт*ч будет примерно равна той цене, которую мы имеет сейчас от сетей – 2,5-3 рубля за кВт*ч. Поэтому, на самом деле, солнечные батареи, вопреки распространенному мифу, уже сегодня не убыточны. Этот миф возник около 20 лет назад, когда стоимость солнечных батарей была в разы больше, а стоимость электроэнергии от сетей – в разы дешевле.
Учитывая стремительный рост тарифов на электроэнергию после реформы РАО ЕЭС, вполне возможно, что экономический эффект от соединенной с сетью солнечной электростанции станет положительным в ближайшие годы. Если вспомнить, что срок службы кремниевых фотоэлектрических модулей составляет как минимум 30 лет, то вполне возможно, что ваша фотоэлектрическая станция принесет вам существенную прибыль в течение времени ее эксплуатации.
Если вы решаете поставить солнечную батарею у себя в доме даже при наличии надежного централизованного электроснабжения, наиболее оптимальный вариант – это соединенная с сетью система, состоящая из:
- солнечных фотоэлектрических панелей необходимой мощности
- сетевых инверторов соответствующей мощности.
- опционально можно поставить дополнительные счетчики электроэнергии (если такая функция не встроена в инвертор)
Все! Больше ничего не нужно для того, чтобы вы начали вырабатывать свою экологически чистую и, в каком-то смысле, бесплатную электроэнергию. Стоимость электроэнергии от соединенных с сетью фотоэлектрических станций гораздо ниже, чем в автономных системах, за счет того, что:
- Нет необходимости в аккумуляторах – сеть является бесплатным аккумулятором практически бесконечной емкости. Она принимает излишки энергии когда есть избыток солнечного электричества, и дает энергию, если солнечной энергии не хватает
- Сетевые инверторы дешевле батарейных
- В сетевой системе гораздо меньше элементов, чем в батарейной – не нужно аккумуляторов, соединителей аккумуляторов, контроллеров заряда, защитных устройств постоянного тока и т.п.
- Соединения на стороне переменного тока также проще – не нужно выделять в щитке нагрузку, которую нужно резервировать, не нужно заботиться о соответствии мощностей нагрузки и инвертора и т.д. Вы просто подключаете выход сетевого инвертора к щитку.
- Обслуживание практически не требуется
Все вышеперечисленное объясняет, почему во всем мире самыми распространенными системами являются соединенные с сетью.
Следует учитывать некоторые требования, которые имеют местные энергосети к подключению дополнительных источников энергии к сети. Обычно, для генерации энергии в сеть необходимо оформлять довольно дорогостоящее разрешение, да и дело это хлопотное. К сожалению, в отличие от продвинутых в отношении солнечной энергетики стран, наше законодательство пока не предусматривает безусловное подключение солнечных генерирующих мощностей к общей электросети.
Несмотря на то, что солнечные инверторы вырабатывают очень качественное напряжение, зачастую намного лучшее, чем напряжение в сети, сети не разрешают вашему электросчетчику просто крутиться в обратную сторону. И это даже невзирая на тот факт, что никакой опасности для сетей солнечные сетевые инверторы не представляют – они прекращают генерацию энергии как только в сети пропадает напряжение (например, его отключают для проведения ремонтных работ на линии электропередач).
Поэтому, для исключения претензий со стороны местных энергосетей, нужно обеспечить потребление всей электроэнергии, вырабатываемой солнечными батареями.
Справедливости ради нужно сказать, что в последнее время стало все больше таких объектов – люди просто хотят иметь у себя на крыше солнечные батареи. Тем самым они показывают, что заботятся о сохранении окружающей среды, думают о том, что они оставят своим детям после себя. К счастью, иметь солнечные батареи у себя дома становится даже модным! Это подтверждает в очередной раз известный закон развития рынка – на первом этапе новые технологии применяют “продвинутые” люди, которые уловили тенденции развития техники, и которые пользуются этими новыми технологиями несмотря на то, что они пока еще дороже традиционных решений.
2. Сеть есть, но выделенной мощности не хватает. Есть кратковременные перерывы в электроснабжении.
В этом случае есть достаточные основания рассмотреть введение в систему электроснабжения солнечных батарей и аккумуляторов. Очень часто выделяемой мощности электрических сетей недостаточно для питания всей нагрузки в доме. Это бывает связано как с лимитом на выделяемые мощности (например, в садовом товариществе ставят трансформаторную подстанцию определенной мощности, и каждому участку достается максимум 3 кВт), или с прогрессивной стоимостью подключения мощности сверх лимитированной (например, до 5 кВт одна цена, а все, что свыше 5 кВт – в 10 раз дороже).
Система в качестве основных элементов будет включать в себя блок бесперебойного питания (ББП), аккумуляторы, солнечные батареи. Инверторно-аккумуляторная система будет обеспечивать покрытие пиковых нагрузок. Солнечные батареи будут питать электрические потребители в доме, когда светит солнце, а если есть излишки электроэнергии от солнца – заряжать аккумуляторы. Далее возможны варианты, связанные с тем, как будет “обвязываться” система – по постоянному или по переменному току. Основные способы соединения различных источников тока рассмотрены на странице “Методы построения гибридных систем электроснабжения“.
Мы предлагаем различные комплекты систем резервного электроснабжения с поддержкой солнечными батареями и ветроустановками, с обвязкой как по переменному току, так и по постоянному.
Эти комплекты позволяют обеспечить резервное электроснабжение в доме при пропадании энергии в сети, а также уменьшить потребление электроэнергии от сети за счет солнечной энергии. Система работает параллельно с сетью централизованного электроснабжения в полностью автоматическом режиме.
Для того, чтобы обеспечить электроснабжение во время аварий в сетях централизованного электроснабжения в системе применены аккумуляторы. Их емкость зависит от количества электроэнергии, которое необходимо обеспечить во время перерывов в централизованном электроснабжении. Наличие аккумуляторов также позволяет перейти при желании на полностью автономную работу; однако в этом случае может потребоваться увеличить емкость аккумуляторов и мощность солнечных батарей.
Работа параллельно с сетью имеет неоспоримые преимущества.
- Аккумуляторы должны запасать энергию только в количестве, достаточном для обеспечения нагрузки во время перерывов в электроснабжении. А они, при наличии сети, бывают не часто.
- Так как аккумуляторы работают в буферном режиме и при наличии сети практически всегда полностью заряжены, можно применять более дешевые AGM аккумуляторы. Применение аккумуляторов глубокого циклирования позволяет закладывать допустимый разряд до 80% (изредка такие АБ допускают глубоких разряд).
- Выработка энергии солнечными модулями повышается примерно на 15-30% за счет наиболее полного использования солнечной энергии. Солнечные модули работают всегда в точке максимальной мощности. Энергия потребляется в первую очередь резервируемой нагрузкой, излишки направляются на питание других потребителей в доме. Если ваш счетчик может учитывать электроэнергию, поставленную в сеть (т.е. считать в обратную сторону) , то можно “отматывать” счетчик в периоды, когда генерация энергии солнечными батареями больше потребления нагрузкой в доме. Этот режим является настраиваемым и может быть запрещен или разрешен настройками блока бесперебойного питания (ББП).
- Система при необходимости может добавлять мощность от солнечных батарей и от ББП к мощности сети. Это бывает необходимо при недостаточной подключенной мощности централизованной сети.
- Возможно ограничить потребление от сети настройками ББП. Если в системе применен ББП Xtender, можно также динамически ограничивать потребление от сети в зависимости от падения напряжения в сети – это очень полезно, если сеть “плохая” и напряжение просаживается при подключении мощной нагрузки. Это также полезно при питании от генератора небольшой мощности.
- В предлагаемой системе солнечные батареи работают через сетевой фотоэлектрический инвертор. Это позволяет повысить эффективность работы солнечных батарей на 20-30%.
Состав системы
- Солнечного фотоэлектрического инвертора мощностью 2-5 кВт
- Фотоэлектрических модулей общей мощностью от 2 до 5 кВт.
- Блока бесперебойного питания на 6 кВт
- Устройств защитного отключения (автоматы постоянного и переменного тока, предохранители и т.п.)
- Солнечный провод (специальный, с двойной изоляцией и стойкий к ультрафиолету) – для соединения солнечных панелей между собой и с коммутационным боксом
- Коннекторы для присоединения к модулями и инверторам
- Дополнительное электромонтажное оборудование (провода, кабельные наконечники, боксы, байпас и т.д.)
В системе могут применяться различные комплектующие. Некоторые варианты приведены в таблице ниже.
Провода переменного тока для подключения к розетке или щитку, а также автоматы переменного тока не входят в комплект. Используются уже имеющиеся в щитке или покупаются дополнительно.
Типовые комплекты таких систем есть в нашем Интернет-магазин в разделе “Комплекты – СБ+сеть“. Дополнительная информация по комплектующим – на страницах с описанием соответствующих товаров.
Эта статья прочитана 18599 раз(а)!
Продолжить чтение
50
Повышение мощности сети с помощью комплектов бесперебойного электроснабжения Бурное развитие коттеджного строительства в последние годы привело к тому, что электрические сети не успевают развиваться соответственно потребностям в электроэнергии. Очень часто типичной выделенной мощности не достаточно для бесперебойного электропитания нагрузки в…
: введение в натягивание солнечных панелей
Содержание
Основные электрические термины, которые необходимо понять при подключении солнечных панелей
Основные концепции проводки солнечных панелей (также известные как натягивание)
Информация, необходимая при определении того, как натягивать солнечные панели
Основные правила натягивания солнечных панелей
Изучение других возможностей
Основные выводы
Узнайте больше об основах солнечной энергии, подписавшись на наш блог.
Проводка солнечных панелей (также известная как натягивание) и способы соединения солнечных панелей вместе — фундаментальная тема для любого установщика солнечных батарей. Важно понимать, как различные конфигурации струн влияют на напряжение, ток и мощность солнечной батареи, чтобы вы могли выбрать подходящий инвертор для массива и убедиться, что система будет работать эффективно.
Ставки высоки. Если напряжение вашего массива превышает максимальное значение инвертора, производство будет ограничено тем, что инвертор может выводить (и в зависимости от степени, срок службы инвертора может сократиться).Если напряжение массива слишком низкое для выбранного вами инвертора, система также будет недостаточно производительной, потому что инвертор не будет работать, пока не будет достигнуто его «пусковое напряжение». Это также может произойти, если вы не учтете, как тень повлияет на напряжение в системе в течение дня.
К счастью, современное программное обеспечение для солнечной энергетики может справиться с этой сложностью за вас. Например, Aurora автоматически сообщит вам, является ли длина вашей строки приемлемой, или даже система за вас.Однако, как профессионалу в солнечной энергетике, по-прежнему важно понимать правила, которыми руководствуются при выборе размера струны.
Электропроводка панели солнечных батарей— сложная тема, и мы не будем вдаваться во все детали в этой статье, но независимо от того, являетесь ли вы новичком в отрасли и только изучаете принципы проектирования солнечных батарей, или ищете что-то новое, мы надеемся, что это Primer дает полезный обзор некоторых ключевых концепций.
В этой статье мы рассмотрим основные принципы натяжения в системах с инвертором струн и способы определения количества солнечных панелей в струне.Мы также рассматриваем различные варианты натяжения, такие как последовательное соединение солнечных панелей и параллельное соединение солнечных панелей.
Основные электрические термины, которые необходимо понять при подключении солнечных панелей
Чтобы понять правила подключения солнечных панелей, необходимо понимать несколько ключевых электрических терминов — в частности, напряжение, ток и мощность — и то, как они соотносятся друг с другом.
Чтобы понять эти концепции, можно провести аналогию с электричеством, как с водой в резервуаре.Чтобы расширить аналогию, более высокий уровень воды подобен более высокому напряжению — существует большая вероятность того, что что-то произойдет (ток или поток воды), как показано ниже.
Что такое напряжение?
Напряжение, сокращенно В и измеряемое в вольтах, определяется как разница электрического заряда между двумя точками в цепи. Именно эта разница в заряде заставляет течь электричество. Напряжение — это мера потенциальной энергии или потенциальное количество энергии, которое может быть высвобождено.
В солнечной батарее на напряжение влияет ряд факторов. Во-первых, количество солнечного света (освещенность) на массиве. Как вы можете предположить, чем больше освещенность панелей, тем выше будет напряжение.
Температура также влияет на напряжение. По мере повышения температуры уменьшается количество энергии, производимой панелью (более подробное обсуждение этого вопроса см. В нашем обсуждении температурных коэффициентов). В холодный солнечный день напряжение солнечной батареи может быть намного выше обычного, в то время как в очень жаркий день напряжение может значительно снизиться.
Что такое электрический ток?
Электрический ток (обозначенный буквой «I» в уравнениях) определяется как скорость, с которой протекает заряд.
В нашем примере выше, вода, текущая по трубе из бака, сравнима с током в электрической цепи. Электрический ток измеряется в амперах (сокращенно от ампера).
Что такое электроэнергия?
Мощность (P) — это скорость передачи энергии. Это эквивалентно напряжению, умноженному на ток (V * I = P), и измеряется в ваттах (Вт).В солнечных фотоэлектрических системах важная функция инвертора — помимо преобразования мощности постоянного тока от солнечной батареи в мощность переменного тока для использования в доме и в сети — заключается в максимальном увеличении выходной мощности массива путем изменения тока и напряжения. .
Для более подробного технического объяснения того, как ток, напряжение и мощность взаимодействуют в контексте солнечной фотоэлектрической системы, ознакомьтесь с нашей статьей о отслеживании точки максимальной мощности (MPPT).
В нем мы обсуждаем кривые вольт-амперные характеристики (IV) (диаграммы, которые показывают, как выходной ток панели изменяется в зависимости от выходного напряжения панели) и кривые зависимости мощности от напряжения (которые показывают, как выходная мощность панели изменяется в зависимости от выходного напряжения панели).Эти кривые дают представление о комбинациях напряжения и тока, при которых выходная мощность максимальна.
Основные концепции проводки солнечных панелей (также известные как натягивание)
Чтобы иметь функциональную солнечную фотоэлектрическую систему, вам необходимо соединить панели вместе, чтобы создать электрическую цепь, по которой будет течь ток, а также вам необходимо подключить панели к инвертору, который будет преобразовывать мощность постоянного тока, производимую панелями, в переменный ток. мощность, которую можно использовать в вашем доме и отправить в сеть.В солнечной индустрии. Обычно это называют «натяжкой», и каждая серия соединенных вместе панелей называется цепочкой.
В этой статье мы сосредоточимся на струнных инверторах (в отличие от микроинверторов). У каждого струнного инвертора есть диапазон напряжений, в которых он может работать.
Серияв сравнении с параллельной нитью
Есть несколько способов подойти к разводке солнечных панелей. Одно из ключевых различий, которое следует понять, — это соединение солнечных панелей последовательно, а не параллельное.Эти разные конфигурации струн по-разному влияют на электрический ток и напряжение в цепи.
Серияв сравнении с параллельной нитью
Есть несколько способов подойти к разводке солнечных панелей. Одно из ключевых различий, которое следует понять, — это соединение солнечных панелей последовательно, а не параллельное. Эти разные конфигурации струн по-разному влияют на электрический ток и напряжение в цепи.
Подключение солнечных панелей в серии
Последовательное соединение солнечных панелей включает в себя подключение каждой панели к следующей в линию (как показано в левой части схемы выше).
Как и у обычной батареи, с которой вы, возможно, знакомы, солнечные панели имеют положительные и отрицательные клеммы. При последовательном соединении провод от положительной клеммы одной солнечной панели подключается к отрицательной клемме следующей панели и так далее.
При последовательном соединении панелей каждая дополнительная панель добавляет к общему напряжению (В) гирлянды, но ток (I) в гирлянде остается прежним.
Одним из недостатков последовательного соединения является то, что затемненная панель может уменьшить ток через всю цепочку.Поскольку ток остается неизменным по всей цепочке, ток снижается до уровня панели с наименьшим током.
Параллельное подключение солнечных панелей
Параллельное соединение солнечных панелей (показано в правой части диаграммы выше) немного сложнее. Вместо того, чтобы подключать положительный вывод одной панели к отрицательному выводу следующей, при параллельном соединении положительные выводы всех панелей в ряду подключаются к одному проводу, а все отрицательные выводы подключаются к другому проводу.
При параллельном соединении панелей каждая дополнительная панель увеличивает ток (силу тока) в цепи, однако напряжение в цепи остается тем же (эквивалентным напряжению каждой панели). Из-за этого преимущество последовательного соединения состоит в том, что если одна панель сильно затенена, остальные панели могут работать нормально, и ток всей цепочки не будет уменьшен.
Информация, необходимая для определения способа крепления солнечных панелей
Существует несколько важных сведений о вашем инверторе и солнечных панелях, которые вам понадобятся, прежде чем вы сможете определить, как натянуть вашу солнечную батарею.
Информация об инверторе
Вам необходимо знать следующие технические характеристики инвертора ( их можно найти в техническом описании производителя продукта):
- Максимальное входное напряжение постоянного тока (Vinput, макс.): Максимальное напряжение, которое может получить инвертор
- Минимальное или «пусковое» напряжение (Vinput, мин): уровень напряжения, необходимый для работы инвертора.
- Максимальный входной ток: сколько энергии может выдержать инвертор до отключения
- Сколько у него трекеров максимальной мощности (MPPT)?
Что такое MPPT?
Как отмечалось выше, функция инверторов заключается в максимальном увеличении выходной мощности при изменении условий окружающей среды на панелях.Они делают это с помощью трекеров максимальной мощности (MPPT), которые определяют ток и напряжение, при которых мощность максимальна.
Однако для данного MPPT условия на панелях должны быть относительно постоянными, иначе эффективность будет снижена (например, различия в уровнях оттенка или ориентации панелей).
Также важно отметить, что, если инвертор имеет несколько MPPT, то к отдельному MPPT можно подключить несколько панелей с разными условиями.
Информация о солнечных батареях
В дополнение к указанной выше информации о выбранном инверторе вам также понадобятся следующие данные на выбранных вами панелях:
- Напряжение холостого хода (Voc): максимальное напряжение, которое панель может выдавать в состоянии холостого хода
- Ток короткого замыкания (Isc): ток, протекающий через элемент, когда напряжение равно нулю (хотя мы не будем углубляться в расчеты тока в этой статье)
Важно понимать, что эти значения основаны на производительности модуля в так называемых стандартных условиях тестирования (STC).
STC включает мощность излучения 1000 Вт на квадратный метр и температуру 25 градусов Цельсия (~ 77 градусов по Фаренгейту). Эти особые лабораторные условия обеспечивают последовательность в тестировании, но реальные условия, в которых работает фотоэлектрическая система, могут сильно отличаться.
В результате фактические ток и напряжение панелей могут значительно отличаться от этих значений.
Вам необходимо будет скорректировать свои расчеты на основе ожидаемых минимальных и максимальных температур в местах установки панелей, чтобы убедиться, что длина вашей струны соответствует условиям, в которых будет работать фотоэлектрическая система, как мы обсудим ниже.
Основные правила крепления солнечных панелей
1. Убедитесь, что минимальное и максимальное напряжение находятся в пределах диапазона инвертора.
Не позволяйте цепям, которые вы подключаете к инвертору, превышать максимальное входное напряжение инвертора или максимальный ток, или , упасть ниже своего минимального / пускового напряжения.
Убедитесь, что максимальное напряжение соответствует требованиям норм в области, где вы проектируете.
В США Национальный электротехнический кодекс ограничивает максимально допустимое напряжение на уровне 600 В для большинства жилых систем.В Европе разрешены более высокие напряжения.
Pro Совет: не используйте только значения STC для определения диапазона напряжения
Мы знаем, что напряжение аддитивно в последовательных цепочках, а ток аддитивен в параллельных цепочках. Таким образом, вы можете интуитивно предположить, что вы можете определить напряжение предлагаемой нами конструкции фотоэлектрической системы и находится ли оно в рекомендуемом диапазоне для инвертора, умножив напряжение панелей на число в последовательной строке.Вы также можете предположить, что можете определить ток системы, добавив ток каждой параллельной строки (который будет равен току панелей, умноженному на число в параллельной строке).
Однако, как мы обсуждали выше, поскольку значения STC отражают производительность модулей в очень специфических условиях, фактическое напряжение панелей в реальных условиях может сильно отличаться.
Таким образом, упрощенные расчеты, сделанные на основе значений STC, дают вам только начальную приблизительную оценку; вы должны учитывать, как напряжение в системе будет изменяться в зависимости от температуры, которую она может испытывать в районе, где она установлена.При более низких температурах напряжение системы может быть намного выше; при более высоких температурах он может быть намного ниже.
Чтобы гарантировать, что напряжение цепи с регулируемой температурой находится в пределах окна входного напряжения инвертора , потребуется более сложная формула, подобная приведенной ниже :
Если эти уравнения выглядят немного бессмысленно, не волнуйтесь, программа Aurora для проектирования солнечных батарей автоматически выполняет эти расчеты и предупреждает вас во время проектирования, если длина вашей струны слишком велика или слишком коротка с учетом ожидаемых температур на объекте.(Дополнительную информацию о натяжке в Aurora см. В этой статье справочного центра.)
Aurora также выполняет ряд других проверок, чтобы гарантировать, что система будет работать должным образом и не нарушать нормы или спецификации оборудования — это может предотвратить дорогостоящие проблемы с производительностью. (Подробный обзор этих проверок см. На этой странице в нашем справочном центре.)
Пример неэффективных фотоэлектрических системРеальный пример того, почему так важно точно учитывать, как условия окружающей среды повлияют на напряжение вашей фотоэлектрической системы, можно найти в нашем анализе неэффективной системы в Кафедральном городе, Калифорния.В этом случае неспособность проектировщика солнечных батарей учесть наличие тени приводила к тому, что система часто падала ниже пускового напряжения инвертора и, следовательно, вырабатывала значительно меньше энергии, чем прогнозировалось.
2. Убедитесь, что строки имеют одинаковые условия — или подключите строки с разными условиями к разным портам MPPT
После того, как вы определили, что длина ваших цепочек является приемлемой для спецификаций инвертора, еще одним ключевым соображением является то, что строки имеют одинаковые условия (например.грамм. одинаковый азимут / ориентация, одинаковый наклон, одинаковая освещенность), если они подключены к одному инвертору MPPT .
Несоответствие условий на струнах снизит эффективность и выходную мощность вашей солнечной конструкции. Для обсуждения того, почему несоответствие в затенении, ориентации или азимуте приводит к потере выходной мощности, см. Четвертую статью из нашей серии о потерях в фотоэлектрической системе: наклон и ориентация, модификатор угла падения, условия окружающей среды и потери и ограничения инвертора.
Если вы проектируете площадку, где необходимо иметь панели на разных сторонах крыши, или некоторые области массива будут иметь больший оттенок, чем другие, вы можете убедиться, что панели с разными условиями разделены на свои собственные строки, а затем подключите эти цепочки к разным MPPT инвертора (при условии, что выбранный вами инвертор имеет более одного MPPT).
Это позволит инвертору гарантировать, что каждая струна работает в точке, где она производит максимальную мощность.
3. Дополнительные рекомендации по оптимизации вашего дизайна
Приведенные выше правила гарантируют, что ваша конфигурация струн будет соответствовать спецификациям вашего инвертора и что несоответствие условий на панелях отрицательно скажется на выработке энергии системой.
Тем не менее, существуют дополнительные факторы, которые проектировщик солнечных батарей может учитывать, чтобы прийти к оптимальному проекту (то есть, дизайн, который максимизирует производство энергии при минимизации затрат).Эти факторы включают ограничение инвертора, использование силовой электроники на уровне модуля (MLPE) — устройств, которые включают в себя микроинверторы и оптимизаторы постоянного тока, а также эффективность конструкции, обеспечиваемую программными инструментами.
Инверторный зажимИногда имеет смысл увеличить размер солнечной батареи, которую вы подключаете к инвертору, что приведет к теоретическому максимальному напряжению, немного превышающему максимальное значение инвертора. Это может позволить вашей системе производить больше энергии (потому что имеется больше панелей), когда оно ниже максимального напряжения, в обмен на уменьшенное («ограниченное») производство в то время, когда напряжение постоянного тока массива превышает максимум инвертора.
Если прирост производства превышает потери производства из-за ограничения инвертора, то вы можете производить больше энергии, не платя за дополнительный инвертор или инвертор с более высоким номинальным напряжением.
Конечно, это решение должно быть принято с осторожностью и четким пониманием того, какой объем производства будет обрезан по сравнению с тем, сколько дополнительного производства будет получено в другое время.
На диаграмме потерь системы Aurora указывает, сколько энергии будет потеряно из-за ограничения, чтобы вы могли принять обоснованное решение о том, имеет ли это смысл.Подробное объяснение инверторного ограничения и когда имеет смысл использовать систему с инверторным ограничением, см. Статью в нашем блоге на эту тему.
Микроинверторы Инверторы серии — не единственный вариант инвертора. Микроинверторы, которые представляют собой инверторы, прикрепленные к каждой отдельной панели (или паре), позволяют каждой панели работать с максимальной мощностью независимо от условий на других панелях. При таком расположении не нужно беспокоиться о том, чтобы панели на одной и той же струне имели одинаковые условия.Микроинверторы также могут упростить добавление дополнительных панелей в будущем.
Изучите несколько различных вариантов, чтобы найти лучший
Как видите, есть много соображений, когда дело доходит до натягивания панелей и поиска инвертора и конфигурации натяжения, которые лучше всего подходят для клиента.
Возможно, вы не придете к оптимальному дизайну с первого раза, поэтому будет полезно оценить несколько различных вариантов. Однако для того, чтобы это было эффективно, вам понадобится процесс, в котором вы сможете быстро оценить несколько проектов.Вот где солнечное программное обеспечение, такое как Aurora, может быть особенно ценным.
Пусть Solar Software сделает все за вас
Наконец, новых технологических разработок, таких как Аврора с функцией автоматического натягивания струн , действительно могут сделать натяжку за вас! Он учтет обсуждаемые здесь соображения и предоставит вам идеальную конфигурацию струн.
Запланируйте демонстрацию, чтобы увидеть, как программное обеспечение может помочь вам в проектировании ваших солнечных систем.
Ключевые выводы:
- Вы можете подключить солнечные панели последовательно или параллельно — что лучше, зависит от конкретной ситуации. В общем, когда есть потенциальные проблемы с затенением, лучшим вариантом будет параллелизм.
- Не забудьте важную информацию, которая вам понадобится:
- Максимальное входное напряжение постоянного тока
- Пусковое напряжение
- Максимальный входной ток
- Количество МППЦ
- Напряжение холостого хода
- Ток короткого замыкания
- Мы не рекомендуем использовать базовые STC для расчета идеального диапазона инверторов, так как это может привести к снижению производительности систем.
- Убедитесь, что строки с одинаковыми условиями подключены к одним и тем же портам MPPT (или поддерживайте одинаковые условия для всех строк).
- Рассмотрите возможность ограничения инвертора и микроинверторы в качестве альтернативных вариантов.
Понимание принципов подключения солнечных панелей позволит вам обеспечить оптимальные решения для ваших потребителей солнечных батарей. Чтобы узнать больше о том, как работает солнечная энергия, как определить размер солнечной системы, как уменьшить потери затенения и многое другое, ознакомьтесь с PV Education 101: A Guide for Solar Installation Professionals.
Запланируйте демонстрацию, чтобы увидеть, как программное обеспечение может помочь вам в проектировании ваших солнечных систем.
Самые распространенные схемы солнечных батарей
Помимо самой солнечной панели, практически любая схема состоит из солнечного регулятора, инвертора и, чаще всего, батареи.Кратко пройдемся по их функциям.
Самые распространенные схемы солнечных батарейДжефф Блейлок
Солнечная энергия сегодня, без сомнения, привлекает внимание, когда речь идет о рынке энергии. Это не только отличный экологичный вариант для заинтересованных сторон, но и эффективное решение для бизнеса и домашних хозяйств с экономической точки зрения. Да, хотя счета за электроэнергию постоянно растут, стоимость использования солнечной энергии постоянно имеет тенденцию к снижению.
Ссылка
Имея такие неоспоримые преимущества, у инсоляции нет причин не превратиться в конечном итоге в один из основных мировых энергетических ресурсов. Фактически, он уже стал самым быстрорастущим источником энергии по состоянию на 2017 год, впервые в истории опередив все другие виды энергии. Таким образом, вы приняли абсолютно правильное решение, прочитав эту статью, в которой будут объяснены 101 схема солнечных панелей и схем, а также представлены две из самых простых и распространенных схем, с которых можно начать свое путешествие по солнечной энергии.
Общие сведения о солнечных панелях
Фотоэлектрические панели, называемые просто «солнечными», состоят из множества солнечных элементов. Основной компонент каждой ячейки — кремний, который служит полупроводником для электронов. Выбитые из своих атомов ударами фотонов, электроны проходят через цепь между положительным и отрицательным слоями, в конечном итоге генерируя электричество.
Ссылка
Следовательно, солнечный свет преобразуется в электричество постоянного тока (DC) для зарядки аккумулятора.Каждая панель характеризуется выходной мощностью, измеряемой в ваттах. Это число говорит о мощности, которую панель в идеале способна производить в течение 1 пикового солнечного часа. А это непростая вещь. Если панель подвергается воздействию дневного света примерно 7 часов каждый день, среднее количество часов пиковой нагрузки составляет около 3 или 4. Инсоляция зависит от множества факторов. Помимо, разумеется, погодных условий следует учитывать следующее:
Время суток (большая освещенность ближе к полудню)
Сезон (больше освещенности ближе к лету)
Географическое положение (большая освещенность ближе к экватору)
Вернувшись к панели, вы можете рассчитать ее производительность, исходя из производительности и среднего количества часов пиковой нагрузки.Для иллюстрации: солнечная панель мощностью 100 Вт будет генерировать в среднем 700 Вт в день в Юте и 200 Вт на Аляске. Вы можете узнать приблизительное количество солнечных часов в вашем штате, используя эту таблицу.
Прочие компоненты схем солнечной энергии
Помимо самой солнечной панели, практически любая схема состоит из солнечного регулятора, инвертора и, чаще всего, батареи. Кратко пройдемся по их функциям.
Солнечные регуляторы. Эти компоненты, более известные как контроллеры заряда, предназначены для наблюдения за входным током от солнечной панели, чтобы защитить аккумулятор от перезарядки.Регулятор предназначен для прекращения или уменьшения тока, как только он обнаруживает, что батарея полностью заряжена.
Инверторы (также известные как преобразователи). Эти элементы предназначены для преобразования энергии постоянного тока от батареи в электричество переменного тока, поскольку панели способны генерировать исключительно постоянный ток. Преобразователи могут быть прямоугольными или чисто синусоидальными. На данный момент достаточно знать, что абсолютное большинство устройств работает на последнем.
Аккумулятор. Выполняет функции накопления энергии.Обратите внимание, что самые примитивные схемы могут управляться напрямую. Следовательно, отсутствие батареи отменяет потребность в инверторах и регуляторах.
Самые распространенные солнечные цепи
Солнечный аккумулятор. Пожалуй, нет смысла объяснять, в чем причина такой популярности этой схемы. Мы просто слишком боимся расстаться с нашими гаджетами. И нам не нужно, если у нас есть такая простая система, чтобы заряжать смартфон где угодно. К счастью, у нас есть powerbank и бесплатная программа для проверки плагиата, они сделали нашу жизнь намного проще.
Вот как вы создаете солнечную батарею: возьмите солнечную панель на 5 В, добавьте зарядное устройство, сам литий-ионный аккумулятор и преобразователь. Завершите с помощью повышающего инвертора USB. Легко это получается!
Автоматический светодиодный светильник на солнечных батареях. Он уверенно занимает позицию самого распространенного солнечного устройства, сделанного своими руками, в первую очередь благодаря простой конструкции и широкому диапазону применения — в саду, на ферме, на открытом воздухе и т. Д.
Ссылка
Схема собрана на 6-вольтовой солнечной панели и 12 белых светодиодах.Батарея SLA накапливает энергию от панели в течение дня и является источником питания для светодиодов ночью. Кроме того, чтобы не тратить зря заряд батареи, есть LDR для отключения света в дневное время и его включения ночью, используя переключающий транзистор. Взгляните на простую схему ниже:
О Джеффе Блейлоке
Джефф Блейлок — инженер и исследователь в области солнечной энергии.Джефф посвятил свою жизнь развитию Солнечной системы, так как он сильно обеспокоен состоянием окружающей среды. Недавно он написал несколько информационных статей о солнечной энергии.
Содержание и мнения в этой статье принадлежат автору и не обязательно отражают точку зрения AltEnergyMag
Комментарии (0)
У этой записи нет комментариев.Будьте первым, кто оставит комментарий ниже.
Опубликовать комментарий
Вы должны войти в систему, прежде чем сможете оставлять комментарии. Авторизуйтесь сейчас.
Рекомендуемый продукт
«Расширенная платформа» от Advanced Racking
«Расширенная платформа» упрощает процесс установки за счет использования универсального монтажного оборудования, которое идеально подходит для всех типов крыш.Затем комплекты интеллектуального подключения крыши подключаются к конкретной поверхности крыши. Расширенная платформа универсальна: наша общая конструкция может стать вашим единым решением для всех типов крыш.
Как подключить фотоэлектрическую солнечную систему к электросети
Вот советы по проектированию методов подключения фотоэлектрической системы к электросети. Цель этой статьи — дать вам общее представление о концепциях и правилах подключения системы солнечных панелей к электросети и к бытовому электрическому шкафу или счетчику.Подключение к электросети для фотоэлектрической солнечной системы регулируется статьей 690.64 Национального электротехнического кодекса (NEC). Всегда обращайтесь к действующим нормам NEC или консультируйтесь с лицензированным электриком по вопросам безопасности и точности.
Существует два основных подхода к подключению системы солнечных панелей с привязкой к сети, как показано на схемах подключения ниже. Наиболее распространенным является соединение «НАГРУЗОЧНАЯ СТОРОНА» , выполненное ПОСЛЕ главного выключателя.
Альтернативой является соединение «ЛИНИЯ ИЛИ СТОРОНА ПОДАЧИ» , выполненное ДО главного выключателя.
Соединения со стороны нагрузки
Проще говоря, соединение со стороны нагрузки выполняется ПОСЛЕ главного выключателя в электрическом щите; это наиболее распространенный способ подключения. К электрической панели будет добавлен новый автоматический выключатель. Автоматический выключатель будет двухполюсным или двухпозиционным, и он будет расположен в позиции, наиболее удаленной от главного выключателя. Затем провода от фотоэлектрической солнечной системы будут подключены к этому новому солнечному выключателю.Перед подключением необходимо использовать блок отключения фотоэлектрической службы соответствующего размера. Некоторые инверторы включают в себя отключение, или внешнее отключение может быть добавлено дешево.
При использовании подключения на стороне нагрузки два правила NEC регулируют допустимый размер, основанный на размере электрической панели и размере выхода солнечной энергии. Оба правила должны соблюдаться для соответствия Кодексу при использовании подключения на стороне нагрузки.
ПРАВИЛО 1
Известный как правило 120%, солнечный автоматический выключатель может составлять не более 20% номинальной мощности главной электрической панели.Номинальный ток электрической панели в амперах (A) или номинальный ток сборной шины — это номинал производителя, который обычно указывается на этикетке. Автоматический выключатель технически называется устройством защиты от перегрузки по току или OCPD.
Например, электрическая панель на 200 А рассчитана на шину 200 А и обычно имеет главный выключатель OCPD на 200 А. Предел обратной подачи по правилу 120% для солнечной энергии рассчитывается как:
- РАСЧЕТ МАКСИМАЛЬНОЙ СОЛНЕЧНОЙ ПОДПИТКИ:
- (НОМИНАЛЬНАЯ ШИНА x .20) + (ШИНА — ГЛАВНЫЙ OCPD) = МАКС. PV (A)
- (200А х.20) + (200A — 200A) = 40A МАКСИМАЛЬНОЕ СОЛНЕЧНОЕ ОБСЛУЖИВАНИЕ
- Следовательно, 40A — это максимальная выходная мощность солнечной энергии для панели на 200A с основным OCPD на 200A, если не снижен номинал
Теперь главный выключатель можно заменить на меньший (например, уменьшить номинал), чтобы освободить место для большего количества солнечной энергии. Вот пример электрической панели со сниженным номиналом для более крупной солнечной системы:
- (НОМИНАЛЬНАЯ ШИНА x .20) + (ШИНА — ГЛАВНЫЙ OCPD) = МАКС. PV (A)
- (200A x 0,20) + (200A — 175A) = 65A МАКСИМАЛЬНОЕ СОЛНЕЧНОЕ ОБСЛУЖИВАНИЕ
- Снижение номинального тока главного выключателя до 175 А в этом примере, дополнительные 25 А высвобождаются для использования солнечной батареей
ПРАВИЛО 2
OCPD солнечного выключателя должно составлять не менее 125% выходной мощности системы.Выходная мощность системы определяется общим номинальным выходным током инвертора (ов).
- Пример A: если на выходе инвертора 32 А, то 1,25 x 32 А = минимальный размер солнечного выключателя 40 А.
- Это также удовлетворяет Правилу 1 для электрической панели на 200А.
- Пример B: если на выходе инвертора 34 А, то 1,25 x 34 А = минимальный размер солнечного выключателя 42,5 А.
- Это не удовлетворяет Правилу 1 для панели 200A, поэтому снизьте номинал выключателя главной панели.
Может оказаться невозможным соблюдение правил межсоединения NEC для старых, небольших или полных электрических панелей, например 100A или 125A, с большей фотоэлектрической панелью солнечных батарей. У вас может быть возможность заменить существующую электрическую панель на новую, более крупную коробку или использовать альтернативное соединение со стороны линии. Для быстрого ознакомления вы также можете просмотреть эту таблицу, в которой показаны максимальные мощности подключенного фотоэлектрического инвертора в ваттах для различных номиналов усилителя блока выключателя.
Подключение к линии или на стороне питания
Как и в большинстве случаев с электричеством, есть много способов выполнить эту работу.Существует АЛЬТЕРНАТИВНОЕ ПОДКЛЮЧЕНИЕ К СЕТИ, называемое подключением «Со стороны источника или линии». Это подключение выполняется ПЕРЕД главным выключателем. Между счетчиком коммунальных услуг и главной сервисной панелью добавляется распределительная коробка. Затем провода от электросчетчика, основного Панель выключателя и солнечная энергия подключаются в распределительной коробке.
Перед соединением между распределительной коробкой и солнечным инвертором необходимо использовать фотоэлектрическую распределительную коробку соответствующего размера. Соединение на стороне линии позволяет избежать снижения рейтинга существующей сервисной панели и избежать ограничений обратной связи панели, регулируемых Правилами 1 и 2 выше.
Однако этот подход не может аннулировать сертификацию UL для главной панели и потребует одобрения местного строительного управления AHJ и коммунального предприятия. В некоторых юрисдикциях подключение на стороне поставки запрещено. AHJ может утверждать, что подключение на стороне питания, выполненное внутри корпуса счетчика / панели, может аннулировать как внесение в список UL, так и гарантию производителя на существующую сервисную панель. Несмотря на то, что эти проблемы можно решить, эти AHJ выбрали подход «надежнее, чем сожалеть», полностью запретив подключения на стороне поставщика.
Мы позаботимся обо всех деталях при проектировании фотоэлектрической системы и подготовим окончательные планы для утверждения разрешения.
Фотоэлектрическая панель преобразует солнечный свет в электричество
Фотоэлектрическая панель преобразует свет в электричество
Ранее мы видели, что фотоэлектрические элементы используют свет для выработки электричества и что существует ряд различных типов технологий фотоэлектрических элементов, включая монокристаллические, поликристаллические и тонкие -пленочные элементы, которые можно использовать для производства фотоэлектрической панели .
Электрическая мощность в ваттах, генерируемая этими различными фотоэлементами при воздействии прямых солнечных лучей, примерно одинакова для каждой панели и выражается как произведение напряжения на ток. То есть: P = V x I.
Количество электроэнергии, генерируемой отдельным фотоэлектрическим элементом на его выходных клеммах, зависит от количества солнечного излучения, которое попадает на его PN-переход, а также от процента солнечного излучения, которое он фактически преобразует в электричество, иными словами его эффективность.
Напряжение солнечного элемента
Один фотоэлектрический солнечный элемент может производить «напряжение холостого хода» (V OC ) примерно от 0,5 до 0,6 В при температуре 25 o C (обычно около 0,58 В) независимо от их размера. . Это напряжение ячейки остается довольно постоянным до тех пор, пока имеется достаточно света от тусклого до яркого солнечного света. Напряжение холостого хода означает, что фотоэлектрический элемент не подключен к какой-либо внешней нагрузке и, следовательно, не производит никакого тока.
При подключении к внешней нагрузке, такой как свет, выходное напряжение отдельной ячейки падает примерно до 0.46 вольт или 460 мВ (460 милливольт), когда электрический ток начинает течь, и будет оставаться на этом уровне напряжения независимо от интенсивности солнца. Это снижение выходного напряжения вызвано сопротивлением и потерями мощности в структуре ячеек, а также металлическими проводниками, нанесенными на поверхность ячеек.
Температура также влияет на выходное напряжение фотоэлектрической системы. Чем выше температура, тем ниже становится выходное напряжение элемента, поскольку элемент разлагается в горячих условиях.Таким образом, на полном солнце выходное напряжение уменьшается примерно на 5% на каждые 25 ° C повышения температуры элемента. Затем солнечные панели и модули с большим количеством фотоэлементов рекомендуются для очень жаркого климата, чем будут использоваться в более холодном климате, чтобы компенсировать потери выходной мощности из-за высоких температур.
Ток солнечного элемента
В отличие от напряжения фотоэлектрического элемента, выходной постоянный ток (I), однако, изменяется в прямой зависимости от количества или интенсивности солнечного света (энергии фотонов), падающего на поверхность фотоэлемента.
Также выходной ток прямо пропорционален площади поверхности ячейки, поскольку чем больше ячейка, тем больше световой энергии попадает в ячейку. Тогда чем больше солнечного света попадает в клетку, тем больше тока она производит. Фотоэлектрические элементы с высокими выходными токами, как правило, более желательны, но чем выше выходной ток, тем больше они будут стоить.
Выходная мощность фотоэлектрической панели
Ранее мы говорили, что выходная мощность фотоэлектрического солнечного элемента выражается в ваттах и равна произведению напряжения на ток (В x I), и это правда.Оптимальное рабочее напряжение фотоэлемента под нагрузкой составляет около 0,46 В при нормальных рабочих температурах, генерируя ток около трех ампер при полном солнечном свете.
Таким образом, выходная мощность типичного фотоэлектрического солнечного элемента может быть рассчитана как: мощность (P) равна напряжению, умноженному на ток = V x I = 0,46 x 3 = 1,38 Вт. Хотя такое количество солнечной энергии может быть приемлемым для питания небольшого электронного устройства, такого как зарядное устройство для телефона или декоративный садовый светильник, 1,38 Вт на самом деле недостаточно для выполнения какой-либо полезной работы.
Однако отдельные солнечные фотоэлектрические элементы могут быть электрически соединены друг с другом последовательно (гирляндной цепочкой) для достижения желаемого напряжения при суммировании последовательных напряжений или подключены параллельно (бок о бок) для достижения желаемого тока при суммировании параллельных токов.
Затем любая комбинация двух или более фотоэлементов может быть соединена вместе в последовательной и / или параллельной комбинации для получения любого желаемого напряжения, тока и выходной мощности для получения фотоэлектрической панели. На практике фотоэлектрический элемент работает в линейной части своей кривой ВАХ и выдает примерно такой же ток, как и при коротком замыкании.Мощность, подаваемая фотоэлектрической панелью на батарею и нагрузку, подключенную параллельно с панелью, составляет: P = V x I.
Например, если мы соединим вместе последовательно, десять фотоэлементов 0,46 В из нашего последнего примера, чтобы произвести солнечная фотоэлектрическая панель, новое выходное напряжение будет 0,46 x 10 или 4,6 вольт, но ток останется прежним — 3 А (последовательная цепь). Однако общая выходная мощность также увеличилась в десять раз до пиковой мощности 13,8 Вт.
Отдельные солнечные фотоэлектрические элементы могут быть соединены вместе для создания более крупной «солнечной фотоэлектрической панели» или солнечного модуля, как их еще называют, с выходной мощностью от 50 до 200 плюс пиковая возможная мощность.На практике для повышения эффективности и практичности несколько фотоэлементов соединяются вместе в последовательной и / или параллельной комбинации для получения необходимого напряжения и пиковой выходной мощности.
Сколько элементов необходимо для солнечной фотоэлектрической панели
Количество отдельных фотоэлектрических элементов, необходимых для завершения одной солнечной фотоэлектрической панели , действительно зависит от того, сколько энергии вам требуется, и от типа используемых фотоэлементов, монокристаллический, поликристаллический или тонкая пленка.
Фотоэлектрические панели бывают самых разных конфигураций и размеров, чтобы помочь вам удовлетворить ваши потребности в энергии. Большинство производителей фотоэлектрических панелей производят стандартные солнечные панели с выходным напряжением 12 и 24 вольт. Конструкция этих стандартных солнечных фотоэлектрических панелей обычно состоит из 36 элементов из кристаллического кремния, которые возникли из-за необходимости заряжать аккумулятор на 12 вольт.
Типичная фотоэлектрическая солнечная панель на 12 В дает пиковое выходное напряжение от 18,5 до 20,8 В (при условии напряжения элемента 0,58 В) за счет использования 32 или 36 отдельных элементов, соответственно соединенных вместе последовательно, что более чем достаточно для зарядки стандартной батареи на 12 В. .Панели на 24 и 36 В также доступны для зарядки больших батарей глубокого цикла, а поскольку фотоэлектрические панели сделаны из одного и того же базового фотоэлемента, все они рассчитаны примерно на одинаковый постоянный ток.
Если требуется солнечная панель с выходом 24 В, то в одной солнечной панели будет 64 или 72 отдельных элемента. Чтобы получить требуемый выход 24 В, две панели на 12 В эффективно соединяются вместе последовательно, обычно с помощью перемычки, что позволяет солнечной панели выдавать необходимые 24 Вольт.24-вольтовые солнечные панели имеют гораздо более высокое напряжение холостого хода (V OC ) в диапазоне от средних до высоких 30 и имеют большее пиковое значение мощности, от 150 Вт и выше.
СерияConnected Photovoltaic Panel
Фотоэлектрические солнечные элементы, как говорят, соединены «последовательно», когда они соединены гирляндой в одну линию. Поскольку ток, генерируемый первой ячейкой, не имеет другого пути, он также должен проходить через вторую ячейку, третью и так далее.
Затем мы видим, что последовательно соединенные солнечные элементы имеют общий ток , протекающий через них, поскольку ток, протекающий через один фотоэлемент, должен также течь через другие внутри панели, поскольку он может проходить только по одному пути.Тогда величина тока, протекающего через набор фотоэлектрических элементов последовательно, одинакова во всех точках последовательной цепи.
Фотоэлектрические панели или солнечные модули состоят из нескольких ячеек, которые последовательно соединены каскадом и заключены в экологически чистый корпус, в результате чего получается один солнечный модуль с более высоким выходным напряжением, чем с одним единственным фотоэлементом, как показано на рисунке.
Подключенные фотоэлектрические элементы серииВ нашем примере, приведенном выше, четыре фотоэлектрических фотоэлемента соединены вместе в комбинацию серии .Если мы предположим, что выходное напряжение, создаваемое каждым отдельным фотоэлементом в цепочке, составляет 0,5 В, то объединенное выходное напряжение будет суммой выходного напряжения отдельных элементов, и оно рассчитывается как:
В ИТОГО = В 1 + V 2 + V 3 + V 4 = 0,5 В + 0,5 В + 0,5 В + 0,5 В = 2,0 В
Для последовательно соединенных ячеек общий выходной ток такой же, как у каждая ячейка, затем: I 1 = I 2 = I 3 = I 4 = I CELL .Комбинированная мощность — это сумма мощности отдельных ячеек или произведение напряжения на ток, как было показано ранее.
У последовательно соединенных солнечных элементов есть один серьезный недостаток. Нежелательный эффект возникает, когда один солнечный элемент выходит из строя, повреждается или частично или полностью затеняется от солнечного света. Даже если только один солнечный элемент (частично) затенен, эффект будет таким же, как если бы ВСЕ последовательно соединенные элементы были затенены, что привело к полной потере выходной мощности.
Также существует риск того, что полный ток от остальных ячеек пройдет через затемненную ячейку и вызовет повреждение от перегрева, называемое «нагревом горячей точки».Тогда для работы последовательно соединенной фотоэлектрической панели важно избегать даже небольших теней на ее элементах. Чтобы избежать электрического повреждения элементов, так называемый байпасный диод подключен параллельно к каждому фотоэлектрическому элементу, как показано на рисунке, по одному байпасному диоду для каждого солнечного элемента.
Защита байпасного диода
Наличие байпасного диода ограничивает напряжение на неисправном элементе в состоянии обратного смещения для прохождения тока. Обходной диод проводит ток, позволяя току от исправных солнечных элементов проходить через него во внешне подключенную цепь.
Максимальное обратное перенапряжение, возникающее на затемненной ячейке, снижается примерно до одного падения напряжения на диоде, так что большие разности напряжений не могут возникать в направлении обратного тока в ячейке. Таким образом, любые высокие токи ограничиваются и контролируются, предотвращая перегрев из-за меньшей рассеиваемой мощности. В идеале у нас должен быть байпасный диод для каждой отдельной фотоэлектрической ячейки, но на практике будет один байпасный диод для нескольких ячеек.
Фотоэлектрическая панель с параллельным подключением
Фотоэлектрические солнечные элементы считаются соединенными вместе «параллельно», когда оба их вывода соответственно подключены к каждому выводу другого фотоэлемента или элементов.В отличие от предыдущей последовательной конфигурации, в параллельных цепях ток может проходить по нескольким путям, и, поскольку существует несколько путей, ток не является одинаковым во всех точках параллельной цепи. Однако напряжение, генерируемое на всех элементах параллельной цепи, одинаково. Затем фотоэлектрических элементов в параллельном соединении имеют общее напряжение на них и справедливо для всех параллельных элементов.
Фотоэлектрические элементы, соединенные параллельно
В нашем примере, приведенном выше, четыре фотоэлектрических фотоэлемента соединены вместе в параллельную комбинацию.Для параллельно соединенных ячеек объединенное выходное напряжение такое же, как и напряжение, создаваемое каждой ячейкой, тогда: V 1 = V 2 = V 3 = V 4 = V CELL .
Если мы предположим, что выходной ток, производимый каждой отдельной фотоэлектрической ячейкой в цепочке, равен 1,0 ампер, то объединенный выходной ток будет суммой выходных токов отдельных ячеек и рассчитывается как:
I ИТОГО = Я 1 + Я 2 + Я 3 + Я 4 = 1.0A + 1.0A + 1.0A + 1.0A = 4.0A
Затем мы можем использовать параллельно подключенные фотоэлектрические солнечные элементы для увеличения выходного тока. Комбинированная мощность — это сумма мощности отдельных ячеек или произведение напряжения на ток.
Ранее мы говорили, что у нас может быть несоответствие тока для последовательно соединенных солнечных элементов из-за затенения или неисправного элемента, и что хорошие элементы смещают плохой элемент, вызывая рассеивание большого количества энергии в плохом элементе, что, в свою очередь, вызывает то, что обычно называется «нагревом горячих точек», серьезно повреждающим солнечную панель.В параллельно подключенной солнечной фотоэлектрической панели рассогласование напряжения может быть более значительным.
Если мы используем номинально идентичные солнечные элементы для создания нашей фотоэлектрической солнечной панели, то почему возникает несоответствие напряжения на элементах ?. В нашем простом параллельном примере выше мы предположили, что каждая ячейка генерирует 0,5 вольт, но это не всегда так. При малотоковых выходах (пасмурные дни) такое рассогласование напряжений вообще не проблема.
Однако по мере увеличения тока панели неисправный элемент перестает генерировать мощность и теперь рассеивает или потребляет мощность, уменьшая выходное напряжение солнечной панели.Как и в случае последовательно соединенных ячеек, эффекты из-за затенения ячеек, деградации ячеек, повреждения и т. Д. Означают, что на практике мы можем иметь несоответствия между ячейками PV.
Параллельное соединение менее чувствительно к этому типу несоответствия затенения, поскольку несоответствие напряжения создает большую проблему. Так почему бы не соединять элементы в фотоэлектрических панелях и модулях в основном параллельно, потому что на самом деле большинство ячеек подключены последовательно, поскольку нам нужно повысить выходное напряжение.
Предпочтительной солнечной фотоэлектрической панелью для большинства приложений для зарядки солнечных батарей является модуль из 36 элементов, который выдает напряжение холостого хода около 21 вольт при пиковом напряжении элемента, равном 0.58 Вольт снижается до 16,5 В при полной нагрузке.
Солнечная панель из 36 элементов лучше подходит для очень жаркого климата, чтобы компенсировать потери выходной мощности из-за более высоких рабочих температур. Не забывайте, что фотоэлектрическая солнечная панель находится на палящем солнце весь день! Кроме того, дополнительное напряжение компенсирует падение напряжения в системе при длинных кабельных трассах.
Типичная фотоэлектрическая панель из 36 элементов
Ранее мы говорили, что индивидуальный фотоэлектрический солнечный элемент является основным строительным блоком полной фотоэлектрической панели или модуля, и одним из больших преимуществ создания солнечных панелей является то, что они могут быть построены вместе точные требования к напряжению и току, необходимые для вашего конкретного проекта, путем регулировки типа и количества ячеек.
Фотоэлементы могут быть подключены параллельно для достижения желаемого тока или последовательно для достижения желаемого напряжения, а затем помещены в стеклянный корпус и герметично закрыты для защиты от коррозии, влаги, загрязнения и атмосферных воздействий.
Фотоэлектрическая панель может использоваться по отдельности или подключаться параллельно и последовательно с другими солнечными панелями и модулями для создания более крупной солнечной батареи с большим выходным током и напряжением.Эти массивы могут быть расположены в виде панелей на крыше или стенах здания и часто могут подавать солнечную электроэнергию непосредственно в здание. Благодаря новейшей фотоэлектрической технологии ячейки могут быть встроены в саму кровельную черепицу. Группы солнечных фотоэлементов можно складывать вместе для увеличения мощности.
В следующем уроке о «Солнечной энергии» мы увидим, что для поддержания максимальной выходной мощности и повышения эффективности фотоэлектрической панели фотоэлектрическая панель должна постоянно смотреть на солнце.Этого можно легко достичь, используя простой метод, называемый «Ориентация солнечной панели», чтобы автоматически отслеживать движение солнца по небу между ранним утром и поздней ночью, или вручную устанавливая угол наклона фотоэлектрической панели к солнцу, а затем настраивая его каждый раз. день.
Схема регулятора напряжения солнечной панели
В сообщении подробно рассказывается, как построить простую схему контроллера регулятора солнечной панели в домашних условиях для зарядки небольших батарей, таких как батарея 12 В 7 Ач, с использованием небольшой солнечной панели
Использование солнечной панели
Мы все хорошо знаем о солнечных батареях и их функциях.Основные функции этих удивительных устройств — преобразование солнечной энергии или солнечного света в электричество.
В основном солнечная панель состоит из отдельных частей отдельных фотоэлементов. Каждая из этих ячеек способна генерировать небольшую электрическую мощность, обычно от 1,5 до 3 вольт.
Многие из этих ячеек на панели подключены последовательно, так что общее эффективное напряжение, генерируемое всем блоком, достигает пригодных для использования выходов 12 или 24 вольт.
Ток, генерируемый устройством, прямо пропорционален уровню солнечного света, падающего на поверхность панели. Электроэнергия, вырабатываемая солнечной панелью, обычно используется для зарядки свинцово-кислотных аккумуляторов.
Свинцово-кислотная аккумуляторная батарея, когда она полностью заряжена, используется с инвертором для получения необходимого напряжения сети переменного тока для электропитания дома. В идеале солнечные лучи должны падать на поверхность панели, чтобы она функционировала оптимально.
Однако, поскольку солнце никогда не бывает неподвижным, панели необходимо постоянно отслеживать путь солнца или следовать за ним, чтобы генерировать электроэнергию с высокой эффективностью.
Если вы заинтересованы в создании автоматической системы солнечных панелей с двумя трекерами, вы можете обратиться к одной из моих предыдущих статей. Без солнечного трекера солнечная панель сможет выполнять преобразования только с эффективностью около 30%.
Возвращаясь к нашим фактическим обсуждениям солнечных панелей, это устройство можно считать сердцем системы в том, что касается преобразования солнечной энергии в электричество, однако произведенное электричество требует большого количества измерений, прежде чем его можно будет эффективно использовать. в предыдущей системе привязки сетки.
Зачем нам солнечный регулятор
Напряжение, получаемое от солнечной панели, никогда не бывает стабильным и резко меняется в зависимости от положения солнца и интенсивности солнечных лучей и, конечно же, от степени падения на солнечную панель.
Это напряжение, если оно подается на батарею для зарядки, может вызвать повреждение и ненужный нагрев батареи и связанной с ней электроники; поэтому может быть опасным для всей системы.
Для регулирования напряжения от солнечной панели обычно используется схема регулятора напряжения между выходом солнечной панели и входом батареи.
Эта схема гарантирует, что напряжение от солнечной панели никогда не превышает безопасное значение, необходимое для зарядки аккумулятора.
Обычно для получения оптимальных результатов от солнечной панели минимальное выходное напряжение панели должно быть выше, чем требуемое напряжение зарядки аккумулятора, то есть даже в неблагоприятных условиях, когда солнечные лучи не являются резкими или оптимальными, солнечная панель все равно должна быть может генерировать напряжение, превышающее, скажем, 12 вольт, что может быть напряжением заряжаемой батареи.
Солнечные регуляторы напряжения, доступные на рынке, могут быть слишком дорогими и не такими надежными; однако изготовление одного такого регулятора дома с использованием обычных электронных компонентов может быть не только забавным, но и очень экономичным.
Вы также можете прочитать об этой цепи регулятора напряжения на 100 Ач
Схема цепи
ПРИМЕЧАНИЕ : ПОЖАЛУЙСТА, УДАЛИТЕ R4, ТАК КАК ЭТО НЕ ВАЖНО. ВЫ МОЖЕТЕ ЗАМЕНИТЬ ЕГО ПРОВОДНОЙ.
Конструкция печатной платы на стороне дорожки (R4, диод и S1 не включены…R4 на самом деле не важен и может быть заменен перемычкой.
Как это работает
Ссылаясь на предлагаемую схему регулятора напряжения солнечной панели, мы видим конструкцию, в которой используются очень обычные компоненты, но при этом она удовлетворяет требованиям в соответствии с требованиями наших спецификаций.
Одна микросхема LM 338 становится сердцем всей конфигурации и отвечает за выполнение требуемых регуляторов напряжения в одиночку.
Показанная схема регулятора солнечной панели соответствует стандартному режиму конфигурации IC 338.
Вход подается на указанные точки входа ИС, а выход для батареи — на выход ИС. Поток или предустановка используются для точной установки уровня напряжения, который можно рассматривать как безопасное значение для батареи.
Зарядка с контролируемым током
Эта схема контроллера солнечного регулятора также предлагает функцию управления током, которая гарантирует, что аккумулятор всегда получает фиксированный заданный ток зарядки и никогда не перегружается.Модуль можно подключить, как показано на схеме.
Соответствующие указанные позиции могут быть легко подключены даже неспециалистом. Остальные функции выполняются схемой регулятора. Переключатель S1 должен быть переключен в режим инвертора, как только батарея полностью заряжена (как показано на индикаторе).
Расчет зарядного тока для батареи
Зарядный ток может быть выбран путем соответствующего выбора номинала резисторов R3. Это можно сделать, решив формулу: 0.6 / R3 = 1/10 батареи AH. Предварительно установленный VR1 настроен на получение необходимого зарядного напряжения от регулятора.
Солнечный регулятор с использованием IC LM324
Для всех систем солнечных панелей эта единственная схема гарантированно эффективного регулятора на основе IC LM324 предлагает энергосберегающий ответ на зарядку аккумуляторов свинцово-кислотного типа, обычно встречающихся в автомобилях.
Не принимая во внимание цену солнечных элементов, которые, как предполагается, будут перед вами для использования в различных других планах, солнечный регулятор сам по себе стоит ниже 10 долларов.
В отличие от ряда других шунтирующих регуляторов, которые перенаправляют ток через резистор после полной зарядки батареи, эта схема отключает источник питания от батареи, устраняя необходимость в громоздких шунтирующих резисторах.
Как работает схема
Как только напряжение батареи упадет ниже 13,5 В (обычно напряжение холостого хода батареи 12 В), транзисторы Q1, Q2 и Q3 включаются, и зарядный ток проходит через солнечные панели. как предполагалось.
Активный зеленый светодиод показывает, что аккумулятор заряжается. Когда напряжение на клеммах батареи приближается к напряжению холостого хода солнечной панели, операционный усилитель A1a отключает транзисторы Q1-Q3.
Эта ситуация фиксируется до тех пор, пока напряжение батареи упадет до 13,2 В, после чего запуск процесса зарядки батареи снова восстанавливается.
В отсутствие солнечной панели, когда напряжение батареи продолжает падать с 13,2 В до примерно 11,4 В, что означает, что батарея полностью разряжена, A1b, выход переключается на 0 В, в результате чего подключенный КРАСНЫЙ светодиод начинает мигать с частотой, установленной нестабильный мультивибратор A1c.
В этой ситуации мигает с частотой 2 герца. Операционный усилитель A1d дает опорное напряжение 6 В для сохранения порогов переключения на уровнях 11,4 В и 13,2 В.
Предлагаемая схема регулятора LM324 рассчитана на токи до 3 ампер.
Для работы с более значительными токами может быть необходимо увеличить базовые токи Q2, Q3, чтобы гарантировать, что все эти транзисторы могут поддерживать насыщение во время сеансов зарядки.
Солнечный регулятор электроэнергии с использованием микросхемы IC 741
Большинство типичных солнечных панелей обеспечивают без нагрузки около 19 В.Это позволяет получить падение напряжения на выпрямительном диоде на 0,6 В при зарядке свинцово-кислотного аккумулятора на 12 В. Диод предотвращает прохождение тока батареи через солнечную панель в ночное время.
Эта установка может быть отличной, если аккумулятор не перезаряжается, поскольку аккумулятор 12 В может легко перезарядиться до уровня выше 1 В 5, если подача заряда не контролируется.
Падение напряжения, вызванное последовательным проходом BJT, обычно составляет приблизительно 1,2 В, что кажется слишком большим для эффективной работы почти всех солнечных панелей.
В этой простой схеме солнечного регулятора эффективно устранены оба вышеперечисленных недостатка. Здесь энергия от солнечной панели поступает в аккумулятор через реле и выпрямительный диод.
Как работает схема
Когда напряжение аккумулятора достигает 13,8 В, контакты реле щелкают, так что транзистор 2N3055 начинает подзаряжать аккумулятор до оптимального значения 14,2 В.
Этот уровень напряжения полной зарядки можно установить немного ниже, несмотря на то, что большинство свинцово-кислотных аккумуляторов начинают выделять газ при 13.6В. Это выделение газов значительно увеличивается при перенапряжении.
Контакты реле срабатывают при падении напряжения аккумуляторной батареи ниже 13,8 В. Аккумуляторная батарея не используется для работы схемы.
Фет работает как источник постоянного тока.
Шунтирующий регулятор напряжения
Схему регулятора солнечной панели шунтирующего типа, показанную выше, можно понять по следующим пунктам:
Операционный усилитель TL071 сконфигурирован как компаратор.
Полевой транзистор BF256 вместе с предустановкой P1 на 500 кОм формирует опорный генератор постоянного тока и постоянного напряжения для инвертирующего входа операционного усилителя.
Вывод 3, который является неинвертирующим входом для операционного усилителя, удерживается с источником переменного напряжения в зависимости от уровня напряжения на клеммах батареи, поэтому этот контакт 3 работает как вход измерения избыточного заряда отсека или операционного усилителя.
Предустановленное значение P1 на выводе 2 ИС настраивается таким образом, что потенциал на входе вывода 3 ИС становится выше, чем на выводе 2, как только батарея достигает полного уровня заряда.
Пока уровень заряда батареи ниже значения полного заряда, потенциал на контакте 3 ниже, чем на контакте 2, который удерживает выход операционного усилителя на нулевом логическом уровне, и полевой транзистор T2 BUZ100 остается выключенным.
Однако, как только батарея достигает полного уровня заряда, потенциал на выводе 3 теперь превышает значение на выводе 2, что приводит к изменению состояния на выходе операционного усилителя на высокий выход.
Это немедленно включает полевой транзистор T1, который шунтирует напряжение солнечной панели на землю, тем самым предотвращая дальнейшую зарядку аккумулятора.
Пока напряжение солнечной панели шунтируется полевым транзистором T1 через диод D4, эти два устройства могут существенно нагреваться, поскольку вся мощность солнечной панели заземляется этими двумя устройствами.
Диод D3 гарантирует, что после зарядки аккумулятор никогда не разрядится через солнечную панель, особенно в ночное время.
Светодиод D1 показывает, когда аккумулятор полностью заряжен, и отключается, когда он включается.
Список деталей
9 Простые схемы зарядного устройства для солнечных батарей
Простые солнечные зарядные устройства — это небольшие устройства, которые позволяют быстро и дешево заряжать аккумулятор с помощью солнечной энергии.
Простое солнечное зарядное устройство должно иметь встроенные 3 основные функции:
- Оно должно быть недорогим.
- Удобство для неспециалистов и простота сборки.
- Должен быть достаточно эффективным, чтобы удовлетворить основные потребности в зарядке аккумулятора.
В сообщении всесторонне объясняется девять лучших, но простых схем зарядного устройства для солнечных батарей с использованием IC LM338, транзисторов, MOSFET, понижающего преобразователя и т. Д., Которые могут быть построены и установлены даже неспециалистом для зарядки всех типов батарей и работы с другим сопутствующим оборудованием
Обзор
Солнечные панели для нас не новость, и сегодня они широко используются во всех секторах.Основное свойство этого устройства — преобразование солнечной энергии в электрическую — сделало его очень популярным, и теперь оно серьезно рассматривается как будущее решение всех кризисов или дефицитов электроэнергии.
Солнечная энергия может использоваться непосредственно для питания электрического оборудования или просто храниться в соответствующем накопителе для дальнейшего использования.
Обычно есть только один эффективный способ хранения электроэнергии — это использование аккумуляторных батарей.
Перезаряжаемые батареи, вероятно, являются лучшим и наиболее эффективным способом сбора или хранения электроэнергии для дальнейшего использования.
Энергия от солнечного элемента или солнечной панели также может эффективно храниться, чтобы ее можно было использовать в соответствии с собственными предпочтениями, обычно после захода солнца или когда стемнело, и когда накопленная мощность становится очень необходимой для работы огни.
Хотя это может показаться довольно простым, зарядка аккумулятора от солнечной панели никогда не бывает легкой по двум причинам:
Напряжение от солнечной панели может сильно варьироваться в зависимости от падающих солнечных лучей и
Ток также варьируется по тем же причинам, указанным выше.
Две вышеуказанные причины могут сделать параметры зарядки типичной аккумуляторной батареи очень непредсказуемыми и опасными.
ОБНОВЛЕНИЕ:
Прежде чем углубляться в следующие концепции, вы, вероятно, можете попробовать это очень простое зарядное устройство для солнечных батарей, которое обеспечит безопасную и гарантированную зарядку небольшой батареи 12 В 7 Ач через небольшую солнечную панель:
Требуемые детали
- Солнечная панель — 20 В, 1 ампер
- IC 7812 — 1no
- 1N4007 Диоды — 3nos
- 2k2 Резистор 1/4 Вт — 1no
Выглядит круто, не правда ли.Фактически, ИС и диоды могут уже лежать в вашем электронном мусорном ящике, поэтому необходимо их покупать. Теперь давайте посмотрим, как их можно настроить для окончательного результата.
Расчетное время, необходимое для зарядки аккумулятора с 11 В до 14 В, составляет около 8 часов.Как мы знаем, IC 7812 выдает фиксированное напряжение 12 В на выходе, которое нельзя использовать для зарядки аккумулятора 12 В. 3 диода, подключенные к его клеммам заземления (GND), введены специально для решения этой проблемы и для увеличения выхода IC примерно до 12 + 0.7 + 0,7 + 0,7 В = 14,1 В, что как раз и требуется для полной зарядки аккумулятора 12 В.
Падение на 0,7 В на каждом диоде увеличивает порог заземления ИС за счет установленного уровня, вынуждая ИС регулировать выход на уровне 14,1 В вместо 12 В. Резистор 2k2 используется для активации или смещения диодов, чтобы он мог провести и обеспечить запланированное полное падение на 2,1 В.
Делаем это еще проще
Если вы ищете еще более простое солнечное зарядное устройство, то, вероятно, не может быть ничего проще, чем подключить солнечную панель соответствующего номинала напрямую к соответствующей батарее через блокирующий диод, как показано ниже:
Несмотря на то, что вышеуказанная конструкция не включает в себя регулятор, она все равно будет работать, поскольку токовый выход панели является номинальным, и это значение будет только ухудшаться по мере того, как солнце меняет свое положение.
Однако для аккумулятора, который не полностью разряжен, описанная выше простая установка может нанести некоторый вред аккумулятору, так как аккумулятор будет быстро заряжаться и будет продолжать заряжаться до небезопасного уровня и в течение более длительных периодов времени. время.
1) Использование LM338 в качестве солнечного контроллера
Но благодаря современным универсальным микросхемам, таким как LM 338 и LM 317, которые могут очень эффективно справляться с вышеуказанными ситуациями, делая процесс зарядки всех аккумуляторных батарей через солнечную панель очень безопасным и желательно.
Схема простого зарядного устройства для солнечных батарей LM338 с использованием IC LM338:
показана ниже. На принципиальной схеме показана простая установка с использованием IC LM 338, настроенного для работы в стандартном режиме регулируемого источника питания.
Использование функции контроля тока
Особенностью конструкции является то, что она также включает функцию контроля тока.
Это означает, что, если ток имеет тенденцию к увеличению на входе, что обычно может иметь место, когда интенсивность солнечных лучей увеличивается пропорционально, напряжение зарядного устройства пропорционально падает, снижая ток обратно до указанного номинального значения.
Как мы видим на схеме, коллектор / эмиттер транзистора BC547 подключен через ADJ и землю, он становится ответственным за инициирование действий по управлению током.
По мере увеличения входного тока батарея начинает потреблять больше тока, при этом на резисторе R3 возникает напряжение, которое преобразуется в соответствующее базовое возбуждение транзистора.
Транзистор проводит и корректирует напряжение через C LM338, так что сила тока регулируется в соответствии с безопасными требованиями к батарее.
Формула предела тока:
R3 можно рассчитать по следующей формуле:
R3 = 0,7 / Максимальный предел тока
PCB Конструкция для объясненной выше простой схемы зарядного устройства солнечной батареи приведена ниже:
Измеритель и входной диод не входят в состав печатной платы.
2) Схема зарядного устройства солнечной батареи за 1 доллар
Вторая конструкция объясняет дешевую, но эффективную, менее чем за 1 доллар дешевую, но эффективную схему солнечного зарядного устройства, которую может построить даже неспециалист для использования эффективной зарядки солнечной батареи.
Вам понадобится только панель солнечных батарей, селекторный переключатель и несколько диодов для создания достаточно эффективного солнечного зарядного устройства.
Что такое слежение за солнечной точкой максимальной мощности?
Для непрофессионала это было бы чем-то слишком сложным и изощренным, чтобы понять, и системой, включающей экстремальную электронику.
В некотором смысле это может быть правдой, и, конечно же, MPPT — это сложные высокопроизводительные устройства, которые предназначены для оптимизации зарядки аккумулятора без изменения кривой V / I солнечной панели.
Проще говоря, MPPT отслеживает мгновенное максимальное доступное напряжение от солнечной панели и регулирует скорость зарядки аккумулятора таким образом, чтобы напряжение панели оставалось неизменным или вдали от нагрузки.
Проще говоря, солнечная панель будет работать наиболее эффективно, если ее максимальное мгновенное напряжение не снижается близко к напряжению подключенной батареи, которая заряжается.
Например, если напряжение холостого хода вашей солнечной панели составляет 20 В, а заряжаемая батарея рассчитана на 12 В, и если вы подключите их напрямую, напряжение на панели упадет до напряжения батареи, что приведет к слишком неэффективно.
И наоборот, если бы вы могли сохранить неизменным напряжение панели, но при этом извлечь из него наилучший из возможных вариантов зарядки, это заставило бы систему работать по принципу MPPT.
Таким образом, все дело в оптимальной зарядке аккумулятора без снижения напряжения на панели.
Существует один простой и нулевой метод реализации вышеуказанных условий.
Выберите солнечную панель, напряжение холостого хода которой соответствует напряжению зарядки аккумулятора. То есть для батареи 12 В вы можете выбрать панель с напряжением 15 В, что обеспечит максимальную оптимизацию обоих параметров.
Однако практически вышеуказанных условий может быть трудно достичь, потому что солнечные панели никогда не производят постоянную мощность и имеют тенденцию генерировать ухудшающиеся уровни мощности в ответ на меняющееся положение солнечных лучей.
Вот почему всегда рекомендуется использовать солнечную батарею с более высоким номиналом, чтобы даже в худших дневных условиях она продолжала заряжаться.
Сказав, что нет необходимости использовать дорогие системы MPPT, вы можете получить аналогичные результаты, потратив на это несколько долларов.Следующее обсуждение прояснит процедуры.
Как работает схемаКак обсуждалось выше, чтобы избежать ненужной нагрузки на панель, нам необходимо создать условия, идеально соответствующие напряжению фотоэлектрической батареи и напряжению батареи.
Это можно сделать, используя несколько диодов, дешевый вольтметр или имеющийся у вас мультиметр и поворотный переключатель. Конечно, при цене около 1 доллара вы не можете ожидать, что он будет автоматическим, вам, возможно, придется работать с переключателем довольно много раз в день.
Мы знаем, что прямое падение напряжения на выпрямительном диоде составляет около 0,6 В, поэтому, добавив несколько диодов последовательно, можно изолировать панель от перетаскивания на подключенное напряжение батареи.
Ссылаясь на схему, приведенную ниже, можно организовать маленькое классное зарядное устройство MPPT с использованием показанных дешевых компонентов.
Предположим, что на схеме напряжение холостого хода панели составляет 20 В, а батарея рассчитана на 12 В.
Их прямое подключение приведет к увеличению напряжения на панели до уровня заряда батареи, что сделает работу неприемлемой.
Последовательно добавляя 9 диодов, мы эффективно изолируем панель от нагрузки и перетаскивания к напряжению батареи, но при этом извлекаем из нее максимальный зарядный ток.
Общее прямое падение объединенных диодов будет около 5 В, плюс напряжение зарядки аккумулятора 14,4 В дает около 20 В, что означает, что после последовательного подключения всех диодов во время пикового солнечного света напряжение на панели незначительно упадет до 19 В. эффективная зарядка аккумулятора.
Теперь предположим, что солнце начинает опускаться, вызывая падение напряжения на панели ниже номинального. Это можно контролировать с помощью подключенного вольтметра и пропускать несколько диодов до тех пор, пока аккумулятор не будет восстановлен с получением оптимальной мощности.
Символ стрелки, показанный на соединении с плюсом напряжения на панели, можно заменить поворотным переключателем для рекомендуемого выбора последовательно включенных диодов.
Реализовав описанную выше ситуацию, можно эффективно моделировать четкие условия зарядки MPPT без использования дорогостоящих устройств.Вы можете сделать это для всех типов панелей и батарей, просто подключив большее количество диодов последовательно.
3) Схема солнечного зарядного устройства и драйвера для белого светодиода SMD высокой мощности 10 Вт / 20 Вт / 30 Вт / 50 Вт
Третья идея учит нас, как построить простой светодиод на солнечной батарее со схемой зарядного устройства для освещения светодиодов высокой мощности (SMD) в порядка 10 ватт на 50 ватт. Светодиоды SMD полностью защищены термически и от перегрузки по току с помощью недорогого каскада ограничения тока LM 338. Идею запросил г-н.Сарфраз Ахмад.
Технические характеристикиКонструкцияВ основном я сертифицированный инженер-механик из Германии 35 лет назад, много лет работал за границей и уехал много лет назад из-за личных проблем дома.
Извините, что беспокою вас, но я знаю о ваших способностях и опыте в области электроники и искренности, чтобы помочь и направить таких начинающих, как я. Я видел эту схему где-то для 12 В постоянного тока.Я подключил SMD, 12 В, 10 Вт, конденсатор 1000 мкФ, 16 В и мостовой выпрямитель, вы можете увидеть номер детали на нем.Когда я включаю свет, выпрямитель начинает нагреваться, и оба SMD тоже. Я боюсь, что если эти лампы оставить включенными в течение длительного времени, это может привести к повреждению SMD и выпрямителя. Не знаю, в чем проблема. Вы можете мне помочь.
У меня на крыльце есть свет, который включается на диске и выключается на рассвете. К сожалению, из-за отключения нагрузки, когда нет электричества, этот свет не горит до тех пор, пока электричество не вернется.
Я хочу установить как минимум два SMD (12 вольт) с LDR, чтобы, как только свет погас, загорелся свет SMD.Я хочу добавить еще два аналогичных светильника в другом месте на крыльце автомобиля, чтобы все они были освещены. Я думаю, что если я подключу все эти четыре SMD-светильника к источнику питания 12 В, который будет получать питание от цепи ИБП.
Конечно, это приведет к дополнительной нагрузке на батарею ИБП, которая вряд ли полностью заряжена из-за частого отключения нагрузки. Другое лучшее решение — установить 12-вольтовую солнечную панель и прикрепить к ней все четыре лампы SMD. Он зарядит аккумулятор и включит / выключит свет.
Эта солнечная панель должна поддерживать эти огни всю ночь и отключаться на рассвете. Пожалуйста, также помогите мне и расскажите подробнее об этой схеме / проекте.
Вы можете найти время, чтобы выяснить, как это сделать. Я пишу вам, так как, к сожалению, ни один продавец электроники или солнечной энергии на нашем местном рынке не готов мне помочь. Ни один из них, похоже, не обладает технической квалификацией и они просто хотят продать свои запчасти.
Сарфраз Ахмад
Равалпинди, Пакистан
На показанной выше схеме солнечного светодиодного освещения SMD мощностью от 10 до 50 Вт с автоматическим зарядным устройством мы видим следующие этапы:
- Солнечная панель
- Пара схем регулятора LM338 с регулируемым током
- Переключающее реле
- Перезаряжаемая батарея
- и 40-ваттный светодиодный SMD-модуль
Вышеупомянутые ступени объединены следующим образом:
Два Ступени LM 338 сконфигурированы в стандартных режимах регулятора тока с использованием соответствующих сопротивлений измерения тока для обеспечения выхода с регулируемым током для соответствующей подключенной нагрузки.
Нагрузкой для левого LM338 является аккумулятор, который заряжается от этого каскада LM338 и входной источник солнечной панели. Резистор Rx рассчитывается таким образом, что батарея получает установленный ток и не перезаряжается.
Правая сторона LM 338 загружена светодиодным модулем, и в этом случае Ry следит за тем, чтобы модуль был запитан правильной указанной величиной тока, чтобы защитить устройства от теплового разгона.
Напряжение на солнечной панели может быть от 18 до 24 В.
Реле введено в схему и соединено со светодиодным модулем таким образом, что оно включается только ночью или когда темно ниже порогового значения для солнечной панели для выработки необходимой любой мощности.
Пока доступно солнечное напряжение, реле остается под напряжением, изолируя светодиодный модуль от батареи и гарантируя, что светодиодный модуль мощностью 40 Вт остается выключенным в дневное время и во время зарядки аккумулятора.
После наступления сумерек, когда солнечное напряжение становится достаточно низким, реле больше не может удерживать свое положение Н / Н и переключается в положение Н / З, соединяя батарею со светодиодным модулем и освещая массив через доступный полностью заряженный аккумулятор.
Видно, что светодиодный модуль прикреплен к радиатору, который должен быть достаточно большим для достижения оптимального результата работы модуля и обеспечения более длительного срока службы и яркости устройства.
Расчет номиналов резисторов
Указанные ограничивающие резисторы можно рассчитать по приведенным формулам:
Rx = 1,25 / ток зарядки аккумулятора
Ry = 1,25 / номинальный ток светодиода.
Предполагая, что это свинцово-кислотная батарея на 40 Ач, предпочтительный зарядный ток должен составлять 4 ампера.
, следовательно, Rx = 1,25 / 4 = 0,31 Ом
мощность = 1,25 x 4 = 5 Вт
Ток светодиода можно найти, разделив его общую мощность на номинальное напряжение, то есть 40/12 = 3,3 ампера
, следовательно, Ry = 1,25 / 3 = 0,4 Ом
мощность = 1,25 x 3 = 3,75 Вт или 4 Вт.
Ограничительные резисторы не используются для светодиодов мощностью 10 Вт, поскольку входное напряжение от батареи соответствует установленному пределу 12 В для светодиодного модуля и, следовательно, не может превышать безопасные пределы.
Приведенное выше объяснение показывает, как микросхему LM338 можно просто использовать для создания полезной схемы солнечного светодиодного освещения с автоматическим зарядным устройством.
4) Автоматическая цепь солнечного освещения с использованием реле
В нашей 4-й автоматической цепи солнечного освещения мы включаем одно реле в качестве переключателя для зарядки аккумулятора в дневное время или пока солнечная панель вырабатывает электричество, а также для освещения подключенный светодиод, пока панель не активна.
Обновление до реле переключения
В одной из моих предыдущих статей, в которой объяснялась простая схема солнечного садового освещения, мы использовали один транзистор для операции переключения.
Одним из недостатков более ранней схемы является то, что она не обеспечивает регулируемую зарядку аккумулятора, хотя это не может быть строго важным, поскольку аккумулятор никогда не заряжается до своего полного потенциала, этот аспект может потребовать улучшения.
Еще одним связанным недостатком более ранней схемы является ее низкое энергопотребление, которое не позволяет использовать батареи высокой мощности и светодиоды.
Следующая схема эффективно решает обе вышеупомянутые проблемы с помощью реле и транзисторного каскада эмиттерного повторителя.
Принципиальная схема
Как это работает
Во время оптимального солнечного света реле получает достаточную мощность от панели и остается включенным с активированными замыкающими контактами.
Это позволяет аккумулятору получать зарядное напряжение через стабилизатор напряжения на транзисторном эмиттерном повторителе.
Конструкция эмиттерного повторителя сконфигурирована с использованием TIP122, резистора и стабилитрона. Резистор обеспечивает необходимое смещение для проводимости транзистора, в то время как значение стабилитрона ограничивает напряжение эмиттера, которое контролируется на уровне чуть ниже значения напряжения стабилитрона.
Таким образом, стабилитрон выбирается соответствующим образом, чтобы соответствовать зарядному напряжению подключенной батареи.
Для батареи 6 В напряжение стабилитрона может быть выбрано как 7,5 В, для батареи 12 В напряжение стабилитрона может составлять около 15 В и так далее.
Эмиттерный повторитель также следит за тем, чтобы аккумулятор никогда не перезарядился сверх установленного предела заряда.
В вечернее время, когда обнаруживается значительное падение солнечного света, реле блокируется от требуемого минимального напряжения удержания, заставляя его переключаться с замыкающего контакта на замыкающий.
Вышеупомянутое переключение реле мгновенно переводит батарею из режима зарядки в режим светодиода, подсвечивая светодиод через напряжение батареи.
Список деталей для автоматической цепи солнечного освещения 6 В / 4 Ач с переключением реле
- Панель солнечных батарей = 9 В, 1 ампер
- Реле = 6 В / 200 мА
- Rx = 10 Ом / 2 Вт
- стабилитрон = 7,5 В, 1/2 ватта
5) Схема транзисторного контроллера солнечного зарядного устройства
Пятая идея, представленная ниже, описывает простую схему солнечного зарядного устройства с автоматическим отключением с использованием только транзисторов.Идея была предложена г-ном Мубараком Идрисом.
Цели и требования схемы
- Пожалуйста, сэр, не могли бы вы сделать мне литий-ионный аккумулятор 12 В, 28,8 Ач, автоматический контроллер заряда, использующий солнечную панель в качестве источника питания, который составляет 17 В при 4,5 А при максимальном солнечном освещении.
- Контроллер заряда должен иметь возможность иметь защиту от перезарядки и отключение низкого заряда батареи, а схема должна быть простой для новичка без микросхемы или микроконтроллера.
- Схема должна использовать реле или транзисторы bjt в качестве переключателя и стабилитрона для опорного напряжения, спасибо, сэр, надеюсь скоро услышать от вас!
Конструкция
Конструкция печатной платы (сторона компонентов)
Ссылаясь на приведенную выше простую схему солнечного зарядного устройства с использованием транзисторов, автоматическое отключение для полного уровня заряда и нижнего уровня осуществляется через пару BJT, сконфигурированных как компараторы. .
Вспомните более раннюю схему индикатора низкого заряда батареи с использованием транзисторов, где низкий уровень заряда батареи указывался с помощью всего двух транзисторов и нескольких других пассивных компонентов.
Здесь мы используем идентичную конструкцию для определения уровня заряда батареи и для обеспечения необходимого переключения батареи через солнечную панель и подключенную нагрузку.
Давайте предположим, что изначально у нас есть частично разряженная батарея, из-за которой первый BC547 слева перестает проводить (это устанавливается путем настройки базовой предустановки на этот пороговый предел) и позволяет проводить следующее BC547.
Когда этот BC547 проводит, он позволяет TIP127 включиться, что, в свою очередь, позволяет напряжению солнечной панели достигать батареи и начинать ее зарядку.
Вышеупомянутая ситуация, наоборот, удерживает TIP122 выключенным, так что нагрузка не может работать.
По мере того, как батарея начинает заряжаться, напряжение на шинах питания также начинает расти до точки, когда левая сторона BC547 просто может проводить ток, в результате чего правая сторона BC547 перестает проводить дальше.
Как только это происходит, TIP127 блокируется от отрицательных базовых сигналов, и он постепенно перестает проводить, так что батарея постепенно отключается от напряжения солнечной панели.
Однако вышеупомянутая ситуация позволяет TIP122 медленно получать триггер смещения базы, и он начинает проводить … что гарантирует, что теперь нагрузка может получить необходимое питание для своих операций.
Вышеупомянутая схема солнечного зарядного устройства, использующая транзисторы и с автоматическим отключением, может использоваться для любых небольших приложений солнечного контроллера, таких как безопасная зарядка аккумуляторов сотовых телефонов или других форм литий-ионных аккумуляторов.
Для с регулируемым зарядным устройствомСледующая конструкция показывает, как преобразовать или модернизировать приведенную выше принципиальную схему в регулируемое зарядное устройство, чтобы аккумулятор поставлялся с фиксированным и стабилизированным выходом независимо от повышения напряжения. от солнечной панели.
Вышеупомянутые конструкции могут быть дополнительно упрощены, как показано на следующей схеме контроллера солнечной батареи с перезарядкой и переразрядкой:
Нижний NPN-транзистор — BC547 (не показан на схеме).Здесь стабилитрон ZX решает. время полного заряда аккумулятора отключено, и его можно рассчитать по следующей формуле:
ZX = значение полного заряда аккумулятора + 0.6
Например, если уровень полной зарядки аккумулятора составляет 14,2 В, то ZX может иметь стабилитрон 14 + 0,6 = 14,6 В, который может быть построен путем добавления нескольких последовательно соединенных стабилитронов вместе с несколькими диодами 1N4148, если необходимо.
Стабилитрон ZY определяет точку отсечки чрезмерной разрядки батареи и может быть просто равен значению желаемого низкого заряда батареи.
Например, если минимальный низкий уровень заряда батареи составляет 11 В, тогда ZY может быть выбран в качестве стабилитрона 11 В.
6) Схема карманного светодиодного освещения на солнечной батарее
Шестая конструкция здесь объясняет простую недорогую схему карманного светодиодного освещения на солнечной батарее, которая может использоваться нуждающимися и малоимущими слоями общества для дешевого освещения своих домов в ночное время.
Идея была предложена г-ном Р.К. Rao
Цели и требования схемы
- Я хочу сделать карманный светодиодный светильник SOLAR, используя прозрачный пластиковый ящик 9 см x 5 см x 3 см [доступный на рынке за 3 рупий / -] с использованием светодиода мощностью 1 Вт / 20 мА Светодиоды питаются от герметичной свинцово-кислотной аккумуляторной батареи 4 В, 1 А [SUNCA / VICTARI], а также с возможностью зарядки с помощью зарядного устройства для сотового телефона [при наличии сетевого тока].
- Батарея подлежит замене, если она разряжена после использования в течение 2/3 лет / предписанного срока службы сельским / племенным пользователем.
- Предназначен для детей из племен / сельских жителей, чтобы зажечь книгу; На рынке есть лучшие светодиодные фонари по цене около 500 рупий [d.light] за 200 рупий [Thrive].
- Эти фонари хороши, за исключением того, что у них есть мини-солнечная панель и яркий светодиод со сроком службы десять лет, если не больше, но с перезаряжаемой батареей без возможности ее замены в случае разрядки после двух или трех лет использования. это пустая трата ресурсов и неэтична.
- Проект, который я планирую, предусматривает замену батареи, доступную на месте по низкой цене.Цена на свет не должна превышать 100/150 рупий.
- Он будет продаваться на некоммерческой основе через НПО в районах проживания племен и, в конечном итоге, будет поставлять комплекты для молодежи из племен / сельских районов, чтобы они могли изготавливать их в деревне.
- Я вместе с коллегой сделал несколько светильников с батареями большой мощности 7V EW и 2x20mA pirahna Led и проверил их — они длились более 30 часов непрерывного освещения, достаточного для освещения книги с полуметрового расстояния; и еще один с солнечной батареей 4 В и светодиодом мощностью 350 А мощностью 1 Вт, обеспечивающим достаточно света для приготовления пищи в хижине.
- Можете ли вы предложить схему с одной перезаряжаемой батареей AA / AAA, мини-солнечной панелью размером 9×5 см для установки на крышку коробки, усилителем постоянного и постоянного тока и светодиодами 20 мА. Если вы хотите, чтобы я пришел к вам для обсуждения, я могу.
- Вы можете увидеть огни, которые мы сделали на фотографиях Google по адресу https://goo.gl/photos/QyYU1v5Kaag8T1WWA Благодарю вас,
По запросу должны быть установлены светодиодные схемы карманных солнечных батарей. компактный, работает с одним 1.Элемент 5AAA, использующий преобразователь постоянного тока в постоянный и оснащенный саморегулирующейся схемой солнечного зарядного устройства.
Схема, показанная ниже, вероятно, удовлетворяет всем вышеперечисленным спецификациям, но все же остается в пределах доступного предела.
Принципиальная схема
Конструкция представляет собой базовую схему «похитителя джоулей», в которой используется один элемент фонарика, BJT и индуктор для питания любого стандартного светодиода на 3,3 В.
В конструкции показан светодиод мощностью 1 Вт, хотя можно использовать светодиод меньшей яркости 30 мА.
Схема солнечного светодиода способна выдавить последнюю каплю «джоуля» или заряда из элемента, отсюда и название «джоулевый вор», что также подразумевает, что светодиод будет продолжать светиться до тех пор, пока внутри элемента практически ничего не останется. Однако аккумулятор здесь не рекомендуется разряжать ниже 1 В.
Зарядное устройство на 1,5 В в конструкции построено с использованием другого маломощного BJT, сконфигурированного в его конфигурации эмиттерного повторителя, что позволяет ему выдавать выходное напряжение эмиттера, которое точно равно потенциалу на его базе, установленному предустановкой 1K.Это должно быть точно установлено так, чтобы эмиттер выдавал не более 1,8 В при входном постоянном токе более 3 В.
Источником входного постоянного тока является солнечная панель, которая может обеспечивать превышение 3 В при оптимальном солнечном свете и позволять зарядному устройству заряжать аккумулятор с максимальным выходным напряжением 1,8 В.
По достижении этого уровня эмиттерный повторитель просто запрещает дальнейшую зарядку элемента, предотвращая любую возможность перезарядки.
Индуктор для схемы карманного солнечного светодиода состоит из небольшого трансформатора с ферритовым кольцом, имеющего 20:20 витков, которые можно соответствующим образом изменить и оптимизировать для обеспечения наиболее благоприятного напряжения для подключенного светодиода, которое может сохраняться даже до тех пор, пока напряжение не упадет ниже 1.2В.
7) Простое солнечное зарядное устройство для уличных фонарей
Седьмое солнечное зарядное устройство, обсуждаемое здесь, лучше всего подходит, поскольку солнечная светодиодная уличная система освещения специально разработана для начинающих любителей, которые могут построить ее, просто обратившись к представленной здесь графической схеме.
Благодаря простой и относительно дешевой конструкции, система может быть подходящим образом использована для уличного освещения в деревнях или в других подобных отдаленных районах, тем не менее, это никоим образом не ограничивает ее использование и в городах.
Основные характеристики этой системы:
1) Зарядка с контролируемым напряжением
2) Работа светодиодов с регулируемым током
3) Реле не используются, все твердотельные конструкции
4) Отключение нагрузки при низком критическом напряжении
5) Индикаторы низкого и критического напряжения
6) Отключение при полной зарядке не включено для простоты и потому, что зарядка ограничена контролируемым уровнем, который никогда не позволит аккумулятору перезарядиться.
7) Использование популярных микросхем, таких как LM338, и транзисторов, таких как BC547, обеспечивает беспроблемную закупку.
8) Ступень определения дневного и ночного режима, обеспечивающая автоматическое выключение в сумерках и включение на рассвете.
Вся принципиальная схема предлагаемой простой светодиодной системы уличного освещения проиллюстрирована ниже:
Схема соединений
Цепной каскад, состоящий из T1, T2 и P1, сконфигурирован в простой датчик низкого заряда батареи, индикаторную схему
Точно идентичный Этап также можно увидеть чуть ниже, используя T3, T4 и связанные с ними детали, которые образуют еще один каскад детектора низкого напряжения.
Ступень T1, T2 обнаруживает напряжение аккумулятора, когда оно падает до 13 В, путем включения подключенного светодиода на коллекторе T2, в то время как ступень T3, T4 обнаруживает напряжение аккумулятора, когда оно падает ниже 11 В, и указывает ситуацию, подсвечивая Светодиод связан с коллектором Т4.
P1 используется для регулировки ступени T1 / T2 таким образом, чтобы светодиод T2 загорался только при напряжении 12 В, аналогично P2 настраивается так, чтобы светодиод T4 начинал светиться при напряжении ниже 11 В.
IC1 LM338 сконфигурирован как простой источник питания с регулируемым напряжением для точного регулирования напряжения солнечной панели до 14 В, это делается путем соответствующей настройки предустановки P3.
Этот выход IC1 используется для зарядки батареи уличного фонаря в дневное время и при ярком солнечном свете.
IC2 — это еще одна микросхема LM338, подключенная в режиме регулятора тока, ее входной контакт соединен с плюсом батареи, а выход соединен со светодиодным модулем.
IC2 ограничивает уровень тока от батареи и подает правильное количество тока на светодиодный модуль, чтобы он мог безопасно работать в ночном режиме резервного копирования.
T5 — это силовой транзистор, который действует как переключатель и срабатывает на стадии критического разряда батареи, когда напряжение батареи стремится достичь критического уровня.
Всякий раз, когда это происходит, база T5 мгновенно заземляется с помощью T4, мгновенно отключая его. Когда Т5 выключен, светодиодный модуль может светиться и, следовательно, также выключен.
Это состояние предотвращает и предохраняет аккумулятор от чрезмерной разрядки и повреждения. В таких ситуациях аккумулятору может потребоваться внешняя зарядка от сети с использованием источника питания 24 В, подключенного к линиям питания солнечной панели, через катод D1 и землю.
Ток от этого источника питания можно указать на уровне около 20% от емкости аккумулятора, и аккумулятор можно заряжать до тех пор, пока оба светодиода не перестанут светиться.
Транзистор T6 вместе с его базовыми резисторами расположен так, чтобы обнаруживать питание от солнечной панели и гарантировать, что светодиодный модуль остается отключенным до тех пор, пока разумный объем питания доступен от панели, или, другими словами, T6 сохраняет светодиод модуль отключается до тех пор, пока не становится достаточно темно для светодиодного модуля, а затем включается.Обратное происходит на рассвете, когда светодиодный модуль автоматически выключается. R12, R13 должны быть тщательно отрегулированы или выбраны для определения желаемых пороговых значений для циклов включения / выключения светодиодного модуля
Как построить
Чтобы успешно завершить эту простую систему уличного освещения, описанные этапы должны быть построены отдельно и проверены отдельно перед интеграцией их вместе.
Сначала соберите ступень T1, T2 вместе с R1, R2, R3, R4, P1 и светодиодом.
Затем, используя переменный источник питания, подайте точные 13 В на этот этап T1, T2 и отрегулируйте P1 так, чтобы светодиод просто загорелся, немного увеличьте напряжение, скажем, 13.5V и светодиод должен погаснуть. Этот тест подтвердит правильную работу этого каскада индикатора низкого напряжения.
Аналогичным образом сделайте ступень T3 / T4 и установите P2 аналогичным образом, чтобы светодиод светился при напряжении 11 В, что становится критической установкой уровня для ступени.
После этого вы можете перейти к этапу IC1 и отрегулировать напряжение на его «корпусе» и земле до 14 В, отрегулировав P3 до нужной степени. Это должно быть снова сделано путем подачи питания 20 В или 24 В на его входной контакт и линию заземления.
Ступень IC2 может быть сконструирован, как показано, и не потребует какой-либо процедуры настройки, кроме выбора R11, который может быть выполнен с использованием формулы, выраженной в этой статье об универсальном ограничителе тока
Список деталей
- R1, R2, R3 R4, R5, R6, R7 R8, R9, R12 = 10k, 1/4 WATT
- P1, P2, P3 = 10K PRESETS
- R10 = 240 OHMS 1/4 WATT
- R13 = 22K
- D1, D3 = 6A4 ДИОД
- D2, D4 = 1N4007
- T1, T2, T3, T4 = BC547
- T5 = TIP142
- R11 = СМОТРЕТЬ ТЕКСТ
- Светодиод IC1, IC2 = LM338 IC TO3 соединительный блок 901os20 901os20 Светодиоды мощностью 1 Вт при последовательном и параллельном подключении
- Батарея = 12 В SMF, 40 AH
- Солнечная панель = 20/24 В, 7 А
Создание светодиодного модуля на 24 Вт
Светодиодный модуль на 24 Вт для вышеупомянутой простой солнечной улицы световую систему можно построить, просто соединив 24 светодиода мощностью 1 Вт, как показано на следующем рисунке:
8) Схема понижающего преобразователя солнечной панели с защитой от перегрузки
В восьмой концепции солнечной батареи, обсуждаемой ниже, говорится о простой схеме понижающего преобразователя солнечной панели, которую можно использовать для получения любого желаемого низкого пониженного напряжения на входах от 40 до 60 В.Схема обеспечивает очень эффективное преобразование напряжения. Идея была предложена господином Дипаком.
Технические характеристикиКонструкцияЯ ищу понижающий преобразователь постоянного тока со следующими характеристиками.
1. Входное напряжение = от 40 до 60 В постоянного тока
2. Выходное напряжение = регулируемое 12, 18 и 24 В постоянного тока (несколько выходов из одной и той же цепи не требуются. Отдельная цепь для каждого выходного напряжения также штраф)
3.Максимальный выходной ток = 5-10А
4. Защита на выходе = перегрузка по току, короткое замыкание и т. Д.
5. Небольшой светодиодный индикатор работы устройства будет преимуществом.
Был бы признателен, если бы вы помогли мне разработать схему.
С уважением,
Deepak
Предлагаемая схема понижающего преобразователя с 60 В на 12 В, 24 В показана на рисунке ниже, детали можно понять, как описано ниже:
конфигурацию можно разделить на этапы, а именно.каскад нестабильного мультивибратора и понижающий преобразователь, управляемый МОП-транзистором.
BJT T1, T2 вместе со связанными с ним частями образуют стандартную схему AMV, подключенную для генерации частоты с частотой примерно от 20 до 50 кГц.
Mosfet Q1 вместе с L1 и D1 образуют стандартную топологию понижающего преобразователя для реализации необходимого понижающего напряжения на C4.
AMV управляется входом 40 В, и сгенерированная частота подается на затвор подключенного МОП-транзистора, который мгновенно начинает колебаться при доступном токе от входа, управляющего сетью L1, D1.
Вышеупомянутое действие генерирует необходимое пониженное напряжение на C4,
D2 гарантирует, что это напряжение никогда не превышает номинальную отметку, которая может быть фиксированной 30 В.
Это максимальное предельное пониженное напряжение 30 В далее подается на регулятор напряжения LM396, который может быть настроен на получение конечного желаемого напряжения на выходе с максимальной скоростью 10 ампер.
Выход может использоваться для зарядки предполагаемого аккумулятора.
Принципиальная схема
Список деталей для вышеуказанного понижающего преобразователя на 60 В, 12 В, 24 В на выходе для солнечных панелей.
- R1 — R5 = 10K
- R6 = 240 OHMS
- R7 = 10K POT
- C1, C2 = 2nF
- C3 = 100 мкФ / 100 В
- C4 = 100 мкФ / 50 В 90 100462 Q1 = ЛЮБОЙ МОП-транзистор с P-каналом на 20 А
- T1, T2 = BC546
- D1 = ЛЮБОЙ ДИОД БЫСТРОГО ВОССТАНОВЛЕНИЯ 10 А
- D2 = ЗЕНЕР 30 В 1 Вт
- D3 = 1N4007
- L1 = 30 витков 21 провода SWG с суперэмалированной медью Ферритовый стержень диаметром 10 мм.
9) Домашняя солнечная установка электричества для жизни вне сети
Девятая уникальная конструкция, описанная здесь, иллюстрирует простую расчетную конфигурацию, которая может использоваться для реализации солнечной панели любого размера, установленной для удаленных домов или для обеспечения автономной системы электроснабжения от солнечных батарей.
Технические характеристикиМодельЯ уверен, что у вас должна быть наготове такая принципиальная схема. Просматривая ваш блог, я заблудился и не мог выбрать ни одного, наиболее подходящего для моих требований.
Я просто пытаюсь изложить здесь свое требование и убедиться, что я правильно его понял.
(Это пилотный проект для меня, чтобы отважиться в этой области. Вы можете считать меня большим нулевым в электротехнике.)
Моя основная цель — максимально использовать солнечную энергию и свести мои счета за электричество к минимуму. (🙁 Я остаюсь в Thane. Итак, вы можете представить счета за электричество.) Итак, вы можете считать, что я полностью делаю систему освещения на солнечной энергии для своего дома.
1. Когда достаточно солнечного света, мне не нужен искусственный свет. Как только интенсивность солнечного света падает ниже допустимой нормы, я хочу, чтобы мой свет включался автоматически.
Я бы хотел их выключить перед сном.3. Моя текущая система освещения (которую я хочу осветить) состоит из двух обычных ламп яркого света (36 Вт / 880 8000K) и четырех КЛЛ мощностью 8 Вт.
Хотел бы воспроизвести всю установку со светодиодным освещением на солнечной энергии.
Как я уже сказал, я большой ноль в области электричества. Итак, пожалуйста, помогите мне также с ожидаемой стоимостью установки.
36 Вт x 2 плюс 8 Вт дает в сумме около 80 Вт, что является общим требуемым уровнем потребления.
Теперь, поскольку лампы предназначены для работы при уровнях сетевого напряжения, которое в Индии составляет 220 В, становится необходим инвертор для преобразования напряжения солнечной панели в требуемые характеристики для включения фонарей.
Также, поскольку инвертору для работы требуется аккумулятор, который можно предположить как аккумулятор на 12 В, все параметры, необходимые для настройки, могут быть рассчитаны следующим образом:
Общее предполагаемое потребление = 80 Вт.
Вышеуказанная мощность может потребляться с 6 утра до 6 вечера, что становится максимальным периодом, который можно оценить, и это примерно 12 часов.
Умножение 80 на 12 дает = 960 ватт-час.
Это означает, что солнечная панель должна будет производить столько ватт-часов в течение желаемого периода в 12 часов в течение всего дня.
Однако, поскольку мы не ожидаем получения оптимального солнечного света в течение года, мы можем предположить, что средний период оптимального дневного света составляет около 8 часов.
Разделив 960 на 8, мы получим 120 Вт, что означает, что необходимая солнечная панель должна быть не менее 120 Вт.
Если выбрано напряжение панели около 18 В, текущие характеристики будут 120/18 = 6.66 ампер или просто 7 ампер.
Теперь давайте посчитаем размер аккумулятора, который может использоваться для инвертора и который может потребоваться для зарядки с указанной выше солнечной панелью.
Опять же, поскольку общий ватт-час за весь день рассчитан примерно на 960 Вт, разделив это на напряжение батареи (которое предполагается равным 12 В), мы получим 960/12 = 80, это около 80 или просто 100 Ач. , поэтому необходимая батарея должна быть рассчитана на 12 В, 100 Ач для обеспечения оптимальной работы в течение дня (период 12 часов).
Нам также понадобится контроллер заряда от солнечной батареи для зарядки аккумулятора, а поскольку аккумулятор будет заряжаться в течение примерно 8 часов, скорость зарядки должна быть около 8% от номинальной Ач, что составляет 80 x 8% = 6,4 ампера, поэтому необходимо указать контроллер заряда, чтобы он мог комфортно выдерживать не менее 7 ампер для требуемой безопасной зарядки аккумулятора.
На этом завершаются все расчеты солнечных панелей, аккумуляторов и инверторов, которые могут быть успешно реализованы для любой подобной установки, предназначенной для автономного проживания в сельской местности или другом отдаленном районе.
Для других спецификаций V, I цифры могут быть изменены в приведенных выше расчетах для достижения соответствующих результатов.
В случае, если батарея кажется ненужной, и солнечная панель также может быть напрямую использована для управления инвертором.
Простая схема регулятора напряжения солнечной панели может быть показана на следующей схеме, данный переключатель может использоваться для выбора варианта зарядки аккумулятора или прямого управления инвертором через панель.
В приведенном выше случае регулятор должен вырабатывать от 7 до 10 ампер тока, поэтому в ступени зарядного устройства необходимо использовать LM396 или LM196.
Вышеупомянутый регулятор солнечной панели может быть сконфигурирован со следующей простой схемой инвертора, которая будет вполне достаточной для питания запрошенных ламп через подключенную солнечную панель или батарею.
Перечень деталей для вышеуказанной схемы инвертора: R1, R2 = 100 Ом, 10 Вт
R3, R4 = 15 Ом 10 Вт
T1, T2 = TIP35 на радиаторах
Последняя строка в запросе предлагает версию со светодиодом спроектирован для замены и модернизации существующих люминесцентных ламп КЛЛ.То же самое можно реализовать, просто исключив аккумулятор и инвертор и интегрировав светодиоды с выходом солнечного регулятора, как показано ниже:
Минус адаптера должен быть подключен и объединен с минусом солнечной панели
Заключительные мысли
Итак, друзья, это были 9 основных конструкций зарядных устройств для солнечных батарей, которые были вручную отобраны с этого веб-сайта.
В блоге вы найдете много других таких усовершенствованных солнечных батарей для дальнейшего чтения.И да, если у вас есть какие-либо дополнительные идеи, вы можете обязательно представить их мне, я обязательно представлю их здесь, чтобы наши зрители получили удовольствие от чтения.
Отзыв от одного из Avid Readers
Hi Swagatam,
Я наткнулся на ваш сайт и считаю вашу работу очень вдохновляющей. В настоящее время я работаю по программе естественных наук, технологий, инженерии и математики (STEM) для студентов 4-5 классов в Австралии. Проект направлен на повышение интереса детей к науке и ее связи с реальными приложениями.
Программа также привносит сочувствие в процесс инженерного проектирования, когда молодые учащиеся знакомятся с реальным проектом (контекстом) и взаимодействуют со своими одноклассниками для решения мирских проблем. В течение следующих трех лет мы сосредоточены на ознакомлении детей с наукой об электричестве и практическим применением электротехники. Введение в то, как инженеры решают реальные проблемы на благо общества.
В настоящее время я работаю над онлайн-контентом для программы, которая будет ориентирована на молодых учащихся (4-6 классы), изучающих основы электричества, в частности, возобновляемых источников энергии, т.е.е. солнечный в данном случае. В рамках программы самостоятельного обучения дети узнают и исследуют электричество и энергию по мере того, как они знакомятся с реальным проектом, то есть с освещением детей, проживающих в лагерях беженцев по всему миру. По завершении пятинедельной программы дети объединяются в группы, чтобы построить солнечные светильники, которые затем отправляют детям из неблагополучных семей по всему миру.
Как некоммерческий образовательный фонд, мы ищем вашу помощь в разработке простой принципиальной схемы, которую можно было бы использовать для создания солнечного светильника мощностью 1 Вт в качестве практического занятия в классе.Мы также закупили у производителя 800 комплектов солнечного света, которые дети собирают, однако нам нужен кто-то, чтобы упростить принципиальную схему этих комплектов освещения, которые будут использоваться для простых уроков по электричеству, схемам и расчету мощности. вольт, ток и преобразование солнечной энергии в электрическую.
Я с нетерпением жду вашего ответа и продолжаю вашу вдохновляющую работу.
Решение запроса
Я ценю ваш интерес и ваши искренние усилия по просвещению нового поколения в области солнечной энергии.
Я приложил самую простую, но эффективную схему драйвера светодиода, которую можно использовать для безопасного освещения 1-ваттного светодиода от солнечной панели с минимальным количеством деталей.
Обязательно прикрепите к светодиоду радиатор, иначе он может быстро сгореть из-за перегрева.
Схема управляется напряжением и током для обеспечения оптимальной безопасности светодиода.
Дайте мне знать, если у вас возникнут дополнительные сомнения.
Методы увеличения выходной мощности солнечных панелей
В двух недавних статьях, «Сбор энергии с помощью солнечных панелей малой мощности» и «Зарядное устройство для солнечных батарей, обеспечивающее высокую эффективность при слабом освещении», обсуждается, как эффективно собирать энергию с помощью солнечных панелей малой мощности.Обе эти статьи упоминают концепцию, известную как максимальная мощность, которая в контексте солнечных панелей — это способность извлекать как можно больше энергии из солнечной панели без падения напряжения панели. При обсуждении солнечных панелей и мощности часто используются такие термины, как отслеживание максимальной точки мощности (MPPT) и контроль максимальной точки мощности (MPPC). Давайте рассмотрим определение и значение этих терминов более подробно.
Как видно на рисунке 1, выходной ток солнечной панели нелинейно зависит от напряжения панели.В условиях короткого замыкания выходная мощность равна нулю, так как выходное напряжение равно нулю. В условиях разомкнутой цепи выходная мощность равна нулю, поскольку выходной ток равен нулю. Большинство производителей солнечных панелей указывают напряжение панели при максимальной мощности (V MP ). Это напряжение обычно составляет около 70-80% от напряжения холостого хода панели (V OC ). На рисунке 1 максимальная мощность составляет чуть менее 140 Вт с V MP чуть ниже 32 В и I MP чуть ниже 4,5 А.
Рисунок 1. ВАХ солнечной панели, показывающая максимальную мощность
В идеале, любая система, использующая солнечную панель, будет работать с этой панелью на максимальной выходной мощности. Это особенно верно в отношении зарядного устройства на солнечной батарее, цель которого, по-видимому, состоит в том, чтобы улавливать и хранить как можно больше солнечной энергии за как можно меньшее время. Другими словами, поскольку мы не можем предсказать наличие или интенсивность солнечной энергии, нам нужно использовать как можно больше энергии, пока она доступна.
Есть много разных способов попытаться использовать солнечную панель на максимальной мощности. Один из самых простых — подключить аккумулятор к солнечной панели через диод. Этот метод описан здесь в статье «Сбор энергии с помощью солнечных панелей малой мощности». Он основан на согласовании максимальной выходной мощности панели с относительно узким диапазоном напряжения батареи. Когда доступные уровни мощности очень низкие (примерно менее нескольких десятков милливатт), это может быть лучшим подходом.
Противоположный конец спектра — это подход, реализующий полный алгоритм отслеживания точки максимальной мощности (MPPT). Существует множество алгоритмов MPPT, но большинство из них будет иметь некоторую возможность сканировать весь рабочий диапазон солнечной панели, чтобы определить, где вырабатывается максимальная мощность. LT8490 и LTC4015 являются примерами интегральных схем, которые выполняют эту функцию. Преимущество полного алгоритма MPPT состоит в том, что он может отличать локальный пик мощности от глобального максимума мощности.В многоэлементных солнечных панелях может быть более одного пика мощности в условиях частичного затенения (см. Рисунок 2). Как правило, для нахождения истинной рабочей точки максимальной мощности требуется полный алгоритм MPPT. Это достигается путем периодического сканирования всего диапазона мощности солнечной панели и запоминания условий эксплуатации, при которых была достигнута максимальная мощность. Когда развертка завершена, схема вынуждает панель вернуться к точке максимальной мощности. В промежутках между этими периодическими развертками алгоритм MPPT будет постоянно сглаживать рабочую точку, чтобы гарантировать, что он работает на пике.
Рис. 2. Частично затемненная солнечная панель с несколькими максимумами мощности
Промежуточный подход — это то, что Linear Technology называет контролем максимальной мощности (MPPC). Этот метод использует тот факт, что максимальное напряжение питания (V MP ) солнечной панели, как правило, не сильно меняется при изменении количества падающего света (см. «Зарядное устройство для солнечных батарей обеспечивает высокую эффективность при слабом освещении» для больше информации). Следовательно, простая схема может заставить панель работать при фиксированном напряжении и приблизительно максимальной мощности.Делитель напряжения используется для измерения напряжения панели, и если входное напряжение падает ниже запрограммированного уровня, нагрузка на панель уменьшается до тех пор, пока она не сможет поддерживать запрограммированный уровень напряжения. Продукты с этой функцией включают LTC3105, LTC3129, LT3652 (HV), LTC4000-1 и LTC4020. Обратите внимание, что таблицы LT3652 и LT3652HV относятся к MPPT, а не к MPPC, но это в значительной степени связано с тем, что Linear Technology не придумала терминологию MPPC, когда был выпущен продукт LT3652.
Последнее замечание о MPPC и LTC3105 — LTC3105 — это повышающий преобразователь, который может запускаться при чрезвычайно низком напряжении 0.25В. Это делает LTC3105 особенно подходящим для повышения выходного напряжения солнечной панели «1S» (т. Е. Солнечной панели, выходное напряжение которой равно выходному напряжению одного фотоэлектрического элемента, даже если на панели имеется несколько фотоэлектрических элементов, подключенных параллельно). С солнечной панелью 1S будет только , одна точка максимальной мощности — невозможно иметь несколько пиков мощности. В этом сценарии нет необходимости различать несколько максимумов.
Таким образом, существует множество различных способов работы солнечной панели в рабочем состоянии с максимальной выходной мощностью.Панель может быть подключена к аккумулятору (через диод), диапазон напряжений которого близок к максимальному напряжению питания панели. Может использоваться полный алгоритм MPPT, включая периодические глобальные развертки для поиска глобального максимума и непрерывный дизеринг, чтобы оставаться на этом максимуме (примером является LT8490). В других продуктах реализована технология регулирования входного напряжения (MPPC) для работы солнечной панели при фиксированном рабочем напряжении, включая LTC3105, LTC3129, LT3652 (HV), LTC4000-1 и LTC4020. В ближайшие месяцы Linear Technology представит еще один метод работы солнечной панели на максимальной мощности.Будьте на связи!
.