Гидравлическая стрелка для систем отопления схема: Гидравлическая стрелка — для чего нужна и как работает

Содержание

принцип работы, назначение и расчеты

ПОДЕЛИТЕСЬ
В СОЦСЕТЯХ

Что такое гидрострелка в системе отопления? Гидравлический и температурный буфер, который обеспечивает процессы корреляции температур подачи/обратки и упорядоченный максимальный проток теплоносителя, называют гидрострелкой. Статья на тему: «Гидрострелка: принцип работы, назначение и расчеты» раскрывает сущность гидравлического разделения контуров отопления.

Гидрострелка необходима для осуществления гидродинамической балансировки в системе отопления

Зачем нужна гидрострелка в системе отопления?

Объяснить, для чего нужна гидрострелка для отопления, очень просто. Процессы разбалансировки теплоснабжения знакомы владельцам частных домов. Современный котел имеет меньший по объему контур, чем циркуляционный расход потребителя. Работа гидрострелки отопления позволяет отделить гидравлический контур теплогенератора от вторичной цепи, повысить надежность и качество системы.

Ответом на вопрос: «Для чего нужна гидрострелка в системе отопления?», служит список достоинств отопления с гидравлическим терморазделителем:

  • разделитель — обязательное условие производителя оборудования для гарантии технического обслуживания на котел мощностью 50 кВт и более, или теплогенератора с чугунным теплообменником;
  • узел обеспечивает максимальный проток с ламинарным течением теплоносителя, поддерживает гидравлический и температурный баланс системы отопления;
  • параллельное подключение гидрострелки отопления и контура потребителей создает минимальные потери давления, производительности и тепловой энергии;
  • коленное расположение патрубков подачи-обратки обеспечивает температурный градиент вторичных контуров;

Схема движения теплоносителя в коллекторе с гидрострелкой

  • оптимальный подбор и расчет гидрострелки для отопления защищает котел от разницы температур подачи-обратки, предохраняет оборудование от теплового удара, выравнивает циркуляционный объем водяных потоков в первичном и второстепенном контуре;
  • узел повышает КПД котла, позволяет вторичную циркуляцию части теплоносителя в котловом контуре, экономит электроэнергию и топливо;
  • подмес сохраняет постоянный объем котловой воды;
  • при экстренной необходимости разделитель компенсирует дефицит расхода во второстепенном контуре;
  • полый разделитель снижает влияние насосов, обладающих различной мощностью квт, на вторичные контуры и котел;
  • дополнительные функции гидроразделителя — уменьшает гидравлическое сопротивление, формирует условия для сепарации растворенных газов и шлама.

В многоконтурных системах отопления использование гидрострелки обязательно для сбалансированной работы

Принцип работы гидрострелки отопления позволяет стабилизировать гидродинамические процессы в системе. Своевременное удаление механических примесей из теплоносителя продлит срок службы насосов, вентилей, счетчиков, датчиков, отопительных приборов. Разделяя потоки (контур теплогенератора и независимый контур потребителя), гидрострелка обеспечивает максимальное использование теплоты сгорания топлива.

Устройство гидрострелки отопления

Гидроразделитель — вертикальный полый сосуд из труб большого диаметра (квадратного профиля) с эллиптическими заглушками по торцам. Размеры разделителя обусловлены мощностью (кВт) котла, зависят от количества и объема контуров.

Тяжелый металлический корпус устанавливают на опорные стойки, чтобы не создавать линейное напряжение на трубопровод. Компактные устройства крепят к стене, располагают на кронштейнах.

Гидрострелка из нержавеющей стали

Патрубок гидрострелки и отопительный трубопровод соединяют с помощью фланцев или резьбы.

Автоматический клапан воздухоотводчика располагают в верхней точке корпуса. Осадок удаляют через вентиль или специальный клапан, который врезан снизу.

Материал для изготовления гидрострелки — низкоуглеродистая или нержавеющая сталь, медь, полипропилен. Корпус обрабатывают антикоррозийным составом, покрывают теплоизоляцией.

Важно! Модели из полимера применяют в системе, которую отапливает котел мощностью от 13 до 35 кВт. Гидравлические разделители из полипропилена не используют для теплогенераторов, которые работают на твердом топливе.

Изготовление гидрострелки своими руками из пропилена требует опыта и навыков работы с профессиональным слесарным и ручным электроинструментом.

Гидравлическая стрелка «Meibes»

Дополнительные функции гидрострелок

Усовершенствованные модели совмещают функции разделителя, регулятора температуры и сепаратора. Клапан-терморегулятор обеспечивает температурный градиент вторичных контуров. Выделение растворенного кислорода из теплоносителя снижает риск эрозии внутренних поверхностей оборудования. Удаление из потока взвешенных частиц продлевает срок службы рабочего колеса и подшипников циркуляционных насосов.

На фото изображена модель гидрострелки для отопления в разрезе:

Устройство гидрострелки — вид в разрезе

Горизонтальные перфорированные перегородки разделяют внутренний объем пополам. Потоки подачи-обратки соприкасаются в зоне «нулевой точки» и скользят в разные стороны, не создавая дополнительное сопротивление.

Сверху, в высокотемпературной зоне, расположены пористые вертикальные пластины деаэрации. Сборник шлама и магнитный уловитель (магниевый анод) расположены в нижней части корпуса.

Конструктивные опции гидрострелки: манометр, датчик температуры, клапан терморегулятор и линия для запитки системы при запуске. Сложному оборудованию необходима наладка, регулярные осмотры и техническое обслуживание.

Принцип работы коллектора с гидрострелкой на 3 контура отопления

Принцип работы гидрострелки в системе отопления частного дома

Поток теплоносителя проходит разделитель со скоростью 0,1-0,2 м/с. Котловой насос разгоняет горячую воду до 0,7-0,9 м/с. Рекомендованный скоростной режим дает представление о том, для чего нужна гидрострелка для отопления.

Изменение объема и направления движения гасит скорость водяных потоков при минимальной потере тепловой энергии в системе. Ламинарное движение потока приводит к тому, что гидравлическое сопротивление внутри корпуса практически отсутствует. Буферная зона разделяет котел и цепь потребителя. Насос каждого из отопительных контуров работает автономно, не нарушая гидравлический баланс.

Принцип работы гидрострелки в схеме отопления с 4-х ходовым смесителем

Схемы гидрострелки для отопления (режим работы):

  • Нейтральный режим работы гидроразделителя, при котором напор, расход, температура и тепловая энергия подачи — обратки соответствуют расчетным параметрам системы. Насосное оборудование обладает достаточной суммарной мощностью. Ламинарное движение потока в гидрострелке обеспечивает процессы деаэрации и осаждения взвешенных частиц.

Нейтральный режим работы гидроразделителя

  • Схема отражает принцип работы гидрострелки отопления, при котором котел не обладает достаточной мощностью, чтобы обеспечить расход во второстепенном контуре. Дефицит расхода приводит к подмесу холодного теплоносителя. Разница температур подачи/обратки приводит к срабатыванию термодатчиков. Автоматика выведет теплогенератор на максимальный режим горения, однако потребитель не получает достаточного количества теплоты. Система отопления разбалансирована, возникает угроза теплового удара.

Если котел не обладает достаточной мощностью, чтобы обеспечить расход во второстепенном контуре, возникает угроза теплового удара

  • Объемный поток первичного контура больше, чем расход теплоносителя зависимой цепи. Вариант, при котором котел функционирует в оптимальном режиме. При розжиге агрегата или параллельном отключении насосов вторичных контуров, теплоноситель циркулирует через гидрострелку по первичному (малому) контуру. Температура обратки, которая поступает в котел, выравнивается подмесом из подачи. Достаточный объем теплоносителя поступает потребителю.

Объемный поток первичного контура больше, чем расход теплоносителя зависимой цепи — котел функционирует в оптимальном режиме

Обязательное условие: производительность, которой обладает циркуляционный насос первичного (котлового) контура на 10% больше, чем суммарный максимальный напор насосов во второстепенном контуре.

Методы расчета гидрострелки в системе отопления частного дома

Как рассчитать гидрострелку системы отопления частного дома самостоятельно? Можно вычислить необходимые размеры по формулам или подобрать диаметр по правилу «3D».

  • Формула определяет диаметр (D) по максимальной пропускной способности гидравлического разделителя (расчеты по паспортным данным на котел):

  • Формула определяет диаметр гидрострелки по мощности теплогенератора.
    ΔT разница температур подачи/обратки — 10°C:

  • Диаметр патрубка, входящего в гидрострелку или распределительный коллектор:

ОбозначениеРасшифровка символаЕдиница измерения
DДиаметр корпуса гидрострелкимм
dДиаметр патрубкамм
PМаксимальная мощность, которой обладает котел (паспортные данные котла)кВт
GМаксимальный проток (пропускная способность, расход) через гидроразделитель за часм3/час
πПостоянное значение (3,14)
ωМаксимальная вертикальная скорость теплоносителя через разделитель (0,2)м/сек
ΔTРазница температур подачи — обратки (паспортные данные котла)°C
CТеплоемкость воды (относительная единица)Вт/(кг°C)
VСкорость теплоносителя через вторичные контурым/с
QМаксимальный расход в контуре потребителям3

 

Важно! Формулы, по которым производят расчет гидрострелки для отопления, получены эмпирическим путем. Диаметр входного патрубка в гидроразделитель соответствует диаметру выпуска котла.

  • Определение параметров гидрострелки практическим методом:

Ориентировочный размер для небольших разделителей выбирают по диаметру входных (выпускных) патрубков. Расстояние между врезками составляет не менее 10 диаметров штуцера. Высота корпуса значительно превышает диаметр.

Коленчатую схему гидрострелки для отопления используют в подборе установки больших размеров. По «правилу 3d» диаметр корпуса составляет три диаметра патрубка. Расстояние 3d определяет пропорции конструкции.

Определение параметров гидрострелки по «правилу 3d»

  • Распределение врезок по высоте колонны разделителя:

Если в системе не предусмотрен распределительный коллектор, то количество врезок в разделитель увеличивают. Трубопровод, соединяющий первый (котловой) контур с гидрострелкой, распределяют по высоте. Способ позволяет регулировать температурный градиент в динамике. Выполнение условия необходимо для качественного отбора теплоносителя вторичными контурами.

Схема врезки контуров системы отопления в обвязку котла

Совмещение коллектора отопления с гидрострелкой

Небольшие дома обогревает котел, в который встроен насос. Вторичные контуры присоединяют к котлу через гидрострелку. Независимые контуры жилых домов с большой площадью (от 150 м2) подключают через гребенку, гидроразделитель будет громоздким.

Статья по теме:

Распределительный коллектор монтируют после гидрострелки. Устройство состоит из двух независимых частей, которые объединяют перемычки. По количеству вторичных контуров врезают попарно расположенные патрубки.

Распределительная гребенка облегчает эксплуатацию и ремонт оборудования. Запорная и регулирующая арматура системы теплоснабжения дома находится в одном месте. Увеличенный диаметр коллектора обеспечивает равномерный расход между отдельными контурами.

Применение гидрострелки убережет котел от теплового удара

Разделитель и компланарная распределительная гребенка образуют гидравлический модуль. Компактный узел удобен для стесненных условий небольших котельных.

Монтажные выпуски предусмотрены для обвязки звездочкой:

  • низконапорный контур теплых полов подключают снизу;
  • высоконапорный контур радиаторов — сверху;
  • теплообменник — сбоку, на противоположной стороне от гидрострелки.

На рисунке представлена гидрострелка с коллектором. Схема изготовления предусматривает установку балансировочных клапанов между коллекторами подачи/обратки:

Схема гидрострелки с коллектором

Регулирующая арматура обеспечивает максимальный проток и напор на дальних от гидрострелки контурах. Балансировка снижает процессы неправильного дросселирование потока, позволяет добиться расчетной подачи теплоносителя.

Важно! Автономная система отопления относится к системам, работающим с высокой температурой среды под давлением (гидрострелка отопления частного дома в том числе).

Сделать гидрострелку отопления своими руками может специалист, обладающий достаточным запасом знаний в теплотехнике, опытом и навыками работы (электрогазосварка, слесарное дело, работа с ручным электроинструментом). Многочисленные интернет-сайты предлагают пошаговые инструкции по изготовлению гидрострелки для отопления, видео ролики также смогут помочь в этом процессе.

Размеры коллектора отопления с гидрострелкой

Теоретические знания помогут составить схемы и чертежи гидрострелки отопления, сделать индивидуальный заказ оборудования в специализированной организации, проконтролировать работу подрядчика. Доверять изготовление ответственных узлов системы отопления непрофессионалам опасно для жизни и здоровья. Следует помнить о том, что испорченное по вине владельца оборудование гарантийному ремонту и возврату не подлежит.

ОЦЕНИТЕ
МАТЕРИАЛ Загрузка… ПОДЕЛИТЕСЬ
В СОЦСЕТЯХ

СМОТРИТЕ ТАКЖЕ

REMOO В ВАШЕЙ ПОЧТЕ

Что такое гидравлическая стрелка — принцип работы, конструкция и расчет

Автор DearHouse На чтение 3 мин Просмотров 67 Обновлено

В некоторых схемах отопления специалисты настоятельно рекомендуют установку гидравлического распределителя. Основной аргумент «за» – стабилизация системы и улучшение ее эксплуатационных качеств. Какие функции выполняет этот элемент?

Когда необходимо ставить гидравлический распределитель

Коллекторное отопление

Одним из качественных характеристик отопления является гидродинамическое распределение на его участках и всей системы в целом. Т.е. давление и скорость движения теплоносителя должно быть примерно одинаковым везде. На практике добиться такого результата можно только при небольшой протяженности трубопроводов и отсутствии разветвлений.

Для двухтрубной или коллекторной систем часто наблюдается большая разница между давлением на выходной трубе от котла и обратной. Есть несколько объективных причин этому явлению.

Самыми распространенными из них являются:

  • Недостаточная мощность насосов для равномерной циркуляции теплоносителя. Они не могут обеспечить должную скорость его движения.
  • При использовании зональных устройств подачи горячей воды (терморегуляторы) создается избыточное гидравлическое сопротивление на определенных участках.
  • Несогласованность работы (резонанс) при наличии 2-х и более насосов.
  • Наличие контуров с различными показателями сечения труб – теплый пол, косвенный нагрев бойлера и т.д.

В итоге это приводит не только к неравномерному давлению, но и некорректному температурному распределению по отдельным магистралям. Для решения этих проблем следует устанавливать гидравлическую стрелку.

Функциональные особенности

На первый взгляд ее конструкция и принцип работы выглядит очень просто. Она состоит из основной емкости, сечение которой больше, чем у подающих магистралей. У нее имеются 4 патрубка с диаметром, равным основному трубопроводу.

Режимы работы гидравлической стрелки

Чаще всего гидравлический распределитель устанавливается в коллекторной схеме отопления. Он необходим для нормализации давления между подающей и обратной трубой. Можно определить 3 режима работы этого устройства.

  1. Стабильная система. Давление в магистралях равно. Вследствие этого температура воды на входных и выходных патрубках одинакова.
  2. Поток из отопительного контура превышает аналогичный из котла. Температурная разница создает частичное распределение теплоносителя из обратной магистрали в основную. Тем самым происходит стабилизация. Это обеспечит защиту теплообменника котла от перегревания.
  3. Превышение давления из потока котла по сравнению с отопительным. Такой режим чаще всего применяется при отключении одного или нескольких контуров.

Таким образом достигается оптимальная работа всей системы отопления. Для правильного применения гидравлического распределителя следует сначала рассчитать его размеры и определиться с местом установки.

Правила расчета и монтажа

 Оптимальный вариант – приобрести заводскую модель.  Они рассчитаны для конкретных отопительных систем в зависимости от максимального объема потока теплоносителя через гидрострелку и скорости его движения. Если же было принято решение изготовить ее своими руками – можно воспользоваться следующей формулой для вычисления диаметра патрубков.

Промежуточные величины можно вычислить самостоятельно, либо воспользоваться специализированными программными комплексами. Следующим этапом будет определение размеров основной емкости. Для этого можно воспользоваться двумя методами.

  • Трех диаметров – патрубки располагаются на одной оси.
  • Чередующиеся подключения – патрубки устанавливаются в шахматном порядке.

 

Способы расчета размеров основной емкости

Место установки распределителя определяется схемой отопления. Однако рекомендуется руководствоваться правилом – он должен находиться максимально близко к котлу. Для коллекторной схемы гидрострелку подключают перед ним. Таким образом стабилизация системы происходит до вхождения теплоносителя в распределительный коллектор.

Исключения составляет монтаж дополнительного насоса. В таком случае гидравлический распределитель монтируется между ним и подключением обратной трубы к котлу. Это позволяет компенсировать разность частот работающих насосов.

принцип работы, назначение и расчеты

Спроектировать собственную систему отопления далеко непросто. Даже если «планируют» ее монтажники, вам надо быть в курсе многих нюансов. Во-первых, чтобы проконтролировать их работу, во-вторых, чтобы оценить необходимость и целесообразность их предложений. Например, в последние годы усиленно пропагандируется гидрострелка для отопления. Это небольшое дополнение, установка которого выливается в немалую сумму. В некоторых случаях оно очень полезно, в других без него легко можно обойтись. 

Содержание статьи

Что такое гидрострелка и где её устанавливают

Правильное название этого устройства — гидравлическая стрелка или гидроразделитель. Представляет собой кусок круглой или квадратной трубы с приваренными патрубками. Внутри, как правило, ничего нет. В некоторых случаях могут стоять две сетки. Одна (вверху) для лучшего «отхождения» воздушных пузырьков, вторая (внизу) для отсева загрязнений.

Примеры гидрострелок промышленного производства

В системе отопления гидрострелка ставится между котлом и потребителями — отопительными контурами. Располагаться может как горизонтально, так и вертикально. Чаще ставят вертикально. При таком расположении в верхней части ставят автоматический воздухоотводчик, внизу — запорный кран. Через кран периодически сливается некоторая часть воды с накопившейся грязью.

Где в системе отопления ставят гидроразделитель

То есть получается, что вертикально поставленный гидроразделитель, одновременно с основными функциями, отводит воздух и дает возможность удалять шлам.

Назначение и принцип работы

Гидрострелка нужна для разветвленных систем, в которых установлено несколько насосов. Она обеспечивает требуемый расход теплоносителя для всех насосов, независимо от их производительности. То есть, другими словами, служит для гидравлической развязки насосов системы отопления. Потому еще называют это устройство — гидравлический разделитель или гидроразделитель.

Схематическое изображение гидрострелки и ее места в системе отопления

Гидрострелку ставят в том случае, если в системе предусмотрено несколько насосов: один на контуре котла, остальные на контурах отопления (радиаторах, водяном теплом полу, бойлере косвенного нагрева). Для корректной работы их производительность подбирается так, чтобы котловой насос мог перекачивать немного больше теплоносителя (на 10-20%), чем требуется для остальной системы.

Зачем нужна гидрострелка для отопления? Давайте рассмотрим на примере. В системе отопления с несколькими насосами они зачастую имеют разную производительность. Часто получается так, что один насос в разы более мощный. Ставить все насосы приходится рядом — в коллекторном узле, где они гидравлически связаны. Когда мощный насос включается на полную мощность, все остальные контура остаются без теплоносителя. Такое случается сплошь и рядом. Чтобы избежать подобных ситуаций и ставят в системе отопления гидрострелку. Второй путь — разнести насосы на большое расстояние.

Режимы работы

Теоретически, возможны три режима работы системы отопления с гидрострелкой. Они отображены на рисунке ниже. Первый — когда насос котла прокачивает ровно столько же теплоносителя, сколько требует вся система отопления. Это идеальная ситуация, в реальной жизни встречающаяся очень редко. Объясним почему. Современное отопление подстраивает работу по температуре теплоносителя или по температуре в помещении. Представим, что все идеально рассчитали, подкрутили вентили и после настройки достигнуто равенство. Но через некоторое время параметры работы котла или одного из контуров отопления изменятся. Оборудование подстроится под ситуацию, а равенство производительности будет нарушено. Так что этот режим может просуществовать считанные минуты (или даже еще меньше).

Возможные режимы работы системы отопления с гидроразделителем

Второй режим работы гидрострелки — когда расход отопительных контуров больше мощности котлового насоса (средний рисунок). Эта ситуация опасна для системы и допускать ее нельзя. Она возможна, если насосы подобраны неправильно. Вернее, насос котла имеет слишком малую производительность. В этом случае для обеспечения требуемого расхода, в контуры вместе с нагретым теплоносителем от котла будет подаваться теплоноситель из обратки. То есть, на выходе котла, например, 80°C, в контура после подмеса холодной воды идет, например, 65°C (реальная температура зависит от дефицита расхода). Пройдя по отопительным приборам, температура теплоносителя опускается на 20-25°С. То есть, температура теплоносителя, подаваемого в котел, будет в лучшем случае 45°C. Если сравнить с выходной — 80°C, то дельта температур слишком велика для обычного котла (не конденсационного). Такой режим работы не является нормальным и котел быстро выйдет из строя.

Третий режим работы — когда насос котла подает больше нагретого теплоносителя, чем требуют отопительные контура (правый рисунок). В этом случае часть нагретого теплоносителя возвращается обратно в котел. В результате температура поступающего теплоносителя поднимается, работает он в щадящем режиме. Это и есть нормальный режим работы системы отопления с гидрострелкой.

Когда гидрострелка нужна

Гидрострелка для отопления нужна на 100%, если в системе будет стоять несколько котлов, работающих в каскаде. Причем работать они должны одновременно (во всяком случае, большую часть времени). Вот тут, для корректной работы гидроразделитель — лучший выход.

При наличии двух одновременно работающих котлов (в каскаде) гидрострелка — лучший вариант

Еще гидрострелка для отопления может быть полезна для котлов с чугунным теплообменником. В емкости гидроразделителя постоянно происходит смешивание теплой и холодной воды. Это уменьшает дельту температур на выходе и входе котла. Для чугунного теплообменника — это благо. Но с той же задачей справится байпас с трехходовым регулируемым клапаном и обойдется он значительно дешевле. Так что даже для чугунных котлов, стоящих в небольших системах отопления, с примерно одинаковым расходом вполне можно обойтись без подключения гидрострелки.

Когда можно поставить

Если в системе отопления есть только один насос — на котле, гидрострелка не нужна совсем. Можно обойтись и если устанавливаются один-два насоса на контуры. Такую систему можно будет сбалансировать при помощи регулировочных кранов.  Когда установка гидрострелки оправдана? Когда в наличии такие условия:

  • Контуров три и больше, все очень разной мощности (разный объем контура, требуется разная температура). В таком случае, даже при идеально точном подборе насосов и расчете параметров, есть возможность нестабильной работы системы. Например, часто встречается ситуация, когда при включении насоса теплых полов, радиаторы стынут. Вот в этом случае нужна гидроразвязка насосов и потому ставится гидравлическая стрелка.
  • Кроме радиаторов имеется водяной теплый пол, отапливающий значительные площади. Да, его подключать можно через коллектор и смесительный узел, но он может заставлять работать котловой насос в экстремальном режиме. Если у вас часто горят насосы на отоплении, скорее всего, нужна установка гидрострелки.
  • В системе среднего или большого объема (с двумя и более насосами) собираетесь установить автоматическую регулирующую аппаратуру — по температуре теплоносителя или по температуре воздуха. При этом не хотите/не можете регулировать систему вручную (кранами).
Пример системы отопления с гидрострелкой

В первом случае гидроразвязка, скорее всего, нужна, во втором, стоит думать об ее установке. Почему только думать? Потому что это немалые расходы. И дело не только в стоимости гидрострелки. Она стоит около 300$. Придется ставить еще дополнительное оборудование. Как минимум нужны коллекторы на входе и выходе, насосы на каждый контур (при небольшой системе без гидрострелки без них можно обойтись), а также блок управления скоростью насосов, так как через котел они уже управляться не смогут. В сумме с платой за монтаж оборудования этот «довесок» выливается примерно в две тысячи долларов. Действительно немало.

Зачем тогда ставят это оборудование? Потому что с гидрострелкой отопление работает стабильнее, не требует постоянной подстройки потока теплоносителя в контурах. Если вы спросите владельцев коттеджей, у которых отопление сделано без гидроразделителя, вам скажут, что часто приходится перенастраивать систему — крутить вентиля, регулируя потоки теплоносителя в контурах. Это характерно, если используются различные элементы отопления. Например, на первом этаже теплый пол, радиаторы на двух этажах, отапливаемые подсобные помещения, в которых надо поддерживать минимальную температуру (гараж, например). Если у вас предполагается примерно такая же система, а перспектива «подстройки» вас не устраивает, можно ставить гидрострелку для отопления. При ее наличии в каждый контур идет столько теплоносителя, сколько он требует в данный момент и никоим образом не зависит от параметров эксплуатации, работающих рядом насосов других контуров.

Как подобрать параметры

Подбирается гидравлический разделитель с учетом максимально возможной скорости потока теплоносителя. Дело в том, что при высокой скорости движения жидкости по трубам она начинает шуметь. Чтобы не было этого эффекта, максимальная скорость принимается равной 0,2 м/с.

Параметры, нужные для гидроразделителя

По максимальному потоку теплоносителя

Чтобы рассчитать диаметр гидрострелки по этому методу, единственное, что нужно знать — это максимальный поток теплоносителя, который возможен в системе и диаметр патрубков. С патрубками все просто — вы же знаете, какой трубой будете делать разводку. Максимальный поток, который может обеспечить котел, мы знаем (есть в технических характеристиках), а расход по контурам зависит от их размера/объема и определяется при подборе контурных насосов. Расход на все контуры складывается, сравнивается с мощностью котлового насоса. Большая величина подставляется в формулу для расчета объема гидрострелки.

Формула расчета диаметра гидравлического разделителя для системы отопления в зависимости от максимального потока теплоносителя

Приведем пример. Пусть максимальный расход в системе 7,6 куб/час. Допустимая максимальная скорость берется стандартная — 0,2 м/с, диаметр патрубков 6,3 см (трубы на 2,5 дюйма). В этом случае получаем: 18,9 * √ 7,6/0,2 = 18,9 * √38 = 18,9 * 6,16 = 116,424 мм. Если округлить, получаем, что диаметр гидрострелки должен быть 116 мм.

По максимальной мощности котла

Второй способ — подбор гидравлической стрелки по мощности котла. Оценка будет приблизительной, но ей можно доверять. Нужна будет мощность котла и разница температур теплоносителя в подающем и обратном трубопроводе.

Расчет гидрострелки по мощности котла

Расчет также несложный. Пусть максимальная мощность котла — 50 кВт, дельта температур — 10°C, диаметры патрубков такие же — 6,3 см. Подставив цифры, получаем — 18,9 * √ 50 / 0,2 * 10 = 18,9 * √ 25 = 18,9* 5 = 94,5 мм. Округлив, получаем диаметр гидрострелки 95 мм.

Как найти длину гидрострелки

С диаметром гидроразделителя для отопления определились, но надо знать еще и длину. Ее подбирают в зависимости от диаметра подключаемых патрубков. Есть два вида гидрострелок для отопления — с отводами, расположенными один напротив другого и с чередующимися патрубками (располагаются со сдвигом один относительно другого).

Определяем длину гидрострелки из круглой трубы

Рассчитать длину в этом случае легко — в первом случае это 12d, во втором — 13d. Для средних систем можно и диаметр подобрать в зависимости от патрубков — 3*d. Как видите, ничего сложного. Рассчитать можно самостоятельно.

Купить или сделать своими руками?

Как говорили, готовая гидрострелка для отопления стоит немало — 200-300$ в зависимости от производителя. Чтобы снизить затраты, возникает закономерное желание сделать ее самостоятельно. Если варить умеете, никаких проблем — купили материалы и сделали. Но при этом надо учесть следующие моменты:

  • Резьба на сгонах должна быть хорошо прорезанной и симметричной.
  • Стенки отводов одинаковой толщины.
Качество самодельного изделия может быть «не очень»

Вроде, очевидные вещи. Но вы удивитесь, как сложно найти четыре нормальных сгона с нормально сделанной резьбой. Далее, все сварные швы должны быть качественными — система будет работать под давлением. Сгоны приварены строго перпендикулярно к поверхности, на нужном расстоянии. В общем, не такая простая это задача.

Если сами пользоваться сварочным аппаратом не умеете, придется искать исполнителя. Найти его совсем непросто: либо дорого просят за услуги, либо качество работы, мягко говоря, «не очень». В общем, многие решают купить гидрострелку, несмотря на немалую стоимость. Тем более, в последнее время, отечественные производители делают не хуже, но намного дешевле.

Как подобрать гидрострелку для системы отопления?

Гидравлическая стрелка — это устройство, которое устанавливается между циркуляционными контурами источников и потребителей тепла.

Гидравлическая стрелка гасит скорость теплоносителя, и, таким образом, создает ситуацию, когда циркуляция насосов потребителей тепла не переходит в котловой контур циркуляции тепла, и наоборот. Теплоноситель беспрепятственно переходит из одного контура в другой, просто в гидравлической стрелке его скорость резко падает, и его отбирает тот контур, в котором работает (-ют) насосы.

Гидравлическая стрелка устанавливается в отопительных установках, которые имеют котлы с мощной самодиагностикой, с высокой теплонапряженостью топки, несколько котлов. Для подбора гидрострелки в котельную установку, необходимо расчитать номинальный оборот теплоносителя. Расчет оборота теплоносителя осуществляется по формуле:

G = (N x 0,86) / Δt

Схема подключения гидравлической стрелки
(нажать для увеличения)

G — максимальный часовой расход отопительной воды [м³/ч]
N — номинальная мощность котельной установки [кВт]
Δt — температурный перепад между подающей и обратной линиями [°С]

Пример:
Мощность котельной установки — 68 кВт.
Определим максимальный часовой расход:
G = 68 кВт x 0,86 / 20°С = 2,9 м³/ч

Используем таблицу подбора гидравлических стрелок Meibes.

Итак, по нижеприведенному перечню гидрострелок, нам подойдет гидрострелка Meibes MHK 32 с максимальным расходом 3,0 м³/ч.

Наименование

Расход теплоносителя, м³/ч


Максимальная мошность на Δt = 20°С, кВт

MHK 25

2,0

46,0

MHK 32

3,0

70,0

для V-UK / V-MK

4,5

105,0

HZW 50

6,0

135,0

HZW 80

12,0

280,0

HZW 100

30,0

700,0

HZW 150

50,0

1150,0

HZW 200

100,0

2300,0

Что такое гидрострелкаМастер водовед

05 октября 2013г.

Нередко, на страницах интернет-ресурсов, можно встретить очень сжатое, написанное только техническими терминами, описание гидрострелки. Мы в этой статье постараемся раскрыть, что такое гидрострелка и зачем она нужна.

Гидрострелка — применяется для гидравлического разделения потоков. Таким образом, гидравлический разделитель это некий канал между контурами, который позволяет сделать динамически независимые контуры для передачи движения от теплоносителя. Чаще в интернете используют официальное название: гидрострелка гидравлический разделитель.

Зачем нужна гидрострелка в системе отопления

В системе отопления, гидрострелка — это связующее звено между двумя отдельными контурами по передаче тепла и она полностью нейтрализует динамическое влияние между контурами. У нее есть два назначения:

  • первое — она исключает гидродинамическое влияние, при отключении и включении некоторых контуров в системе отопления, на весь гидродинамический баланс. Например, при использовании радиаторного отопления, теплых полов и нагрева бойлера, имеет смысл разделять каждый поток на отдельный контур, для исключения влияния друг на друга.(смотрите)
  • второе — при небольшом расходе теплоносителя — она должна получить большой расход для второго, искусственно созданного контура. Например, при использовании котла с расходом 40 л/мин, система отопления получается по расходу больше в 2-3 раза (расходует 120 л/мин). В таком случае целесообразно первый контур установить контуром котла и систему развязки отопления установить вторым контуром. Вообще, разгонять котел больше чем предусматривается производителем котла экономически нецелесообразно, в таком случае увеличивается и гидравлическое сопротивление, оно либо не дает необходимый расход, либо увеличивает нагрузку движения жидкости, это приводит к повышенному энергопотребления насоса.

По какому принципу работает гидрострелка

Циркуляция теплоносителя в первом контуре создается при помощи первого насоса. Вторым насосом создается циркуляция через гидрострелку во втором контуре. Таким образом теплоноситель перемешивается в гидрострелке. Если расход в обоих контурах у нас одинаковый, то теплоноситель беспрепятственно проникает из контура в контур, создавая как бы единый, общий контур. В таком случае не создается вертикального движения в гидрострелке или это движение приближено к нулю. Если расход во втором контуре больше чем в первом, то в гидрострелке происходит движение теплоносителя снизу вверх и при увеличенном расходе в первом контуре — сверху вниз.

Рассчитывая и настраивая гидрострелку, нужно добиться минимального вертикального движения. Экономический расчет показывает, что это движение не должно превышать 0.1 м/с.

Зачем снижать вертикальную скорость в гидрострелке? 

Гидрострелка служит и как отстойник мусора в системе, при малых вертикальных скоростях мусор постепенно оседает в гидрострелке, выводясь из системы отопления.

Создание естественной конвекции теплоносителя в гидрострелке, таким образом холодный теплоноситель уходит вниз, а горячий устремляется вверх. Таким образом создается необходимый температурный напор. При использовании теплого пола, можно в второстепенном контуре получить пониженную температуру теплоносителя, а для бойлера более высокую, обеспечив быстрый нагрев воды.

Уменьшение гидравлического сопротивления в гидрострелке,

Выделение из теплоносителя микроскопических пузырьков воздуха, тем самым выводя его из системы отопления через автовоздушник.

Как узнать, что нужна гидрострелка

Как правило, гидрострелку ставят в домах, площадь которых более 200 кв.м., в тех домах где сложная система отопления. Там где используется распределение теплоносителя на несколько контуров. Такие контура желательно делать независимыми от других в общей системе отопления. Гидрострелка позволяет создать идеально стабильную систему отопления и распространять тепло по дому в нужных пропорциях. При использовании такой системы распределение тепла по контурам становится точным и отклонения от настроенных параметров исключены.

Преимущества использования гидрострелок.

Защита чугунных теплообменников исключая тепловой удар. В обычной системе, без использования гидрострелки, создается резкое повышение температуры, при отключении некоторых веток и последующий приход уже холодного теплоносителя. Гидравлическая стрелка дает постоянный расход котла, уменьшая разницу температур между подачей и обраткой.

Повышается долговечность и надежность котельного оборудования за счет стабильной работы без перепадов температуры.

Отсутствие разбалансированности и создание гидравлической устойчивости системы отопления. Именно гидрострелка позволяет увеличить дополнительный расход теплоносителя, что очень трудно добиться установкой дополнительных насосов.

Принцип работы гидравлической стрелки видео 

Полезные статьи


Насосная группа для отопления её сосотав

Насосная группа – специальный комплекс приборов, предназначенный для обеспечения циркуляции теплоносителя в системе отоплениям для равномерного распределения тепла по отапливаемому помещению. Использование насосной группы гарантирует поддержание требуемого температурного режима без дополнительных регулировок и постоянных корректировок со стороны пользователей.

Подробнее


ОБОРУДОВАНИЕ КОТЕЛЬНОЙ: ПОСОВЕТУЕМ, КАК ПРАВИЛЬНО СДЕЛАТЬ И КАКОЕ ОБОРУДОВАНИЕ В КОТЕЛЬНОЙ НЕОБХОДИМО

Оборудование котельной: посоветуем, как правильно сделать и какое оборудование в котельной необходимо. Оборудование котельной — один из последних этапов в графике строительства дома.

Подробнее


Как работает насосная группа для отопления

Насосная группа для отопления, а точнее насосно-смесительная группа, является наиболее популярным и проверенным методом распределения температуры для обеих систем.

Подробнее


РАБОТА ГИДРОСТРЕЛОК ДЛЯ ОТОПЛЕНИЯ

Уважаемые посетители сайта-магазина proxytherm.ru, в этой небольшой статье попытаемся рассмотреть принципы работы и основное предназначение гидрострелки. Принцип работы гидрострелки. Предназначение устройства.

Подробнее


Коллектор с гидрострелкой

Современные отопительные системы оборудуются специальными элементами гидравлическими разделителями и коллекторами распределения.

Подробнее


Гидрострелка для отопления. Принцип работы.

Гидрострелка для отопления, принцип работы которой и техническая схема не отличаются большой сложности, крайне ответственный элемент современных отопительных систем.

Подробнее


Гидрострелка

Гидрострелка широко применяется в современных системах отопления. Несмотря на то, что основной функцией гидравлического разделителя считается, разделение потоков теплоносителя и балансировка системы, гидрострострелка, цена которой в высшей степени демократична, имеет обширный функционал, в частности защита и продление срока оборудования.

Подробнее


Гидравлическая стрелка

Гидрострелка – конструктивно нехитрое устройство, состоящее из закрытой емкости с двумя парами патрубков. Но простота конструкции только подчеркивает гениальность этого устройства, которое обеспечивает эффективность работы сложных отопительных систем. Гидрострелка, купить которую можно практически в любом специализированном магазине, защищает систему от тепловых ударов, обеспечивает баланс между контурами системы.

Подробнее


принцип работы, схема изготовления своими руками

На чтение 7 мин Просмотров 35 Опубликовано Обновлено

Гидрострелка в системе отопления или разделитель потоков – это особое устройство, применяемое для согласованной работы входящих в ее состав приборов и контуров. Оно представляет собой своеобразный коллектор, регулирующий напор жидкости в каждом из водяных каналов. Свое название устройство получило из-за функционального сходства с железнодорожной стрелкой.

Достоинства и недостатки

Гидрострелка в системе отопления снижает затраты на электроэнергию, оптимизирует потоки теплоносителя

К достоинствам гидравлических распределителей для отопительных систем относят:

  • получение оптимального соотношения потоков теплоносителя в прямом и обратном трубопроводах;
  • возможность установки циркуляционного насоса небольшой мощности – снижение затрат на оборудование и электрическую энергию;
  • уменьшение гидравлических нагрузок в элементах отопительной системы;
  • продление срока службы;
  • возможность удаления воздуха из каналов.

Явных недостатков у гидравлического разделителя не выявлено. Но некоторые ограничения в практическом применении имеются. К минусам этих устройств относят:

  • недопустимость работы в составе оборудования твердотопливных котлов;
  • влияние на функциональность стрелки заявленной мощности котельного агрегата – с его увеличением надежность ее работы падает.

Время безаварийной эксплуатации изделия в этом случае также сокращается.

Устройство разделителя

Внутреннее устройство гидравлической стрелки

Внешне разделитель выглядит как отрезок трубы, имеющий прямоугольное (реже – круглое) сечение и две заглушки по ее противоположным торцам. Такая конструкция соединяется с котлом небольшими патрубками и имеет еще несколько отводов в боковой части. В продаже встречаются изделия различной формы и типоразмера, имеющие простое устройство. Но существуют универсальные модели, согласно своему назначению выполняющие сразу две функции: коллектора и разделителя потоков.

«Классическая» гидрострелка для отопления изготавливается в виде стального цилиндра и имеет несколько отводных патрубков, размер которых учитывается по внутреннему сечению. Обычно она монтируется вертикально, но при необходимости может устанавливаться в горизонтальной плоскости. Вертикальное расположение применяется чаще, поскольку в этом положении проще удалять примеси и отводить газы.

В большинстве случаев стрелка – это сварная конструкция на основе стальных труб, но не исключается вариант ее изготовления из медных или полипропиленовых заготовок.

Дополнительные возможности

Кран внизу для слива позволяет удалять из теплоносителя мусор и накипь

Особенности функционирования схемы отопления с гидрострелкой предоставляют пользователю такие дополнительные возможности:

  • При попадании потока жидкости в каналы разделителя, его скорость несколько уменьшается. Это способствует осаждению на дне вредных примесей, всегда имеющихся в теплоносителе.
  • Для периодического удаления скопившегося осадка в нижней части корпуса имеется отдельный вентильный кран.
  • Снижение скорости тока позволяет выводить из воды имеющиеся в ней воздушные пузырьки. Они удаляются через автоматический клапан.

В последнем случае гидравлическая стрелка используется как сепаратор.

В сетях с чугунными котлами распределитель потоков выполняет функцию дополнительной защиты. При наличии гидроразделителя в теплообменник не попадет холодная вода, способная вызвать поломку нагревательных элементов.

Принцип работы

Скорость теплоносителя позволяет уменьшить теплопотери для потребителей

Отопительные сети не способны функционировать слаженно, так как контуры рассчитаны на индивидуальную производительность и конкретный показатель по напору носителя. В основу принципа действия гидравлической стрелки заложены особенности конструкции, благодаря которым у корпуса прибора сопротивление потоку воды минимально. Указанное свойство позволяет не уменьшать скорость перемещения носителя, существенно снизив тепловые потери во всей сети.

По сути распределитель – это своеобразный буфер, разделяющий нагревательное оборудование (котел) и потребительскую часть коллектора. В результате его применения каждый индивидуальный насос работает автономно, не нарушая балансировки каналов.

Гидравлический разделитель для отопления предназначен для разделения отдельных потоков из суммарного контура и согласования их совместной работы.

Методы расчета разделителя

Перед установкой гидрострелки обязателен расчет отдельных конструктивных элементов. При его проведении должны учитываться следующие факторы:

  • расход теплового носителя в работающей системе;
  • тепловая мощность, развиваемая в каждом из контуров.

При проведении расчетов также учитываются теплоемкость рабочей жидкости и различие температуры водного носителя в каналах обратки и подачи. Требуемый результат вычисляется по следующей формуле:

где D – это искомый диаметр изделия, Q – среднее значение расхода воды (м3/сек), π – классическая константа, а V – скорость потока жидкости в вертикальном направлении (при норме 0,1 метра секунду).

При самостоятельной сборке стрелки и расчете оптимальных параметров действуют по схеме, полученной опытным путем:

  1. Для нахождения внутреннего диаметра берется сумма всех мощностей рабочего котла в киловаттах и делится на разницу температурных показателей в прямой подаче и в обратке.
  2. Потребуется извлечь из полученного результата корень квадратный, а затем умножить итог на число 49.
  3. Для нахождения размера промежутка между патрубками следует умножить внутренний диаметр на два.

Для определения высоты корпуса распределителя тот же диаметр умножается на шесть.

Совмещенная гидрострелка

Совмещенная гидрострелка с балансировочным клапаном

Для подключения отопительных контуров на объектах, имеющих площадь более 150 м² вместо обычного разделителя, получающегося громоздким, используются специальные гребенки. Они представляют собой последовательную конструкцию, объединяющую возможности гидрострелки и коллектора для отопления, которые для этого соединяют стальными перемычками. Количество сдвоенных патрубков подбирается равным числу контуров (их потребуется по паре штук). К преимуществам такого совмещения относят:

  • Упрощается ремонт и эксплуатация всей системы отопления. Небольшая по размерам конструкция не займет в помещении слишком много места.
  • Запорную, а также регулирующую часть арматурного комплекта удается разместить в одном месте.
  • Благодаря увеличенному диаметру коллекторного канала тепловой носитель равномерней распределяется по контурам.

Для обустройства обвязки при данном подходе используются специальные монтажные выпуски, часть из которых предназначена для радиаторного контура, а другая – для подключения обогрева полов.

К особенностям совмещенной конструкции относят наличие специального теплообменника, а также установку в промежутке между прямым и обратным коллектором отдельного балансировочного клапана.

Порядок самостоятельного изготовления

При изготовлении гидрострелки своими руками нужно иметь навыки сварочных работ

Для сборки стрелки для отопления своими руками сначала потребуется провести теоретические расчеты, после чего подготавливаются чертежи и рабочие схемы. Эту часть подготовительных мероприятий лучше всего доверить специалисту по теплотехнике, владеющему необходимой теоретической подготовкой. Человеку, решившему изготовить стрелку своими руками, необходимо обладать навыками проведения сварных работ.

Сборка любой модификации гидравлической стрелки основана на правиле «3-х диаметров». Рабочий размер патрубков выбирают втрое меньше диаметра основного цилиндра распределителя. Располагаются они диаметрально противоположно, а их местоположение по высоте привязывается к главному калибру. Возможен вариант, при котором отводы делаются так называемой «лесенкой», что позволяет повысить эффективность выведения газов и удаления нерастворимых взвесей. Помимо этого выбор такой конструкции при самостоятельной сборке способствует нормальному смешению потоков.

Соотношения их расположений лучше всего выбирать таким образом, чтобы скорость перемещения вертикального потока достигала 0,2 метров в секунду. Согласно действующим нормативам превышать этот предел недопустимо, поскольку тогда водные потоки не успевают смешиваться. А это чревато появлением температурного градиента и ухудшением условий распределения потоков.

Если предполагается изготовить многоконтурную систему отопления с различными температурами теплоносителя, придется собирать совмещенную стрелку (вкупе с коллектором).

В этом случае предпочтительней выбрать горизонтальную схему, которая в отличие от вертикального аналога не так распространена у любителей и профессионалов. Но в данной ситуации на первое место выходят вопросы эффективности эксплуатации отопительной системы, а не удобство ее обслуживания, чистки и ремонта.

Понимание базовой схемы гидродинамики

Джош Косфорд, редактор

Из любой темы, находящейся под зонтиком гидравлической энергии размером с патио, гидравлическая символика привлекает больше всего запросов от тех, кто хочет узнать больше о гидравлической энергии. Чтение любой схемы с более чем тремя символами может быть сложной задачей, если ваш опыт ограничен. Но научиться этому можно. Фактически, требуется лишь базовое понимание того, как работают символы и как они расположены на диаграмме.Одна из проблем — даже если вы запомнили каждый символ в библиотеке — это понять, почему тот или иной символ используется в схеме; Этой части трудно научить, и она приходит только с опытом.

В этом месяце я дам вам основы, чтобы вы знали, как нарисованы и структурированы стандартизированные линии и формы для универсальной интерпретации. Если вы уже знакомы со схемами, обратите внимание на простоту. В некоторых случаях я также попытаюсь привести примеры старых символов, поскольку на многих заводах есть старые машины со старыми схемами.

Основными элементами любой схемы являются линии разного типа. Чаще всего используется сплошная черная линия, которую я называю базовой линией. Это многофункциональная линия, которая используется для всех распространенных форм (например, квадратов, кругов и ромбов) в дополнение к отображению проводников жидкости, таких как линии всасывания, давления и возврата.

Другой широко используемый стиль линий — это пунктирная граница или линия ограждения. Он представляет собой группу гидравлических компонентов как часть составного компонента (такого как направляющий клапан с пилотным управлением, вместе с пилотным и основным клапаном), вспомогательной цепи (например, цепи безопасности для гидравлического пресса) или подставки. один гидравлический коллектор с патронными клапанами.Обычно пограничное ограждение представляет собой четырехсторонний многоугольник, использующий пунктирную линию, с различными символами клапана, содержащимися внутри, как представление реальной гидравлической системы.

Третья наиболее часто встречающаяся линия — это простая пунктирная линия. Это линия с двойной функцией, представляющая как пилотную, так и дренажную линии. Пилотная линия как в представлении, так и в функциях использует гидравлическую энергию для подачи сигналов или управления другими клапанами. Умение понимать пилотные линии является ключом к пониманию передовых гидравлических схем. В качестве дренажной линии пунктирная линия просто представляет любой компонент с текучей средой утечки, требующий пути, представленного на чертеже.

Когда линии на схеме представляют шланги, трубы или трубы на машине, часто требуется, чтобы они пересекались или соединялись с другими трубопроводами. В случае соединенных гидравлических трубопроводов точка или узел добавляется к соединению на чертеже, чтобы показать, как они соединяются на машине. Линия, пересекающаяся на чертеже, не обязательно должна пересекаться на машине, но требуется пояснение к чертежу, чтобы отличать пересекающиеся линии от линий, которые соединяются.Линии пересечения раньше показывались как прыжок или мост, но сейчас стандарт таков, что они просто пересекаются без драматизма.

Если мы станем немного более продвинутыми, чем ваша базовая линия, у нас есть три другие общие формы, используемые в гидравлических схемах. Это круг, квадрат и ромб. Девяносто девять процентов гидравлических символов используют один из этих трех в качестве основы. Насосы и двигатели любого типа изображены в круге, как и измерительные приборы. Клапаны любого типа используют в качестве начала основной квадрат.Некоторые из них представляют собой просто один квадрат, например, напорные клапаны, но другие используют три соединенных квадрата, например, с трехпозиционным клапаном. Ромбы используются для обозначения устройств для кондиционирования жидкости, таких как фильтры и теплообменники.

Квадрат применяется в основном для клапанов разного типа; Клапаны давления и направляющие клапаны являются наиболее распространенным применением. Один квадрат используется для каждого упрощенного клапана давления, который я могу придумать; предохранительные клапаны, редукционные клапаны, уравновешивающие клапаны, клапаны последовательности и т. д.Каждый напорный клапан, за исключением редукционного клапана, является так называемым нормально закрытым и не пропускает жидкость в нейтральном состоянии. Клапаны должны открываться прямым или пилотным давлением, которое может возникать в любом месте в пределах настройки пружины.

Если мы сломаем символ предохранительного клапана, мы сможем увидеть еще несколько форм, которые ранее не обсуждались. Первый — это стрелка. В большинстве случаев стрелки не используются, и мы предполагаем, что жидкость может течь в любом направлении. В случае с нашим предохранительным клапаном жидкость протекает через него только в одном направлении, как мы можем видеть по вертикальной смещенной стрелке.Вторая стрелка предохранительного клапана нарисована по диагонали, что означает возможность регулировки. В этом случае пружина, на которую он накладывается, означает, что этот предохранительный клапан имеет пружину с регулируемыми настройками давления.

Предположим, что предохранительный клапан установлен на 2000 фунтов на квадратный дюйм. Вы заметите пунктирную линию, идущую снизу символа, закругляющую угол и прикрепленную к левой стороне. Эта пунктирная линия указывает на то, что клапан напрямую управляется давлением на его входном отверстии, и что управляющая жидкость может воздействовать на клапан, нажимая стрелку вправо. На самом клапане, конечно, нет стрелки, но, как и в символах гидравлики, он просто представляет собой визуальную модель того, что происходит. Когда давление в пилотной линии приближается к 2000 фунтов на квадратный дюйм, стрелка нажимается, пока клапан не достигнет центра, позволяя жидкости проходить, что, в свою очередь, снижает давление до тех пор, пока на входе не будет 2000 фунтов на квадратный дюйм.

Редукционный клапан — единственный нормально открытый клапан давления в гидравлике. Как видите, он очень похож на предохранительный клапан, за исключением двух изменений символа.Во-первых, стрелка показывает, что поток течет в нейтральном положении, в то время как предохранительный клапан заблокирован. Во-вторых, он получает свой пилотный сигнал от клапана. Когда давление ниже по потоку поднимается выше значения настройки пружины, клапан закрывается, предотвращая попадание входящего давления в канал ниже по потоку, что позволяет давлению снова снизиться до значения ниже настройки давления.

В гидрораспределителях по-прежнему используются квадратные размеры, что видно по показанным тарельчатым клапанам 2/2 и соленоидным клапанам 4/3.Каждый конверт — или квадрат — представляет одно из возможных положений клапана. Тарельчатый клапан 2/2 не определяет, как смещается клапан, но указывает, что он блокирует поток в одном положении и разрешает поток в другом. Клапан 4/3 показывает, что он блокирует весь поток в среднем (нейтральном) положении. Затем его можно сдвинуть влево или вправо, по существу, обратное течение потока из рабочих портов. Символы пружины расположены над каждым из символов соленоидов и представляют собой сдвоенные соленоиды с функцией центрирования пружины.

Круги обозначают насосы и двигатели в 90% используемых символов, а также могут использоваться в обратных клапанах или манометрах. Треугольные стрелки обозначают направление движения жидкости; у насосов он обращен наружу, а у двигателей — внутрь. Двигатели часто бывают двухоборотными, и внизу также будет треугольник, позволяющий жидкости поступать в любой порт. Некоторые насосы также могут быть двигателями одновременно и, кроме того, могут быть двухоборотными, как показано на следующем символе.Обозначение насоса переменной производительности с компенсацией давления варьируется в широких пределах и иногда просто отображается стрелкой внутри круга. Этот конкретный пример — мой любимый, он несколько простой, хотя он может быть довольно сложным, показывая отдельные символы для различных компенсаторов, отверстий и / или пропорциональных клапанов.

Последняя основная форма, обычно используемая в гидравлической символике, — это ромб. Ромбами обозначены кондиционирующие устройства, такие как фильтры, нагреватели или охладители.Вы можете представить, что пунктирная линия, разделяющая символ фильтра пополам, улавливает частицы, когда они проходят. Для кулера две направленные наружу стрелки представляют тепло, излучаемое кулером. Наконец, показан теплообменник типа жидкость-жидкость, показывающий путь входящей и исходящей текучей среды, которая отводит тепло из системы.

Основы гидравлической символики довольно просты, но я коснулся только поверхности. Есть много специальных символов, обозначающих такие вещи, как электроника, аккумуляторы, различные цилиндры и шаровые краны, которые у меня нет возможности показать.Более того, каждый показанный мною символ представляет небольшую часть возможных модификаций каждого из них; существует, вероятно, сотня или больше способов изобразить гидравлический насос схематическим обозначением.

Наконец, способы комбинирования гидравлических символов для создания полной схемы, представляющей реальную машину, бесконечны. Я рекомендую вам потратить время на чтение гидравлических схем, чтобы интерпретировать символы, когда у вас есть время. Вы не только откроете для себя уникальные символы, но и найдете уникальные способы использования старых символов и компонентов в гидравлической цепи.

Базовая гидравлика — понимание схем

ГЛАВА 12 — Понимание схем

Рисунок 12. 1 — схематические символы нарисованы простыми формами, такими как эти

Обозначения

Символы важны для технической коммуникации. Они не зависят от какого-либо конкретного языка, являются международными по своему охвату и характеру. Гидравлические графические символы подчеркивают функции и методы работы компонентов.Эти символы можно довольно просто нарисовать, если понимать логику и элементарные формы, используемые в дизайне символов. Элементарные формы символов — круги, квадраты, треугольники, дуги, стрелки, точки и кресты.

Рисунок 12.2 — представление схематических линий, которые могут быть найдены на гидравлической схеме

Строки

Понимание графических линейных символов имеет решающее значение для правильной интерпретации схем.Непрерывные линии обозначают рабочую линию, питающую, обратную или электрическую линию. Пунктирная линия обозначает пилотную линию, линию слива, продувки или слива. Гибкие или изогнутые линии обозначают шланг, обычно соединенный с движущейся частью. Пересечение линий может иметь петли на пересечении или прямое пересечение. Соединение линий может иметь точку на стыке или может располагаться под прямым углом.

Рисунок 12.3 — схематические изображения резервуаров гидросистемы

Резервуары

Резервуары с вентиляцией показаны в виде прямоугольника без верхней линии.Резервуары под давлением показаны в виде капсул. В резервуарах могут быть линии для жидкости, заканчивающиеся выше или ниже уровня жидкости. Возвратная линия выше уровня заканчивается на вертикальных ножках бака или немного ниже них. Линия возврата ниже уровня касается нижней части символа резервуара. Упрощенный символ для обозначения резервуара сводит к минимуму необходимость рисования ряда линий, возвращающихся в резервуар. Некоторые из них в одном контуре представляют собой общий резервуар. Эти символы имеют ту же функцию, что и символ заземления в электрических цепях.

Рисунок 12.4 — схематические изображения гидронасосов

Управление потоком

Символ клапана управления потоком начинается с верхней и нижней дуги. Это будет символизировать фиксированное отверстие. Стрелка, проходящая через дуги, указывает на то, что отверстие регулируется. Это будет графический символ игольчатого клапана. Когда мы добавляем стрелку к линии потока внутри блока управления, мы указываем, что клапан имеет компенсацию давления или истинное управление потоком.Клапан управления потоком с обратным клапаном указывает обратный поток вокруг клапана.

Рисунок 12.5 — схематические изображения гидрораспределителей

Направляющие регулирующие клапаны

Символ гидрораспределителя имеет несколько огибающих, показывающих количество положений клапана. Трехпозиционный гидрораспределитель показан с тремя огибающими.Стрелки в каждом конверте указывают возможное направление потока, когда клапан находится в этом положении. Центральное положение в трехпозиционном гидрораспределителе определяется в зависимости от типа контура или применения. Это центральное положение указывает путь потока жидкости, когда клапан находится в центре. Хотя существует много типов конфигураций центра, четыре наиболее распространенных — это тандемная, закрытая, плавающая и открытая. Чтобы сдвинуть клапан или активировать его, используются такие устройства, как механическая ручка или рычаг, электрический соленоид или гидравлическое управляющее давление.Пружины по обеим сторонам символа указывают на то, что клапан центрирован, когда он не активирован. В положении один или по центру жидкость течет из насоса через клапан в резервуар. Это тандемный центр. Когда клапан переводится в положение два, жидкость течет из P в A, расширяя цилиндр. Переключение в положение три позволяет потоку от P к B и от A к T, втягивая цилиндр.

Рисунок 12.6 — схематические изображения гидрораспределителей

Клапаны давления

Символ клапана давления начинается с одного конверта.Стрелка на конверте показывает направление потока через клапан. Порты обозначены как 1 и 2 или как первичный и вторичный. Поток через клапан идет от первичного к вторичному порту. Обратите внимание, что в нормальном положении стрелка не совмещена с портом. Это указывает на то, что клапан нормально закрыт. Все клапаны давления обычно закрыты, за исключением редукционного клапана, который обычно открыт. Пружина, расположенная перпендикулярно стрелке, указывает на то, что сила пружины удерживает клапан в закрытом состоянии.Стрелка, проходящая через пружину по диагонали, указывает на то, что усилие пружины можно регулировать. Управляющее давление противодействует силе пружины. На это указывает пунктирная линия, идущая от первичного порта перпендикулярно стрелке напротив пружины. Когда гидравлическое давление, управляемое из первичного порта, превышает силу пружины, клапан перемещается в открытое положение, выравнивая первичный и вторичный порты.

Рисунок 12.7 — схематические изображения напорных клапанов

Обратные клапаны

Символы обратного клапана нарисованы маленьким кружком внутри открытого треугольника.Свободный поток противоположен направлению, в котором указывает треугольник. Когда круг переходит в треугольник, поток блокируется или останавливается. Обратные клапаны могут открываться или закрываться с помощью пилота. Пилот для открытия обозначен пилотной линией, направленной к показанному треугольнику, чтобы отодвинуть круг от уплотнения. Пилот должен замкнуться, указывая направление пилотной линии к задней части круга или к сиденью.

Рисунок 12. 8 — схематические изображения обратных клапанов

Двигатели

Графические символы гидравлического двигателя противоположны гидравлическим насосам, с той разницей, что энергетический треугольник указывает на круг, указывая на поступление энергии жидкости.Два энергетических треугольника указывают на двунаправленный или реверсивный двигатель. Как и насосы, многие конструкции гидравлических двигателей имеют внутреннюю утечку. Пунктирная линия, выходящая из круга, указывает линию слива в бак.

Рисунок 12.9 — схематические изображения гидромоторов

Цилиндры

Гидравлические силовые цилиндры без каких-либо необычных соотношений между диаметром отверстия и штоком показаны на Рисунке 12.10: одинарного действия, двойного действия и двойного стержня. Внутренний прямоугольник рядом с символом поршня указывает на амортизирующее устройство в конце хода. Если диаметр стержня больше обычного для диаметра отверстия, это должно отражаться в символе.

Рисунок 12.10 — схематические изображения цилиндров

Фильтры

Графический символ устройства кондиционирования гидравлической жидкости изображен квадратом, стоящим на конце.Пунктирная линия в противоположных углах указывает на то, что это фильтр или сетчатый фильтр. Добавление обратного клапана параллельно портам указывает на то, что фильтр имеет байпас.

Рисунок 12.11 — схематические изображения гидравлических фильтров

Теплообменник

Гидравлические теплообменники можно рассматривать как охладители или нагреватели. Их графические символы часто путают. Как и в случае с фильтром, базовый символ отображается в виде квадрата на конце. Внутренние стрелки указывают на ввод тепла или нагревателя. Стрелки указывают на рассеивание тепла или охлаждение. Стрелки, указывающие внутрь и наружу, будут указывать на регулятор температуры или температуру, которая поддерживается между двумя заданными пределами.

Схема чтения

Контур № 1

Схема — это набор взаимосвязанных графических символов, показывающих последовательность операций. Короче говоря, они объясняют, как работает схема.Правильное прочтение схемы — самый важный элемент поиска и устранения неисправностей гидравлики. Хотя поначалу большинство схем может показаться сложным, распознавание стандартных символов и систематического отслеживания потоков упрощает процесс.

В схеме на рис. 12.13 используются два клапана последовательности. Это нормально закрытые клапаны, которые открываются при заданной настройке. Отслеживая поток в контуре, можно определить, как контур спроектирован для работы. Этот процесс называется чтением схемы. Начнем с насоса.

Рисунок 12.13 — гидравлическая схема контура № 1

Следуйте за потоком мимо предохранительного клапана к гидрораспределителю, который перемещается в верхнее положение, как показано. Направленный регулирующий клапан направляет поток в линии верхнего контура. Здесь поток может идти в трех направлениях. Верхний обратный клапан перекрывает один проход. Клапан закрытой последовательности блокирует другой, но поток к порту A привода открыт.Когда шток цилиндра втягивается, поток из порта B блокируется обратным клапаном, поэтому он выходит в резервуар через распределительный клапан.

Когда цилиндр полностью втянут, давление будет расти в пилотном канале клапана последовательности. Он открывается и подает управляющее давление на гидрораспределитель. Управляющее давление на верхней стороне гидрораспределителя сдвигает клапан вниз. Теперь поток насоса направляется в нижний контур, а поток здесь направляется в три места. Он заблокирован на обратном клапане и заблокирован на клапане закрытой последовательности, но поток к порту B привода открыт. Поток в отверстии будет оказывать давление на поршень и расширять цилиндр. Поток из порта A блокируется верхним обратным клапаном, поэтому он проходит через распределительный клапан в резервуар. Когда цилиндр полностью выдвинут, давление продолжает расти. Управляющее давление открывает клапан последовательности внизу. Это посылает управляющее давление в нижнюю часть гидрораспределителя, переводя его обратно в верхнее положение.Теперь поток насоса снова направляется на сторону штока привода для втягивания цилиндра, и цикл начинается снова. Отслеживание потока в этом контуре показывает, что он предназначен для автоматического втягивания и выдвижения. Теперь, когда схема понятна, правильное функционирование системы будет зависеть от правильной настройки и работы клапанов последовательности, а также от правильной работы гидрораспределителя с гидроуправлением.

Контур № 2

Рисунок 12. 14 — цепь высокого-низкого уровня. Такой контур может использоваться для достижения высокой скорости или быстрого продвижения при низком давлении, за которым следует медленная скорость и большое усилие. Хорошим примером системы высокого-низкого давления может быть пресс, в котором плунжер быстро приближается к заготовке. В это время давление начинает нарастать. Поток от насоса большого объема отводится в резервуар. Насос малого объема будет производить небольшой поток, необходимый для продолжения движения плунжера в обрабатываемой детали. Давление будет продолжать расти, пока не достигнет настройки предохранительного клапана.При реверсировании гидрораспределителя давление падает и разгрузочный клапан закрывается. Цилиндр втягивался с большой скоростью. Теперь мы более подробно рассмотрим компоненты, составляющие эту систему. Во-первых, разгрузочный клапан. Этот клапан был установлен на 500 фунтов на квадратный дюйм. Когда давление в системе достигнет 500 фунтов на квадратный дюйм, этот клапан откроется и позволит потоку из насоса большого объема вернуться в резервуар при минимальном давлении.

Рисунок 12.14 — принципиальная электрическая схема высокого-низкого уровня цепи №2

Далее мы рассмотрим функцию обратного клапана. Когда давление в системе ниже настройки разгрузочного клапана, поток из насоса большого объема проходит через обратный клапан, чтобы объединиться с потоком из насоса малого объема. После открытия разгрузочного клапана этот обратный клапан закрывается, так что поток от насоса малого объема не течет к разгрузочному клапану.

Теперь мы взглянем на группу насосов высокого-низкого уровня.Это двойной насос. Эти насосы имеют общий вход и отдельные выходы. Во время быстрого продвижения при низком давлении оба потока насоса объединяются. Когда разгрузочный клапан открывается, поток большого насоса возвращается в резервуар, а поток малого насоса используется для выполнения работы.

Наконец, мы рассмотрим предохранительный клапан системы. Этот клапан ограничивает максимальное давление в системе. Обратите внимание, что на схеме показано давление, на которое должен быть установлен клапан.

Контур № 3

На рисунке 12.15, цилиндр имеет вес, который может вызвать его свободное падение или падение с неконтролируемой скоростью. Уравновешивающий клапан помещается в порт на конце штока цилиндра для создания противодавления. Противодавление является результатом нагрузки, которая пытается вытеснить жидкость из цилиндра через уравновешивающий клапан, который закрыт. Уравновешивающий клапан должен быть установлен немного выше давления, создаваемого нагрузкой. При переключении гидрораспределитель оказывает давление на поршень цилиндра. Это, в свою очередь, увеличивает противодавление, вызывая открытие уравновешивающего клапана, позволяя цилиндру опускать нагрузку с контролируемой скоростью.

Теперь мы более подробно рассмотрим компоненты, составляющие эту систему. Сначала мы рассмотрим схему автономного или петлевого фильтра почек. Этот контур состоит из группы электродвигателей насоса, фильтра и теплообменника воздух-жидкость. Насос забирает гидравлическую жидкость из резервуара, пропуская жидкость через фильтр и теплообменник воздух-жидкость. Этот контур обычно работает постоянно, чтобы гидравлическая жидкость оставалась чистой и прохладной. Далее идет насос с компенсацией давления. Насос с компенсацией давления прекращает ход, когда гидрораспределитель находится в центре.В это время между насосом и гидрораспределителем поддерживается давление, но нет потока. При смещении гидрораспределителя насос продолжает ход, обеспечивая поток для контура.

Рисунок 12.15 — схематическое изображение цепи № 3

Далее мы рассмотрим гидрораспределитель. Это трехпозиционный четырехходовой клапан с поплавковым центром. Этот клапан, когда он отцентрован, будет блокировать поток из насоса, так что давление будет расти и выключать насос. Оба рабочих порта возвращаются обратно в резервуар, поэтому в линиях рабочего порта нет давления, кроме как между штоком цилиндра и уравновешивающим клапаном.

Наконец, мы рассмотрим уравновешивающий клапан. Уравновешивающий клапан поддерживает противодавление на стороне штока цилиндра, так что цилиндр снижает нагрузку с контролируемой скоростью. Обратный клапан используется для блокировки и удержания нагрузки на цилиндр, когда гидрораспределитель находится в центре.Теперь давайте снова посмотрим, как работает система, и посмотрим, как работает каждый компонент.

СВОДКА

Схема — это линейный чертеж, состоящий из ряда символов и соединений, которые представляют фактические компоненты гидравлической системы.

Гидравлические графические символы Символы подчеркивают функции и методы работы компонентов.

Символы не зависят от какого-либо конкретного языка и являются международными по своему охвату и характеру.

Подробнее:

Блог.Teknisi

Лучший способ прочитать гидравлическую схему — опытный инженер

Первое чтение гидравлической схемы — это пугающая и запутанная вещь. Есть так много символов, которые нужно идентифицировать, и линий, которые нужно отслеживать. Я надеюсь научить вас системному подходу к чтению гидравлической схемы.

Основные шаги для Чтение гидравлической схемы:

  1. Определение типов линий
  2. Определите, пересекаются ли линии с подключением или без него
  3. Определите компоненты
  4. Определите путь потока в обесточенном состоянии
  5. Определите, что происходит при каждом клапане перемещен
  6. Активируйте несколько клапанов одновременно, чтобы проверить, нет ли непреднамеренных последствий.

Итак, это хорошо, что хотя мы используем гидравлику, многое из этого напрямую связано с пневматикой. Пневматика будет иметь несколько дополнительных компонентов, которые мы не используем в гидравлике, такие как масленки, осушители воздуха и пылесосы Вентури, но они похожи.

Приступим.

1. Определение типов линий

В гидравлической схеме каждый тип линии имеет уникальное значение. Кроме того, можно добавить цвета, чтобы обозначить назначение линии.На рисунке ниже показаны все основные типы линий. Основная линия — сплошная линия, которая представляет шланг или трубку рабочего давления. Красная линия указывает на давление, а синяя линия указывает на возвратную линию низкого давления. В данном случае это всасывающая линия для насоса. Бирюзовые и зеленые пунктирные линии называются пилотными линиями или линиями слива в зависимости от их назначения. Обе показанные здесь линии являются пилотными. Пилотная линия — это линия высокого давления с низким расходом (1/4 галлона в минуту). Дренажная линия — обратная линия низкого давления с более высоким расходом. Наконец, желтая центральная линия вокруг некоторых символов является линией вложения или ограничивающей рамкой. Цель этой строки — показать, что все компоненты внутри находятся в одном клапанном блоке или коллекторе. Это сделано для упрощения идентификации в реальном мире.

2. Определите, пересекаются ли линии с или без соединительный

Есть небольшое противоречие с этим. Раньше, если две линии пересекались, они были соединены. Если бы вы не хотели, чтобы линии соединялись, вы бы нарисовали горб на одной линии, добавив некоторой драматичности схеме.Что ж, по мере того как все больше и больше людей прислушивались к совету Black Eyed Peas, говоря: «Вам не нужны драмы, драмы, нет, никакие драмы, драмы», стандарты были изменены. Теперь вам понадобится точка, чтобы обозначить пересекающиеся линии, которые соединяются. Если точки нет, значит, нет связи. Кто знал, что Black Eyed Peas на самом деле пели о гидравлических схемах? Итак, песня явно не имеет ничего общего с гидравликой. Честно говоря, изменение произошло потому, что было намного проще добавить точку, чем стереть линии и сделать горб.Лично мне нравится добавлять горбинки и использовать точку. При этом нетрудно догадаться, каковы были мои намерения. Точка означает, что они связаны, а горбинка — нет. Очень понятно любому, кто читает схему. На рисунке ниже представлена ​​эта концепция.


3. Определите компоненты

Идентификация компонентов — ключ ко всему процессу. Если вы поймете, что делает каждый компонент, вы сможете более четко увидеть, как они будут работать вместе.Другие списки гидравлических компонентов обычно просто говорят вам, что это такое. Этот список будет отличаться тем, что я расскажу о функциях, плюсах и минусах использования каждого из них. Поймите, что это ни в коем случае не исчерпывающий список, и новые компоненты разрабатываются постоянно.

Редукторы потока

В каждой гидравлической системе у вас будет одна функция, которая требует полного потока, а другая требует гораздо меньшего потока. Здесь на помощь приходят редукторы потока.Самый простой тип — это отверстие, которое представляет собой отверстие, просверленное в заглушке. Как вы понимаете, через отверстие можно протолкнуть фиксированное количество масла.

Отверстие Игольчатый вентиль

Игольчатый клапан — это то, что вам нужно, если вам нужно отрегулировать поток. (Обратите внимание на стрелку для регулировки.) Эти компоненты хороши, если вам просто нужно ограничить поток, но на самом деле все равно, если у вас двунаправленный поток или избыточные нагрузки. Позволь мне объяснить. Если вы используете игольчатый клапан для ограничения скорости гидравлического двигателя, теоретически вы можете установить клапан только на один порт.Однако вы заметите, что вращая двигатель в одну сторону, вы получите гораздо лучшую производительность. Если пойти другим путем, вы увидите рывки по очереди. Причина этого — трение в двигателе и системе, которой он управляет. Конечно, средняя скорость была желаемой, но производительность — нет. Теперь я хотел бы описать два новых термина: измерение входа и выхода. Дозирование — это метод измерения жидкости, выходящей из клапана и поступающей в двигатель.Это приведет к снижению производительности, потому что мы полностью зависим от двигателя, чтобы справиться с трением. Иногда мы можем повернуть двигатель на 500 фунтов на квадратный дюйм, иногда на 1200 фунтов на квадратный дюйм. Что сказать? Учет — лучшее решение. Дозирование в (то есть в клапан) заставляет выходное отверстие двигателя поддерживать постоянное давление. Давление на входе все еще может сильно колебаться, но скорость двигателя останется постоянной. Чтобы выполнить измерение на обеих сторонах двигателя, мы больше не можем использовать игольчатый клапан, потому что поток будет измеряться дважды.

Регулируемый контроль потока Управление потоком

Клапаны регулирования потока были разработаны для обеспечения неограниченного потока из клапана и дозированного обратного потока в клапан. Обратный клапан — это то, что обеспечивает неограниченный или «свободный поток». (Свободный поток снизу вверх). Они бывают как в регулируемой, так и в нерегулируемой конфигурации. Последняя мысль заключается в том, что эти клапаны будут выделять много тепла, особенно с поршневыми насосами прямого вытеснения. Вы можете свести это к минимуму, установив клапан регулирования потока с компенсацией, который будет направлять обводную жидкость в резервуар вместо того, чтобы создавать давление до тех пор, пока предохранительный клапан не сработает.

Резервуары (или цистерны)

Существует два типа схем резервуара: герметичный и негерметичный. Безнапорные, безусловно, наиболее распространены на рынке. Можно сделать вывод, что бак под давлением является закрытым.

С помощью резервуара вы также можете указать, хотите ли вы, чтобы масло возвращалось выше (вверху) или ниже (внизу) уровня масла в резервуаре. Честно говоря, я не знаю, зачем вам возвращать масло выше уровня масла.Это приводит к увеличению количества воздуха в жидкости (подумайте о аквариуме). Если в линию всасывания попадет слишком много воздуха, вы можете сделать вашу несжимаемую жидкость немного более сжимаемой, что приведет к снижению производительности. Ирония заключается в том, что я почти всегда вижу схему, указывающую на возврат масла выше уровня масла.

Подробнее:

4 важных компонента для каждой гидравлической системы и почему

Краткое руководство по основам гидравлических предохранительных клапанов и фильтров

Простое руководство по гидравлическим насосам и резервуарам

Фильтры и управление теплом Жидкий фильтр

Все масло должно поддерживаться системой, и фильтрация является обязательной.Это ромб с пунктирной линией, указывающий на то, что жидкость должна проходить через какой-то экран. Многие фильтры также имеют подпружиненный обратный клапан, включенный параллельно, так что, если фильтр забит, масло будет проходить через обратный клапан.

Также важно поддерживать температуру масла. Если система предназначена для использования в холодном климате , необходимо использовать масляные обогреватели (справа). Стрелки указывают на символ, указывающий направление теплового потока.

Теплообменник Системы контроля температуры

Теплообменник (вверху слева) используется для отвода тепла от системы; стрелки указывают на него.Существуют также системы контроля температуры , которые могут либо отклонять, либо добавлять тепло. Это представлено одной стрелкой, указывающей внутрь, и другой, указывающей. Важно отметить, что их можно включать и выключать по мере необходимости, так что активен только один или ни один.

Насосы и двигатели

Насосы и двигатели, вероятно, являются наиболее легко идентифицируемыми компонентами на схеме. Это всегда первый компонент, который я ищу, потому что именно здесь начинается волшебство.У насосов будут стрелки, указывающие на то, что энергия жидкости вытекает из насоса. На гидравлических моторах стрелки указывают внутрь.

Если насос приводится в действие электродвигателем, он может быть показан подключенным к нему. Направление вращения может быть показано. Помните, что направление вращения, показанное здесь, — по часовой стрелке, если смотреть на вал насоса, а не на вал двигателя. И насосы, и двигатели могут быть фиксированного или переменного рабочего объема.

Насос с фиксированным рабочим объемом с двигателем Насос переменной производительности Двигатель с переменным рабочим объемом

Одна замечательная вещь заключается в том, что у вас действительно могут быть насосы и двигатели с двухсторонним движением.Мы можем понять, почему вам нужен двунаправленный двигатель, но почему насос? Двунаправленные насосы обычно соединяются напрямую с двигателем в замкнутой гидравлической системе. Вместо того, чтобы возвращать отработанное масло в резервуар, оно возвращается непосредственно в насос. Есть много применений лебедок, которые используют этот тип системы.

Как определить, правильно ли работает ваш гидравлический насос

Лучшее руководство по двухступенчатым гидравлическим насосам

Берегитесь тепла! — Перегрев: скрытая опасность в гидравлической системе с компенсацией давления

Хороший совет по использованию гидравлического двигателя в качестве насоса?

Как минимизировать удары в гидравлической системе с закрытым центром

Двунаправленный двигатель с фиксированным рабочим объемом
Аккумуляторы Двунаправленный насос переменной производительности

Аккумуляторы — это устройства для хранения масла под давлением.Это заметно в системах с очень высокой пиковой мощностью, но с низким рабочим циклом. Хорошим примером этого являются американские горки Top Thrill Dragster в Сидар-Пойнт. (изображение любезно предоставлено daveynin на Flickr). За несколько секунд требуется большая мощность, чтобы запустить эту машину через холм. Однако автомобили запускаются только каждые 60–120 секунд, так что все время между ними можно использовать для производства энергии и хранения ее в аккумуляторах до тех пор, пока она не понадобится. Аккумуляторы бывают двух типов: подпружиненные (обозначены пружиной) и газовые.

Цилиндры

Цилиндры — это линейные приводы, которые могут создавать большие силы в небольших объемах.

Обычно на схеме представлены три типа. Цилиндр одностороннего действия — это цилиндр, в котором гидравлическое масло подается только с одной стороны (обычно через канал), а его возврат осуществляется под действием силы тяжести или пружины. Разъем для бутылок — хороший тому пример.

Одиночное действие

Цилиндры двустороннего действия являются наиболее распространенными, и давление может быть приложено к любой стороне, чтобы заставить цилиндр выдвигаться или втягиваться.Поскольку площадь выдвижения и область втягивания у цилиндра двойного действия различаются, вы можете получить нежелательную производительность. Цилиндры с двойным штоком являются ответом на этот вопрос, потому что площадь одинакова с каждой стороны поршня.

Двойного действия Двойной стержень двойного действия
Для дальнейшего чтения:
Простое руководство по размещению цилиндра для шарнирных сочленений
Вычислитель гидравлических или пневматических цилиндров Ultimate
6 секретов синхронизирующих цилиндров
Не делайте этих ошибок с цилиндрами поршня, я сделал…
Как определить диаметр отверстия цилиндра без разборки

Клапаны регулирования давления

Контроль давления необходим во всех гидравлических системах.Каждая система должна иметь предохранительный клапан для защиты гидравлических и механических компонентов. На этом схематическом изображении жидкость под давлением находится на верхней стороне клапана. Если давление достаточно велико, чтобы преодолеть пружину, стрелка сместится, и в этом случае масло потечет в резервуар.

Однако мы можем немного изменить порты и получить другую производительность. Вместо того, чтобы направлять выходной поток в резервуар, мы можем заставить его приводить в действие что-то еще, например двигатель.Это клапан последовательности . Если у меня есть гидравлический сверлильный станок, когда поток включается в верхнюю часть, возможно, у меня есть зажим, который я хочу задействовать в первую очередь. Я мог подсоединить цилиндр к верхней боковой линии, и цилиндр зажал бы, чтобы создать давление. Двигатель может вращаться только после того, как будет создано достаточное давление.

Редукционный клапан также является важным гидравлическим элементом. В недавно разработанной мной системе одна сторона работала под давлением 3000 фунтов на квадратный дюйм, а другая — под давлением 400 фунтов на квадратный дюйм.Я включил редукционный / сбросной клапан там, где левый порт имел полное давление в системе 3000 фунтов на квадратный дюйм. Правый порт был настроен на пониженное давление 400 фунтов на квадратный дюйм. Если давление в этой линии повысится, это сбросит это давление в резервуар через нижний порт.

Клапаны удержания нагрузки

Любой клапан удержания нагрузки будет основан на некоторой форме обратного клапана . Обратный клапан позволит потоку легко двигаться в одном направлении, но не в другом.Это здорово… если мы хотим удерживать груз вечно. Часто это не так, поэтому нам нужен способ обхода потока.

Пилот для открытия обратного клапана , обычно называемый PO Check , используется для смещения тарельчатого клапана. (Предупреждение о спойлере: в обратных клапанах не используются шары, потому что их очень сложно сделать и они плохо герметизируются. Тарельчатый клапан — это сегмент конической формы, который уплотняется намного лучше.) Как правило, если в направляющем клапане используется рабочий порт A Для подъема груза рабочее отверстие B используется для опускания груза и снятия обратного клапана PO.

Если необходимо заблокировать оба направления, можно использовать двойной обратный клапан PO. Это коллектор, который объединяет два обратных клапана PO и упрощает необходимое внешнее водоснабжение за счет включения поперечных пилотных линий.

Обязательно к прочтению: Дрейф: почему нельзя удерживать нагрузки с помощью гидрораспределителей
Уравновешивающие клапаны

Есть один серьезный недостаток использования обратного клапана PO: температура. Если вам необходимо удерживать нагрузку в обоих направлениях, проверка PO может действительно создать чрезвычайно большое давление.Представьте себе ситуацию, когда рано утром настраиваете устройство под нагрузку. Нагрузка и положение не меняются весь день, но температура становится на 30-40 ° выше. Масло будет расширяться, создавая давление, которое может превышать возможности двигателя или цилиндра. Это плохая ситуация. К счастью, нам на помощь приходит уравновешивающий клапан . Уравновешивающий клапан обеспечивает свободный поток в двигатель или цилиндр через обратный клапан, но на выходе есть специальный предохранительный клапан.Если давление в цилиндре слишком высокое, он будет сбрасывать давление (порт 2–1) до тех пор, пока клапан не закроется. Также имеется пилотный порт (порт 3), открывающий путь для обратного потока масла.

Крутая вещь и вещь, которая вызовет много головной боли, — это то, что вы можете настроить производительность системы, воспользовавшись доступными функциями измерения. Это контролируется двумя вещами: передаточным числом пилота и пропускной способностью. У меня сейчас нет времени, чтобы вдаваться в подробности, поэтому мы оставим это для другой статьи.Уравновешивающие клапаны доступны в одинарной или сдвоенной конфигурации .

Если удержание груза по-прежнему важно в вашей конструкции, вам необходимо использовать клапан удержания нагрузки. Не используйте направленный регулирующий клапан для выполнения этой задачи!

Челночные клапаны

Челночные клапаны — это логические элементы, которые позволяют двум (или более) вещам сигнализировать о другом. Челночный клапан — это, по сути, два обратных клапана с одним шаром (да, тарельчатый, я знаю).Более высокое давление заставит тарелку закрывать сторону с более низким давлением и направить давление и / или поток по перпендикулярному пути. Компенсированные клапаны являются хорошим примером этого, где каждая секция клапана отправляет давление компенсатора обратно в насос, чтобы определить, какое давление необходимо. Давления сравниваются друг с другом с помощью челночных клапанов, и побеждает самое высокое давление.

Направляющие регулирующие клапаны

Распределители являются основой гидравлики.Это позволяет жидкостям изменять направление и пути потока. Эти клапаны отличаются своим положением и способами. Позиции — это количество дискретных конфигураций клапана. Пути — это количество портов клапана. Двухпозиционный двухходовой клапан будет использоваться для включения и выключения потока.

2 позиции, 2 пути

Трехпозиционный трехходовой клапан может использоваться для наполнения и разгрузки аккумулятора. Вы хотите, чтобы масло высокого давления заливало, а затем подключалось к каналу низкого давления для выпуска.

2 позиции, 3 пути

A двухпозиционный четырехходовой клапан может изменять направление жидкости, где вы можете изменить направление на двигателе или цилиндре. Эти клапаны могут иметь опцию плавного переключения (слева), где фантомное третье положение обеспечивает плавный переход , как показано пунктирными линиями между положениями. Это дополнительное положение связывает все порты вместе, чтобы нейтрализовать давление и минимизировать влияние импульса при реверсировании потока.

2 позиции, 4 пути 2 положения, 4 направления с плавным переходом

Трехпозиционный четырехходовой клапан предлагает положение выключения, чтобы система могла отдыхать.Это центральное положение может иметь множество конфигураций, которые могут удовлетворить практически любые требования. Пожалуйста, прочтите мою статью о гидрораспределителях для получения дополнительной информации.

3 позиции, 4 пути
Другое чтение

Избегайте использования сдвоенных центральных клапанов в серии

Подключение нескольких клапанов с открытым центром с использованием мощности выше

Направленные регулирующие клапаны

— что должен знать каждый инженер

Краткое руководство по основам гидравлических предохранительных клапанов и фильтров

Привод клапана

Все позиционные клапаны должны быть задействованы для выполнения определенной функции.Начнем с механических приводов. Слева направо: кнопка , механическое действие, рычаг, ножной переключатель и механический переключатель . За исключением рычага и кнопки, их становится все труднее и труднее найти. За последние двадцать лет электроника настолько улучшилась, что прокладывать провода к электрическим датчикам намного проще и дешевле, чем шланги к гидравлическим компонентам.

Нажать кнопку Рычаг срабатывания Механическое действие Ножной переключатель Механический переключатель

Управляющее давление и электрическое срабатывание являются доминирующими силами на рынке и будут в течение некоторого времени.Электронные системы управления позволяют точно применять для срабатывания пилота (слева), где низкое давление сдвигает клапан, и электропропорционального срабатывания . Правый схематический символ означает работу соленоида. Соленоид представляет собой непропорциональный сигнал, который полностью перемещает клапан. Для пропорционального управления используются другие методы, и через символ будет нарисована стрелка.

Срабатывание управляющего давления Срабатывание соленоида

Многие клапаны смещены в одном направлении или в центральное положение .Пружины — способ добиться этого. При всех этих элементах управления вам не нужно иметь срабатывание с обеих сторон.

Клапан с пружинным центрированием

Если вы не хотите, чтобы клапан двигался при отключении, вы можете добавить фиксатора (в центре и справа), чтобы клапан оставался в том же месте. Детенты обычно представляют собой подпружиненный шар (да, настоящий шар), который фиксируется в канавке на золотнике клапана.

2-позиционный фиксатор 3-позиционный фиксатор
Прочие компоненты

Есть несколько компонентов, которые не попадают ни в одну из категорий, которыми я хотел бы поделиться сейчас.Манометры давления P являются наиболее распространенными. Они будут давать давление линии, в которой они установлены. Помните о влиянии потока в системе. Недавно мне пришлось перенести манометр, потому что падение давления из-за потока давало мне ложные показания. Я переместил датчик на интересующий меня компонент, и ложные показания прекратились.

Манометр

Индикаторы температуры похожи на термометры. Их можно размещать по всей системе, как манометры, но многие конструкции просто контролируют температуру резервуара с помощью смотрового указателя.Смотровой указатель (не показан) покажет уровень масла и, как правило, температуру в резервуаре.

Датчик температуры

Реле давления — это переключатели, которые изменяют состояние при достижении определенного давления. Обратите внимание, что гистерезис является проблемой для них, поэтому, если переключатель установлен на 400 фунтов на квадратный дюйм при подъеме, он может не отключиться до 350 фунтов на квадратный дюйм при падении. Они могут иметь нормально открытые и нормально закрытые конфигурации, а также фиксированные и переменные настройки давления.

Реле давления

Последний символ — это ручной запорный клапан .Обычно это устройства низкого давления, которые используются на всасывающей и обратной линиях рядом с резервуаром, чтобы облегчить замену масла и фильтра. Обязательно держите их открытыми. Иначе может случиться плохое.

Ручное отключение

Вау, здесь наверняка много символов, и, как я уже сказал, этот список не является исчерпывающим. Надеюсь, вы уже можете начать видеть, как некоторые из этих компонентов будут работать вместе, например, как гидрораспределитель будет управлять цилиндром.

4.Определите путь потока в обесточенном состоянии

Как я уже упоминал, я начинаю с поиска насоса (ов) на схеме. Проследите линии наружу от насоса, пока не дойдете до закрытого клапана. Повторяйте, пока не вернетесь к резервуару или не закончите пути. Затем я проверяю, есть ли в системе три других важных компонента. Убедившись, что все четыре компонента присутствуют и они исправлены, я начинаю смотреть на обесточенное состояние. Когда все компоненты деэгризованы, может ли поток вернуться в резервуар, или он создает давление в системе, или это где-то посередине? Обычно я прорисовываю это маркером.Если у меня есть насос с фиксированным рабочим объемом, я хочу, чтобы масло возвращалось в бак при почти нулевом давлении. Если у меня насос с переменным рабочим объемом, все пути потока должны быть заблокированы, а давление в нашем компенсаторе должно быть как минимум на 200 фунтов на квадратный дюйм ниже, чем в предохранительном клапане.

В Примере 1 (ниже) жидкость, протекающая через первую рабочую секцию, выходит через рабочий порт A и попадает в коллектор справа. В этот момент остановлены все семь клапанов. Он также проходит через ограничитель давления и останавливается на гидрораспределителе.Эта система позволяет полностью нарастить давление и указывает на то, что нам нужен насос с регулируемым рабочим объемом и компенсацией давления, который у нас есть.

5. Определите, что происходит при перемещении каждого клапана

Теперь, когда мы идентифицировали наше обесточенное состояние, мы должны активировать компоненты один за другим. (Иногда может присутствовать активатор, который также необходимо активировать. Это относится к примеру 2). В каждом разделе отслеживайте, что происходит с давлением и потоком и каков желаемый результат.

Пример 1

Секция 1 коллектора будет уменьшать расход (расходомер) путем активации верхнего клапана для пилотного открытия большего клапана под ним. Затем он отправит поток через порт B, но не раньше, чем он будет отправлен через клапан управления потоком.

Если мы активируем Секцию 2 для создания давления в порту A, мы должны увидеть, как верхний клапан активирует больший клапан под ним. Этот поток выйдет из порта A и создаст давление в пилотном отверстии уравновешивающего клапана.За пределами коллектора есть два клапана управления потоком, которые будут управлять движением двигателя путем дозирования жидкости. Также имеется реле давления, которое укажет, остановился ли двигатель (мы ищем сигнал только тогда, когда порт B находится под напряжением). Остальные три порта клапана аналогичны, поэтому я не буду здесь вдаваться в подробности.

Два клапана справа за редукционным клапаном управляют цилиндром. Если правая катушка активирована на крайнем левом клапане, цилиндр будет медленно втягиваться под действием силы тяжести, измеряемой игольчатым клапаном.Однако, если клапан справа активирован, игольчатый клапан обходится, и цилиндр опускается намного быстрее.

Пример 2

Как уже упоминалось, на этой схеме показан поршневой насос прямого вытеснения, и для того, чтобы могло произойти какое-либо движение, необходимо закрыть разгрузочный клапан. Это делается путем подачи питания на S7, что должно происходить с любым другим соленоидом.

Если мы подадим напряжение на S1 и / или S3, мы сможем втянуть левый и / или правый цилиндр выдвижения.Однако, когда мы активируем S2 и / или S4, мы не хотим выдвигаться до того, как все цилиндры внизу будут втянуты, чтобы избежать столкновения. Для этого мы используем челночный клапан, чтобы потоки из S2 и S4 не загрязняли друг друга. Затем поток продолжает оказывать давление на уравновешивающий клапан и втягивать все цилиндры.

Обратите внимание на центральное положение гидрораспределителя (3-позиционный / 4-ходовой), активируемого S5 и S6. Порты P и A заблокированы, но порты B и T подключены.Это сделано специально для того, чтобы у нас был путь для выхода масла из цилиндров. После того, как все эти цилиндры втянуты, только тогда будет достаточно давления, чтобы преодолеть клапан последовательности и выдвинуть цилиндр (ы) выдвижения.

При подаче питания на S5 все цилиндры втянуты, как это делают S2 и S4, но цилиндры выдвижения не выдвигаются из-за челночного клапана.

Когда S6 находится под напряжением, мы начнем выдвигать цилиндры предписанным образом.(Обратите внимание, что нас не волновало, как втягиваются цилиндры.) Поток будет выходить из рабочего порта B через клапан управления потоком. Поскольку у нас есть поршневой насос прямого вытеснения, мы не хотели, чтобы оставшееся масло пропускалось через предохранительный клапан. Мы сделали это, используя компенсированный контроль потока, чтобы наш дополнительный поток шел прямо в резервуар (порт 2) при значительно пониженном давлении. Отмеренная жидкость (порт 3) затем поступает к уравновешивающему клапану, где она свободно протекает через обратный клапан.

На этом этапе активирована Группа 1.Группа 1 состоит из двух горизонтальных зажимных цилиндров и может работать до 300 фунтов на квадратный дюйм. В этот момент активируется Группа 2, в которой задействованы четыре вертикальных и два горизонтальных зажима. При 400 psi активируется Группа 3 и так далее, пока мы не перейдем к Группе 6. Когда группа 6 активирована, если соленоид S8 не активен, он выдвинет цилиндр. Если S8 активен, секция не нажимается, и это не позволяет потоку достигать других секций. S8 запускается бесконтактным переключателем, который определяет длину заготовки.Если там есть материал, S8 отключится, и секция нажмет.

6. Активируйте несколько клапанов одновременно, чтобы увидеть непреднамеренные последствия.

Непредвиденные последствия очень трудно увидеть и предсказать. Настоящая задача здесь — извлечь уроки из них, чтобы не повторить их дважды. Распространенным явлением является подача питания на обе стороны распределителя. Обычно повреждений не происходит, но ваша система управления должна быть настроена таким образом, чтобы исключить эту опасность.При использовании релейной логики у вас может быть одно реле для включения питания клапана, а другое — для выбора направления.

В примере 1 , когда я активировал Раздел 1 и порт B Раздела 2, произошли непредвиденные последствия. Сейчас он смотрит на меня, но раньше было очень трудно увидеть, пока система не была построена. На двигателе у меня есть регулирующие клапаны для управления скоростью двигателя. Однако я хочу ограничить скорость двигателя перед его остановкой (важно место остановки.) Я делаю это, активируя Секцию 1 примерно за фут до точки остановки, таким образом уменьшая скорость. Однако уменьшенный расход ниже, чем у расходомера при регулировании расхода. Результатом является состояние низкого дозированного расхода, и мой двигатель переходит в положение остановки. Мы предпринимаем шаги, чтобы исправить это.

В примере 2 двухпозиционные трехходовые клапаны должны быть сконфигурированы таким образом, чтобы их положения были противоположны друг другу. Причина в том, чтобы предотвратить повреждение машины.Если обрыв провода к одному из соленоидов, дополнительные секции будут давить и могут вызвать потенциальное повреждение машины. Чтобы свести к минимуму этот риск, мы добавили дополнительную защиту к проводам, проложили провода большего сечения, чем необходимо, и добавили проверку проводов в ежемесячный контрольный список профилактического обслуживания.

Заключение

Чтение схем — очень страшная вещь, но не забудьте расслабиться, вы умны, а мама и папа вас очень любят. Ты получил это! Просто работайте над этим медленно и не спешите задавать вопрос.Выполняя подобную работу, я часто жду, пока у меня не возникнет хорошая серия вопросов, прежде чем обратиться за помощью. Таким образом, я потрачу больше времени на работу со схемой, чтобы мои вопросы были подробными и не тратили время коллеги напрасно.

Когда вы овладеете навыком чтения отпечатков, вы сможете критиковать и создавать свои собственные системы. Не забывайте использовать системный подход и всегда проверять свою работу перед покупкой компонентов. Итак, возьмите свои маркеры и найдите схемы для анализа!

Связанные

% PDF-1.3 % 119 0 объект > эндобдж xref 119 88 0000000016 00000 н. 0000002129 00000 н. 0000002295 00000 н. 0000002438 00000 н. 0000003223 00000 н. 0000003614 00000 н. 0000003698 00000 н. 0000003782 00000 н. 0000003879 00000 п. 0000003992 00000 н. 0000004062 00000 н. 0000004179 00000 н. 0000004250 00000 н. 0000004367 00000 н. 0000004439 00000 н. 0000004572 00000 н. 0000004643 00000 п. 0000004771 00000 п. 0000004842 00000 н. 0000004963 00000 н. 0000005034 00000 н. 0000005147 00000 н. 0000005218 00000 н. 0000005342 00000 п. 0000005413 00000 н. 0000005522 00000 н. 0000005593 00000 п. 0000005751 00000 п. 0000005806 00000 н. 0000005916 00000 н. 0000005987 00000 н. 0000006086 00000 н. 0000006180 00000 н. 0000006235 00000 н. 0000006337 00000 н. 0000006392 00000 н. 0000006539 00000 н. 0000006610 00000 н. 0000006681 00000 п. 0000006858 00000 н. 0000006929 00000 п. 0000007047 00000 н. 0000007101 00000 п. 0000007187 00000 н. 0000007273 00000 н. 0000007374 00000 н. 0000007445 00000 н. 0000007547 00000 н. 0000007618 00000 н. 0000007673 00000 н. 0000007774 00000 н. 0000007845 00000 н. 0000007916 00000 п. 0000008028 00000 н. 0000008099 00000 н. 0000008169 00000 н. 0000008225 00000 н. 0000008330 00000 н. 0000008440 00000 н. 0000008463 00000 н. 0000018469 00000 п. 0000018492 00000 п. 0000025919 00000 п. 0000025942 00000 п. 0000034100 00000 н. 0000034123 00000 п. 0000041384 00000 п. 0000041407 00000 п. 0000048513 00000 п. 0000048536 00000 п. 0000056591 00000 п. 0000056834 00000 п. 0000058070 00000 п. 0000058093 00000 п. 0000066679 00000 п. 0000066702 00000 п. 0000076306 00000 п. 0000076328 00000 п. 0000077415 00000 п. 0000077494 00000 п. 0000077516 00000 п. 0000078588 00000 п. 0000078643 00000 п. 0000078666 00000 п. 0000082314 00000 п. 0000082386 00000 п. 0000002494 00000 н. 0000003201 00000 н. трейлер ] >> startxref 0 %% EOF 120 0 объект > / Контуры 124 0 R >> эндобдж 121 0 объект ; $ D =% p7 $% k% \ rr) / U (= ~ a \ (~ P ۤ l: F:> \ nh |.AEl \ 2 {u ݺ 2 tgp wf ‘, A +, qr {Z! U; 1 # M? 5T BR:>! P! T_RiNNb

2.9 Гидравлическая схема — гидравлическое и электрическое управление гидравлическими системами

Обсудите преимущества и недостатки представления гидравлических компонентов с помощью графических изображений, условных обозначений в разрезе и схематических обозначений.

Проведите различие между рабочими, пилотными и дренажными линиями и покажите их схематическое изображение

Различение схематически подключенных и неподключенных проводников жидкости

Опишите корпус и схематическое его изображение.

Опишите, какую жидкость (жидкости) эти цвета представляют на гидравлической схеме.

Красный

Синий

Желтый

Оранжевый (2)

Зеленый (2)

фиолетовый

Определите назначение этих общих форм на гидравлической схеме:

Круг

Площадь

Алмаз

Косая стрела

Определите первичный двигатель. Нарисуйте схематический символ двигателя и двигателя внутреннего сгорания.

Определите насос. Нарисуйте схематический символ для насоса постоянного рабочего объема, насоса переменного рабочего объема, насоса переменного рабочего объема с компенсацией давления и ручного насоса. Различают эти типы насосов.

Определите назначение слива корпуса и начертите условное обозначение.

Определите муфту. Нарисуйте схематический символ вала, соединяющего первичный двигатель и насос.

Определите резервуар.Нарисуйте схематический символ резервуара с атмосферным / вентилируемым резервуаром и резервуара под давлением.

Определите гидравлический двигатель. Нарисуйте схематический символ.

Определите гидроцилиндр. Нарисуйте схематический символ гидроцилиндра двустороннего действия, цилиндра одностороннего действия с выдвижной пружиной, втягиваемого с помощью пружины, цилиндра одностороннего действия с выдвижной пружиной и втягивающейся пружиной, и гидроцилиндра одностороннего действия. Обсудите, как эти цилиндры выдвигаются и втягиваются. Опишите назначение вентиляционного отверстия на цилиндре одностороннего действия.

Нарисуйте схематический символ для двухстержневого цилиндра, тандемного / дуплексного цилиндра, телескопического цилиндра и усилителя.

Нарисуйте схематический символ цилиндров двустороннего действия с фиксированной подушкой на выдвижении, фиксированной подушкой при втягивании и фиксированной подушкой при выдвижении и втягивании. То же самое проделайте и с различными подушками.

Определите назначение клапана сброса давления и нарисуйте схематический символ.

Определите назначение разрывной мембраны и нарисуйте схематический символ.(см. лекцию по предохранительному клапану)

Определите назначение гидрораспределителя. Нарисуйте схематический символ следующих гидрораспределителей и обсудите использование этих клапанов:

2-позиционный, 2-ходовой, пружина гидрораспределителя с электромагнитным приводом, смещение пружины в положение NC с ручным дублированием

2-позиционный, 3-ходовой, управляемый вручную пружина гидрораспределителя смещена в положение, при котором от A до T

2-позиционный, 4-ходовой, соленоидный гидрораспределитель с фиксаторами, с перекрестным соединением и прямолинейным положением

3-х позиционный 4-ходовой гидрораспределитель с ручным приводом, пружина центрирована в закрытом центральном положении с прямым сквозным соединением и положением перекрестного соединения

Различия между закрытым, тандемным, плавающим и открытым центральным положениями.Нарисуйте условные обозначения.

Укажите назначение обратного клапана, пилотного клапана для открытия обратного клапана, пилотного клапана для закрытия обратного клапана, обратного клапана дроссельного / диафрагменного типа и ручного запорного клапана. Нарисуйте схематический символ этих устройств и обсудите, как работают эти клапаны.

Определите назначение клапана управления потоком и нарисуйте схематический символ для следующих устройств: клапан управления постоянным потоком, клапан управления переменным потоком, клапан управления переменным потоком с байпасом обратного клапана, клапан управления переменным потоком с компенсацией давления с байпасом обратного клапана, давление и регулирующий клапан с регулируемым расходом с температурной компенсацией и байпасом обратного клапана.Для регулирующих клапанов с байпасом обратного клапана укажите направление свободного и регулируемого потока.

Определите назначение клапана регулирования давления и нарисуйте схематический символ для следующих устройств: предохранительный клапан, клапан последовательности, редукционный клапан, уравновешивающий клапан, разгрузочный клапан.

Обсудите, как следующие характеристики помогают в идентификации клапанов регулирования давления:

Пилотная линия

Деактивировано

Обратный клапан перепускной

Внутренний и внешний сток

Местоположение и воспринимаемая функция

Определите назначение и общий принцип работы аккумулятора и нарисуйте схематический символ для газового аккумулятора, подпружиненного аккумулятора и взвешенного аккумулятора.Обсудите все меры безопасности, касающиеся аккумуляторов.

Определите назначение и нарисуйте схематический символ для следующих устройств: манометр / манометр, быстроразъемные контрольные отверстия, реле давления (гидравлическое и электрическое), датчик давления, расходомер, концевой выключатель, магнитный датчик приближения (гидравлический и электрический)

Определите назначение и начертите схематический символ для следующих устройств: фильтр, фильтр с байпасом обратного клапана, нагреватель, охладитель, охладитель с жидким теплоносителем, охладитель с газовым теплоносителем.Обсудите назначение противотока в теплообменниках.

Определите гидроагрегат (HPU). Определите устройства, которые обычно встречаются в HPU.
Определите назначение и начертите схематический символ поворотной гидравлической муфты.

Схема производства

, чертеж, особенности использования и отзывы

Многие современные люди задают вопросы, как ставится гидрострелка с коллектором (схема изготовления ниже). При этом даже с годами многие профессионалы начинают понимать, что использование специализированных гидравлических сепараторов для подключения котлов — достаточно эффективное средство, позволяющее значительно повысить эффективность установленной системы отопления.

Проблемы старой техники

Многие знают, что котлы без подключенных насосов часто подключаются напрямую к коллектору, а вместо этого варианта чаще всего используется такая гидравлическая игла с коллектором (схема производства ниже). От котлов с насосами эти устройства просто убрали, в результате чего их установили на каждый отдельный отопительный контур, но на самом деле этот вариант можно использовать далеко не в любых ситуациях, ведь если на данный момент еще есть гарантия на котле, то в этом случае снять с него насосы не получится, а если речь идет о чугунном котле, то в случае такого демонтажа его составных частей при первом включении отопления , могут сломаться даже отдельные секции котла, не выдержав такого перепада температур.

Что дает эта технология

Чтобы избавиться от всего этого, сегодня применяется специализированный гидравлический стрелок с коллектором (схема изготовления представлена ​​в статье). Это устройство предназначено для разделения гидравлики, а точнее, оно делит котел напрямую с остальной системой отопления. Так, например, гидрострелка с коллектором (схема изготовления показана) может предусматривать один насос в котле, а в системе установлено еще несколько таких агрегатов разной мощности.

Как это работает

Устройство такого оборудования предельно простое. На данный момент мы не будем разбирать какие-либо высокотехнологичные устройства, а рассмотрим только основные варианты реализации такой технологии.

В принципе, достаточно использовать стандартный отрезок трубы, из которой сделаны гидравлические стрелки (гидросепаратор). Расчет гидравлических стрелок позволит понять, какими основными характеристиками должно обладать такое устройство и какие материалы лучше всего использовать для его изготовления.

Каково ее назначение

В первую очередь конструкторы стараются исходить из того, что стрела предназначена именно для разделения гидравлики. В большинстве случаев производители сегодня стараются выпускать котлы, оснащенные собственными насосами, и такие устройства достаточно мощные.

Например, есть котлы с закрытой камерой горения, в которых установлены рядные насосы. Мощность таких устройств может составлять около 300 Вт, но на самом деле этого недостаточно для полного форсирования системы отопления, если необходимо предусмотреть помещение на 1000 м 2 А именно такое оборудование рассчитано на такую ​​среднюю площадь обогрева .

В связи с этим необходимо монтировать дополнительные насосы и использовать комбинированные системы. В такой ситуации вместо того, чтобы помогать, насос, который изначально используется в котле, просто будет мешать, и именно в таких случаях можно использовать гидравлические стрелки (назначение, расчет, изготовление — это далее в статье) . Следует отметить, что такое мощное оборудование в большинстве случаев изначально идет в комплекте с заводскими гидравлическими руками или, по крайней мере, имеется достаточно точная инструкция по его подключению.

Если брать котлы меньшего размера, то история в основном такая же, но в этом случае вам придется делать это самостоятельно.

Где устанавливается

Гидрострелка устанавливается на напольных котлах без встроенного насоса для обеспечения эффективной защиты котла от большой разницы температур во время первого запуска системы отопления. Например, с помощью этого оборудования стандартные стальные котлы могут защитить от образования конденсата, а чугунные устройства — от возможности выхода из строя отдельных секций.

Для устранения подобных неприятных ситуаций используется специализированная гидравлическая игла. Чертеж и схема котельной в этом случае играют важную роль, так как в зависимости от характеристик отапливаемого объекта необходимо выбирать подходящее оборудование. Единственное, что стоит отметить, так это то, что для различных напольных котлов нужно также использовать дополнительный насос.

Пример

Изначально человек в своем доме хочет получить практически идеальную систему отопления, потратив на нее разумную сумму денег, и в этом случае все начинается с котла.Для небольшого частного дома можно выбрать стандартную пароварку с закрытой камерой, которая будет крепиться на стену. При этом необходимо правильно понимать, что в подавляющем большинстве случаев для обеспечения нормального распределения теплоносителя в этой системе может потребоваться изготовление индивидуального коллектора подогрева для иглы гидравлики. В такой ситуации возникает вполне стандартный вопрос: будут ли использоваться ваши насосы и что делать с устройством в котле?

Вполне естественно, что многие люди в таких ситуациях просто предпочитают демонтировать насос от котла в ситуациях, чтобы он не испортил установленную гидравлику системы, но на самом деле конструкция некоторых устройств выполнена таким образом, что это вряд ли будет сделано.В таких ситуациях идеальное решение — соединение котла с гидроколлектором.

Как в такой ситуации проводят

Вначале нарисован распределительный коллектор. В качестве примера рассмотрим следующую ситуацию:

  • Два контура теплых полов.
  • В системе будет использоваться контур бойлера косвенного нагрева, два запасных контура для теплового насоса или отдельного электрокотла, а также гидравлический игольчатый контур, то есть 5 контуров.

В данном случае нет ничего сложного в том, как нарисовать коллекторную схему — достаточно иметь хоть какое-то представление о том, как выполняется работа такой системы.

Производство и расчет

Стоит отметить тот факт, что вы можете самостоятельно регулировать мощность гидравлической стрелы. При расчете мощности нужно уже исходить непосредственно из характеристик вашего помещения и используемых устройств.

Если мощность приобретенного вами устройства не нужна, то в этом случае можно будет обрезать резьбу по диаметру, но при этом сделать более длинную стрелку.В некоторых ситуациях целесообразно снизить общую мощность закупаемого оборудования по мощности до двух раз, так как, например, устройства мощностью 80 кВт нужны не в каждом доме, и в таких случаях оптимальным будет оставить технику. мощностью 40 кВт и более.

Как это расположить

Некоторые, кто использует схему изготовления гидравлических стрелков своими руками, предпочитают устанавливать его в непосредственной близости от котла, но многие специалисты говорят, что установка устройства на коллекторе также является хорошим вариантом, что в конечном итоге позволяет получить законченный и гармоничный дизайн, который впоследствии будет легко использоваться, проверяться и обслуживаться.

Котел можно смонтировать примерно в трех метрах от места установки стрелки, а подводящий и обратный трубопроводы котла можно проложить через пол, если в доме есть пирог теплого пола. В остальном принципиальных отличий в том, где будет крепиться ваш стрелок, нет, и главное в этом случае — установить оборудование с подходящей мощностью и всегда в вертикальном положении. Если вы сделали гидравлическую стрелу для системы отопления (схема / расчет выше), в которой котел установлен без предохранительного клапана, то к верхней части устройства рекомендуется приварить дюймовую резьбу для монтажа специальной группы безопасности.

В нижней части также рекомендуется наварить мелкую резьбу для обеспечения нормального слива и заполнения стрелка. Практическим требованием является вставка специализированных муфт для установки термометров в систему «котел, гидравлическая игла и коллектор». В процессе дальнейшей эксплуатации это облегчит вам жизнь, так как позволит вам без труда следить за состоянием системы отопления.

Как это сделать

Если у вас есть стандартный сварочный аппарат и опыт работы с таким оборудованием, в этом случае самостоятельно приготовить полноценный стрелок нет ничего сложного.Однако нужно правильно понимать тот факт, что в процессе выполнения этой работы нужно учитывать большое количество тонкостей.

В настоящее время нет ничего сложного в поиске чертежа гидравлической иглы, но нужно правильно понимать, что все такие чертежи разные, и конкретного рисунка нет. Каждый специалист по-разному видит устройство гидравлических стрелков, но есть определенные правила, которых придерживаются абсолютно все.

Сама стрелка представляет собой некий металлический резервуар, к которому привариваются патрубки, предназначенный для подключения к котлу и обеспечения подачи и возврата.Также в систему встроены потребительские трубы.

Опционально можно использовать форсунки, предназначенные для автоматического сброса воздуха в верхней части установленной стрелки. В нижней части установлен патрубок для крана, обеспечивающий слив различного шлама и грязи. Кроме того, в любом месте также можно поставить трубу для подачи воды в систему.

Первое правило

Самое главное правило, которое всегда нужно соблюдать — это так называемое «правило трех диаметров», то есть диаметр установленных вами гидравлических стрелок должен быть в три раза больше по сравнению с этим параметром для форсунок.Если вы хотите, чтобы гидравлический сепаратор полностью выполнял свои основные функции, а именно:

  • удаление шлама из системы;
  • удалить газы;
  • выровнять гидравлический перепад;
  • подает в котел нагретую воду, чтобы обеспечить его большую долговечность.

Многие предпочитают экономить и делать гидравлические стрелки самостоятельно из полипропилена, но на самом деле это абсолютно неправильное решение, которое принимают в основном люди, мало разбирающиеся в особенностях такого оборудования.

Именно по этой причине стоит использовать только качественные металлические трубы, которые позволят полностью реализовать потенциал такой технологии и действительно эффективно проявят себя на протяжении всего срока эксплуатации такой системы.

P&ID (схемы трубопроводов и КИПиА) и библиотека символов клапана P&ID

Схема трубопроводов и контрольно-измерительных приборов (P&ID) — это графическое представление технологической системы, которая включает трубопроводы, сосуды, регулирующие клапаны, контрольно-измерительные приборы и другие технологические компоненты и оборудование в системе.P&ID — это основной схематический чертеж, используемый для размещения установки системы управления технологическим процессом. Таким образом, P&ID имеет решающее значение на всех этапах разработки и эксплуатации технологической системы.

Этапы использования P&ID:

  • Устройство и компоновка технологической системы
  • Спецификация компонентов
  • Разработка схем системы управления
  • Анализ безопасности и эксплуатации (HAZOP — исследование опасностей и работоспособности)
  • Установка и / или разборка системы
  • Схемы и процедуры пуска, выключения и эксплуатации
  • Обучение сотрудников эксплуатации технологических систем
  • Обслуживание и модификация системы

P&ID также используются в качестве основы для живого графического представления технологической системы в ее HMI (человеко-машинном интерфейсе) или другой системе управления.

Символы, используемые в P & ID

Для обозначения компонентов на этих схемах используются стандартные символы. Важно отметить, что эти символы НЕ в масштабе и НЕ точны по размерам. Они просто используются для представления определенного типа компонента. Эти символы также помечены словами, буквами и цифрами для дальнейшей идентификации и указания компонентов, которые они представляют. Еще одно важное соображение заключается в том, что диаграммы НЕ всегда отображают физическое расположение и близость каждого компонента.Цель НЕ состоит в том, чтобы служить планом этажа или картой системы, а в том, чтобы проиллюстрировать процесс работы системы.

Условные обозначения клапанов для P & ID

Общий символ 2-ходового клапана — это два треугольника, указывающих друг на друга с соприкасающимися кончиками внутренних точек. Трубопроводы представлены линиями, соединяющими каждую сторону символа клапана. Для обозначения различных труб, трубок и шлангов используются различные типы линий. В этих примерах используются одиночные сплошные линии, обозначающие простые жесткие трубы или трубки.Обычно все трубы проходят вертикально или горизонтально и используют только прямые углы. Направление потока указано стрелкой в ​​конце линии, где он встречается со следующим компонентом, а также при каждом повороте на 90 градусов.

Тип клапана

Тип клапана представлен добавлением формы к центру, где точки соприкасаются. Здесь показаны символы P&ID для наиболее распространенных типов клапанов.

Все представленные выше клапаны представляют собой 2-ходовые линейные клапаны, которые используются для управления потоком, как двухпозиционного, так и дроссельного.Для многопортовых клапанов, таких как 3-ходовые и 4-ходовые, структура символа аналогична, с треугольником для обозначения каждого порта или «пути».

3-ходовые и 4-ходовые шаровые краны могут содержать дополнительную информацию, которая определяет тип шарового сверления, который является шаром с отверстием «T» или «L». Еще одна деталь, которая может быть представлена ​​на схеме, — это путь потока в неактивированном или обесточенном состоянии. Это показано маленькими стрелками рядом с символом, как показано ниже.

Также существует множество других типов клапанов.Вот некоторые из них.

Тип привода

Метод срабатывания определяется линией, идущей от центра клапана с маленьким символом, много раз содержащим букву, вверху линии. Вот несколько примеров шаровых кранов с разными способами срабатывания.

Положение повышенной безопасности

Когда привод находится в аварийном положении, это обозначается стрелкой на линии между клапаном и приводом. Другой метод, используемый для обозначения неисправной позиции, — это две буквы «FO» или «FC».

Торцевые соединения

Торцевые соединения могут быть представлены в общем виде линиями, представляющими трубы, входящие непосредственно в клапан, как во всех приведенных выше примерах. Соединения также могут быть явно определены с использованием различных других методов. Фланцевые соединения представлены, как показано ниже, где трубы имеют перпендикулярные линии на концах, которые проходят параллельно сторонам символа клапана с небольшим промежутком между ними. Это показывает, что клапан можно снять, не разрезая трубу.Полупостоянные резьбовые соединения показаны небольшими полыми кружками в месте соединения. Вместо этого неразъемные сварные соединения представлены маленькими квадратами. Если соединение сварное, квадрат полый или незаполненный.

Стандартизация

Международное общество автоматизации (ISA: www.isa.org) определило стандарт для P&ID. Стандарт ANSI / ISA-5.1-2009 доступен на веб-сайте ISA.

Несмотря на то, что для этих символов установлен строгий набор стандартов, вы найдете различные способы представления определенных клапанов.Вы также обнаружите явные расхождения между некоторыми типами клапанов в различных библиотеках, отраслях и компаниях. Эта проблема не такая уж проблематичная, поскольку все компоненты также описываются текстом, номером детали (уникальная модель), номером тега (конкретный компонент в системе) и подробно определяются в ключе или легенде, сопровождающей чертеж. . Пока вы сохраняете единообразие на всех своих чертежах, диаграмма P&ID будет приемлемой и понятной для всех, кто с ней работает.Мы рекомендуем вам загрузить нашу Библиотеку символов и импортировать ее в свой программный пакет для диаграмм, например, Lucid chart.

Трубы, трубки и шланги (технологические линии):

Технологические линии — это линии, по которым фактически протекает технологическая среда. Они представлены разными типами линий. В полной P&ID каждая строка будет помечена номером строки. Например: 150-67П00-2299-115101-Н. Эта метка будет либо идти параллельно линии, либо с линией выноски, указывающей на определяемую линию, если она не помещается на самой линии.На этикетке будет указана информация о размере, классе, изоляции и т. Д. Разные компании используют разные структуры для этих чисел, но все они содержат одинаковую информацию. Линии процесса более жирные, чем другие линии, например линии, представляющие электрические, пневматические или информационные сигналы.

Различные обозначения труб

Существует 2 способа проиллюстрировать, когда трубы пересекаются на чертежах, но НЕ соединены физически. Либо используйте небольшой «горб», чтобы показать, что одна линия «переходит» другую, либо сломайте одну из линий очень близко к другой, чтобы показать, что она проходит под ней.Это НЕ физическое представление реальных труб. Фактически, они могут даже не пересекаться в реальной системе. Это просто метод разделения линий, когда они должны пересекаться на чертеже.

Коммуникационные / сигнальные линии:

Системы управления технологическим процессом используют различные типы сигналов для передачи информации между компонентами, приборами и компьютерами системы управления. Каждый тип сигнала имеет свой собственный тип линии, чтобы явно идентифицировать тип сигнала, который проходит по ней.

Различные символы сигналов

Другие общие символы P&ID для основных компонентов процесса:

Суда

Насосы, вентиляторы и компрессоры

Список можно продолжать и продолжать… Буквально сотни символов обозначают все компоненты, используемые в системах управления технологическими процессами. Теплообменники, охладители, бойлеры, фильтры и др. Мы создали библиотеку символов P&ID, которая включает наиболее распространенные компоненты, используемые в схемах трубопроводов и КИПиА.

Контрольно-измерительные приборы (датчики, преобразователи, счетчики и т. Д.)

Инструментарий относится к устройствам, которые определяют, измеряют, указывают, передают и / или записывают физические свойства в системе. Для этих типов компонентов существует несколько иной подход. Компоненты представлены в виде так называемого «пузыря». Пузырь представляет собой простой круг, квадрат или шестиугольник.

Все эти типы пузырей дополнительно обозначаются горизонтальной линией, линиями или отсутствием таковых.Эти линии определяют, где находится инструмент и доступен ли он для оператора.

Номера тегов

Внутри фигуры есть буквы и цифры, используемые для обозначения измеряемого свойства (например, расхода, давления, температуры или уровня) и функции, выполняемой с этим измерением. Типичные функции: отображение, запись, передача и управление. Ниже приведены несколько примеров, а также таблица букв и их обозначение для наиболее распространенных компонентов контрольно-измерительной аппаратуры.

Эти инструменты обозначаются до пяти букв: (минимум 2)

1-я буква — это измеряемое свойство:
F = расход, P = давление, T = температура, L = уровень

2-я буква является модификатором:
D = дифференциал, F = коэффициент. просто опустить, если не применяются модификаторы

3-й указывает на пассивную функцию / считывание:
A = аварийный сигнал, R = запись, I = индикатор, G = датчик

4-й — активная / выходная функция:
C = контроллер, T = передача, S = переключатель, V = клапан

5-й — модификатор функции:
H = высокий, L = низкий, O = открытый, C = закрытый. просто опустить, если не применяются модификаторы

см. Более полный список в Википедии

За ним следует номер цикла, который уникален для этого цикла. Например, FIC045 означает, что это F low I , указывающий на контроллер C в контуре управления 045 . Это также известно как идентификатор «тега» полевого устройства, который обычно присваивается местоположению и функциям прибора. В том же шлейфе может быть FT045 — передатчик F low T в том же шлейфе.Ниже приведены несколько примеров полных символов для нескольких инструментов в одном цикле.

Программное обеспечение для создания P&ID

Существует несколько различных программных пакетов, доступных для создания P&ID. Мы используем и рекомендуем диаграмму Lucid от Lucid Software Inc. Библиотеку символов P&ID, которую мы собрали, очень легко импортировать в этот пакет.

Обновлено: 06.08.2021 — 03:32

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *