Установка ветряков: Установка ветрогенераторов под ключ

Содержание

Установка ветрогенераторов под ключ

Установка ветрогенераторов под ключ

Она подразумевает несколько этапов, начиная с выбора места для его установки, до пуско-наладочных работ. Естественно это требует соответствующих знаний. Однако специфика этого молодого для нашей страны дела заставляет каждый раз убеждаться в том, что помимо знаний особенно важным является опыт работы. За всё время работы такого опыта мы приобрели немало.

Осуществляют монтаж ветрогенераторов квалифицированные специалисты, не первый год работающие с данным оборудованием и имеющие достаточно богатый опыт в его проведении и наладке оборудования.

В процессе монтажа клиенту передаются основные знания и навыки обращения и обслуживания техники. Мы также предлагаем заказчику полезные приспособления для дальнейшего обслуживания техники клиентом самостоятельно.

Установка ветрогенератора в частном доме не требует официального разрешения.

Профессиональное оборудование и навыки позволяют производить монтаж ветрогенераторов в кратчайшие сроки.

Наши преимущества

«Дальность действия» и проходимость

Нашим достижением является также то, что мы способны осуществлять комплексные проекты на значительном удалении от Москвы. А также осуществлять доставку в труднопроходимые для обычного транспорта места.

Полезные дополнения

Первое, — собственные разработки в области электронной техники и автоматики позволяют нам создавать системы наиболее точно отвечающие индивидуальным требованиям заказчика и удешевлять проект.

Второе, — мы предлагаем изготовление и установку приспособлений для дальнейшего самостоятельного обслуживания ветрогенератора заказчиком.

Приятные бонусы

Проводя подготовку к проекту и монтажные работы, мы предлагаем и осуществляем в качестве бонуса  дополнительные работы не предусмотренные базовой технологией монтажа. Сюда относятся следующие виды работ:

  • антикоррозийная обработка мачты;
  • покраска корпуса ветрогенератора;
  • дополнительные крепления частей ветряка;
  • пробный пуск и контроль работы ветряка.

Организация работ

Немаловажным фактором оказывается и уровень организации монтажных работ. Та безпроблемность поставки и монтажа ветрогенераторов, о которой так часто говорят в рекламных целях во многом обманчива. Для того чтобы сделать быстро, качественно, с полным набором дополнительных услуг и возможностей, не нарушая привычный режим жизни или график клиента, не «захламляя» его участок посторонними предметами и т.д. нужен и опыт, и соответствующая инфраструктура. На её создание и направлена наша деятельность.

Порядок работы с потенциальным клиентом обычно следующий:

1) На первом этапе даётся предварительная консультация по телефону или при встрече.

2) Затем, когда человек проявляет практический интерес и намерен приступить к реализации проекта, осуществляется выезд на место (рекогносцировка) — это услуга платная. В ходе рекогносцировки проводится комплексный анализ ситуации, разрабатывается предварительный план решения энергетических и строительных задач, определяются детали будущей работы.

3) После определения объёма работ и оформления заказа проходит некоторое время пока не поступит оборудование. Затем оно в заранее оговоренное время доставляется заказчику и производится монтаж.

Порядок работы с клиентом по обслуживанию и ремонту техники смотрите в разделе «Обслуживание».


Установка ветрогенератора явится для Вас может быть первым, а может и очередным шагом по комплексному освоению альтернативно-энергетических систем. Желаем чтобы он не разочаровал Вас! А мы приложим к тому все усилия.

Ассортимент ветрогенераторов в нашем каталоге

Монтаж ветрогенератора. Солнечыне батареи. Инверторы

Компания ООО «Энергетическая Альтернатива» предлагает услуги по подбору и установке ветрогенератора в Украине.

Факторы, которые следует учесть при монтаже ветрогенератора:

 

  1. Подобрать место для его установки. Для эффективной работы ветровой установки рядом не должно быть деревьев, высоких домов или других зданий, которые могут помешать потоку ветра, местность должна быть открытой.
  2. Плотность грунта, на которую будет установлена мачта ветряка.

Установку ветряка должен выполнять высококвалифицированный специалист.

Процедура установки ветрогенератора:

  1. Консультация по телефону или личная встреча с клиентом;
  2. Выезд специалиста для осмотра места, где будет выполнена установка;
  3. Подготовка фундамента для установки ветряка;
  4. Установка ветрогенератора;
  5. Пусконаладочные работы;
  6. Обучение персонала для дальнейшего пользования ветрогенератором.

Почему ветрогенератор:

  • Использует неисчерпаемую энергию ветра;
  • Установка полностью безопасная для окружающей среды;
  • Не производит загрязнений окружающей среды;
  • Возможность продавать электроэнергию от ветрогенератора по «зеленому» тарифу.

Ветряные электростанции различают:

  • Сетевые ветровые станции – работают совместно с сетью. Такая установка поможет снизить электропотребление, а разницу между сгенерированной и потребленной электроэнергией можно продавать по «зеленому» тарифу.
  •  Автономные ветровые станции, которые могут быть единственным источником питания электроприборов. Зачастую устанавливаются на объектах, где невозможно подключиться к сети.
  • Ветровые установки, которые могут служить резервным источником питания (подключены к сети, но при этом накапливают электроэнергию в АКБ).

Почему следует обратиться в компанию «Энергетическая Альтернатива»:

  1. Выполнение всех работ по установке ветряка под ключ;
  2. Установку будут выполнять специалисты с большим опытом;
  3. Гарантийное обслуживание.

Установить ветрогенератор можно для дома, дачи, лесного хозяйства, фермы, предприятия и др. В зависимости от Ваших задач специалист нашей компании сможет предложить вам ветряк нужной мощности.

Наши выполненные объекты есть в Киевской, Херсонской, Харьковской и других областях Украины. Заказать выезд специалиста на осмотр места под установку можно в любой населенный пункт Украины.

эволюция ветряков в борьбе за чистую энергию

В Швеции построили первый деревянный ветрогенератор современного типа. Опытный образец вышки ветряной турбины высотой 30 метров был смонтирован полностью из деревянных модулей на Бьоркё – одном из островов архипелага вблизи Гетеборга. «Мы надеемся, что деревянная ветроэнергетическая установка положит начало открытию еще более дешевых и экологичных решений в сфере возобновляемых источников энергии в Северной Европе», — заявила шведская инжиниринговая компания Modvion AB в своем пресс-релизе, опубликованном по завершении монтажных работ 28 апреля 2020 года. 

Первый в современной практике деревянный ветрогенератор разработан Modvion AB совместно с немецкой компанией Moelven. 30-метровая башня на острове Бьоркё будет проходить испытания в рамках пилотного проекта. Уже в 2022 году разработчики планируют построить первые коммерческие деревянные ветроустановки высотой 110 и 150 метров. Контракты на их поставку уже подписаны с заказчиками, сообщают в компании. 


«Это крупный прорыв, который проложит путь к новому поколению ветряных турбин», — считает Отто Лундман, генеральный директор Modvion AB.

По его словам, ламинированная древесина по прочности не уступает стальным конструкциям, отличаясь при этом гораздо большей легкостью. Благодаря сборным модулям, которые можно перевозить на далекие расстояния, что сложнее и существенно дороже в случае транспортировки стальных вышек, ветряные турбины можно делать еще более высокими и эффективными. «Кроме того, заменяя сталь деревом, мы сокращаем выбросы углекислого газа при производстве, что делает ветряную энергетику еще более чистой», — добавил Отто Лундман. 

Первую в истории ветроэнергетическую установку построил в 1887 году шотландский инженер и ученый Джеймс Блайт, которого считают «отцом» ветровой энергетики. На своем загородном участке в Мэрикирке он установил ветряк высотой 10 метров с четырьмя лопастями, с тем, чтобы использовать силу ветра для зарядки аккумуляторов, питающих электроэнергией коттедж. Кроме того, энергии хватало и на освещение близлежащей улицы. Патент на изобретение ветрогенератора был получен Блайтом в 1891 году, но долгое время отношение к ветроустановкам во всем мире было более чем скептическим.

К осознанной необходимости развивать ветроэнергетику в промышленных масштабах человечество пришло только в конце XX века, когда в Европе стали создавать ветропарки. 


Но прародителей современных ветрогенераторов, конечно же, стоит искать среди первых ветряных мельниц, которые были изобретены в Персии предположительно в V веке н.э. Позднее, уже в IX-X веках, ветряки в их классическом виде – деревянные или каменные башни с лопастями – стали строить и в Европе. Они пришли на смену водяным мельницам и стали частью природного ландшафта, прежде всего, в странах Северной Европы с замерзающими водоемами – Голландии, Дании, Швеции и Норвегии. 

Фотоотчет об этапах уникальной операции по транспортировке и установке деревянного ветрогенератора доступен здесь.

Ветропарки: защита климата в ущерб живой природе? | Анализ событий в политической жизни и обществе Германии | DW

Угольная электрогенерация, фрекинг для добычи природного газа, бурение нефтяных скважин.

.. Такие темы  сегодня все чаще выводят на улицы защитников окружающей среды. Но и возобновляемые источники энергии также могут быть весьма спорными — даже с точки зрения экоактивистов.

Рассказывая о том, что рядом с ее домом планируют вырубить лес под новый ветропарк, Габриэле Нихаус-Юбель (Gabriele Niehaus-Uebel), по ее собственным словам, ощущает бессилие, беспомощность и ярость. Она — лидер гражданской инициативы по борьбе со строительством 20-турбинной ветряной электростанции в федеральной земле Гессен.

Акция в защиту Хамбахского леса

Хотя планы по строительству этого объекта предусматривают вырубку менее двух процентов леса, Габриэль говорит, что это все равно разрушит «ранее нетронутую экосистему». Она сравнивает лесной массив в Гессене с уникальным Хамбахским лесом недалеко от Кельна, уже много лет находящимся под угрозой вырубки: концерн RWE планирует расширить свой угольный карьер. «Экологи и активисты там сражаются за каждое дерево, и об этом постоянно пишут в СМИ.

Здесь у нас хотят вырубить 200 квадратных километров — и нигде ни слова об этом не говорят», — возмущается Нихаус-Юбель.

Использование энергии ветра будет расти

Спор по поводу целесообразности строительства ветряных электростанций в Германии идет уже много лет. «У ветроэнергетики всегда было много противников, — говорит генеральный секретарь Всемирной ветроэнергетической ассоциации (WWEA) Штефан Гзенгер (Stefan Gsänger). — И это нормально в условиях любых изменений, происходящих демократическим путем».  

Как говорится на сайте объединения, возглавляемого Нихаус-Юбель, эта группа —  лишь одна из примерно 1000 гражданских инициатив, выступающих против строительства ветропарков. Между тем ветроэнергетика позволяет частично удовлетворить растущий мировой спрос на электроэнергию. По оценкам экспертов, в ближайшие двадцать лет использование этого источника энергии возрастет на 30 процентов, снижая при этом темпы изменения климата.

У ветропарков есть немало противников

Специалисты WWEA утверждают, что ветряные турбины, введенные в эксплуатацию до конца 2018 года, способны удовлетворять около шести процентов мирового спроса на электроэнергию. При этом, как сообщает Международное агентство по возобновляемым источникам энергии, доля производства энергии на возобновляемых источниках вырастет с 25% в 2017 году до 85% к 2050 году — в основном за счет использования энергии солнца и ветра. И учитывая глобальные масштабы этих изменений, недооценивать влияние ветряных электростанций на окружающую среду было бы крайне недальновидно.

Опасность для птиц и летучих мышей

Особую опасность ветровые турбины представляют для птиц и летучих мышей. У хищных птиц, к примеру, при необычайной остроте зрения, есть и «мертвая зона»: наклоняя при поиске добычи голову вниз, они не видят того, что находится прямо по курсу, и если птица летит в сторону ветрогенератора, столкновение с его лопастями почти неизбежно. А летучие мыши становятся жертвами ветряка, даже с ним не сталкиваясь: приблизившись к нему менее чем на 100 метров, животные попадают в зону низкого давления и погибают от внутреннего кровоизлияния, вызванного резким расширением легких.  

На юге Испании — в провинции Эстремадура — из-за ошибок на этапе планирования ветропарки были построены на пути миграций огромного количества перелетных птиц через Гибралтар. Этот факт, говорится в докладе испанского отделения орнитологического сообщества SEO BirdLife, может негативно отразиться на популяциях птиц всего северного полушария и угрожать отдельным редким видам, таким, как испанский королевский орел.

В ряде других исследований, впрочем, утверждается, что от столкновения с ветряными турбинами птицы гибнут гораздо реже, чем от других причин, связанных с деятельностью человека. В США, к примеру, чаще всего птицы становятся жертвами домашних кошек, сотни миллионов птиц ежегодно врезаются в окна высотных зданий и лобовые стекла движущихся автомобилей, десятки миллионов гибнут на линиях электропередач.

Однако испанские орнитологи из SEO BirdLife настаивают на том, что подобные исследования несовершенны, поскольку их выводы основаны на небольших размерах выборки. «Нельзя упускать из виду и тот факт, что даже невысокая смертность может иметь решающее значение для видов, находящихся под угрозой исчезновения, или с очень низким уровнем размножения», — говорится в отчете группы.

Как минимизировать опасность от ветряков для живой природы?

За пределами Европы — в Южной Африке — местное отделение орнитологического сообщества BirdLife недавно отпраздновало победу: благодаря его усилиям, в горном массиве Грут Винтерхоек примерно в 120 км от Кейптауна было отменено строительство ветропарка, появление которого могло бы стать угрозой для редких видов птиц. Южноафриканское отделение координирует работу Целевой группы по вопросам энергетики, созданной в соответствии с Конвенцией ООН по сохранению мигрирующих видов диких животных (CMS). Одной из ее задач является определение территорий, где можно строить объекты возобновляемой энергетики без вреда популяциям птиц.

Многие эксперты сходятся во мнении, что правильное расположение ветропарков и технологические усовершенствования в большинстве случаев позволят минимизировать опасность ветрогенераторов для биологического разнообразия. Довольно эффективным, на их взгляд, может стать выборочное отключение турбин в местах массового скопления перелетных птиц.

Выборочное отключение турбин уменьшает вероятность столкновения птиц с лопастями

Исследование 2012 года, опубликованное в ведущем международном журнале в области биологии и охраны природы Biological Conservation, зафиксировало 50-процентное снижение смертности стервятников на 13 ветряных электростанциях в Кадисе, на юге Испании, после того, как турбины стали выключать в момент приближения к ним птиц. Производство электроэнергии при этом снижалось всего на 0,7 процента в год.

Эксперты Американского института изучения природы ветра (AWWI) проанализировали случаи гибели птиц от столкновения с ветряными турбинами и пришли к выводу, что уменьшение скорости вращения лопастей при низкой скорости ветра может сократить число смертельных случаев на 50-87 процентов.

Кому должны принадлежать ветрогенераторы?

И хотя экологам не всегда удается предотвратить строительство ветропарков и свести к нулю их опасность для птиц и летучих мышей, эксперты убеждены в том, что отношение к ним будет более позитивным, если к дискуссиям, связанным с использованием альтернативных источников энергии, привлекать жителей тех регионов, где устанавливаются ветрогенераторы.

Позитивное отношение к ветровой электрогенерации можно сформировать, если «максимально вовлекать к обсуждению этой темы всех, на чью жизнь влияет строительство ветряных электростанций, и изначально гарантировать им максимально возможные права собственности и преимущества», — уверен генеральный секретарь Всемирной ветроэнергетической ассоциации (WWEA) Штефан Гзенгер.

В развивающихся странах, таких, как, к примеру, Мали, возобновляемые источники энергии играют особенно важную роль в преодолении бедности, и передача их в собственность местным общинам может изменить ситуацию к лучшему, убежден Гзенгер. «У людей была бы не только энергия, но и контроль над ней», — объясняет он.

В одном взгляды сторонника строительства ветряных электростанций Штефана Гзенгера и их активного противника Габриэле Нихаус-Юбель сходятся: если ветрогенераторы передать в собственность людям и позволить им принимать участие в решении всех важных вопросов, связанных с эксплуатацией, это поможет уменьшить негативное воздействие ветряных электростанций на окружающую среду. Ведь люди, которым принадлежит земля, любят и ценят ее больше, чем кто-либо другой.

______________

Подписывайтесь на наши каналы о России, Германии и Европе в | Twitter | Facebook | YouTube | Telegram 

 Смотрите также:

  • Альтернативные ландшафты Германии

    Дисен-ам-Аммерзе (Бавария) • На прошлой июльской неделе мы опубликовали этот снимок из Баварии в нашей рубрике «Кадр за кадром» — причем, руководствуясь чисто эстетическими соображениями: не смогли пройти мимо столь живописного ландшафта. Публикация этого пейзажа с солнечными батареями вызвала оживленное обсуждение в соцсетях — о пользе и вреде возобновляемых источников энергии.

  • Альтернативные ландшафты Германии

    Лемвердер (Нижней Саксония) • Поэтому сегодня продолжим тему солнечных панелей и ветряков на немецких просторах. На возобновляемые источники в Германии уже приходится более 40 процентов всего объема вырабатываемой электроэнергии.

  • Альтернативные ландшафты Германии

    Ульм (Баден-Вюртемберг) • При этом официальная немецкая статистика в этих данных учитывает энергию ветра, солнца, воды, а также получаемую разными путями из биомассы и органической части домашних отходов.

  • Альтернативные ландшафты Германии

    Якобсдорф (Бранденбург) • В 2018 году на наземные (оншорные) и морские (офшорные) ветроэнергетические установки и парки в Германии пришлась почти половина всего объема произведенной возобновляемой энергии — 41 % и 8 % соответственно.

  • Альтернативные ландшафты Германии

    Пайц (Бранденбург) • Доля солнечных электростанций в этом возобновляемом энергетическом «коктейле» достигла 20 %.

  • Альтернативные ландшафты Германии

    Юнде (Нижняя Саксония) • Ровно столько же, то есть 20 % пришлось на использование биомассы в качестве альтернативного источника электрической энергии. Еще три процента дает использование органической части домашних отходов.

  • Альтернативные ландшафты Германии

    Хаймбах (Северный Рейн — Вестфалия) • Оставшиеся семь процентов возобновляемой энергии приходятся на ГЭС. Возможности для строительства гидроэлектростанций в Германии ограничены, но используются эти ресурсы уже очень давно. Эту электростанцию в регионе Айфель построили в 1905 году. Оснащенная современными турбинами, она исправно работает до сих пор.

  • Альтернативные ландшафты Германии

    Халлиг Хооге (Шлезвиг-Гольштейн) • Для полноты картины приведем расклад по всем источникам в Германии за 2018 год: АЭС — 13,3 %, бурый уголь — 24,1 %, каменный уголь — 14,0 %, природный газ — 7,4 %, ГЭС — 3,2 %, ветер — 20,2%, солнце — 8,5 %, биомасса — 8,3 %.

  • Альтернативные ландшафты Германии

    Гарцвайлер (Северный Рейн — Вестфалия) • В 2038 году в Германии намерены полностью отказаться от сжигания бурого угля для получения электроэнергии. Последний атомный реактор, согласно решению федерального правительства, должны вывести из эксплуатации в 2022 году. В прошлом году на АЭС и бурый уголь пришлось более 37 %, которые необходимо будет чем-то замещать.

  • Альтернативные ландшафты Германии

    Сиверсдорф (Бранденбург) • По данным на конец 2018 года в Германии насчитывалось более 29 тысяч наземных ветроэнергетических турбин. В прибрежных морских водах Германии расположено еще около 1350 ветряков, однако более четырех десятков из них еще не были подключены в энергетическую сеть.

  • Альтернативные ландшафты Германии

    Северное море (Шлезвиг-Гольштейн) • Серьезную проблему представляет необходимость строительства новых энергетических трасс для транспортировки энергии из северных регионов, где ветер дует чаще и сильнее (здесь много таких турбин), к потребителям в западные и южные части Германии.

  • Альтернативные ландшафты Германии

    Лебус (Бранденбург) • Эти планы вызывают протесты жителей в тех густонаселенных регионах, по которым линии электропередач должны проходить. В некоторых местах люди требуют убирать высоковольтные ЛЭП под землю.

  • Альтернативные ландшафты Германии

    Рюген (Мекленбург — Передняя Померания) • Планы установки новых ветроэнергетических турбин в разных регионах все чаще наталкиваются в Германии на сопротивление со стороны населения. Соответствующие судебные иски часто имеют успех, что уже заметно сказывается на годовых показателях роста отрасли — тем более, что подходящие места становится находить все труднее.

  • Альтернативные ландшафты Германии

    Вормс (Рейнланд-Пфальц) • Согласно данным службы Deutsche WindGuard, в 2018 году в Германии было введено в эксплуатацию всего 743 новых ветряка. При этом предыдущий 2017 год оказался рекордным в истории развития этого вида возобновляемой энергии в ФРГ: почти 1849 новых установок.

  • Альтернативные ландшафты Германии

    Дассов (Мекленбург — Передняя Померания) • Всего в Германии сейчас насчитывается около тысячи гражданских инициатив, выступающих против строительства новых ветряков. Их сторонники считают, что эти установки разрушают жизненное пространство птиц и летучих мышей, уродуют ландшафты, а инфразвук и прочий постоянный шум этих установок вредит здоровью людей, живущих по соседству.

  • Альтернативные ландшафты Германии

    Восточная Фризия (Нижняя Саксония) • Эти инициативы требуют, в частности, в качестве альтернативы рассматривать газовые и паровые электростанции, повышать эффективность угольных станций, а также пересмотреть решение парламента и правительства Германии об отказе от атомной энергии.

  • Альтернативные ландшафты Германии

    Зауэрланд (Северный Рейн — Вестфалия) • Представители отрасли обычно указывают на недоказанность негативного влияния инфразвука на здоровье. Что касается гибели птиц из-за ветровых установок, специалисты называют разные цифры, максимум — до 200 тысяч в год в целом по Германии. Для сравнения: в результате столкновений со стеклами окон и фасадов погибает около 18 миллионов птиц в год.

  • Альтернативные ландшафты Германии

    Сиверсдорф (Бранденбург) • Летучих мышей гибнет более 100 тысяч в год (по некоторым оценкам, втрое больше) — не только от столкновений с лопастями, но и из-за травм, получаемых в результате завихрений воздуха, когда они пролетают рядом. Много гибнет во время сезонной миграции. Эксперты требуют учитывать эти факторы — в частности, отключать ветряки в часы особой активности летучих мышей.

  • Альтернативные ландшафты Германии

    Бедбург-Хау (Северный Рейн — Вестфалия) • Правила выбора мест для ветряков регулируются земельными законами. Например, в Северном Рейне — Вестфалии минимальное расстояние до жилых построек составляет 1500 метров, в Тюрингии — 750 метров. В Баварии это расстояние вычисляется по формуле «Высота установки х 10», то есть, например, два километра между жилыми зданиями и двухсотметровым ветряком.

  • Альтернативные ландшафты Германии

    Ренцов (Мекленбург — Передняя Померания) • Дискуссии о развитии возобновляемых источников энергии часто ведутся в Германии эмоционально и будут продолжаться в обозримом будущем. Чтобы повысить готовность населения видеть в окрестностях такие установки, предлагается, в частности, отчислять дополнительную часть доходов конкретным регионам на различные нужные и полезные для местных жителей проекты.

    Автор: Максим Нелюбин


Ветроэнергетическая установка (ВЭУ) — Что такое Ветроэнергетическая установка (ВЭУ)?

Ветрогенератор — устройство для преобразование кинетической энергии воздушного потока в электричество.

Ветроэнергетическая установка, или ветрогенератор — устройство для преобразования кинетической энергии воздушного потока в электричество.

Это альтернативный источник энергии.

Его выработка, а также выходные характеристики тока связаны кубической зависимостью со скоростью ветра

Из-за этого и в виду непостоянства ветра самостоятельное его применение мало возможно.

Требуются аккумуляторы для накопления, а также оборудование для зарядки батарей.

В среднем ветряк вырабатывает 150 кВт*ч/мес. электроэнергии.

Ресурсная характеристика ветряка измеряется десятилетиями.

Ветряк обычно выполнен в виде ветроколеса с тремя лопастями, расположенными по радиусам и под углом к плоскости вращения, и синхронного генератора переменного электрического тока.

Рабочий момент на ветроколесе создается под действием аэродинамических сил, возникающих на лопастях, имеющих специальный аэродинамический профиль.

Для ориентации ветроколеса по направлению ветра у ВЭУ используется «хвостовое оперение».

Преимущества ВЭУ:

  • возможность обеспечения электроэнергией любых пунктов вне зависимости от степени удаления от магистральных линий,

  • нет необходимости создавать большую энергетическую станцию, можно использовать отдельные компактные установки,

  • готовая ВЭУ не нуждается в топливе и других ресурсных поставках.

Существуют следующие классификации ветрогенераторов:

— по количеству лопастей:

  • двухлопастные, 

  • трехлопастные, 

  • многолопастные;

— по материалам лопастей:

— по рабочей оси вращения:

  • горизонтальные, 

  • вертикальные;

— по шагу винта:

  • с фиксированным шагом винта, 

  • с изменяемым шагом винта.

В Испании придумали «вибратор», преобразующий энергию ветра

В Испании придумали ветряк, не использующий вращающиеся лопасти. По словам создателей, механизм проще, безопасней и дешевле традиционных ветрогенераторов.

Гигантские ветряки, которые давно стали символом альтернативной энергетики и устанавливаются в огромных количествах в разных странах мира, возможно, в будущем, уступят место более компактным, безопасным и эффективным устройствам, предложенным испанскими изобретателями.

Ветряная электроэнергетика – одна из немногих отраслей, которая продолжила уверенный рост даже в кризисный 2020 год. По подсчетам аналитиков компании BloombergNEF, в минувшем году в мире введено в эксплуатацию ветряных установок рекордной мощностью 96,7 гигаВатт – на 59% больше, чем введено в 2019 году.

Большая часть (93%) – установки, введенные на суше, строительство морских ветряков показало падение на 13% по сравнению с 2019 годом. При этом основной прирост приходится на новые генераторы, введенные в США и Китае.

Однако традиционные вращающиеся ветряки размером и высотой в десятки метров – не самый лучший способ превращения энергии ветра в электричество, уверены основатели испанского стартапа Vortex Bladeless, предложившие оригинальную модель генератора.

Дизайн их установки недавно получил поддержку норвежской государственной энергетической компании Equinor, назвавшей проект одним из 10 перспективных стартапов в области энергетики.

Пока экспериментальный образец имеет в высоту всего три метра. Он представляет из себя вытянутый цилиндр на подвижной опоре, который способен колебаться вперед-назад под действием напора ветра. Необычный дизайн устройства уже привлек внимание огромного числа пользователей сайта Reddit, где остряки обратили внимание не его фаллическую форму и прозвали «skybrator».

«Наша технология имеет другие характеристики, которые позволяют использовать места, где традиционные ветряные фермы не годятся», — пояснил Guardian основатель стартапа Давид Янез.

Принцип работы устройства основан на образовании особых вихрей позади твердых тел, обтекаемых потоком воздуха. В основании мачты имеются два кольцевых отталкивающих магнита, которые возвращают ее в исходное положение при наклоне. За счет таких движений, частота которых зависит от силы ветра, и происходит генерация электроэнергии.

Основа мачты – углеволокно, срок службы которого оценивают в 25 лет. Отсутствие вращающихся лопастей делает Vortex тише, компактнее, и дешевле в обслуживании, а также позволяет ему легче адаптироваться к изменению направления ветра.

А отсутствие вращающегося генератора не позволит ему замерзнуть во время зимних штормов, как это происходило со многими ветряками в Техасе в минувшем феврале. Как уверяют создатели, производство энергии на новых ветряках будет на 30% дешевле, чем на традиционных, в основном – за счет низкой стоимости установки и обслуживания.

«В нашей машине нет ни шестерней, ни тормозов, ни подшипников, ни валов, – пояснил Янез. – Ей не требуется смазка, и там нет частей, которые бы изнашивались из-за трения».

Речь может идти об установке новых генераторов вблизи промышленных и жилых районов, где традиционные ветряки обычно не устанавливают из-за их вредного влияния. Генераторы могут устанавливаться вместе с солнечными панелями для отдельных домовладений.

«Они дополняют друг друга, поскольку солнечные панели производят электричество днем, а скорость ветра обычно растет ночью, — говорит предприниматель. – Однако главная выгода технологии – уменьшение экологического воздействия, внешний облик, стоимость работы и обслуживания турбины».

Предложенный генератор не представляет опасности для перелетных птиц и других животных, в том числе в населенных районах. По мнению специалистов, массовый переход на подобные устройства и отказ от традиционных ветряков может сохранить жизни птиц и летучих мышей, ежегодно гибнущих от ударов о лопасти, иногда раскручивающиеся до скоростей в 300 км/ч. Только в США по этой причине, по подсчетам экологов, ежегодно погибает до 500 тыс. птиц.

Для работающих и живущих рядом людей его шум не будет представлять проблем, так как возникает на частотах, не слышимых человеческим ухом.

«Пока турбина небольшая и производит мало энергии. Но мы ищем индустриального партнера для масштабирования наших планов и постройки 140-метровой установки мощностью 1 мегаВатт», — пояснил Янез.

Бороться с обледенением ветрогенераторов в Арктике поможет разработка новосибирских ученых

Покрыть ледяной глазурью в аэродинамической трубе учёный может любую поверхность. Климатические параметры задаёт самостоятельно: температуру, влажность, скорость ветра. Так исследователи моделируют арктические условия.

Север ─ территория будущего для России. Его освоение требует колоссального использования энергии. Одно из самых перспективных решений энерговопроса ─ установка ветрогенераторов. Однако основное препятствие для их эффективной работы на арктическом побережье ─ обледенение.

«В гололёд мы замедляем походку. То же самое происходит и с ветрогенератором. Когда на нём появляется обледенение, он замедляет вращение, уменьшается выработка электроэнергии», ─ поясняет руководитель проекта «Разработка стратегии борьбы с обледенением ветрогенераторов в условиях Арктики» Валерий Окулов.

Замедлить или вывести из строя лопастную установку может наледь или иней. В лаборатории учёные искусственно создают ледяную корку, чтобы затем её разрушить. Методы разные ─ ультразвук, удары и вибрация, воздействие температурой, водоотталкивающие покрытия, нанесение гидрофобных покрытий, препятствующих задержанию капель на поверхности обледенения, пояснил ведущий инженер Института теплофизики им. С. С. Кутателадзе Дмитрий Мухин.

Учёные намерены исследовать эффективность разных способов борьбы с обледенением, чтобы найти оптимальный вариант для разных условий и поверхностей. Такую задачу ещё никто в мире не решал.

А вот проверять действие антифриза в качестве противообледенителя учёные не будут, поскольку это средство ─ химическое, и несёт вред окружающей среде.

По словам заместителя директора Института теплофизики им. С. С. Кутателадзе Павла Куйбина, Россия включается в тренды, в первую очередь европейские, по переходу на зелёную энергетику, в том числе ветроэнергетику. Для России в настоящее время это очень актуальная задача.

Массово ветрогенераторы в российской Арктике пока не строят, но это ─ дело не столь отдалённого будущего, уверены учёные. Результаты исследований, воспользоваться которыми смогут и покорители Севера, новосибирцы представят через три года.

Сколько стоят ветряные турбины?

Ветряные турбины домашнего или сельскохозяйственного масштаба

Ветряные турбины мощностью менее 100 киловатт стоят примерно от 3000 до 8000 долларов за киловатт мощности. Установка мощностью 10 киловатт (размер, необходимый для питания большого дома) может иметь установленную стоимость от 50 000 до 80 000 долларов (или больше).

Ветровые турбины имеют значительную экономию на масштабе. Меньшие по размеру турбины для фермерских хозяйств или жилых домов в целом стоят меньше, но они дороже на киловатт производимой энергии.Часто существуют налоговые и другие стимулы, которые могут резко снизить стоимость ветроэнергетического проекта.

Коммерческие ветряные турбины

Затраты на ветряную турбину коммунального масштаба варьируются от 1,3 до 2,2 млн долларов на МВт установленной паспортной мощности. Большинство установленных сегодня промышленных турбин имеют мощность 2 МВт и стоят примерно 3-4 миллиона долларов.

Общие затраты на установку ветряной турбины промышленного масштаба будут существенно различаться в зависимости от количества заказанных турбин, стоимости финансирования, даты заключения договора о покупке турбины, контрактов на строительство, местоположения проекта и других факторов.Компоненты затрат для ветроэнергетических проектов включают другие вещи, помимо турбин, такие как расходы на оценку ветровых ресурсов и анализ участка; строительные расходы; разрешительные и межсетевые исследования; модернизация инженерных сетей, трансформаторов, защитного и измерительного оборудования; страхование; эксплуатация, гарантия, обслуживание и ремонт; юридические и консультационные услуги. Другие факторы, которые повлияют на экономику вашего проекта, включают налоги и льготы.

Дополнительные ссылки

Страница ветроэнергетики по экономике малого ветра, включая ссылку на наш калькулятор малого ветра

Страница ветроэнергетики о затратах на ветровые проекты в сообществах

Список производителей турбин в нашей ветровой библиотеке

Страница Совета по сертификации малых ветроэнергетических установок, посвященная сертифицированным малым ветровым турбинам (для получения информации о ценах свяжитесь с указанными компаниями)

Межгосударственный консультативный совет по турбинам Единый список ветряных турбин

Часто задаваемые вопросы по ветроэнергетике (FAQ)

Земля окружена атмосферой, состоящей из воздуха.Воздух представляет собой смесь газа, твердых и жидких частиц. Энергия Солнца неравномерно нагревает атмосферу и Землю.

Холодный воздух содержит больше частиц воздуха, чем теплый. Поэтому холодный воздух тяжелее и опускается вниз через атмосферу, создавая зоны с высоким давлением. Теплый воздух поднимается над атмосферой, создавая зоны с низким давлением. Воздух пытается уравновесить области низкого и высокого давления — частицы воздуха перемещаются из областей высокого давления (холодный воздух) в области низкого давления (теплый воздух).Это движение воздуха известно как ветер.

На ветер также влияет движение земли. Когда он вращается вокруг своей оси, воздух не перемещается напрямую из областей с более высоким давлением в области с более низким давлением. Вместо этого воздух выталкивается на запад в северном полушарии и на восток в южном полушарии. Это известно как сила Кориолиса. Щелкните, чтобы увидеть схему того, как движение Земли влияет на ветер.

Поверхность Земли отмечена деревьями, зданиями, озерами, морем, холмами и долинами, которые также влияют на направление и скорость ветра.Например, там, где встречаются теплая земля и прохладное море, разница температур создает тепловые эффекты, которые вызывают местные морские бризы.

Ветер обычно измеряется по его скорости и направлению. Атласы ветра показывают распределение скоростей ветра в широком масштабе, давая графическое представление о средней скорости ветра (для заданной высоты) по территории. Они составляются на основе измерений местной метеорологической станции или других зарегистрированных данных, связанных с ветром.

Традиционно скорость ветра измеряется анемометрами — обычно тремя чашами, которые фиксируют ветер, вращающийся вокруг вертикальной оси (на фото ниже).Направление ветра измеряется с помощью флюгера.

После измерения данных о ветре не менее одного года можно рассчитать среднегодовую скорость ветра. Статистика скорости и направления ветра отображается в виде розы ветров, показывая статистическое распределение скорости ветра по направлению.

Статистика ветра показывает лучшие места для размещения ветряных электростанций в соответствии с лучшими ветровыми ресурсами. Они также предоставляют дополнительную информацию о том, как турбины должны быть расположены по отношению друг к другу и каким должно быть расстояние между турбинами.

Ветряная турбина — это машина, преобразующая кинетическую энергию ветра в механическую или электрическую энергию. Ветряки состоят из фундамента, башни, гондолы и ротора. Фундамент предотвращает падение турбины. Башня поддерживает ротор и гондолу (или коробку).

Гондола содержит крупные основные компоненты, такие как главная ось, редуктор, генератор, трансформатор и система управления. Ротор состоит из лопастей и ступицы, которая удерживает их в нужном положении при вращении.Большинство коммерческих ветряных турбин имеют три лопасти ротора. Длина лопастей может составлять более 60 метров.

Посмотрите, как работает ветряная турбина!

Средний размер береговых турбин, производимых сегодня, составляет около 2,5–3 МВт, с длиной лопастей около 50 метров. Он может обеспечивать электроэнергией более 1 500 домохозяйств в среднем по ЕС.

Средняя оффшорная ветряная турбина мощностью 3,6 МВт может обеспечить электроэнергией более 3312 средних домашних хозяйств в ЕС.

В 1985 году ветряные турбины были мощностью менее 1 МВт с диаметром ротора около 15 метров.
В 2012 году средний размер составляет 2,5 МВт при диаметре ротора 100 метров.

Турбины мощностью 7,5 МВт на сегодняшний день являются самыми крупными турбинами с лопастями длиной около 60 метров — более половины длины ротора диаметром более 120 метров — длиннее футбольного поля. Планируется, что турбины мощностью 15 МВт, а турбины мощностью 20 МВт считаются теоретически возможными.

Башни в основном трубчатые, из стали или бетона, обычно окрашены в светло-серый цвет. Лезвия изготавливаются из стекловолокна, армированного полиэстера или древесно-эпоксидной смолы.Они светло-серые, потому что незаметны при большинстве условий освещения. Поверхность матовая для уменьшения отраженного света.

При проектировании ветряной электростанции учитывается множество факторов. В идеале площадка должна быть как можно более широкой и открытой в направлении преобладающего ветра, с небольшим количеством препятствий. Необходимо учитывать его визуальное влияние — несколько больших турбин обычно лучше, чем многие меньшие.

Турбины должны быть легко доступны для обслуживания и ремонта, когда это необходимо.Уровни шума можно рассчитать, чтобы ферма соответствовала уровням шума, установленным национальным законодательством. Поставщик турбины определяет минимальное расстояние между турбинами, принимая во внимание влияние, которое одна турбина может оказывать на соседние турбины, — «эффект следа».

Затем необходимо выбрать правильный тип турбины. Это зависит от ветровых условий и особенностей ландшафта местности, местных / национальных правил, таких как высота турбины, уровень шума и охрана природы, риск экстремальных явлений, таких как землетрясения, насколько легко транспортировать турбины на площадку и местная доступность кранов.

Время строительства обычно очень короткое — ветряную электростанцию ​​мощностью 10 МВт можно легко построить за два месяца. Более крупная ветряная электростанция мощностью 50 МВт может быть построена за шесть месяцев.

Стоимость варьируется, но самая большая стоимость — это сама турбина. Это капитальные затраты, которые должны быть оплачены заранее и обычно составляют 75% от общей суммы.

После того, как турбина запущена и работает, нет никаких затрат на топливо и углерод, только затраты на эксплуатацию и техническое обслуживание (O&M), которые минимальны по сравнению с e.г. газовая электростанция, где ЭиТО составляет 40-70% общих затрат, а остальная часть затрат — топливо.

Ветровые турбины начинают работать при скорости ветра от 4 до 5 метров в секунду и достигают максимальной выходной мощности со скоростью около 15 метров в секунду. При очень высоких скоростях ветра, то есть при ураганном ветре 25 метров в секунду, ветряные турбины отключаются. Современная ветряная турбина вырабатывает электроэнергию в 70-85% случаев, но вырабатывает разную мощность в зависимости от скорости ветра.

В течение года он обычно дает около 24% от теоретической максимальной производительности (41% на море). Это известно как коэффициент мощности. Коэффициент мощности обычных электростанций составляет в среднем 50% -80%. Из-за остановок для обслуживания или поломок ни одна электростанция не вырабатывает энергию в течение 100% времени.

Оптимальное количество лопастей для ветряной турбины зависит от работы, которую она должна выполнять. Турбины для выработки электроэнергии должны работать на высоких скоростях, но не требуют большого крутящего момента. Эти машины обычно имеют три или два лезвия. С другой стороны, ветряным насосам требуется вращающее усилие, но не большая скорость, и поэтому у них много лопастей.

Большинство современных промышленных ветряных турбин имеют три лопасти, так как они вырабатывают оптимальную мощность.

Двухлопастные машины дешевле и легче, с более высокими скоростями движения, что снижает стоимость коробки передач, и их легче установить. Они работают почти так же хорошо, как трехлопастные турбины. Однако они могут быть более шумными и не такими визуально привлекательными, выглядя «резкими» при повороте.

Турбины иногда необходимо останавливать для обслуживания, ремонта компонентов или в случае неисправности, которую необходимо проверить.Другой причиной может быть слишком слабый или слишком сильный ветер: если ветер слишком сильный, турбину необходимо остановить, так как она может быть повреждена.

В ветряной электростанции сами турбины занимают менее 1% площади суши. Вокруг них могут развиваться существующие виды деятельности, такие как сельское хозяйство и туризм, и при этом не беспокоить таких животных, как коровы и овцы.

Все больше и больше домовладельцев, сообществ и малых предприятий заинтересованы в выработке собственного электричества с помощью небольших ветряных турбин, установленных на крышах домов или в садах.Если вас интересует, как можно привести в действие свой дом или бизнес с помощью собственной турбины, обратитесь в национальную ассоциацию ветроэнергетики для получения дополнительной информации о том, как это работает в вашей стране.

Щелкните здесь, чтобы найти свою национальную ассоциацию.

Просмотрите наш каталог участников, чтобы увидеть полный список производителей ветряных турбин.

В настоящее время береговая ветроэнергетика более экономична, чем морская разработка. Кроме того, развитие морских ветряных электростанций занимает больше времени, поскольку море по своей природе является более враждебной средой.Поэтому ожидать, что оффшор станет единственной разрешенной формой ветроэнергетики, значило бы обречь нас на невыполнение наших целей в области возобновляемых источников энергии и приверженности делу борьбы с изменением климата.

Однако в ближайшие годы, когда морские турбины будут производиться в более крупных масштабах, цены снизятся, что сделает морскую ветроэнергетику все более конкурентоспособной. Над европейскими морями дует ветер, достаточный для того, чтобы семь раз накачать Европу, что делает морской ветер очень жизнеспособным вариантом для использования.

В 2010 году в ЕС было 70 488 наземных ветряных турбин и 1132 морских турбин.По мере развития технологий турбины становятся больше и эффективнее, поскольку выработка того же количества энергии может быть достигнута с помощью меньшего количества машин.

В настоящее время в ЕС установлено 19,5 МВт ветроэнергетической мощности на 1 000 км суши, с самой высокой плотностью в Дании и Германии. Хотя 25 из 27 стран-членов ЕС в настоящее время используют ветроэнергетику, все еще существует значительный объем ветроэнергетических мощностей в таких странах, как Франция, Великобритания и Италия.Более….

Ветровые турбины могут вырабатывать электроэнергию в течение 20-25 лет. В течение своего срока службы они будут непрерывно работать до 120 000 часов. Это сопоставимо с расчетным сроком службы двигателя автомобиля, который составляет от 4000 до 6000 часов.

Лопасти вращаются со скоростью 15-20 оборотов в минуту с постоянной скоростью. Однако все большее количество машин работает с переменной скоростью, при которой скорость ротора увеличивается и уменьшается в зависимости от скорости ветра.

Жилые ветроэнергетические системы — Bergey Windpower Co.

Малые ветряные турбины для дома и бизнеса

Обновлено в июне 2019 г.

Как они работают?

Ветряная турбина, установленная на вершине высокой башни, собирает энергию ветра и преобразует ее в электричество. Затем выход турбины становится электрически совместимым с электросетью, и выход подается в бытовую проводку на панели выключателя.

Дом обслуживается одновременно ветряной турбиной и коммунальным предприятием. Если скорость ветра ниже примерно 7 миль в час, ветряная турбина не будет работать, и вся необходимая энергия будет закуплена у коммунального предприятия. По мере увеличения скорости ветра мощность турбины начинается и увеличивается, и количество энергии, покупаемой у коммунального предприятия, пропорционально уменьшается. Когда мощность турбины превышает потребность дома, избыток электроэнергии продается коммунальному предприятию. Все это происходит автоматически.В стандартной жилой ветровой системе нет батарей.

Ветряная турбина обычно снижает ваши счета за коммунальные услуги на 50-100%. Для домовладельцев с полностью электрическими домами и турбинами Берджи не редкость ежемесячные счета за коммунальные услуги в размере 15-20 долларов в течение большей части года. В северных частях страны, где используется меньше кондиционеров, счета могут быть очень низкими круглый год.

Какой размер мне нужен для дома?

Дома обычно используют 1 000–2 000 киловатт-часов электроэнергии в месяц.В зависимости от средней скорости ветра в районе потребуется ветряная турбина мощностью 5-15 киловатт. Наш блок на 10 кВт, BWC EXCEL 10, является самым продаваемым жилым блоком в США. Он имеет диаметр ротора 23 фута и обычно устанавливается на башни высотой 80 или 100 футов. В 2019 году мы представили новую турбину мощностью 15 кВт с расширенными функциями и производительностью энергии, вдвое превышающей наши 10 кВт. Если у вас есть хотя бы умеренно хороший ветровой ресурс, новый Excel 15 может обеспечить всю энергию, необходимую для полного электрического дома (и позволяя заменить мазут или пропановое отопление) и электромобиля.

Кому стоит подумать о покупке?

Ветряная турбина — это относительно большое устройство, которое не подходит для городских или небольших загородных домов. Мы рекомендуем участок площадью два акра или более, если только ваши ближайшие соседи не поддержат вас. Экономика ветровой системы определяется средней скоростью ветра в районе, наличием скидок или налоговых льгот и стоимостью электроэнергии. Как правило, мы рекомендуем иметь среднюю скорость ветра не менее 10 миль в час и платить за электроэнергию 12 центов за киловатт-час или больше.У нас есть карты ветровых ресурсов для всей территории США, и мы можем предоставить вам информацию о ваших ветровых ресурсах и прогнозах производительности. Ветряные турбины для жилых домов установлены во всех 50 штатах.

Поможет ли я установке ветряка у себя дома для окружающей среды?

Ветровые турбины не производят загрязнения, и, используя энергию ветра, вы компенсируете загрязнение, которое было бы произведено вашей коммунальной компанией. За 30-летний срок службы BWC EXCEL 10 или Excel 15 компенсирует примерно 1.2 — 3 тонны загрязнителей воздуха и 200 — 500 тонн парниковых газов.

Мне не нужно проводить измерения ветра в течение года и более?

Нет. Для жилых систем стоимость измерения ветра в большинстве ситуаций не оправдана. Данных о ветровых ресурсах, опубликованных Министерством энергетики США, 2Tier и AWS Scientific, достаточно для прогнозирования производительности. Однако в очень холмистых или гористых районах может быть разумным получить данные о ветре перед покупкой системы, чтобы убедиться, что ваш участок не находится в защищенном месте.

Надежны ли ветряные турбины и как насчет обслуживания?

Bergey Windpower продает больше бытовых систем, чем кто-либо другой, потому что наши турбины оказались самыми надежными на рынке. Наши турбины имеют всего 2-4 движущихся части и не требуют регулярного обслуживания. После 66 месяцев испытаний одного из наших агрегатов мощностью 10 кВт компания Wisconsin Power & Light пришла к выводу, что «надежность турбин не может быть улучшена». Наши турбины рассчитаны на срок службы 30-50 лет и более и работают полностью автоматически.

Издают ли они шум или мешают телевизионному приему?

Небольшие ветряные турбины действительно производят некоторый шум, но не настолько, чтобы большинство людей сочло их неприемлемыми. Они не мешают приему телевидения.

Разрешит ли мне коммунальное предприятие подключить ветрогенератор?

Федеральные правила (PURPA) требуют, чтобы коммунальные предприятия разрешали вам устанавливать ветряные генераторы и платили вам за любую избыточную мощность, которую вы производите. Bergey Windpower и ее дилеры могут помочь вам в получении необходимых разрешений энергокомпании.

Придется ли мне менять какую-либо электропроводку в моем доме?

Нет, ветряную турбину легко модернизировать практически в любом доме без необходимости менять проводку или приборы. Однако в некоторых штатах будет добавлен второй счетчик коммунальных услуг, чтобы коммунальное предприятие могло знать, сколько электроэнергии вы им продали.

А башни?

Обычно вместе с ветряной турбиной поставляется башня высотой от 80 до 140 футов. Башни такой высоты необходимы, чтобы преодолевать турбулентность, создаваемую препятствиями и деревьями на земле.Кроме того, скорость ветра и, следовательно, производительность ветряной турбины увеличивается по мере того, как вы поднимаетесь выше земли. В большинстве случаев достаточно 80- или 100-футовой башни. Наиболее экономичным типом башни является решетчатая башня с оттяжками, но многие клиенты предпочитают несколько более дорогую самонесущую решетчатую башню из-за ее меньшей занимаемой площади.

Сколько они стоят?

Установка ветряной турбины в Берджи стоит приблизительно 65–95 000 долларов. Большой разброс затрат обусловлен разным типом и высотой башен, а также разным объемом требуемых строительных работ. Ваш дилер Bergey может провести обследование объекта и предоставить вам твердое предложение. Малые ветряные турбины имеют право на федеральные налоговые льготы и скидки штата, если таковые имеются. Для предприятий также предусмотрены существенные амортизационные отчисления. Эти стимулы могут значительно сократить ваши затраты и срок окупаемости.

Как они выглядят как инвестиция?

Это зависит от ваших затрат на электроэнергию и средней скорости ветра. Ветровая система обычно окупает свои инвестиции за счет экономии на коммунальных услугах в течение 5-10 лет, и после этого производимая ею электроэнергия будет практически бесплатной.По сравнению с покупкой электроэнергии, ветровая система может быть хорошим вложением средств, потому что ваши деньги идут на повышение стоимости вашего дома, а не просто на оплату услуг. Многие люди покупают ветряные системы для выхода на пенсию, потому что обеспокоены повышением тарифов на коммунальные услуги.

Как мне установить ветряную турбину у себя дома?

Мы настоятельно рекомендуем вам обратиться к авторизованному дилеру Bergey для полной установки под ключ.

Как я могу получить дополнительную информацию?

Мы будем рады выслать вам дополнительную информацию о наших малых ветряных турбинах или ответить на любые ваши вопросы.Просто позвоните, напишите по электронной почте или напишите в Bergey Windpower Co. по указанному ниже адресу. Мы также рекомендуем веб-сайт Ассоциации распределенной ветроэнергетики: www.distributedwind.org Для получения информации о субсидиях и правилах для вашего штата мы предлагаем: www.dsireusa.org

В качестве подробного справочника по малому ветру мы рекомендуем книгу Пола Гайпа 2016 года «Ветровая энергия для всех нас: всеобъемлющее руководство по ветроэнергетике и ее использованию». Эту книгу в мягкой обложке на 576 страниц за 65 долларов (или электронную версию за 20 долларов) можно приобрести на сайте www.amazon.com.

Позвоните нам по телефону 1-405-364-4212 или напишите нам по электронной почте [email protected] , если у вас есть дополнительные вопросы… или напишите нам по адресу: Bergey Windpower Co. , 2200 Industrial Blvd., Norman, ОК 73069.

Возвращение в школу ветра

Начало новой эры сборки и обслуживания ветряных турбин

Компания по подъему и транспортировке тяжелых грузов Mammoet представляет WTM 100 и WTA 250 — два крана, предназначенные для более безопасного и эффективного выполнения проектов строительства и обслуживания ветряных турбин.Оба крана используют башню турбины в качестве точки опоры, что позволяет им поднимать и опускать компоненты на большую высоту, чем оборудование, которое используется в настоящее время. Это позволяет производителям ветряных турбин дополнительно увеличивать мощность своих турбин с большей высотой и масштабом.

Инновации устраняют существующие физические границы турбин и делают строительство и обслуживание ветряных турбин более безопасными и эффективными.

Ветряная энергетика постоянно увеличивает эффект масштаба, чтобы сделать ветер более рентабельной альтернативой другим источникам энергии. С этой целью ветряные турбины становятся все больше и выше, достигая физических пределов по мере того, как они становятся выше, чем могут достичь обычные краны. Это также влияет на эффективность технического обслуживания ветряных турбин. Mammoet осознал эти разработки и ограничения, которые современные краны накладывают на высоту и масштаб ветряных турбин. Поэтому компания решила разработать два новых крана: один для сборки ветряных турбин и один для обслуживания ветряных турбин.

Кран для сборки ветряной турбины WTA 250

Кран для сборки ветряных турбин 250 — или сокращенно WTA 250 — имеет грузоподъемность 250 метрических тонн.Кран WTA 250 будет разработан в тесном сотрудничестве с инженерной фирмой MECAL; MECAL предоставит проект башни ветряной турбины. Он установлен на направляющей, которая проходит вдоль нижней секции турбины и может поднимать следующую секцию, используя башню турбины в качестве опоры. После того, как следующая секция установлена ​​и оборудована направляющими, кран может подтолкнуть себя вверх по направляющей и повторить процесс для всех последующих секций турбины. После завершения строительства направляющую можно либо снять, либо оставить на месте, чтобы облегчить доступ для будущих операций по техническому обслуживанию.Поскольку кран использует башню турбины в качестве опоры, максимальная высота подъема крана практически безгранична.

Кран для обслуживания ветряных турбин WTM 100

Кран для обслуживания ветряных турбин 100 — или сокращенно WTM 100 — работает по аналогичному принципу. Кран имеет грузоподъемность 100 метрических тонн. Он прикреплен к двум предварительно установленным подъемным проушинам и может тянуть себя и груз вверх по турбине, используя башню в качестве опоры.WTM 100 был оснащен когтями, которые охватывают башню, чтобы сохранять устойчивость. Использование этого крана требует минимальной модификации. Его можно использовать на турбинах, которые были оснащены предварительно установленными подъемными проушинами, а в некоторых случаях его также можно использовать на существующих турбинах.

Безграничные, безопасные и эффективные

«Оба крана компактны — WTM легко помещается в два контейнера стандартного размера — а WTA требуется только два транспортных прицепа для перемещения на место. Это упрощает их мобилизацию и перемещение и делает их намного более эффективными, чем традиционные альтернативы ». объясняет Вессель Хельменс, директор по инновациям Mammoet. «Что еще более важно, оба крана устраняют ограничения по высоте для турбин и делают процесс сборки и замены более быстрым и экономичным».

Кроме того, краны обеспечивают повышенную безопасность, говорит Хельменс: «Поскольку краны прикреплены к башне, они не занимают площадь, что делает необходимость в дополнительных укреплениях грунта практически ненужной.Башенная конструкция также приближает кран и оператора к рабочей зоне, делая сборку и техническое обслуживание безопаснее и проще ».

Дополнительные дополнения

Mammoet в настоящее время обсуждает первые применения этой новой технологии со своими клиентами. Они также изучают другие версии. «В зависимости от пожеланий наших клиентов мы можем представить и другие дополнения к серии WT», — говорит Хельменс.

Информационный бюллетень по ветроэнергетике

| Центр устойчивых систем

Ресурсы и потенциал ветра

Примерно 2% солнечной энергии, падающей на поверхность Земли, преобразуется в кинетическую энергию ветра. Ветровые турбины преобразуют кинетическую энергию ветра в электричество без выбросов. 1 Средняя годовая скорость ветра 6,5 м / с или выше на высоте 80 м обычно считается коммерчески выгодной. Однако новые технологии расширяют возможности ветроэнергетики для коммерческих проектов. 3 Менее 3% электроэнергии в США было получено за счет энергии ветра в 2019 году, но мощность ветра быстро растет. 4

  • Высокая скорость ветра дает больше энергии, потому что энергия ветра пропорциональна кубу скорости ветра. 5
  • Скорость ветра ниже у поверхности Земли и выше на больших высотах. Средняя высота ступицы современных ветряных турбин составляет 88 метров. 6
  • Глобальный потенциал наземной и морской ветроэнергетики на коммерческой высоте ступицы турбины может обеспечить 840 000 ТВтч электроэнергии в год. 7 Общее глобальное потребление электроэнергии из всех источников в 2017 году составило около 22 347 ТВтч. 8 Точно так же годовой ветровой потенциал континентальной части США в 68 000 ТВт-ч значительно превышает годовой U.S. потребление электроэнергии 3 896 ТВтч. 4,7
  • Исследование 2015 года, проведенное Министерством энергетики США, показало, что ветер может обеспечивать 20% электроэнергии США к 2030 году и 35% к 2050 году. 9
Ветровые ресурсы США, береговые и морские
2
(ВЫСОТА 80 МЕТРОВ)

Ветровые технологии и воздействия

Ветряные турбины с горизонтальной осью

  • Ветряные турбины с горизонтальной осью (HAWT) являются преобладающей конструкцией турбин, используемых сегодня.Ротор HAWT состоит из лопастей (обычно трех), симметрично установленных на ступице. Ротор через вал соединен с коробкой передач и генератором. Эти компоненты в гондоле размещаются на башне, стоящей на бетонном фундаменте. 10
  • HAWT бывают разных размеров: от 2,5 метров в диаметре и 1 кВт для жилых помещений до 100+ метров в диаметре и 10+ МВт для морских приложений.
  • Теоретический максимальный КПД турбины составляет ~ 59%, также известный как предел Беца.Большинство турбин извлекают ~ 50% энергии от ветра, проходящего через область ротора. 9
  • Коэффициент мощности ветряной турбины — это средняя выходная мощность, деленная на ее максимальную мощность. 9 На суше коэффициенты вместимости варьируются от 0,26 до 0,52. 11 Средний коэффициент использования мощности в 2018 г. по проектам, построенным в период с 2014 по 2017 гг., Составил 41,9%. В США средний коэффициент загрузки автопарка составил 35%. 6
  • Морские ветры обычно сильнее, чем на суше, и коэффициенты мощности в среднем выше (ожидается, что они достигнут 51% к 2022 году для новых проектов), но морские ветряные электростанции дороже в строительстве и обслуживании. 11,12,13 Морские турбины в настоящее время размещаются на глубине до 40-50 м (около 131-164 футов), но технологии плавучих морских ветроэнергетических установок могут значительно расширить потенциал генерации, поскольку 58% всех технических ресурсов ветра в США составляет глубины более 60м. 14,15
Схема ветряной турбины с горизонтальной осью 10,16

Установка, изготовление и стоимость

  • В США установлено более 59 900 ветряных турбин коммунального назначения.С., Суммарной мощностью 107,4 ГВт. В период с 2010 по 2020 год мощность ветроэнергетики в США увеличилась на 166%, что представляет собой среднегодовой рост на 10%. 17 В период с 2009 по 2019 год глобальная ветровая мощность увеличивалась в среднем на 15% ежегодно, достигнув 651 ГВт в 2019 году. 18
  • Средняя мощность турбин в США в 2018 г. составила 2,43 МВт, что на 5% больше, чем в 2017 г. 2,32 МВт. 6
  • Средний коэффициент мощности увеличился с менее 25% для проектов, установленных в период с 1998 по 2001 год, до примерно 42% для проектов, построенных в период с 2014 по 2017 год. 6
  • На основе средневзвешенной мощности стоимость ветроэнергетических проектов снизилась примерно на 3330 долларов США / кВт в период с начала 1980-х по 2018 год. В 2018 году затраты составили 1470 долларов США / кВт. 6
  • Установленная стоимость небольшой (<100 кВт) турбины составляет примерно 10850 долларов за кВт в 2017 году. 19
  • В 2017-2018 годах новые контракты на покупку ветровой энергии в среднем составляли 1,3-1,8 ¢ / кВтч, в то время как средняя цена на электроэнергию для жилых домов составляла 13,0 / кВтч в 2019 году. 4,6
  • Техас (29 407 МВт), Айова (10 644) и Оклахома (8 173 МВт) являются ведущими штатами по общей установленной мощности ветра. 17 Айова вырабатывала более 40% электроэнергии за счет ветра и в 2019 году занимала третье место по величине годовой выработки среди всех штатов. 20
  • В ветроэнергетике США на полной ставке работают 120000 человек, а в 2018 году турбины и компоненты были произведены на 530 предприятиях в 43 штатах. 21
  • Для крупных (> 20 МВт) ветроэнергетических проектов требуется ~ 85 акров земли на МВт установленной мощности, но 1% или меньше этой общей площади заняты дорогами, фундаментами турбин или другим оборудованием; остаток доступен для других целей. 9
  • Для фермеров ежегодные арендные платежи обеспечивают стабильный доход в размере около 3000 долларов США на МВт турбинной мощности, в зависимости от количества турбин на участке, стоимости произведенной энергии и условий аренды. 9 Ферма площадью 250 акров с доходом от ветра около 55 долларов за акр могла бы иметь годовой доход от аренды ветряков в размере 14 000 долларов. 22
Мощность ветра США
17

Глобальная ветроэнергетика, 2019
18

Энергоэффективность и воздействие на окружающую среду

  • Ветровые турбины могут снизить воздействие, связанное с традиционным производством электроэнергии.Благодаря использованию ветроэнергетических установок в США в 2019 году удалось избежать примерно 189 миллионов метрических тонн выбросов CO 2 и сократить потребление воды примерно на 103 миллиарда галлонов по сравнению с обычными электростанциями. 17,23
  • Согласно исследованию 2015 года, если к 2050 году 35% электроэнергии в США будет вырабатываться ветром, выбросы парниковых газов в электроэнергетике сократятся на 23%, что приведет к сокращению выбросов CO 2 в год на 510 миллиардов кг или 12,3 триллиона кг кумулятивно с 2013 года. и сокращение водопотребления на 15%. 9
  • Исследование 2013 года показало, что окупаемость инвестиций (EROI) (поставленная энергия / вложенная энергия) для ветроэнергетики составляет 18-20: 1. 24
  • Ежегодная смертность птиц от столкновений с турбинами составляет 0,2 миллиона по сравнению со 130 миллионами смертей из-за линий электропередач и 300-1 000 миллионов из-за зданий. Лучший способ минимизировать смертность — это аккуратное размещение. 9 Смертность летучих мышей от ветряных турбин менее изучена. Исследования показывают, что большой процент столкновений летучих мышей происходит у мигрирующих видов в летние и осенние месяцы, когда они наиболее активны. 9,25 Ветряная промышленность испытывала методы, которые потенциально снижают смертность летучих мышей более чем на 50%. 9
  • Шум в 350 м от типичной ветряной электростанции составляет 35-45 дБ. Для сравнения: в тихой спальне это 35 дБ, а при скорости 40 миль в час на расстоянии 100 м — 55 дБ. 26
  • По состоянию на 2013 год, несколько исследований окончательно установили, что звук, производимый ветряными турбинами, не влияет на здоровье человека. 9

Решения и устойчивые действия

Политика продвижения возобновляемых источников энергии

Политика поддержки ветра и других возобновляемых источников энергии может учитывать внешние факторы, связанные с обычным электричеством, такие как последствия для здоровья от загрязнения, экологический ущерб от добычи ресурсов и долгосрочное хранение ядерных отходов.

  • Стандарты портфеля возобновляемых источников энергии (RPS) требуют, чтобы поставщики электроэнергии получали минимальную долю энергии из возобновляемых источников. 27
  • Зеленые тарифы устанавливают минимальную цену за кВт / ч, выплачиваемую производителям возобновляемой электроэнергии розничными распределителями электроэнергии. 27
  • Чистые измерения, предлагаемые в 39 штатах, округе Колумбия и четырех территориях США, позволяют клиентам продавать излишки электроэнергии обратно в сеть. 28
  • Скидки за мощность — это единовременные авансовые платежи для проектов строительства возобновляемых источников энергии в зависимости от установленной мощности (в ваттах).
  • Федеральный налоговый кредит на производство (PTC) предоставляет льготу 1-2 ¢ / кВтч в течение первых десяти лет эксплуатации ветроэнергетического объекта для проектов, начатых до 31 декабря 2020 года. 29 Небольшие (<100 кВт) установки могут получать налог кредиты на сумму от 22 до 26% от стоимости капитальных и монтажных работ в зависимости от даты начала строительства. 30
  • Квалифицированные облигации энергосбережения (QECB) представляют собой беспроцентные варианты финансирования проектов возобновляемых источников энергии на уровне штата и местного самоуправления. 31
  • Раздел 9006 Закона о сельском хозяйстве — это Программа «Энергия в сельских районах для Америки» (REAP), которая финансирует гранты и гарантии ссуд для сельскохозяйственных производителей и малых предприятий в сельской местности на покупку и установку систем возобновляемой энергии. 32
  • Плата за системные льготы оплачивается всеми потребителями коммунальных услуг для создания фонда для поддержки малообеспеченных, возобновляемых источников энергии, повышения эффективности и проектов НИОКР, которые вряд ли будут реализованы на конкурентном рынке. 33

Что вы можете сделать

  • Сделайте свой образ жизни более эффективным, чтобы уменьшить количество потребляемой энергии.
  • Инвестируйте в инфраструктуру производства неископаемой электроэнергии, покупая «зеленую энергию» у своего коммунального предприятия.
  • Купить сертификаты возобновляемой энергии (REC). РЭУ продаются производителями возобновляемой энергии по цене несколько центов за киловатт-час, клиенты могут приобретать РЭУ, чтобы «компенсировать» потребление электроэнергии и помочь возобновляемой энергии стать более конкурентоспособной. 27
  • Подумайте об установке собственной ветровой системы, особенно если вы живете в штате, который предоставляет финансовые льготы или имеет чистые счетчики.

Как устанавливаются морские ветряные турбины?

Это забавный факт, пятница, и мы снова погружаемся в энергию, чтобы посмотреть, как устанавливаются морские ветряные турбины!

Морские установки ветряных электростанций быстро росли за последние два десятилетия, так как стоимость этих установок упала больше, чем ожидалось. Согласно исследованию на ing.dk, к 2016 году цена за МВтч была ниже самой низкой оценки прогнозируемых цен в 2050 году, что привело к буму ветроэнергетики.Морские установки сложнее и дороже, чем их наземные аналоги, но они производят больше энергии и не занимают драгоценную недвижимость. Эти преимущества не лишены проблем, поскольку турбины должны выдерживать волны, коррозию и штормы при непрерывной работе в течение всего срока службы. Многие установки устанавливаются в милях от берега на общей высоте до 200 метров, что создает огромные проблемы при строительстве — от транспортировки материалов до монтажа на морском дне. Давайте подробнее рассмотрим, как выполняются эти установки.

Почему морские ветряные электростанции лучше наземных?

Морские ветряные электростанции дороже и сложнее построить, чем наземные, так почему бы не остаться на суше? Самая главная причина — это сильный ветер. Морские установки имеют смысл, потому что они соответствуют спросу и производят больше электроэнергии — согласно Википедии: «Преимущество размещения ветряных турбин на море заключается в том, что ветер намного сильнее у берегов, и в отличие от ветра над сушей, морской бриз может быть сильным днем. , что соответствует времени, когда люди потребляют больше всего электроэнергии.Морские турбины также могут быть расположены близко к центрам нагрузки на побережье, например, в крупных городах, что устраняет необходимость в новых линиях электропередачи на большие расстояния ». В частности, при выработке электроэнергии турбины могут быть построены в более крупном масштабе у побережья, что позволит производить больше электроэнергии на одну турбину. Фактически, они становились все больше и больше в поисках более высокой эффективности. Посмотрите на график ниже, на котором сравниваются турбины Vindeby 1991 года выпуска и турбины Burbo Bank Extension, использовавшиеся в 2016 году: турбины Vindeby имеют диаметр 35 метров и выходную мощность 0.45 МВт, в то время как турбины Burbo Bank Extension имеют диаметр 164 метра и выходную мощность 8 МВт, что почти в 18 раз!

Изображение предоставлено: Offshore Wind Industry

Как морские турбины остаются на месте?

При высоте 113 метров или более 370 футов, как эти турбины остаются на месте? Самое сложное — это поднять турбины, закрепив их на морском дне. На глубину до 15 метров стальной цилиндр, называемый монопилем, прикрепляется к морскому дну и закапывается на глубину до 30 метров.При глубине океана 30 метров используется гравитационный фундамент. Согласно Iberdrola, этот тип фундамента состоит из «большой бетонной или стальной платформы диаметром примерно 15 метров и весом примерно 1000 тонн». Установка может быть выполнена на глубине более 30 метров, обычно с использованием кожуха или фундамента с решетчатым каркасом, например антенной вышкой, с 3 или 4 опорами, прикрепленными к основанию. Конечно, необходимо также учитывать состав морского дна в зависимости от типа фундамента.

Изображение предоставлено: Iberdrola

Для более глубоких установок плавучие платформы теперь становятся реальностью. Согласно Popular Mechanics, Windfloat Atlantic недавно построила плавучую ветряную электростанцию: «Платформы WindFloat Atlantic прикреплены к морскому дну с помощью цепей на глубине около 300 футов, что превышает максимальную глубину, которая в настоящее время может быть достигнута традиционным дном. — стационарные морские ветряные турбины ». Если вы продвинетесь дальше, ветер станет сильнее и устойчивее, что приведет к накоплению большего количества энергии.Другие преимущества включают возможность установки турбин без анкеровки на морском дне и размещение турбин достаточно далеко, чтобы их не было видно с берега, с сохранением вида на океан. Windfloat Atlantic также показывает, что большая часть установки происходит у кромки воды, прежде чем турбины предположительно будут отбуксированы в конечный пункт назначения. Посмотрите короткое видео о фундаменте ветряных турбин ниже.

Видео предоставлено: Студия DOB-Academy

Как собираются морские ветряные турбины?

Мы рассмотрели, почему морские ветряные электростанции производят больше энергии и как они фиксируются на месте, но как насчет строительства этих гигантских ветряных мельниц? За исключением редких случаев, таких как упомянутые выше плавучие турбины, большая часть строительства этих ветряных электростанций выполняется на удалении от берега, в том числе для более крупных турбин, которые нельзя установить на плавучей платформе.Установка этих конструкций обычно выполняется самоподъемной буровой установкой, такой как судно для установки ветряных турбин Wärtsilä INNOVATION, показанное ниже. Это судно имеет два крана грузоподъемностью 1500 и 40 тонн и может грузоподъемностью 8000 тонн на борту. По словам Вяртсиля, «Блок оснащен дизель-электрической силовой установкой: электроэнергия для движения и других услуг поступает от шести генераторных установок, расположенных в трех отдельных отсеках. Они обеспечивают общую бортовую электрическую мощность 34,4 МВт и питают два высоковольтных силовых распределительных устройства 6600 В, оборудованных вакуумными выключателями.Судно оснащено системой динамического позиционирования DP2 с четырьмя азимутальными подруливающими устройствами и тремя туннельными подруливающими устройствами для обеспечения устойчивости во время установки на открытой воде. Что все это значит? Это означает, что установочные суда с динамическим расположением могут быстро и безопасно поднимать огромные части оборудования, не теряя устойчивости при ветре и течениях. На мелководье самоподъемные буровые установки также могут ставить ноги прямо на морское дно и подниматься из воды, создавая устойчивую платформу для установки.

Изображение предоставлено: Wärtsilä

В связи со снижением стоимости ветроэнергетики, больше оффшорных ветряных электростанций будет в поле зрения. Увеличиваются заказы на специальные монтажные суда для строительства, обслуживания и вывода из эксплуатации ветряных электростанций. По данным Recharge, во второй половине 2019 года базовые цены на ветряные установки составили 78 долларов за МВтч. Еще многое предстоит сделать для ветроэнергетики и судов и экипажей, которые ее поддерживают.

О OneStep Power: Мы — компания, занимающаяся вопросами безопасности, которая предоставляет услуги по электрическому тестированию динамически размещаемых судов DP2 и DP3. Наши испытания являются неразрушающими, повторяемыми и надежными.Если у вас есть какие-либо вопросы по электрическому тестированию для повышения безопасности и эффективности, свяжитесь с нами, мы будем рады ответить!

Источники:

https://ing.dk/sites/ing/files/hst_ing_blog_19.12.16_figur_2.jpg

https://www.offshorewindindustry.com/news/dong-energy-rounds-1000 -ветровые турбины-море

https://en.wikipedia.org/wiki/Offshore_wind_power

https://www. iberdrola.com/sustainability/offshore-wind-turbines-foundations

63

63

https: // www.Popularmechanics.com/science/energy/a30430580/worlds-largest-floating-wind-farm/

https://www.wartsila.com/encyclopedia/term/wind-turbine-installation-vessel-innovation

https://www.rechargenews.com/transition/offshore-wind-power-price-plunges-by-a-third-in-a-year-bnef/2-1-692944

Студия DOB-Academy

Как построить ветряные турбины?

Ветроэнергетика — перспективная отрасль.Большое количество компаний принимают участие и вносят свой вклад в сокращение выбросов парниковых газов. Строительство ветряных мачт с большим объемом и весом требует тяжелой работы. Поэтому необходимо провести полную подготовку и ознакомиться с процессом установки ветряка.

Подготовительные работы перед строительством

  • Проверить и подтвердить соответствие фундамента ветряной турбины строительным требованиям.
  • Убедитесь, что проект передачи и распределения электроэнергии на ветряной электростанции был проверен и принят.
  • Убедитесь, что в день строительства благоприятный климат. Максимальная скорость приземного ветра не превышает 12 метров в секунду.
  • Технические специалисты и строительный отдел ознакомлены с инструкциями производителя ветряных турбин.
  • Организуйте строительную бригаду, в основном состоящую из технических специалистов от производителей, и определите единственного директора на строительной площадке.
  • Составьте подробный план работы под руководством директора.Укажите обязанности каждого человека. Уточните последовательность операций, порядок строительства, технические требования и нормы монтажа. Подготовьте строительную технику для каждой процедуры в соответствии с требованиями проекта.
  • Очистите строительную площадку, уберите всякую всячину, чтобы освободить место для транспортных средств.
  • Очистите фундамент ветряных турбин, поверхность фундаментного кольца. Для ветряных башен с фундаментными болтами очистите поверхность и снимите антикоррозионный пакет.Добавьте машинное масло и восстановите поврежденную резьбу.
  • Строительные краны для ветряков уже подготовлены на строительной площадке.
  • Зарегистрируйте процедуру доставки и комплектации ветряков. Директор по монтажу проверяет строительные материалы согласно плану и счетам. Снимите упаковку и очистите рабочее место перед транспортировкой материалов на место.

Процесс установки ветряной турбины

Монтаж ветряной башни

Традиционно возводят ветряные башни двумя способами.Первый способ — использовать 50-тонный кран для установки нижних частей, а затем поднять среднюю и верхнюю части вместе с лопастями и гондолами. Для оказания помощи требуется кран грузоподъемностью более 16 тонн. Другой способ — использовать кран грузоподъемностью более 130 тонн, высота подъема которого вдвое больше, чем у ветряных башен. Он может возводить все части ветряной башни за раз. Чтобы максимально использовать возможности тяжелого крана, он подходит для возведения большого количества ветряных мачт.

Традиционные методы установки неэффективны и не экономичны.Поэтому TICO предлагает третье решение. Для установки нижней части крана сначала требуется 50-тонный кран. Затем используйте специальный подъемный кран для ветряных башен, чтобы подняться на башню и поднять верхние части, а также лопасти и гондолы. Это решение имеет преимущество в мобильности, скорости и рентабельности.

Подъем и установка гондол

Что касается гондол с откидными крышками, техники обычно открывают две стороны крышки, затем прикрепляют к гондоле стропы или тросы.Затем краны поднимают его вверх, удерживая нижнюю часть подшипника рыскания в горизонтальном положении.
Что касается гондол с горизонтальной режущей машиной, крышки нужно поднимать отдельно. Если ступица колеса и две лопасти были установлены в гондоле, не забудьте заблокировать вал ротора и затянуть тормоза перед подъемом.

Поднять и установить лопасти ветряной турбины

Используйте два крана, чтобы поднять лопасти вместе, при этом главный кран удерживает концы двух направленных вверх лопастей и поворачивает их на 90 градусов, чтобы отрегулировать направление.После извлечения вспомогательного крана подсоедините лопасти ветряной турбины к валу ротора наверху ветряной башни.

Поместите шкаф управления

Если шкаф управления находится на бетонном фундаменте ветряной башни, его необходимо установить перед установкой башни. Если он закреплен на нижней площадке ветряной башни, его можно ввести через ворота башни до или после прокладки кабелей.

Электропроводка

Поместите кабели в нужное место и завершите все работы по подключению кабелей управления и питания.

Свяжитесь с нами сейчас!

.
Обновлено: 25.07.2021 — 18:05

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *