Схема подключения фото реле: Фотореле для уличного освещения: выбор, схемы установки

Содержание

Фотореле для уличного освещения: выбор, схемы установки

Владельцев частных домов при благоустройстве участка волнует вопрос, как сделать автоматическое включение света в сумерки и выключение его на рассвете. Для этого есть два устройства — фотореле и астротаймер. Первое устройство более простое и дешевое, второе — сложнее и дороже. Более подробно поговорим о фотореле для уличного освещения. 

Содержание статьи

Устройство и принцип действия

Это устройство имеет множество названий. Самое распространенное — фотореле, но называют еще фотоэлемент, датчик света и сумерек, фотодатчик, фотосэнсор, сумеречный или светоконтролирующий выключатель, датчик освещенности или день-ночь. В общем, названий много, но суть от этого не меняется — устройство позволяет в автоматическом режиме включать свет в сумерки и выключать на рассвете.

Схема фотореле для уличного освещения на фоторезисторе

Работа устройства основана на способности некоторых элементов изменять свои параметры под воздействием солнечного света. Чаще всего используют фоторезисторы, фототранзисторы и фотодиоды. Вечером, при уменьшении освещенности, параметры светочувствительных элементов начинают меняться. Когда изменения достигнут определенной величины, контакты реле смыкаются, подавая питание на подключенную нагрузку. На рассвете изменения идут в обратном направлении, контакты размыкаются, свет гаснет.

Характеристики и выбор

В первую очередь выбирают напряжение, с которым будет работать датчик света: 220 В или 12 В. Следующий параметр — класс защиты. Так как устройство устанавливается на улице, он должен быть не ниже IP44 (цифры могут быть больше, меньше — нежелательно). Это значит, что внутрь устройства не могут попасть предметы размером более 1 мм, а также что водяные брызги ему не страшны. Второе, на что стоит обратить внимание — на температурный режим эксплуатации. Ищите такие варианты, которые с запасом перекрывают средние показатели в вашем регионе как по плюсовой, так и по минусовой температуре.

Подбирать модель фотореле также необходимо по мощности подключаемых к нему ламп (выходная мощность) и току нагрузки. Оно, конечно, может «тянуть» нагрузку немного больше, но при этом могут быть проблемы. Так что лучше брать даже с некоторым запасом. Это были обязательные параметры, по которым надо выбирать фотореле для уличного освещения. Есть еще несколько дополнительных.

Пример характеристик фотореле для уличного освещения

В некоторых моделях есть возможность подстроить порог срабатывания — сделать фотодатчик более или менее чувствительным. Уменьшать чувствительность стоит при выпадении снега. В этом случае отраженный от снега свет может быть воспринят как рассвет. В результате свет будет то включаться, то отключаться. Такое представление вряд ли понравится.

Обратите внимание на пределы регулировки чувствительности. Они могут быть больше или меньше. Например, у фотореле AWZ-30 белорусского производства этот параметр  — 2-100 Лк, у фотоэлемента P02 диапазон подстройки 10-100 Лк.

Задержка срабатывания. Для чего нужна задержка? Для исключения ложных включений/отключений света. Например, ночью на фотореле попал свет фар проезжающего автомобиля. Если задержка срабатывания мала, свет отключится. Если она достаточна — хотя-бы 5-10 секунд, то этого не произойдет.

 

 

Выбор места установки

Для корректной работы фотореле важно правильно выбрать его местоположение. Необходимо учесть несколько факторов:

Как видите при организации автоматического освещения на улице выбрать место для установки фотореле — не самая простая задача. Иногда приходится переносить его несколько раз, пока найдешь приемлемое положение. Часто, если датчик света используют для включения фонаря на столбе, фотореле стараются расположить там же. Это совершенно не обязательно и очень неудобно — счищать пыль или снег приходится довольно часто и каждый раз залезать на столб не очень весело. Само фотореле можно разместить на стене дома, например, а к светильнику дотянуть кабель питания. Это наиболее удобный вариант.

Схемы подключения

Схема подключения фотореле для уличного освещения проста: на вход устройства заводится фаза и ноль, с выхода фаза подается на нагрузку (фонари), а ноль (минус) на нагрузку идет от автомата или с шины.

Схема подключения фотореле для освещения (фонаря)

Если делать все по правилам, соединение проводов необходимо делать в распределительной (монтажной коробке). Выбираете герметичную модель для расположения на улице, монтируете в доступном месте. Как подключить фотореле к освещению на улице в этом случае — на схеме ниже.

Подключение фотодатчика через распределительную коробку

Если включать/отключать необходимо мощный фонарь на столбе, в конструкции которого есть дросселя, лучше в схему добавить пускатель (контактор). Он рассчитан на частое включение и выключение, нормально переносит пусковые токи.

Схема подключения датчика день-ночь с пускателем

Если свет должен включаться только на время нахождения человека (в уличном туалете, возле калитки), к фотореле добавляют датчик движения. В такой связке лучше сначала поставить светочувствительный выключатель, а после него — датчик движения. При таком построении датчик движения будет срабатывать только в темное время суток.

Схема подключения фотореле с датчиком движения

Как видите, схемы несложные, вполне можно справиться своими руками.

Особенности подключения проводов

Фотореле любого производителя имеет три провода. Один из них — красный, другой — синий (может быть темно-зеленым) и третий может быть любого цвета, но обычно черный или коричневый. При подключении стоит помнить:

  • красный провод всегда идет на лампы:
  • к синему (зеленому) подключается ноль (нейтраль) от питающего кабеля;
  • к черному или коричневому подается фаза.

Если посмотрите на все выше приведенные схемы, то увидите, что они нарисованы с соблюдением этих правил. Все, больше никаких сложностей. Подключив так провода (не забудьте, что нулевой провод также надо подключить на лампу) вы получите рабочую схему.

 

Как настроить фотореле для уличного освещения

Настраивать датчик освещенности необходимо после установки и подключения в сеть. Для регулировки пределов срабатывания в нижней части корпуса имеется небольшой пластиковый поворотный диск. Его вращением и задается чувствительность.

Найдите на корпусе подобный регулятор — им настраивается чувствительность фотореле

Чуть выше на корпусе есть стрелочки, которыми обозначено, в какую сторону крутить для увеличения и уменьшения чувствительности фотореле (влево- уменьшить, вправо — увеличить).

Для начала выставляете наименьшую чувствительность — загоняете регулятор в крайнее правое положение. Вечером, когда освещенность будет такой, что вы решите, что уже надо бы включить свет, начинаете подстройку. Надо плавно поворачивать регулятор влево до тех пор, пока не включится свет. На этом можно считать, что настройка фотореле для уличного освещения закончена.

Астротаймер

Астрономический таймер (астротаймер) — это другой способ автоматизировать уличное освещение. Принцип его работы отличается от фотореле, но он тоже включает свет вечером и выключает его утром. Управление светом на улице происходит по времени. В данном устройстве заложены данные про то, в какое время темнеет/светает в каждом регионе в каждый сезон/день. При настройке астротаймера вводятся GPS координаты его установки, выставляется дата и текущее время. Согласно заложенной программе устройство и работает.

Астротаймер — второй способ автоматизировать свет на участке

Чем оно удобнее?

  • Оно не зависит от погоды. В случае с установкой фотореле велика вероятность ложного срабатывания — в пасмурную погоду свет может включаться ранним вечером. При попадании на фотореле света он может гасить свет посреди ночи.
  • Устанавливать астротаймер можно в доме, в щитке, в любом месте. Ему не нужен свет.
  • Есть возможность сдвигать время включения/выключения на 120-240 минут (зависит от модели) относительно заданного времени. То есть, вы сами сможете выставить время так, как вам удобно.

Недостаток — высокая цена. Во всяком случае, модели, которые есть в торговой сети, стоят довольно солидных денег. Но можно купить в Китае намного дешевле, правда, как он будет работать — вопрос.

Фотореле для уличного освещения. Схема подключения


Что такое фотореле?

Фотореле — это устройство, снабженное с выносным или встроенным сумеречным датчиком, которое встроено в электрическую цепь для осветительых приборов. Датчик, реагирующий на освещения, подает сигнал на схему реле, замыкая – включая освещение в сумерки и размыкая — выключая освещение в светлое время суток.

Как правильно выбрать фотореле?

Для правильного выбора фотореле, нужно знать какой вид датчика будет удобней использовать в конкретных условиях, выносной или встроенный и обязательно учесть токовые характеристики фотореле. Они, как и во всяком электрическом приборе, имеют ограничение по коммутации тока в амперах.

Принцип работы фотореле

Светочувствительное устройство, постоянно подключенное к электрическому питанию, замеряет уровень естественной освещенности контролируемого пространства. Датчик, реагирующий на освещение, подает сигнал на схему реле, замыкая – включая освещение в сумерки и размыкая — выключая освещение в светлое время суток.

Структурная схема фотореле

В состав сумеречного выключателя могут входить:

  • светочувствительный элемент, реагирующий на колебания освещенности;
  • датчик фотоэлемента, воспринимающий изменения тока;
  • усилитель электрического тока;
  • коммутирующий прибор в виде реле.

Схемы фотореле (сумеречный выключатель)

 Схема фотореле с выносным датчиком

Особенности конструкций сумеречных выключателей

Современные простые фотореле для небольших светильников выпускаются в едином пластмассовом корпусе с возможностью крепления на стену или непосредственно на фонарь тыльной стороны.

В случае превышаемой мощности подключаемых через фотореле осветительных приборов коммутировать его в цепь следует через магнитный пускатель или контактор соответствующей нагрузки.

 

Сложные приборы сумеречного освещения выпускаются двумя составляющими (внешнего датчика фотоэлемента и измерительно-коммутационного устройства), расположенных в щитовой и соединяемых проводами.

Монтаж фотодатчика,  реагирующего на движение, выполняется с учетом обеспечения обзора контролируемой территории.

Подключение нескольких осветительных приборов на одну выходную группу сумеречного выключателя проводится по параллельной схеме.

Большинство фотореле, защищены системой помехозащитой (выдержка времени) от ложных срабатываний. Но, все равно, датчики устройства нужно располагать в дали от возможных попаданий посторонних источников света, чтобы исключить эффект мигания ламп.

Фотодатчик замеряет естественную освещенность по одному из принципов:

  • фоторезистора;
  • фотодиода;
  • фототранзистора;
  • фототиристора;
  • фотосимистора.

Чувствительным элементом, воспринимающим световой поток во всех этих конструкциях работает p-n переход, созданный на стыке двух различных полупроводниковых металлов с р- и n- проводимостью, который .способен вырабатывать электрический заряд при облучении светом.

Электрическое сопротивление фоторезистора зависит от интенсивности падающего светового потока.

Фотодиод формирует электрический заряд, соответствующий интенсивности света за счет фотовольтаического эффекта.

Фототранзистор устроен как оптоэлектронный полупроводник, является аналогом обычного биполярного транзистора, в котором область базы облучается светом для регулирования электрического сигнала.

Фототиристор предназначен для работы в цепях постоянного тока, сконструирован оптоэлектронным полупроводником со структурой обыкновенного тиристора, включаемого в работу током от потока света, направленного на светочувствительную матрицу,.

Фотосимистор сконструирован для работы с переменным током. Его можно представить упрощенной конструкцией из двух фототиристоров. Каждый из них реагирует на положительную или отрицательную составляющую полупериода гармоники. Синхронизацией тока для подачи на управляющий электрод занимается специальная схема.

Технические характеристики фотореле

К основным параметрам, влияющим на выбор сумеречного выключателя, относят:

  • номинальное напряжение питания.

Внимание! Электронные приборы, выпускаемые за рубежом, предназначены для работы с напряжениями, стандартизированными в чужих странах. Они могут составлять величину 127 или 110 вольт, что не обеспечит их стабильную работу в электросети 220 вольт.

  • мощность потребления электроэнергии и тепловую нагрузку светильников, которую должны надежно выдерживать выходные контакты сумеречного выключателя;
  • условия эксплуатации прибора, влияющие на конструкцию и выбор степени защиты корпуса:
    • работа при атмосферных осадках;
    • возможность засорения пылью и посторонними предметами;
    • поддержание температурного режима;
    • светочувствительность датчика и настройки порога срабатывания по освещенности;
    • типы коммутируемых светильников. Простые сумеречные выключатели предназначены для работы с активными нагрузками, создаваемыми разогревом нити накаливания обычных ламп Ильича и галогенных конструкций. Все остальные виды, включая люминесцентные и энергосберегающие, создают реактивную составляющую нагрузки.

У метало-галогенных, натриевых и ртутных ламп при запуске создается бросок пускового тока, который может выжечь контакты.

Конструкция фотореле

Элементная база

Первые фотоэлементы создавались исключительно на аналоговых элементах с электромеханическими реле. Такие устройства успешно работают со 2-й половины 20-го века до настоящего времени.

По мере развития науки, послужившей бурному производству робототехники, стали массово выпускаться полупроводниковые устройства, на базе которых создавались конструкции статических фотореле.

 

Освоение микропроцессорной техники позволило управлять сложными осветительными установками посредством контроллеров, учитывающих специфические условия местности, включать датчики, реагирующие на движение или другие факторы.

 

Фотореле с выносным датчиком

 

установка фотореле для уличного освещения. Как подключить датчики света? Регулировка освещенности и монтаж к светодиодному прожектору

Каждый вечер мы наблюдаем то, как на городских улицах, где располагаются фонари освещения, они включаются автоматически в какой-то определенный момент. На сегодняшний день фотосенсоры, которые управляют данным процессом, доступны не только коммунальщикам, но и обычным людям, что дает возможность существенно сэкономить на электричестве и не тратить свое время на активацию и отключение света на определенной территории.

Необходимо сказать, что сделать осветительный механизм благодаря фотореле не проблема – достаточно понимать схему подключения датчика света и правила работы с рассматриваемой техникой.

Устройство и принцип работы

Следует сказать, что фотореле для уличного освещения похоже на некий датчик освещенности, что работает благодаря оснащенности специальным фотоэлементом. С использованием именно этой составляющей датчик может оценить осветительный уровень открытого пространства, и при совпадении ряда характеристик осуществляет активацию света в механизме освещения уличного исполнения.

План фотореле не слишком труден и может уместиться в корпус малых размеров, откуда уходят 3 проводника. Они необходимы для подключения гаджета к обычной электросети. Часто они применяются и для активации такой техники в зависимости от необходимого осветительного уровня в настройках. Такой датчик обычно используется для управления наружным вариантом освещения.

Сегодня довольно распространены на рынке модели, которые оснащены специальным регулятором. Его задача – управление работой устройства, а также максимально точная настройка оборудования. Благодаря наличию такой опции, можно добиться точной работы подобного решения в различных ситуациях.

Если регулятор поставить в режим «– », то освещение будет активироваться лишь ночью, а если в режим «+», то уже во время сумерек. Но большинство производителей рекомендует выбирать нечто среднее между режимами, чтобы стабильность работы оборудования такого типа была максимальной.

Отдельно следует заметить, что максимально эффективное управление датчиком невозможно без понимания некоторых параметров:

  • диапазон световой чувствительности – от 5 до 50 люкс;
  • мощность – 1-3 киловатта;
  • максимальная энергонагрузка – 10 ампер.

Кроме того, следует знать, что существует еще несколько категорий фотореле. Их отличие будет в расположении фотоэлемента. По этому критерию они бывают:

  • с выносным фотоэлементом;
  • со встроенным.

Если говорить о решениях первого типа, то тут конструкция устройства будет состоять из 2 элементов: фотоэлемента, расположенного на открытом воздухе, и выключателя, который следует подсоединить отдельно. Вариант с фотоэлементом встроенного типа получает реле времени и регулятор. Тогда подключение устройства будет осуществляться по простой электросхеме для фотореле.

Упомянутое решение обычно используется в различных сложных осветительных механизмах. Тут будет необходима щитовая схема подключения.

Для любой отдельной модели будет нужна своя схема фотореле, что следует принимать в расчет при дальнейшем приборном подключении.

Еще одним решением подключения будет вариант при помощи таймера. Тогда можно просто поставить датчик на включение либо отключение регулятора. По этой причине активация света будет осуществляться через определенное время, что позволит существенно снизить расходы на электрическую энергию.

Теперь немного скажем о принципе использования подобной системы. Датчик в данном варианте будет работать через специальный фотографический элемент, который можно быть разного типа:

  • диод;
  • тиристор;
  • резистор;
  • транзистор;
  • симистор.

Каждый из упомянутых типов по-разному реагирует на наличие света:

  • диод будет во время облучения потоком света выбрасывать специальный импульс, что имеет прямо пропорциональное значение осветительной интенсивности;
  • тиристор при светооблучении будет осуществлять взаимодействие с током постоянного типа;
  • резистор меняет величину собственного сопротивления, что станет причиной отключения либо включения света;
  • транзистор проводит регулировку при облучении электросигнала светом;
  • симисторное решение активирует или деактивирует свет при работе с «+» или «–» составляющей.

Монтаж

Теперь остановимся на том, как соединить фотореле с датчиком движения для освещения и осуществить его установку. Вместе указанные решения дадут возможность активировать источник света еще во время сумеречного периода дня в тот момент, когда в нужной зоне кто-то появится. Если же на территории никого нет, то освещение не загорится, что даст возможность сэкономить электричество и, соответственно, деньги.

Метод монтажа будет зависеть от того, какой защитный вариант и категория крепления выключателя сумеречного вида были приобретены. На сегодня существуют следующие решения по установке:

  • уличный либо внутренний вариант применения;
  • внешний либо встроенный фотоэлемент;
  • с закреплением на рейку типа DIN, на стенку или поверхность горизонтального типа.

Приведем пример монтажа фотореле для освещения улицы с закреплением на стенке. Чтобы осуществить самостоятельный трехфазный монтаж, следует выполнить следующие действия.

  1. Сначала убираем подачу электричества на щитке ввода и осуществляем проверку, есть ли ток в распределительном ящике, откуда будет вестись кабель.
  2. Теперь осуществляем протягивание провода питания к области, где установим фотореле. Обычно она располагается рядом с прибором освещения. Лучше всего для подключения выключателя рассматриваемого типа применять 3-жильный провод типа ПВС, что будет довольно надежным.
  3. Осуществляем зачистку жил от изоляции где-то на сантиметр для последующего подключения в клеммы, после чего делаем в коробке дырки для ввода жил и последующего подключения фотореле к электросети.
  4. Для улучшения корпусной герметичности, прикрепляем в дырках уплотнители из резины, которые будут предотвращать попадание внутрь пыли и грязи. Оптимально, если такие отверстия расположены снизу, чтобы внутрь также не попала вода.
  5. Производим подключение фотореле по нужной нам электрической схеме. Сначала фаза ввода идет на разъем с обозначением L, а вводная нейтраль – на N. Для заземления есть специальная клемма винтового типа.
  6. Отрезаем определенную часть провода, дабы подключить фотореле к лампочке, после чего немного зачищаем изоляцию и подсоединяем на клеммы L и N. Второй проводниковый кончик подводится к светоисточнику и подсоединяется к патронным клеммам. Если корпус проводит ток, то можно обойтись без подключения заземления.

Схема подключения

Теперь поговорим о том, как установить фотореле правильно. Подключить этот элемент может оказаться сложно по ряду причин. Например, электрическая схема размещения осветительных приборов не предусматривает этого, к элементам управления ограничен доступ либо же имеются довольно жесткие требования активации светильников. План подключения фотореле к светодиодному прожектору будет зависеть от особенностей техники, что будет использоваться. Часто она вообще изображается на самом решении.

Стоит отметить, что в техпаспорте всегда можно найти подробную инструкцию. Если она по каким-либо причинам отсутствует или неясна, рассмотрим следующий план подключения. Фотореле получает несколько проводов. Их цвет может быть различным, но обычно они имеют синий, коричневый и красный расцветки. Также они часто имеют буквенные значения: N – нулевой кабель, L – фазный кабель, Load – нагрузочный кабель. Устройство обычно подпитывается при помощи синего провода.

Этот кабель следует подключить к нулю в распределительной коробке, как и нагрузку к лампочке освещения. Фазный кабель подводится к вводу соответствующего типа. Провод красного цвета уходит на фазу, откуда ток идет к осветительному фонарю. Если мощность лампочек, что подсоединяются к фотореле, будет выше показателя его мощности, то нагрузка идет через магнитный пускатель либо контактор, который имеет некое значение мощности.

Если необходимо подключение фотореле с 2 выводами, то фазный ввод замыкается на необходимой клемме на корпусе.

Таким образом, по аналогии подключается нуль. Нагрузка идет к нужным выводам нуля и фазы. Подобное фотореле предназначается для управления лампочкой. Для регулирования работы более чем одной лампы, их следует соединить в цепь параллельного типа и подключить, как говорилось ранее. Если говорить о подключении фотореле с заземлительными клеммами, то у них будет схема подключения, описанная ранее, но разница состоит в том, что здесь будут добавлены провода заземления.

Особенности настройки

Когда установка и последующее подключение были завершены, следует перейти к тому, чтобы настроить, отрегулировать и проверить работу системы. Все несложно по причине того, что в комплекте есть специальный пакет черного цвета, необходимый, чтобы имитировать ночь. А день имитировать необходимости нет, ведь он есть и так.

На корпусе датчика освещения можно увидеть спецрегулятор, что обычно обозначается аббревиатурой LUX – он необходим для подбора осветительной интенсивности, которая станет причиной активации реле. Если же есть желание сэкономить немного электрической энергии, то следует поставить ручку регулятора поворота на минимум. Тогда сигнал об активации будет подаваться лишь тогда, когда на улице максимально темно.

Как правило, регулятор располагается у клемм винтового типа, чуть выше слева. Последнее, что останется сделать для подключения фотореле, – прикрепить крышку защитного типа и активировать электроэнергию на щитке. Когда это будет сделано, можно начинать тестировать устройство.

О том, как подключить и настроить фотореле, смотрите далее.

Схема подключения фотореле

Для автоматизированной работы  уличного освещения или других приборов, необходима установка фотореле.

При наступлении сумерек фотореле автоматически подаст питание на осветительные приборы, а с наступлением светлого времени дня отключит его.

Данный прибор может выглядеть по разному, все зависит от производителя и мощности коммутируемой нагрузки. Наиболее распространены фотореле со встроенным датчиком освещённости, но так же попадаются приборы и с выносным датчиком. Применение таких фотореле оправданно в сложных системах с расположением в электрощитах.

Практически в каждом фотореле допускается регулировка порога срабатывания по освещённости, что очень удобно, так как можно отрегулировать включение от начала сумерек до практически полной темноты.

Существуют варианты подключения фотореле через таймер времени. При этом днём в пасмурную погоду фотореле будет отключено. В более сложных таймерах есть возможность программирования не только по времени, но и по дням недели.

Работа наружного освещения становится автоматической после добавления в цепь освещения обычного фотореле. Ниже, для большей наглядности, представлены схемы управления светильником с простым выключателем и с добавленным в цепь фотореле.

Схема включения/выключения освещения выключателем

Схема с добавленным в цепь фотореле

Все фотореле, работающие на улице, имеют класс защиты IP44, это говорит о том, что устройство защищено от брызг воды и попадании частиц больше 1мм. Рабочие температуры, как правило, от -250С до + 450С.

Монтаж и настройка фотореле.

Установка фотореле, как правило, производится недалеко от источника освещения, а при выборе места монтажа следует исключить попадание света от лампы на фотореле. Так же необходимо принять меры по исключению попадания на фотореле листвы, снега и прочего, что может вызвать его ненормальную работу. Если фотореле в последующем будет управлять работой группы светильников, следует уточнить в инструкции максимальную подключаемою нагрузку. При превышении данного параметра в цепь управления следует включить магнитный пускатель.

Наличие выключателя в схеме с фотореле обусловлено возможностью принудительного отключения, например, при замене ламп или планового осмотра.

Использование фотореле для управления уличным освещением полностью автоматизирует эксплуатацию, увеличивая ресурс всей системы. Применение автоматики позволяет экономить электроэнергию, исключая постоянного вмешательства человека в процесс управления освещением.

Материалы, близкие по теме:

Фотореле для уличного освещения: все что нужно знать

Автор aquatic На чтение 6 мин. Просмотров 6.3k. Обновлено

Организовать правильное управление освещением на улице не так просто. В некоторых ситуациях доступ к выключателям может быть попросту затруднен. В связи с этим приходится искать нестандартные решения. Интересный вариант заключается в установке фотореле для уличного освещения, которое подает электричество к приборам с наступлением темноты.

Устройства оснащены встроенными датчиками ФРЛ-01 и ФРЛ-02

Конструктивные особенности изделий

Более простые приборы для управления освещением изготавливаются в одном корпусе из пластика. Специальные приспособления позволяют фиксировать их на боковых поверхностях зданий или непосредственно на фонарях. Более сложные устройства состоят из измерительно-коммутационного блока и выносного фотоэлемента.

С помощью металлической пластины можно закрепить элемент

Обычно фотореле для уличного освещения включает следующие компоненты:

  • светочувствительный датчик, определяющий уровень освещенности;
  • фотоэлемент, измеряющий изменения показателей силы тока;
  • реле, выступающее в качестве коммутирующего приспособления;
  • усилитель.

Основная плата расположена в прозрачном корпусе

Обратите внимание! Если предполагается подсоединять осветительное оборудование повышенной мощности, то цепь необходимо коммутировать при помощи магнитного пускателя или контактора с соответствующей нагрузкой.

Как работает фотореле для уличного освещения

Принцип функционирования устройство относительно прост. Когда уровень освещенности становится недостаточным, внутри прибора происходит замыкание контактов, благодаря чему включается лампочка одного или нескольких приборов. При увеличенном режиме освещенности контакты размыкаются.

Так выглядит фотодиод – светочувствительный элемент

Для определения уровня освещения используются:

  • фототранзисторы, регулирующие электрический сигнал на выходе при воздействии света;
  • фототиристоры, получающие заряд от светового потока, который поступает на специальную матрицу;
  • фотодиоды, функционирующие по принципу фотовольтаического эффекта;
  • фотосимистор, предназначенный для синхронизации тока и передачи его на электрод.

Прочный корпус позволяет защитить детали от внешней среды

Примечание! Практически все модели имеют специальную защиту от ложных сигналов, заключающуюся в выдержке временного интервала. Однако датчики все равно необходимо располагать вдали от источников искусственного света.

Основные характеристики и дополнительные возможности

Если необходимо автоматизировать процесс управления фонарями возле дома, то лучше приобрести фотореле для уличного освещения. Купить его можно за вполне приемлемую плату, особенно если модель не снабжена дополнительными функциями и имеет невысокую мощность.

Представлена современная модель ФР-04

При выборе нужно учитывать базовые параметры:

  • номинальное напряжение и частоту тока;
  • разницу рабочих температур;
  • потребляемую мощность;
  • нагрузку на сеть.

Из полезных функций в первую очередь следует выделить наличие таймера. В этом случае появляется возможность задавать время включения и отключения прибора. Программируемые модели вполне реально подстраивать не только под недельное расписание, но и месячное и даже годовое.

Щит управления освещением с фотореле

Многие современные устройства оснащаются возможностью настройки уровня освещенности. Они могут самостоятельно включать приборы не только с полным наступлением темноты, но и в пасмурную погоду, а также в самом начале сумерек.

Статья по теме:

Датчики движения для включения света. Это нехитрое приспособление позволяет сэкономить значительные денежные средства. Давайте подробнее узнаем об их видах, принципе работы и стоимости.

Процесс установки и настройки устройства

После изучения информации о приспособлении предлагается рассмотреть схему подключения фотореле уличного освещения и настроить ее основные параметры, которые касаются срабатывания. Самостоятельное подсоединение проводов даст возможность избежать лишних затрат.

Места соединения проводов при монтаже

Подключение к основному источнику питания и монтаж

В большинстве случаев схема подключения к питанию отражена непосредственно на корпусе устройства или в прилагающейся документации. Как правило, необходимо подсоединить три проводника. Первый ведет на фазу, второй – на ноль, а третий – на светильник.

При сборке корпуса метки должны быть совмещены

Что касается расположения устройства относительно фонаря, то его следует монтировать выше него. Для крепления к боковой поверхности могут использоваться обычные саморезы и дюбели. Они вставляются в отверстия металлической пластины, которая отходит от корпуса.

Наглядная схема размещения приборов и проводов

При необходимости можно подключить маломощное фотореле на повышенную нагрузку, используя модульный контактор. При срабатывании ток поступает не на устройство, а на катушку вспомогательного элемента.

Схема подключения с использованием контактора

Совет! В хозяйстве может быть лишний магнитный пускатель, оставшийся от другой техники. Его допускается применять вместо покупного контактора. Единственный минус заключается в увеличенных габаритах

Настройка усовершенствованных приборов

Обычно регулировка фотореле для уличного освещения производится, если была приобретена современная модель с дополнительными возможностями. Чаще всего снизу устанавливается специальная ручка, которая позволяет задать порог световой чувствительности. Поворот в плюсовую сторону будет включать устройство даже при незначительном затемнении, а поворот на минус – наоборот.

Ручка для регулировки находится снизу

Если изделие оснащено таймером, то его можно настроить на работу в конкретном режиме. Ввод программы позволяет задать время и дни, в которые будет включаться данный прибор.

Схема для самостоятельно изготовления простейшего приспособления

Сделать по схеме фотореле уличного освещения своими руками вполне реально, но для понимания основного принципа предлагается создать устройство с минимальным количеством деталей. Несмотря на это, оно будет эффективно в эксплуатации. Так как эмиттерный повторитель состоит из транзисторов VT1 и VT2, входной сигнал значительно усиливается.

Расположение составных частей самодельного приспособления

Роль транзисторного каскада играет реле малой мощности, которое подходит для напряжения, соответствующего основному питанию. С помощью диода VD1 удается создать барьер от воздействия обратного тока. С повышением напряжения увеличивается чувствительность прибора к потоку света.

Простейшее фотореле, работающее на одном транзисторе

Рассмотрение цен на фотореле для уличного освещения

Для организации серьезного освещения лучше всего приобрести готовые изделия в магазине, тем более что они вполне доступны многим потребителям. В зависимости от мощности и функциональных возможностей цены на них могут несколько колебаться.

Аналоговое фотореле ФР-24 для низкого напряжения

В таблице рассматриваются одни из самых популярных моделей, которые смогут приобрести даже потребители с небольшими доходами.

Запомните! Так как приборы устанавливаются на улице, температурный диапазон должен подбираться с учетом региона, в котором производится монтаж. В противном случае его срок службы может быть непродолжительным.

Подведение итогов

Нет смысла отказываться от упрощения управления уличным освещением. Фотореле стоит недорого, особенно это касается моделей, которые лишены дополнительных опций и являются маломощными. С помощью этого полезного устройства можно не только обеспечить высокий уровень комфорта, но и сэкономить денежные средства. Практически все модели очень компактны, поэтому не слишком выделяются на общем фоне.

Фотореле ФР-602 от IEK для уличного освещения: схема подключения и принцип работы (видео)

автоматическое уличное освещение, самостоятельное подключение датчика освещённости

Владельцам загородного жилья приятнее иметь освещение на участке. Вручную включать и выключать свет каждый вечер надоедает. Иногда такая возможность и вовсе отсутствует, если хозяев нет дома. Автоматическое управление решает эту проблему. Для подключения устройства необходимо разобраться в схеме фотореле, поскольку датчик срабатывает от солнечного света. Правильный монтаж гарантирует долгую и эффективную автоматическую работу.

Критерии выбора

Покупка — первое, с чем предстоит столкнуться. Приобретают фотореле, опираясь на его характеристики. Некоторые параметры обязательны, поскольку они основополагающие. Их пренебрежение может сделать работу устройства невозможной.

Обязательные параметры:

  • рабочее напряжение;
  • уровень защиты от внешнего воздействия;
  • разрешённая температура для работы;
  • выходная мощность.

Лампы освещения питаются от сети переменного тока в 220 В или 12 В постоянного тока. Соответственно, устройство должно работать на одном из этих режимов.

Датчик будет находиться на улице, поэтому защита от пыли и влаги обязательна. Класс — не менее IP44. Это говорит о том, что устройству не страшны брызги дождя и частицы диаметром более 1 мм. Меньшая защищённость недопустима.

Диапазон рабочей температуры должен быть как можно шире. Отечественный климат отличается сильными морозами и жарой. Датчик не должен отказать или расплавиться.

От допустимой мощности зависит яркость освещения. Чем параметр выше, тем лучше будет видно ночью. Некоторые системы не рассчитаны на мощные лампы. Их использование может привести к повреждению проводки и возгоранию.

Хозяевам следует обратить внимание на дополнительные характеристики устройства, поскольку они содержат важные моменты. В основном это вспомогательные функции, которые улучшают общую работу, добавляя стоимости фотореле.

Дополнительные параметры:

  • порог чувствительности;
  • предел регулировки чувствительности;
  • задержка при срабатывании.

Уличный датчик освещённости для включения света не должен отличаться высокой чувствительностью, поскольку это может привести к ложному срабатыванию. Зимой свет отражается от снега, и это может быть воспринято как рассвет. Результат — спонтанное отключение в неподходящий момент.

Чувствительность должна настраиваться пользователями отдельно. Тогда в разные периоды года можно задать разные значения, что предотвратит ложные срабатывания. Чем шире диапазон, тем больше возможность тонкой настройки.

Срабатывание с задержкой позволяет не отключаться от вспышки света или его кратковременного попадания на фотоэлемент. Такое явление возникает при проезде автомобиля ночью.

Работа и поиск места установки

Фотореле имеет встроенный датчик, который размыкает контакты электроцепи при попадании на него света. Это позволяет работать искусственному освещению в автономном режиме, в зависимости от количества света на улице.

Типы датчиков:

  • встроенные — устанавливаются вместе с реле на электрощите;
  • выносные — размещены отдельно от корпуса.

Предпочтение конкретному типу следует отдавать с оглядкой на условия в местности. Систему со встроенным датчиком проще установить, в то время как выносная может быть эффективнее. Или первую нельзя будет поставить из-за близости проезжей части.

Выбор места установки — определяющее занятие. Корректная работа устройства зависит от условий внешней среды. При неправильном размещении производители не гарантируют отсутствие ложных срабатываний.

Правила монтажа:

  • на датчик должны попадать прямые солнечные лучи;
  • максимальная удалённость от источников искусственного освещения;
  • нежелательно попадание света фар от проезжающих автомобилей на фотоэлемент;
  • доступное место для обслуживания.

Найти оптимальное место бывает крайне сложно, поэтому придётся потратить на это время. Необходимо продумать все варианты. Возможно, это потребует строительных работ, проведения дополнительных коммуникаций. Размещение датчика часто придётся менять в процессе эксплуатации после выявления недостатков в его работе на конкретном месте.

Распространённая ошибка — монтаж фотоэлемента для включения света на столбе, где размещён фонарь. Зимой датчик покроется наледью и не сможет корректно работать. Придётся лезть на высоту для его очистки. Летом рабочая поверхность устройства будет страдать от запыления. К тому же корпус фотореле для такого места должен быть хорошо защищён от воздействия осадков в любое время года.

Идеальным местом считают стену строения. Свес крыши даст защиту от осадков. Главное, чтобы датчик смотрел в сторону от дороги и не был направлен на север. Идеальное направление — восток или юг.

Подключение к электросистеме

Устройство подключается к уличной сети просто. Производители кладут инструкцию в коробку, но зачастую она на иностранном — китайском или английском языке. Профессиональный инженер сможет разобраться, но не обыватель. Придётся понять схему фотореле, изучив немного информации. Вариант одинаковый для всех устройств.

Схема подключения:

  • во вход вводят фазу или заземление;
  • с выхода подают контакт на нагрузку — это приборы освещения;
  • заземление ведут от автомата или шины.

Это стандартный принцип подключения с минимальным набором оборудования. Провода соединяют в распределительной коробке. Её ещё называют монтажной. Модель должна быть герметичной. Устанавливают её обычно на улице.

Варианты подключения со сторонним оборудованием:

  • распределительная коробка потребуется для включения/отключения мощного фонаря с дросселями. В схему включают контактор. Устройство хорошо переносит пусковой ток и рассчитано на большое количество включений/отключений;
  • датчик движения позволяет подавать электричество на лампу только при нахождении возле него человека. Распространённые места установки — туалет, вход во двор, снаружи входной двери. На схеме ставят сначала фотореле, а потом датчик движения. Так устройство будет работать лишь в темноте.

Дополнительное оборудование должно отличаться надёжностью, чтобы из-за него не прекратилась работа всей системы. Не стоит приобретать дешёвые китайские устройства, поскольку они часто выходят из строя в отечественных условиях.

Система проводов

Маркировка проводки стандартизирована на международном уровне. Подключить датчик света для уличного освещения при таком подходе производителей не составляет труда. Проводов немного и разобраться с их назначением легко.

Обозначение контактов:

  • красный — питание ламп;
  • синий (бывает зелёным) — это ноль кабеля питания;
  • чёрный или коричневый — фаза.

Схема будет рабочей только при подключении нулевого провода на лампу. Это нужно для стабилизации работы системы, чтобы источник света не сгорел при перегрузках.

Настройка оборудования

Оборудование следует проверить после установки. Для стабилизации работы потребуется настройка некоторых параметров. Главный из них — чувствительность. От него зависит то, как устройство будет реагировать на освещение в зависимости от его степени. Поэтому подключить фотореле — это сделать только полдела.

Регулировку светочувствительности делают поворотным диском из пластика. Обычно он находится внизу корпуса, но встречаются и другие варианты расположения. Рядом должны быть обозначения в виде стрелочек, который отражают направления для регулировки. Влево — это уменьшение чувствительности, а вправо — увеличение.

Вначале выставляют меньшую чувствительность в крайнем правом положении. Подстройку делают вечером, когда хотелось бы включения света. Регулятор проворачивают плавно, пока не загорится свет.

Фотореле для уличного освещения. Схема подключения фотореле своими руками

Люди всегда создают для себя то, что улучшает качество их жизни, делая ее более удобной и комфортной. Последние десятилетия нашей истории характеризуются изобретением компьютеров, телефонов, различной бытовой техники, комфортных автомобилей. Еще одним современным устройством, совсем недавно изобретенным людьми, является фотореле для уличного освещения.

Его предназначение заключается в том, чтобы при наступлении темноты освещать в автоматическом режиме ту или иную зону. Автоматически контролируя уровень освещения благодаря работе потенциометра, фотореле с точностью определяет время включения и выключения световых приборов.

Также в оснащение современных таких устройств входит регулировка, позволяющая человеку самому производить регулировку диапазона срабатывания. Для людей, проживающих в частных домах и проводящих много времени на своих дачных участках, данный прибор может стать настоящим помощником.

В данной статье рассмотрим устройство и схему подключения фотореле для уличного освещения марки Delux YCC 1006.

Что же такое фотореле? И зачем его используют для освещения улицы? Далее попробуем ответить на эти вопросы. Значение слова «реле» трактуется как переключатель. Из префикса «фото» мы можем понять то, что срабатывание данного переключателя зависит от попадающих на него световых лучей.

Если говорить о принципе работы в случае с фотореле для уличного освещения, то он очень прост: при недостаточном количестве проходящих световых лучей происходит замыкание контактов, в результате чего включается уличное освещение. На рассвете, когда увеличивается уровень освещенности, контакты размыкаются, вследствие чего происходит автоматическое выключение света.

Установить такое устройство можно в подъезде своего многоэтажного дома или у входа в собственный дом. И, вне зависимости от того, светло или темно в данный момент на улице, ваша подъездная дорожка или тропинка в дом будет всегда освещена. Еще одно преимущество фотореле заключается в том, что оно позволяет существенно экономить электроэнергию.

Использование фотореле может быть связано не только с необходимостью включать и выключать свет. К примеру, если вы хотите, чтобы ваша любимая лужайка автоматически поливалась каждую ночь, можете подключить фотореле к системе орошения газона – и система будет автоматически все делать сама.

Фотореле является одним из элементов системы умного дома, которая запрограммирована на определенные действия, помогающие сымитировать присутствие в доме хозяев. Включать и выключать периодически в доме свет – это не единственное, что она умеет. Такая система, кроме всего прочего, позволяет открывать и закрывать воду в соответствии с установленным на таймере временем, а также выполнять множество других действий, на которые вы ее запрограммируете. А, как известно, фантазия у людей не имеет границ.

На то, сколько будет стоить фотореле, влияет не только рейтинг его производителя. Цена также определяется таким фактором, как наличие/отсутствие в приборе регулировочной возможности.

Обычно фотореле для уличного освещения имеет такой вид: на упаковке или на сайте производителя можно ознакомиться со схемой подключения для каждого устройства, от которого в любом случае должны выходить три провода. Один провод, выходящий из фотореле, отвечает за включение или отключение потребителя, а два других провода подключаются к питанию.

Фотореле принцип работы

Работа фотодатчика, контролирующего уровень уличной освещенности, лежит в основе принципа работы любого фотореле. Существует два типа таких фотодатчиков:

  1. — встроенные, когда датчик установлен вместе с реле непосредственно в самом электрощитке;
  2. — выносные, когда датчик расположен вне корпуса реле.

Корпус выносных фотореле должен быть обязательно прочным и иметь повышенный уровень герметичности и защищенности от воздействий окружающей среды.

Это устройство имеет достаточно простой принцип действия и состоит оно из встроенного или выносного датчика. Учитывая интенсивность освещения, такой датчик передает информацию электронной плате или блоку, которые, в свою очередь, при достижении определенного порога срабатывания, срабатывают и включают освещение, замыкая электрическую цепь.

Следует отметить, что любое фотореле может быть запрограммировано в индивидуальном режиме. Это значит, что, если, к примеру, в летнее время года фотореле установлено в гараже, то диапазон его срабатывания будет отличаться от устройства, установленного на крыльце дома. Данный нюанс необходимо учитывать и, по возможности, выставлять наиболее подходящий к условиям размещения фотореле диапазон его чувствительности к свету.

Технические характеристики фотореле

Уровень максимальной рабочей нагрузки фотореле зависит от того, какие устройства к нему подключены. Необходимо знать, что максимальная нагрузка устройства составляет от 1000 до 2300 Вт, номинальное рабочее напряжение равняется 220 В, а пределы порога срабатывания фотореле равны 2-2000 лк (люксам).

Чтобы приобретенное вами фотореле долго и успешно вам послужило, нужно с самого начала знать, на какие критерии ориентироваться при покупке данного устройства и его вспомогательных элементов. Устройство может проработать на протяжении длительного периода времени, не создавая никаких проблем, а может каждую неделю выходить из строя.

Постараемся разобраться, можно ли в процессе установки и эксплуатации избежать проблем и как это сделать. Хотел бы отметить то что цвет проводов для подключения реле у разных фирм производителей разные, поэтому обязательно прочитайте инструкцию в которой изображена схема подключения фотореле.

Самыми популярными устройствами на современном российском рынке являются фотореле класса эконом от таких производителей, как ИЕК, TDM, EKF и др.

Фотореле ФР-601 и ФР-602 со степенью защиты IP44 предлагает нам компания ИЕК. Благодаря защите IP44 использование данных устройств возможно под открытым небом, ведь IP44 защищает нас от падающих в разных направлениях брызг. Пределы, в которых находится порог срабатывания данных фотореле, могут составлять от 5 до 50 лк. Рабочие температуры варьируются в пределах от -25 °С до +40 °С.

Необходимо знать, что при пороге освещенности в 5 лк наступает темнота, при этом предметы являются еще достаточно различимыми. Поэтому в условиях экономии включение освещения на улице при таком пороге освещенности не всегда себя оправдывает. Глубоким сумеркам соответствует порог 2 лк, когда наступление темноты наступает в течение 10 минут.

Схема подключения фотореле

Фотореле автоматически включает светильник в сеть, когда на улице наступает темнота, и, наоборот, отключает уличное освещение, когда на улице начинает светать. Благодаря этому не только увеличивается эксплуатационный срок самих ламп, но и существенно экономится электроэнергия.

Если говорить о технических характеристиках фотореле, то необходимо отметить, что источник питания составляет 220 В переменного напряжения, а коммутируемая цепь не превышает 10 А. Также нужно сказать о рабочей освещенности, выставление уровня которой производится с помощью регулятора, находящегося снизу реле, и такой уровень может варьироваться в пределах от 5 до 50 Люкс.

Если вы хотите, чтобы фотореле включало светильник при пасмурной погоде или при небольшом затмении, переместите регулятор в сторону «плюса». Переместив же регулятор в сторону «минуса», можно добиться срабатывания реле исключительно при наступлении темноты.

Установка фотореле на стене производится специальным кронштейном, который крепится с помощью винта к самому реле. Кронштейн входит в поставочный комплект, и, устанавливая его, следует убедиться в отсутствии помех, из-за которых естественное дневное освещение не сможет попадать на реле. Перед фотореле также не должны находиться деревья и другие качающиеся предметы.

Как подключить фотореле к освещению

Как на самом изделии, так и на упаковке изображена схема подключения фотореле для уличного освещения. Выводы реле выполнены проводами с разноцветной изоляцией во избежание возможности их неправильного соединения в процессе подключения. Догадаться о предназначении проводов можно, если знать их цветовую маркировку. Всего из фотореле выходит три провода:

  • -черный — фаза;
  • -зеленый — ноль;
  • -красный — фаза коммутирующая (на светильник).

Итак как подключить фотореле к освещению? Перед тем как приступать к подключению фотореле обязательно следует после ознакомления с его инструкцией. Для соединения проводов используется распределительная коробка, которая установлена там же на стене.

Осуществление коммутирования нагрузки производится прерыванием фазного напряжения и его включением. Подключаемый к проводу зеленого цвета рабочий «ноль» необходим для электропитания (рабочее напряжение фотореле составляет 230 В). Данное изделие имеет номинальным током нагрузки показатель в 10 А (2,2 кВт).

Если же коммутируемая нагрузка имеет большую мощность, то управление освещением требует использования очень мощного сумеречного выключателя. Фотореле ФР-602, ток нагрузки которого составляет 20 А, заслуживает особого внимания перед остальными устройствами модельного ряда данного производителя.

Вот такая не сложная схема подключения фотореле, надеюсь данная статья была вам полезной, если остались какие ибо вопросы пишите в комментариях.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

 

Создать электрическую схему

  1. На вкладке Файл щелкните Новый , а затем выполните поиск шаблонов Engineering .

  2. Щелкните одно из следующего:

    • Основное электрическое оборудование

    • Схемы и логика

    • Мощность жидкости

    • Промышленные системы управления

    • Детали и сборочный чертеж

    • Проектирование трубопроводов и КИП

    • План водопровода и трубопроводов

    • Блок-схема

    • Системы

    • Диаграмма TQM

    • Схема рабочего процесса

  3. Выберите Metric Units или US Units , а затем щелкните Create .

    Шаблон открывает немасштабированную страницу документа в книжной ориентации. Вы можете изменить эти настройки в любое время.

  4. Перетащите фигуры электрических компонентов на страницу документа. Фигуры могут иметь данные. Вы можете ввести данные формы и добавить новые данные к форме.

    Введите данные формы

    1. Выберите фигуру, щелкните правой кнопкой мыши, щелкните Data , а затем щелкните Define Shape Data .

    2. В диалоговом окне Define Shape Data щелкните каждый элемент и введите или выберите значение.

  5. Используйте инструмент Connector для соединения электрических компонентов или форм соединителей.

    Используйте инструмент Connector

    1. Щелкните инструмент Connector .

    2. Перетащите от точки соединения на первой фигуре к точке соединения на второй фигуре. Конечные точки соединителя становятся красными, когда фигуры соединяются.

    Используйте соединительные формы

    1. Перетащите фигуру соединителя на страницу документа.

    2. Поместите начальную точку соединителя на родительскую фигуру (фигуру, из которой вы соединяетесь).

    3. Поместите конечную точку соединителя на дочернюю фигуру (фигуру, к которой вы подключаетесь).

      Когда соединитель приклеивается к фигурам, конечные точки становятся красными.

  6. Обозначьте формы отдельных электрических компонентов, выбрав форму и введя текст.

Хотите больше?

Найдите образцы шаблонов и схем Visio для электротехники

Схема простого переключателя реле

Основное использование реле было замечено в истории передачи и получения информации, которая называлась кодом Морзе, где входные сигналы были либо 1, либо 0, эти изменения сигналов были механическими. отмеченный в терминах включения и выключения лампочки или звукового сигнала, это означает, что эти импульсы единиц и нулей преобразуются в механическое включение и выключение с помощью электромагнитов.Позже это было импровизировано и использовалось в различных приложениях. Давайте посмотрим, как этот электромагнит действует как переключатель и почему он назван РЕЛЕ.

Что такое реле?

Реле — это переключатель с электромеханическим управлением, однако в реле также используются другие принципы работы, например, твердотельные реле. Реле обычно используется, когда требуется управлять цепью отдельным сигналом малой мощности или когда несколько цепей должны управляться одним сигналом.Они подразделяются на многие типы, стандартное и обычно используемое реле состоит из электромагнитов, которые обычно используются в качестве переключателя. Словарь говорит, что реле означает акт передачи чего-либо от одной вещи к другой, то же значение может быть применено к этому устройству, потому что сигнал, полученный с одной стороны устройства, управляет операцией переключения на другой стороне. Таким образом, реле — это переключатель, который управляет цепями (размыканием и замыканием) электромеханически. Основная операция этого устройства заключается в включении или выключении контакта с помощью сигнала без участия человека.Он в основном используется для управления цепью высокой мощности с использованием сигнала низкой мощности. Обычно сигнал постоянного тока используется для управления схемой, которая управляется высоким напряжением, например, управление бытовой техникой переменного тока с помощью сигналов постоянного тока от микроконтроллеров.

Итак, теперь мы понимаем, что такое реле и почему они используются в схемах. Далее мы рассмотрим простой пример, в котором мы будем включать лампу переменного тока (CFL) с помощью релейного переключателя. В этой схеме реле мы используем кнопку для включения реле 5 В, которое, в свою очередь, замыкает вторую цепь и включает лампу.

Необходимый материал
  • Реле 5В
  • Держатель лампы
  • КЛЛ
  • Кнопка включения / выключения
  • Перфорированная плита
  • аккумулятор 9В
  • Источник питания переменного тока

Схема релейного переключателя

Работа основной цепи реле 5 В

В приведенной выше схеме реле 5 В питается от батареи 9 В. Переключатель ВКЛ / ВЫКЛ добавлен для переключения реле.В исходном состоянии, когда переключатель разомкнут, ток через катушку не протекает, поэтому общий порт реле подключен к нормально разомкнутому контакту, поэтому ЛАМПА остается выключенной.

Когда переключатель замкнут, ток начинает течь через катушку, и, согласно концепции электромагнитной индукции, в катушке создается магнитное поле, которое притягивает подвижный якорь, и Com-порт подключается к контакту NC (нормально замкнутый) реле. . Следовательно, ЛАМПА включается.

Итак, с помощью простого механизма, управляемого напряжением 9 В, мы можем управлять питанием переменного тока напряжением 230 В.

Научитесь использовать реле

Реле содержит те же детали, что и выключатель света в вашем доме. Если вы осмотрите реле, вы обнаружите, что сбоку на корпусе нет переключателя. Вместо этого механические контакты электрически замыкаются силой магнитного поля, возникающего при подаче тока в небольшой электромагнит внутри реле. По этой причине реле также называют электромагнитным переключателем.

Есть много типов реле.Мы преимущественно используем S.P.D.T. Реле типа (Single Pole Double Throw). Несмотря на то, что существует много типов реле, их составные части и основные операции остаются неизменными.

Если мы исследуем внутренние части реле, мы увидим три основных компонента. Эти компоненты:

Пружина (тип может быть разной) удерживает контакты 30 и 87a вместе, когда реле находится в состоянии покоя. Реле считается в состоянии покоя, пока катушка не находится под напряжением. Внутри стандартного реле три контакта.Они маркированы:

  1. 87 (розовая стрелка)
  2. 87a (синяя стрелка)
  3. 30 (зеленая стрелка)


Эти контакты обеспечивают электрическое соединение, когда реле находится в состоянии покоя или под напряжением. Контакт 30 называется «Общий»; это связано с его способностью перемещаться между контактом 87a и контактом 87. Контакт 87a называется «нормально замкнутым» (NC), поскольку он опирается на контакт 30, когда реле не находится под напряжением. Контакт 87 называется «нормально разомкнутым» (NO), так как он не контактирует с 30, пока реле не сработает.

Катушка имеет две точки подключения, они обозначены на S.P.D.T. 85 и 86. реле. Катушка создает магнитное поле, когда через нее проходит ток. Это магнитное поле затем заставляет общий контакт или «полюс» (30) контактировать с 87 и отключаться от 87a. Полярность (+) и (-) может подаваться на точки подключения, 85 и 86. Не имеет значения, какая полярность получает, это при условии, что в реле или гнезде не установлен «гасящий диод». В случае использования гасящего диода катушка зависит от полярности.

Реле имеет множество различных конфигураций, которые можно разделить на четыре категории.

С помощью реле вы можете использовать небольшой ток для пропускания большего тока. I.E. Электростеклоподъемники, фары, стартер. На этой схеме реле показано использование возможного триггера на 200 мА для отправки высокого тока (+) по мере необходимости. Следует отметить, что 87 и 30 в этом случае можно было поменять местами без выпуска.

Прерывание означает, что вы можете использовать реле для прерывания цепи, когда это необходимо.I.E. Прерывание стартера / зажигания, некоторые схемы запирания дверей, системы освещения. На этой схеме реле показано, как можно прервать цепь стартера с помощью триггера (-). Когда катушка находится под напряжением, она размыкает цепь, так что провод стартера отсоединяется (разомкнутая цепь). Обрезанный провод стартера можно менять местами между 87a и 30.

Реле

широко используются в мире коммутации электрических цепей. Это означает, что вы можете использовать реле для включения и выключения между двумя цепями. На этой диаграмме показано переключение мощности между двумя устройствами.В состоянии покоя мощность отправляется на устройство «A», а когда реле находится под напряжением, мощность отправляется на устройство «B»

Если цепь, которую вы контролируете, имеет (+), а вам нужен (-), вы можете использовать реле для реверсирования или инвертирования. I.E. ВОМ, стрела, купольный свет.

На этой схеме показано использование провода (+) для передачи сигнала (-).

Мы используем реле для входов и выходов с нашими устройствами.


Обычно мы используем их для входных данных, когда нам нужно:

Пр.1 У клиента есть рефрижератор. Он отличается от обычного холодильника, потому что это «гибрид». «Гибрид» может означать несколько вещей, но в этом случае рефрижератор работает от электричества, а не от дизельного топлива. Он работает на совершенно другой системе, чем грузовик. Эти электрические системы не могут быть связаны вместе или иметь общую землю. Нам нужно отслеживать, когда включается / выключается ссылка, но используемое нами устройство требует, чтобы мы установили его в электрической системе грузовика.Мы могли бы сделать это, запустив реле, которое отправит заземление со стороны грузовика.

Пр. 2 У клиента есть грузовик с ВОМ, за которым нужно следить. Тестируется как (+) при включении и (0) как открытое при выключенном состоянии. Поскольку он показывает и открыт, и (+), мы можем не видеть, как он переключает состояния. Из-за этого нам нужно поменять полярность, идущую к устройству. Мы делаем это, используя (+) при включении, чтобы инициировать отправку реле (-) при включении и (0) открывать при выключении.


Обычно мы используем их для выходов, когда нам нужно:

Пр.3 Когда нам нужно обеспечить источник высокого тока, мы используем выход устройства, чтобы запустить реле для его отправки. I.E. фара, звуковой сигнал или разблокировка двери.

Пример 4 Когда нам нужно разорвать соединение, мы используем выходной сигнал устройства, чтобы запустить реле, чтобы отключить его.

I.E. стартер убить

relay_shield_for_arduino_v2.1__sku_dfr0144_-DFRobot

  • ДОМ
  • СООБЩЕСТВО
  • ФОРУМ
  • БЛОГ
  • ОБРАЗОВАНИЕ
ДОМ ФОРУМ БЛОГ
  • Контроллер
    • DFR0010 Arduino Nano 328
    • DFR0136 Сервоконтроллер Flyduino-A 12
    • DFR0225 Romeo V2-Все в одном контроллере R3
    • Arduino_Common_Controller_Selection_Guide
  • DFR0182 Беспроводной геймпад V2.0
  • DFR0100 Комплект для начинающих DFRduino для Arduino V3
  • DFR0267 Блуно
  • DFR0282 Жук
  • DFR0283 Мечтатель клен V1.0
  • DFR0296 Блуно Нано
  • DFR0302 MiniQ 2WD Plus
  • DFR0304 Беспроводной геймпад BLE V2
  • DFR0305 RoMeo BLE
  • DFR0351 Romeo BLE mini V2.0
  • DFR0306 Блуно Мега 1280
  • DFR0321 Узел Wido-WIFI IoT
  • DFR0323 Блуно Мега 2560
  • DFR0329 Блуно М3
  • DFR0339 Жук Блуно
  • DFR0343 Контроллер с низким энергопотреблением UHex
  • DFR0355 SIM808 с материнской платой Leonardo
  • DFR0392 DFRduino M0 материнская плата, совместимая с Arduino
  • DFR0398 Контроллер роботов Romeo BLE Quad
  • DFR0416 Bluno M0 Материнская плата
  • DFR0575 Жук ESP32
  • DFR0133 X-Доска
  • DFR0162 X-Board V2
  • DFR0428 3.5-дюймовый сенсорный TFT-экран для Raspberry Pi
  • DFR0494 Raspberry Pi ШАПКА ИБП
  • DFR0514 DFR0603 IIC 16X2 RGB LCD KeyPad HAT V1.0
  • DFR0524 5.5 HDMI OLED-дисплей с емкостным сенсорным экраном V2.0
  • DFR0550 5-дюймовый TFT-дисплей с сенсорным экраном V1.0
  • DFR0591 модуль дисплея raspberry pi e-ink V1.0
  • DFR0592 Драйвер двигателя постоянного тока HAT
  • DFR0604 HAT расширения ввода-вывода для Pi zero V1.0
  • DFR0566 Шляпа расширения ввода-вывода для Raspberry Pi
  • DFR0528 Шляпа ИБП для Raspberry Pi Zero
  • DFR0331 Romeo для контроллера Edison
  • DFR0453 DFRobot CurieNano — мини-плата Genuino Arduino 101
  • TEL0110 CurieCore Intel® Curie Neuron Module
  • DFR0478 Микроконтроллер FireBeetle ESP32 IOT (V3.0) с поддержкой Wi-Fi и Bluetooth
  • DFR0483 FireBeetle Covers-Gravity I O Expansion Shield
  • FireBeetle Covers-24 × 8 светодиодная матрица
  • TEL0121 FireBeetle Covers-LoRa Radio 433 МГц
  • TEL0122 FireBeetle Covers-LoRa Radio 915 МГц
  • TEL0125 FireBeetle охватывает LoRa Radio 868MHz
  • DFR0489 FireBeetle ESP8266 Микроконтроллер IOT
  • DFR0492 FireBeetle Board-328P с BLE4.1
  • DFR0498 FireBeetle Covers-Camera & Audio Media Board
  • DFR0507 FireBeetle Covers-OLED12864 Дисплей
  • DFR0508 FireBeetle Covers-Двигатель постоянного тока и шаговый драйвер
  • DFR0511 FireBeetle Covers-ePaper Черно-белый дисплейный модуль
  • DFR0531 FireBeetle Covers-ePaper Черно-белый и красный дисплейный модуль
  • DFR0536 Плата расширения геймпада с микробитами
  • DFR0548 Плата расширения микробитового драйвера
  • ROB0148 micro: Maqueen для micro: bit
  • ROB0150 Microbit Круглая плата расширения для светодиодов RGB
  • MBT0005 Micro IO-BOX
  • SEN0159 Датчик CO2
  • DFR0049 DFRobot Датчик газа
  • TOY0058 Датчик атмосферного давления
  • SEN0220 Инфракрасный датчик CO2 0-50000ppm
  • SEN0219 Гравитационный аналоговый инфракрасный датчик CO2 для Arduino
  • SEN0226 Датчик барометра Gravity I2C BMP280
  • SEN0231 Датчик гравитации HCHO
  • SEN0251 Gravity BMP280 Датчики атмосферного давления
  • SEN0132 Датчик угарного газа MQ7
  • SEN0032 Трехосный акселерометр — ADXL345
  • DFR0143 Трехосевой акселерометр MMA7361
  • Трехосный акселерометр серии FXLN83XX
  • SEN0072 CMPS09 — Магнитный компас с компенсацией наклона
  • SEN0073 9 степеней свободы — бритва IMU
  • DFR0188 Flymaple V1.1
  • SEN0224 Трехосевой акселерометр Gravity I2C — LIS2DH
  • SEN0140 Датчик IMU с 10 степенями свободы, версия 2.0
  • SEN0250 Gravity BMI160 6-осевой инерционный датчик движения
  • SEN0253 Gravity BNO055 + BMP280 интеллектуальный 10DOF AHRS
  • SEN0001 URM37 V5.0 Ультразвуковой датчик
  • SEN0002 URM04 V2.0
  • SEN0004 SRF01 Ультразвуковой датчик
  • SEN0005 SRF02 Ультразвуковой датчик
  • SEN0006 SRF05 Ультразвуковой датчик
  • SEN0007 SRF08 Ультразвуковой датчик
  • SEN0008 SRF10 Ультразвуковой датчик
  • SEN0149 URM06-RS485 Ультразвуковой
  • SEN0150 URM06-UART Ультразвуковой
  • SEN0151 URM06-PULSE Ультразвуковой
  • SEN0152 URM06-ANALOG Ультразвуковой
  • SEN0153 Ультразвуковой датчик URM07-UART
  • SEN0246 URM08-RS485 Водонепроницаемый гидролокатор-дальномер
  • SEN0304 Ультразвуковой датчик URM09 (Gravity-I2C) (V1.0)
  • SEN0304 Ультразвуковой датчик URM09 (Gravity-I2C) (V1.0)
  • SEN0300 Водонепроницаемый ультразвуковой датчик ULS
  • SEN0301 Водонепроницаемый ультразвуковой датчик ULA
  • SEN0307 URM09 Аналог ультразвукового датчика силы тяжести
  • SEN0311 A02YYUW Водонепроницаемый ультразвуковой датчик
  • SEN0312 ME007YS Водонепроницаемый ультразвуковой датчик
  • SEN0313 A01NYUB Водонепроницаемый ультразвуковой датчик
  • DFR0066 SHT1x Датчик влажности и температуры
  • DFR0067 DHT11 Датчик температуры и влажности
  • SEN0137 DHT22 Модуль температуры и влажности
  • DFR0023 Линейный датчик температуры DFRobot LM35
  • DFR0024 Gravity DS18B20 Датчик температуры, совместимый с Arduino V2
  • DFR0024 Gravity DS18B20 Датчик температуры, совместимый с Arduino V2
  • SEN0114 Датчик влажности
  • Датчик температуры TOY0045 TMP100
  • TOY0054 SI7021 Датчик температуры и влажности
  • SEN0206 Датчик инфракрасного термометра MLX
  • SEN0227 SHT20 Водонепроницаемый датчик температуры и влажности I2C
  • SEN0236 Gravity I2C BME280 Датчик окружающей среды Температура, влажность, барометр
  • SEN0248 Gravity I2C BME680 Датчик окружающей среды VOC, температура, влажность, барометр
  • DFR0558 Цифровой высокотемпературный датчик силы тяжести типа К
  • SEN0308 Водонепроницаемый емкостный датчик влажности почвы
  • SEN0019 Регулируемый переключатель инфракрасного датчика
  • SEN0042 DFRobot Инфракрасный датчик прорыва
  • SEN0143 SHARP GP2Y0A41SK0F ИК-датчик рейнджера 4-30 см
  • SEN0013 Sharp GP2Y0A02YK ИК-датчик рейнджера 150 см
  • SEN0014 Sharp GP2Y0A21 Датчик расстояния 10-80 см
  • SEN0085 Sharp GP2Y0A710K Датчик расстояния 100-550 см
  • Модуль цифрового ИК-приемника DFR0094
  • DFR0095 Модуль цифрового ИК-передатчика
  • SEN0018 Цифровой инфракрасный датчик движения
  • DFR0107 ИК-комплект
  • SEN0264 TS01 ИК-датчик температуры (4-20 мА)
  • SEN0169 Аналоговый pH-метр Pro
  • DFR0300-H Gravity: аналоговый датчик электропроводности (K = 10)
  • DFR0300 Гравитационный аналоговый датчик электропроводности V2 K = 1
  • SEN0165 Аналоговый измеритель ОВП
  • SEN0161-V2 Комплект гравитационного аналогового датчика pH V2
  • SEN0161 PH метр
  • SEN0237 Гравитационный аналоговый датчик растворенного кислорода
  • SEN0204 Бесконтактный датчик уровня жидкости XKC-Y25-T12V
  • SEN0205 Датчик уровня жидкости-FS-IR02
  • SEN0244 Gravity Analog TDS Sensor Meter для Arduino
  • SEN0249 Комплект измерителя pH с аналоговым наконечником копья силы тяжести для применения в почве и пищевых продуктах
  • SEN0121 Датчик пара
  • SEN0097 Датчик освещенности
  • DFR0026 Датчик внешней освещенности DFRobot
  • TOY0044 УФ-датчик
  • SEN0172 LX1972 датчик внешней освещенности
  • SEN0043 TEMT6000 датчик внешней освещенности
  • SEN0175 УФ-датчик v1.0-ML8511
  • SEN0228 Gravity I2C VEML7700 Датчик внешней освещенности
  • SEN0101 Датчик цвета TCS3200
  • DFR0022 Датчик оттенков серого DFRobot
  • Датчик отслеживания линии SEN0017 для Arduino V4
  • SEN0147 Интеллектуальный датчик оттенков серого
  • SEN0212 TCS34725 Датчик цвета I2C для Arduino
  • SEN0245 Gravity VL53L0X Лазерный дальномер ToF
  • SEN0259 TF Mini LiDAR ToF Laser Range Sensor
  • SEN0214 Датчик тока 20А
  • SEN0262 Гравитационный аналоговый преобразователь тока в напряжение для приложений 4 ~ 20 мА
  • SEN0291 Gravity: Цифровой ваттметр I2C
  • DFR0027 Цифровой датчик вибрации DFRobot V2
  • DFR0028 DFRobot Датчик наклона
  • DFR0029 Цифровая кнопка DFRobot
  • DFR0030 DFRobot емкостный датчик касания
  • Модуль цифрового зуммера DFR0032
  • DFR0033 Цифровой магнитный датчик
  • DFR0034 Аналоговый звуковой датчик
  • SEN0038 Колесные энкодеры для DFRobot 3PA и 4WD Rovers
  • DFR0051 Аналоговый делитель напряжения
  • DFR0052 Аналоговый пьезодисковый датчик вибрации
  • DFR0076 Датчик пламени
  • DFR0053 Аналоговый датчик положения ползуна
  • DFR0054 Аналоговый датчик вращения V1
  • DFR0058 Аналоговый датчик вращения V2
  • Модуль джойстика DFR0061 для Arduino
  • DFR0075 AD Клавиатурный модуль
  • Модуль вентилятора DFR0332
  • SEN0177 PM2.5 лазерный датчик пыли
  • Модуль датчика веса SEN0160
  • SEN0170 Тип напряжения датчика скорости ветра 0-5 В
  • TOY0048 Высокоточный двухосевой датчик инклинометра, совместимый с Arduino Gadgeteer
  • SEN0187 RGB и датчик жестов
  • SEN0186 Метеостанция с анемометром Флюгер Дождь ведро
  • SEN0192 Датчик микроволн
  • SEN0185 датчик Холла
  • FIT0449 DFRobot Speaker v1.0
  • Датчик частоты сердечных сокращений SEN0203
  • DFR0423 Самоблокирующийся переключатель
  • SEN0213 Датчик монитора сердечного ритма
  • SEN0221 Датчик угла Холла силы тяжести
  • Датчик переключателя проводимости SEN0223
  • SEN0230 Инкрементальный фотоэлектрический датчик угла поворота — 400P R
  • SEN0235 Модуль поворотного энкодера EC11
  • SEN0240 Аналоговый датчик ЭМГ от OYMotion
  • SEN0232 Гравитационный аналоговый измеритель уровня звука
  • SEN0233 Монитор качества воздуха PM 2.5, формальдегид, датчик температуры и влажности
  • DFR0515 FireBeetle Covers-OSD Модуль наложения символов
  • SEN0257 Датчик гравитационного давления воды
  • SEN0289 Gravity: Цифровой датчик встряхивания
  • SEN0290 Gravity: Датчик молнии
  • DFR0271 GMR Плата
  • ROB0003 Pirate 4WD Мобильная платформа
  • Мобильная платформа ROB0005 Turtle 2WD
  • ROB0025 NEW A4WD Мобильный робот с кодировщиком
  • ROB0050 4WD MiniQ Полный комплект
  • ROB0111 4WD MiniQ Cherokey
  • ROB0036 Комплект роботизированной руки с 6 степенями свободы
  • Комплект наклонно-поворотного устройства FIT0045 DF05BB
  • ROB0102 Мобильная платформа Cherokey 4WD
  • ROB0117 Базовый комплект для Cherokey 4WD
  • ROB0022 4WD Мобильная платформа
  • ROB0118 Базовый комплект для Turtle 2WD
  • Робот-комплект ROB0080 Hexapod
  • ROB0112 Мобильная платформа Devastator Tank
  • ROB0114 Мобильная платформа Devastator Tank
  • ROB0124 Мобильная платформа HCR с всенаправленными колесами
  • ROB0128 Devastator Tank Мобильная платформа Металлический мотор-редуктор постоянного тока
  • ROB0137 Explorer MAX Робот
  • ROB0139 Робот FlameWheel
  • DFR0270 Accessory Shield для Arduino
  • DFR0019 Щит для прототипирования для Arduino
  • DFR0265 IO Expansion Shield для Arduino V7
  • DFR0210 Пчелиный щит
  • DFR0165 Mega IO Expansion Shield V2.3
  • DFR0312 Плата расширения Raspberry Pi GPIO
  • DFR0311 Raspberry Pi встречает Arduino Shield
  • DFR0327 Arduino Shield для Raspberry Pi 2B и 3B
  • DFR0371 Экран расширения ввода-вывода для Bluno M3
  • DFR0356 Щит Bluno Beetle
  • DFR0412 Gravity IO Expansion Shield для DFRduino M0
  • DFR0375 Cookie I O Expansion Shield V2
  • DFR0334 GPIO Shield для Arduino V1.0
  • DFR0502 Gravity IO Expansion & Motor Driver Shield V1.1
  • DFR0518 Micro Mate — мини-плата расширения для микробита
  • DFR0578 Gravity I O Expansion Shield для OpenMV Cam M7
  • DFR0577 Gravity I O Expansion Shield для Pyboard
  • DFR0626 MCP23017 Модуль расширения с IIC на 16 цифровых IO
  • DFR0287 LCD12864 Экран
  • DFR0009 Экран ЖК-клавиатуры для Arduino
  • DFR0063 I2C TWI LCD1602 Модуль Gadgeteer-совместимый
  • Модуль DFR0154 I2C TWI LCD2004, совместимый с Arduino Gadgeteer
  • Светодиодная матрица DFR0202 RGB
  • DFR0090 3-проводной светодиодный модуль
  • TOY0005 OLED 2828 модуль цветного дисплея.Совместимость с NET Gadgeteer
  • Модуль дисплея TOY0006 OLED 9664 RGB
  • Модуль дисплея TOY0007 OLED 2864
  • Модуль дисплея FIT0328 2.7 OLED 12864
  • DFR0091 3-проводной последовательный ЖК-модуль, совместимый с Arduino
  • DFR0347 2.8 TFT Touch Shield с 4 МБ флэш-памяти для Arduino и mbed
  • DFR0348 3.5 TFT Touch Shield с 4 МБ флэш-памяти для Arduino и mbed
  • DFR0374 Экран LCD клавиатуры V2.0
  • DFR0382 Экран со светодиодной клавиатурой V1.0
  • DFR0387 TELEMATICS 3.5 TFT сенсорный ЖК-экран
  • DFR0459 Светодиодная матрица RGB 8×8
  • DFR0460 Светодиодная матрица RGB 64×32 — шаг 4 мм / Гибкая светодиодная матрица 64×32 — Шаг 4 мм / Гибкая светодиодная матрица 64×32 — Шаг 5 мм
  • DFR0461 Гибкая светодиодная матрица 8×8 RGB Gravity
  • DFR0462 Гибкая светодиодная матрица 8×32 RGB Gravity
  • DFR0463 Gravity Гибкая светодиодная матрица 16×16 RGB
  • DFR0471 Светодиодная матрица RGB 32×16 — шаг 6 мм
  • DFR0472 Светодиодная матрица RGB 32×32 — шаг 4 мм
  • DFR0464 Gravity I2C 16×2 ЖК-дисплей Arduino с подсветкой RGB
  • DFR0499 Светодиодная матрица RGB 64×64 — шаг 3 мм
  • DFR0506 7-дюймовый дисплей HDMI с емкостным сенсорным экраном
  • DFR0555 \ DF0556 \ DFR0557 Gravity I2C LCD1602 Модуль ЖК-дисплея Arduino
  • DFR0529 2.2-дюймовый ЖК-дисплей TFT V1.0 (интерфейс SPI)
  • DFR0605 Gravity: Цифровой светодиодный модуль RGB
  • FIT0352 Цифровая светодиодная водонепроницаемая лента с RGB-подсветкой 60LED м * 3 м
  • DFR0645-G DFR0645-R 4-цифровой светодиодный сегментный модуль дисплея
  • Артикул DFR0646-G DFR0646-R 8-цифровой светодиодный сегментный модуль дисплея
  • DFR0597 Гибкая светодиодная матрица RGB 7×71
  • DFR0231 Модуль NFC для Arduino
  • Модуль радиоданных TEL0005 APC220
  • TEL0023 BLUETOOH BEE
  • TEL0026 DF-BluetoothV3 Bluetooth-модуль
  • Модуль беспроводного программирования TEL0037 для Arduino
  • TEL0044 DFRduino GPS Shield-LEA-5H
  • TEL0047 WiFi Shield V2.1 для Arduino
  • TEL0051 GPS GPRS GSM модуль V2.0
  • TEL0067 Wi-Fi Bee V1.0
  • TEL0073 BLE-Link
  • TEL0075 RF Shield 315 МГц
  • TEL0078 WIFI Shield V3 PCB Антенна
  • TEL0079 WIFI Shield V3 RPSMA
  • TEL0084 BLEmicro
  • TEL0086 DF-маяк EVB
  • TEL0087 USBBLE-LINK Bluno Адаптер для беспроводного программирования
  • TEL0080 UHF RFID МОДУЛЬ-USB
  • TEL0081 УВЧ RFID МОДУЛЬ-RS485
  • TEL0082 UHF RFID МОДУЛЬ-UART
  • TEL0083-A GPS-приемник для Arduino Model A
  • TEL0092 WiFi Bee-ESP8266 Wirelss модуль
  • Модуль GPS TEL0094 с корпусом
  • TEL0097 SIM808 GPS GPRS GSM Shield
  • DFR0342 W5500 Ethernet с материнской платой POE
  • DFR0015 Xbee Shield для Arduino без Xbee
  • TEL0107 WiFiBee-MT7681 Беспроводное программирование Arduino WiFi
  • TEL0089 SIM800C GSM GPRS Shield V2.0
  • Модуль приемника RF TEL0112 Gravity 315MHZ
  • TEL0113 Gravity UART A6 GSM и GPRS модуль
  • TEL0118 Gravity UART OBLOQ IoT-модуль
  • Модуль TEL0120 DFRobot BLE4.1
  • Bluetooth-адаптер TEL0002
  • Модуль аудиоприемника Bluetooth TEL0108
  • TEL0124 SIM7600CE-T 4G (LTE) Shield V1.0
  • DFR0505 SIM7000C Arduino NB-IoT LTE GPRS Expansion Shield
  • DFR0013 IIC в GPIO Shield V2.0
  • Плата привода двигателя датчика DFR0057 — Версия 2.2
  • DFR0062 Адаптер WiiChuck
  • DFR0233 Узел датчика RS485 V1.0
  • DFR0259 Arduino RS485 щит
  • DFR0370 Экран CAN-BUS V2
  • DFR0627 IIC для двойного модуля UART
  • TEL0070 Multi USB RS232 RS485 TTL преобразователь
  • DFR0064 386AMP модуль аудиоусилителя
  • DFR0273 Экран синтеза речи
  • DFR0299 DFPlayer Mini
  • TOY0008 DFRduino Плеер MP3
  • SEN0197 Диктофон-ISD1820
  • DFR0420 Аудиозащитный экран для DFRduino M0
  • DFR0534 Голосовой модуль
  • SD2403 Модуль часов реального времени SKU TOY0020
  • TOY0021 SD2405 Модуль часов реального времени
  • DFR0151 Модуль Gravity I2C DS1307 RTC
  • DFR0469 Модуль Gravity I2C SD2405 RTC
  • DFR0316 MCP3424 18-битный канал АЦП-4 с усилителем с программируемым усилением
  • DFR0552 Gravity 12-битный модуль I2C DAC
  • DFR0553 Gravity I2C ADS1115 16-битный модуль АЦП, совместимый с Arduino и Raspberry Pi
  • DFR0117 Модуль хранения данных Gravity I2C EEPROM
  • Модуль SD DFR0071
  • Плата привода двигателя датчика DFR0057 — Версия 2.2
  • DFR0360 XSP — Программист Arduino
  • DFR0411 Двигатель постоянного тока Gravity 130
  • DFR0438 Яркий светодиодный модуль
  • DFR0439 Светодиодные гирлянды красочные
  • DFR0440 Модуль микровибрации
  • DFR0448 Светодиодные гирлянды, теплый белый цвет
  • Встроенный термопринтер DFR0503 — последовательный TTL
  • DFR0504 Гравитационный изолятор аналогового сигнала
  • DFR0520 Двойной цифровой потенциометр 100K
  • DFR0565 Гравитационный цифровой изолятор сигналов
  • DFR0563 Гравитация 3.Датчик уровня топлива литиевой батареи 7V
  • DFR0576 Гравитационный цифровой мультиплексор I2C с 1 по 8
  • DFR0117 Модуль хранения данных Gravity I2C EEPROM
  • DRI0001 Моторный щит Arduino L293
  • DRI0002 MD1.3 2A Двухмоторный контроллер
  • DRI0009 Моторный щит Arduino L298N
  • DRI0021 Драйвер двигателя постоянного тока Veyron 2x25A Brush
  • DRI0017 2A Моторный щит для Arduino Twin
  • Драйвер двигателя постоянного тока DRI0018 2x15A Lite
  • Микродвигатель постоянного тока FIT0450 с энкодером-SJ01
  • FIT0458 Микродвигатель постоянного тока с энкодером-SJ02
  • DFR0399 Микро-металлический мотор-редуктор постоянного тока 75 1 Вт Драйвер
  • DRI0039 Quad Motor Driver Shield для Arduino
  • DRI0040 Двойной 1.Драйвер двигателя 5A — HR8833
  • DRI0044 2×1.2A Драйвер двигателя постоянного тока TB6612FNG
  • Драйвер двигателя постоянного тока DFR0513 PPM 2x3A
  • DFR0523 Гравитационный цифровой перистальтический насос
  • DRI0027 Digital Servo Shield для Arduino
  • DRI0029 24-канальный сервопривод Veyron
  • SER0044 DSS-M15S 270 ° 15KG Металлический сервопривод DF с аналоговой обратной связью
  • DRI0023 Экран шагового двигателя для Arduino DRV8825
  • DRI0035 TMC260 Щиток драйвера шагового двигателя
  • DFR0105 Силовой щит
  • DFR0205 Силовой модуль
  • DFR0457 Контроллер мощности Gravity MOSFET
  • DFR0564 Зарядное устройство USB для 7.Литий-полимерная батарея 4 В
  • DFR0535 Менеджер солнечной энергии
  • DFR0559 Солнечная система управления мощностью 5 В для подсолнечника
  • DFR0559 Менеджер солнечной энергии 5 В
  • DFR0580 Solar Power Manager для свинцово-кислотных аккумуляторов 12 В
  • DFR0222 Реле X-Board
  • Релейный модуль DFR0017, совместимый с Arduino
  • DFR0289 Релейный контроллер RLY-8-POE
  • DFR0290 RLY-8-RS485 8-релейный контроллер
  • DFR0144 Релейный экран для Arduino V2.1
  • DFR0473 Gravity Digital Relay Module Совместимость с Arduino и Raspberry Pi
  • KIT0003 EcoDuino — Комплект для автомобильных заводов
  • KIT0071 MiniQ Discovery Kit
  • KIT0098 Пакет компонентов подключаемого модуля Breadboard
  • Артикул DFR0748 Цветок Китти
  • SEN0305 Гравитация: HUSKYLENS — простой в использовании датчик машинного зрения AI
  • Подключение датчика к Raspberry Pi
    Объяснение принципиальной схемы твердотельного реле (SSR)

    SSR или твердотельное реле — это компактное полупроводниковое статическое устройство, которое включает / выключает электрические или электронные сигналы при подаче управляющего напряжения на его входные клеммы.Электромагнитное реле или EMR также выполняет ту же функцию, но состоит из катушек, движущихся частей, тогда как SSR не имеет катушки и движущихся частей. SSR работает с помощью электрических и оптических свойств твердотельных полупроводниковых устройств. SSR имеет очень высокую изоляцию между входом и выходом, что обеспечивает большую электробезопасность электрических цепей и операций.

    Как правило, большинство SSR предназначены для работы с входным источником постоянного тока. Но возможны выходы как переменного, так и постоянного тока.Твердотельное реле имеет так много преимуществ перед электромагнитным реле, как очень быстрое переключение, отсутствие фиксации, низкие потери мощности, высокая электрическая изоляция и т. Д.

    Основной частью или компонентом электромагнитного реле является электромагнитная катушка, притягивающая металл. контакты для подключения и отключения цепи. С другой стороны, основными компонентами твердотельного реле являются фотоэмиттер и фотодетектор. Когда на SSR подается входное напряжение, его фотоэмиттер излучает свет, падающий на фотоприемник.Когда фотодетектор обнаруживает свет, он посылает сигнал в схему управления выходом для переключения электрических или электронных сигналов.

    Внутренняя схема твердотельного реле (твердотельного реле)

    Здесь вы можете увидеть внутреннюю схему твердотельного реле, рассчитанного на входное питание 3-32 В постоянного тока и выходную мощность 240 В, до 40 А переменного тока.

    Здесь вы можете видеть, что SSR состоит из двух основных компонентов: 1. Фотоэмиттер 2. Фотоэмиттер

    Фотоэмиттер — это, по сути, ИК-светодиод, который излучает ИК-лучи при приложении к нему постоянного напряжения (от 3 до 32 В).Фотоприемник представляет собой фототранзистор. Это позволяет току течь через него, когда на него падает свет, излучаемый фотоэмиттером. Фотодиод также используется в некоторых твердотельных реле.

    Итак, здесь нет механизма подвижных контактов и нет соединений между входной и выходной цепью. Цепи входа и выхода полностью изолированы. Поскольку фотоэмиттер и фотодетектор являются полупроводниковыми устройствами, они работают очень быстро и производят очень низкие потери мощности.

    Читайте также:

    Принципиальная схема твердотельного реле (SSR) с нагрузкой и входным источником питания

    Здесь, на приведенной выше принципиальной схеме, вход твердотельного реле подключен к батарее 12 В или Источник постоянного тока.Поэтому, когда вы используете твердотельное реле в электрических или электронных цепях переменного тока, вы должны подключить выпрямительную цепь к входу SSR. Если вы подключите или предоставите источник питания переменного тока к SSR, излучатель света или светодиод будет мигать в соответствии с частотой источника питания. Таким образом, вы не можете получить непрерывный вывод. Когда вы подключаете нагрузку переменного тока к SSR, он должен быть подключен как обычный однополюсный переключатель.

    Например, если вы хотите подключить однофазный двигатель. Нейтраль двигателя должна быть подключена непосредственно к нейтрали источника питания.Фазовая клемма источника питания должна быть подключена к одной клемме SSR, а фазная клемма нагрузки должна быть подключена к другой клемме SSR. Понять подключение можно с помощью приведенной выше принципиальной схемы.

    Читайте также:

    Спасибо, что посетили сайт. продолжайте посещать для получения дополнительных обновлений.

    Электрические символы | Электронные символы

    Электрические символы и символы электронных схем используются для построения принципиальной схемы.

    Символы обозначают электрические и электронные компоненты.

    Светодиод
    Обозначение Название компонента Значение
    Обозначения проводов
    Электрический провод Проводник электрического тока
    Подключенные провода Подъездной переход
    Не подключенные провода Провода не подключены
    Обозначения переключателей и реле
    Тумблер SPST Отключает ток при открытии
    Тумблер SPDT Выбор между двумя подключениями
    Кнопочный переключатель (N.O) Выключатель мгновенного действия — нормально открытый
    Кнопочный переключатель (Н.З.) Выключатель мгновенного действия — нормально замкнутый
    DIP-переключатель DIP-переключатель используется для конфигурации на плате
    Реле SPST Реле размыкания / замыкания с помощью электромагнита
    SPDT реле
    Джемпер Закройте соединение, вставив перемычку на контакты.
    Паяльная перемычка Припой для закрытия соединения
    Знаки заземления
    Земля Земля Используется для опорного нулевого потенциала и защиты от поражения электрическим током.
    Шасси Земля Подключен к шасси схемы
    Цифровой / Общий
    Обозначения резисторов
    Резистор (IEEE) Резистор снижает ток.
    Резистор (IEC)
    Потенциометр (IEEE) Регулируемый резистор — имеет 3 вывода.
    Потенциометр (IEC)
    Переменный резистор / реостат (IEEE) Регулируемый резистор — имеет 2 вывода.
    Переменный резистор / реостат (IEC)
    Подстроечный резистор Предустановленный резистор
    Термистор Терморезистор — изменение сопротивления при изменении температуры
    Фоторезистор / Светозависимый резистор (LDR) Фоторезистор — изменение сопротивления при изменении силы света
    Обозначения конденсаторов
    Конденсатор Конденсатор используется для хранения электрического заряда.Он действует как короткое замыкание с переменным током и разомкнутая цепь с постоянным током.
    Конденсатор
    Поляризованный конденсатор Конденсатор электролитический
    Поляризованный конденсатор Конденсатор электролитический
    Переменный конденсатор Регулируемая емкость
    Обозначения индуктора / катушки
    Индуктор Катушка / соленоид, создающий магнитное поле
    Индуктор с железным сердечником Включает утюг
    Переменный индуктор
    Обозначения источников питания
    Источник напряжения Генерирует постоянное напряжение
    Источник тока Генерирует постоянный ток.
    Источник напряжения переменного тока Источник переменного напряжения
    Генератор Электрическое напряжение создается за счет механического вращения генератора
    Battery Cell Генерирует постоянное напряжение
    Аккумулятор Генерирует постоянное напряжение
    Источник управляемого напряжения Генерирует напряжение как функцию напряжения или тока другого элемента схемы.
    Управляемый источник тока Генерирует ток как функцию напряжения или тока другого элемента схемы.
    Обозначения счетчиков
    Вольтметр Измеряет напряжение. Обладает очень высокой стойкостью. Подключил параллельно.
    Амперметр Измеряет электрический ток. Имеет почти нулевое сопротивление. Подключил поочередно.
    Омметр Измеряет сопротивление
    Ваттметр Меры электроэнергии
    Символы ламп / лампочек
    Лампа / лампочка Генерирует свет при протекании тока через
    Лампа / лампочка
    Лампа / лампочка
    Символы диодов / светодиодов
    Диод Диод позволяет току течь только в одном направлении — слева (анод) направо (катод).
    Стабилитрон Позволяет току течь в одном направлении, но также может течь в обратном направлении, когда напряжение пробоя выше
    Диод Шоттки Диод Шоттки — диод с низким падением напряжения
    Варактор / варикап диод Диод переменной емкости
    Туннельный диод
    Светоизлучающий диод (LED) излучает свет при протекании тока через
    Фотодиод Фотодиод пропускает ток при воздействии света
    Обозначения транзисторов
    Биполярный транзистор NPN Обеспечивает прохождение тока при высоком потенциале в основании (в центре)
    Транзистор биполярный PNP Обеспечивает прохождение тока при низком потенциале в основании (в центре)
    Транзистор Дарлингтона Изготовлен из 2-х биполярных транзисторов.Имеет общий прирост продукта каждого прироста.
    JFET-N Транзистор N-канальный полевой транзистор
    JFET-P Транзистор Транзистор полевой П-канальный
    NMOS Транзистор N-канальный MOSFET транзистор
    PMOS Транзистор P-канальный MOSFET транзистор
    Разное. Символы
    Мотор Электродвигатель
    Трансформатор Измените напряжение переменного тока с высокого на низкий или с низкого на высокое.
    Электрический звонок Звонит при активации
    Зуммер Воспроизводить жужжащий звук
    Предохранитель Предохранитель отключается, когда ток превышает пороговое значение. Используется для защиты схемы от высоких токов.
    Предохранитель
    Автобус Содержит несколько проводов. Обычно для данных / адреса.
    Автобус
    Автобус
    Оптопара / оптоизолятор Оптопара изолирует соединение с другой платой
    Громкоговоритель Преобразует электрический сигнал в звуковые волны
    Микрофон Преобразует звуковые волны в электрический сигнал
    Операционный усилитель Усилить входной сигнал
    Триггер Шмитта Работает с гистерезисом для снижения шума.
    Аналого-цифровой преобразователь (АЦП) Преобразует аналоговый сигнал в цифровые числа
    Цифро-аналоговый преобразователь (ЦАП) Преобразует цифровые числа в аналоговый сигнал
    Кристаллический осциллятор Используется для генерации точного тактового сигнала частоты
    Постоянный ток Постоянный ток генерируется от постоянного уровня напряжения
    Символы антенн
    Антенна / антенна Передает и принимает радиоволны
    Антенна / антенна
    Дипольная антенна Двухпроводная простая антенна
    Символы логических ворот
    НЕ затвор (инвертор) Выходы 1, когда вход 0
    И Ворота Выходы 1, когда оба входа равны 1.
    NAND Gate Выводит 0, когда оба входа равны 1. (НЕ + И)
    OR Выход Выходы 1, когда любой вход 1.
    NOR Gate Выводит 0, когда любой ввод равен 1. (НЕ + ИЛИ)
    Ворота XOR Выходы 1, если входы разные. (Эксклюзивное ИЛИ)
    D Вьетнамки Хранит один бит данных
    Мультиплексор / мультиплексор 2 — 1 Подключает выход к выбранной входной линии.
    Мультиплексор / мультиплексор от 4 до 1
    Демультиплексор / демультиплексор с 1 по 4 Подключает выбранный выход к входной линии.

    Как работает оптопара | ОРЕЛ

    Необходимо защитить чувствительные низковольтные компоненты и изолировать цепи на печатной плате? Оптопара может сделать эту работу. Да будет свет! Это устройство позволяет передавать электрический сигнал между двумя изолированными цепями, состоящими из двух частей: светодиода, излучающего инфракрасный свет, и светочувствительного устройства, которое обнаруживает свет от светодиода.Обе эти части содержатся в традиционном черном ящике с парой контактов для подключения. С первого взгляда легко перепутать оптопару с интегральной схемой (ИС).

    Эта симисторная оптопара выглядит как ИС. (Источник изображения)

    Как это работает

    Сначала на оптопару подается ток

    А, который заставляет инфракрасный светодиод излучать свет, пропорциональный току. Когда свет попадает на светочувствительное устройство, он включается и начинает проводить ток, как любой обычный транзистор.

    Как работает оптрон. (Источник изображения)

    Светочувствительное устройство по умолчанию обычно не подсоединяется, чтобы обеспечить максимальную чувствительность к инфракрасному свету. Его также можно подключить к земле с помощью внешнего резистора для большей степени контроля чувствительности переключения.

    Оптопара эффективно изолирует выходную и входную цепи. (Источник изображения)

    Это устройство в основном работает как переключатель, соединяющий две изолированные цепи на вашей печатной плате.Когда ток перестает течь через светодиод, светочувствительное устройство также перестает проводить и отключается. Все это переключение происходит через пустоту из стекла, пластика или воздуха без каких-либо электрических частей между светодиодом или светочувствительным устройством. Все дело в свете.

    Преимущества и типы

    Если вы разрабатываете электронное устройство, которое будет восприимчиво к скачкам напряжения, ударам молнии, скачкам напряжения питания и т. Д., Тогда вам понадобится способ защиты низковольтных устройств.При правильном использовании оптопара может эффективно:

    • Устранение электрических помех из сигналов
    • Изолируйте низковольтные устройства от высоковольтных цепей
    • Позволяет использовать небольшие цифровые сигналы для управления более высокими напряжениями переменного тока

    Оптопары бывают четырех конфигураций. Каждая конфигурация использует один и тот же инфракрасный светодиод с другим светочувствительным устройством. К ним относятся:

    Photo-Transistor и Photo-Darlington , которые обычно используются в цепях постоянного тока, и Photo-SCR и Photo-TRIAC , которые используются для управления цепями переменного тока.

    Четыре типа оптопар. (Источник изображения)

    Если вы любите приключения, вы даже можете сделать самодельную оптопару с некоторыми запасными частями. Просто совместите светодиод и фототранзистор внутри светоотражающей пластиковой трубки.

    Самодельная оптопара, состоящая всего из трех простых частей. (Источник изображения)

    Типичные приложения

    Оптопары

    могут использоваться либо сами по себе в качестве переключающего устройства, либо с другими электронными устройствами для обеспечения изоляции между цепями низкого и высокого напряжения.Обычно эти устройства используются для:

    • Микропроцессорное переключение входов / выходов
    • Регулятор мощности постоянного и переменного тока
    • Защита коммуникационного оборудования
    • Регламент электропитания

    В этих приложениях вы встретите различные конфигурации. Некоторые примеры включают:

    Оптранзисторный переключатель постоянного тока

    Эта конфигурация обнаруживает сигналы постоянного тока, а также позволяет управлять оборудованием с питанием от переменного тока. MOC3020 идеально подходит для управления подключением к сети или подачи импульса затвора на другой фото-симистор с токоограничивающим резистором.

    (Источник изображения)

    Симисторный оптопара

    Эта конфигурация позволит вам управлять нагрузками с питанием от переменного тока, такими как двигатели и лампы. Он также способен проводить обе половины цикла переменного тока с обнаружением перехода через ноль. Это позволяет нагрузке получать полную мощность без значительных скачков тока при переключении индуктивных нагрузок.

    (Источник изображения)

    Рекомендации по компоновке печатной платы

    Перед добавлением оптопары в компоновку печатной платы примите во внимание следующие три правила:

    • Держите заземляющие соединения оптопары отдельно

    Стандартная оптопара включает в себя два контакта заземления: один для светодиода, а другой — для светочувствительного устройства.Соединение обоих этих заземлений вместе откроет вашу чувствительную схему для любого шума от внешнего заземления. Чтобы избежать этого, всегда создавайте две точки подключения: одну для контактов внешнего заземления, а другую — для входных заземляющих проводов.

    • Выберите правильное значение резистора ограничения тока

    Выбор резистора ограничения тока, который работает при минимальном значении оптопары, приведет к нестабильному поведению. Также можно выбрать резистор, обеспечивающий слишком большой ток, при котором светодиод лопнет.При выборе значения для резистора обязательно найдите значение минимального прямого тока из таблицы коэффициента передачи тока в таблице данных оптопары. У Vishay есть отличное руководство по чтению таблицы данных оптопары здесь.

    • Знайте, какой тип оптопары вам нужен

    Не все оптопары созданы равными, и вам нужно будет выбрать правильный тип для вашего приложения. Например, опто-симистор используется, если вам нужно управлять нагрузкой переменного тока.Opto-Darlington предназначены только для малых входных токов. Если все, что вам нужно, это стандартная изоляция входа, то обычная оптопара PC817 справится с этой задачей. Эту статью от Nuts and Volts определенно стоит прочитать, чтобы понять типы и различия оптопар.

    Библиотеки оптопар в EAGLE

    Управляемые онлайн-библиотеки Autodesk EAGLE включают целую категорию оптопар для использования в вашем следующем проекте. Это лучше, чем создавать свои собственные пакеты и символы с нуля! Чтобы использовать эту библиотеку, убедитесь, что optocoupler.lbr активируется в панели управления Autodesk EAGLE, как показано ниже. Если это так, то в следующий раз, когда вам понадобится добавить компонент, у вас будет доступ ко всем этим устройствам.

    Готовы начать изоляцию цепей и защиту низковольтных устройств? Загрузите Autodesk EAGLE бесплатно сегодня, чтобы начать использовать прилагаемые библиотеки оптопары!

    .
    Обновлено: 17.09.2021 — 15:03

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *