Тепловые системы без обогрева с тэном: Электронагреватели для отопления с минимальным энергопотреблением. Что выбрать?

Содержание

Электронагреватели для отопления с минимальным энергопотреблением. Что выбрать?

Все чаще и чаще люди стараются выбраться из города на природу. Это может быть небольшой домик, дача, многоэтажный коттедж, но в любом случае требуется полная или частичная система отопления. Если постоянно жить за городом, то целесообразно проводить газ и делать отопление на основе природного газа. На сегодняшний день это самый эффективный и дешёвый тип отопления. Однако предварительные работы для такого отопления требуют значительных вложений.


Если же в доме кто-то не проживает постоянно, можно обойтись и альтернативными способами. Именно их мы рассмотрим.

Самым доступным альтернативным способом является использование оборудования на основе электричества. Практически невозможно сейчас найти регион, где нет электричества. Поэтому попробуем выбрать оборудование с минимальным энергопотреблением.

Электрические тепловые завесы

Данный вид теплового оборудования едва ли можно назвать бытовым.
Скорее это промышленный или полупромышленный тип. Тепловые завесы служат для создания воздушной преграды между помещениями с различной температурой. Устанавливаются они чаще всего горизонтально над проемом, через который соединяются помещения. Помещения зимой отапливаются, и чтобы холодный воздух с улицы не попал внутрь, устанавливаются тепловые завесы. Воздух забирается из помещения, нагревается, и его большая часть возвращается в помещения, но также захватывается и часть наружного воздуха. Хотя роль завесы не обогревать, воздух в помещении все равно нагревается.
Тепловые завесы шумные, громоздкие, их нежелательно использовать в домашнем интерьере. В качестве нагревательных элементов в них используются ТЭНы различного типа. Это может быть и открытый нагревательный элемент, который имеет температуру от 1000 оС и прямой контакт с воздухом, что влечет за собой такие эффекты как «сжигание кислорода» и «быстрое осушение». Частенько используются ПТС-нагревательные элементы. Они немного другого принципа действия, чем открытые, и более лояльны к воздушной среде, однако у них также есть нюансы.
Что касается эффективности, то нагревательный элемент эффективен (если это ПТС), но поскольку происходит постоянное смешение воздушных масс, а основной задачей воздушной завесы является не нагрев, а отсечение воздушных потоков, то эффективность очень низкая.

Электрические тепловые пушки

Этот вид оборудования является полноценным с точки зрения обогрева. Оно чаще используется на промышленных или полупромышленных объектах. В тепловых пушках применяются ТЭНы открытого типа, в которых нагревательный элемент контактирует с воздухом. А поскольку ТЭН еще и обдувается с помощью встроенного вентилятора, то нагрев воздуха происходит почти мгновенно, но также мгновенно происходит и «сжигание кислорода» и «осушение воздуха».

Тепловые пушки иногда применяются в быту. Например, когда помещение долго не отапливалось, сильно охладилось, и требуется быстро его прогреть, то первоначальный прогрев можно осуществить с помощью тепловой пушки. После этого стоит на короткое время проветрить помещение, а затем перейти на стандартное отопление.


Бытовым прототипом тепловых пушек можно считать нагреватели системы «ветерок». Это небольшой прибор, до 2000 Вт, с открытой спиралью, которую обдувает встроенный вентилятор. Отличие может состоять в материале спирали. Если в промышленной тепловой пушке с начальной мощностью от 3000 Вт спираль из стали, то «ветерок» чаще имеет нихромовую или реже вольфрам нить накаливания. Но эффект «сжигание кислорода» и «осушение воздуха» имеет место в любом случае. Такие приборы быстро обогревают помещение, однако энергоэффективность у них невысокая.

Электрические камины

Электрические камины также являются нагревательным прибором. Кроме нагрева и отопления, внешний вид и принцип работы камина играют немаловажную роль. Чаще всего их выбирают для интерьера именно из-за дизайна. В качестве основного отопления камин выступать не может, но как тепловое оборудование для дополнительного обогрева подойдет.
Принцип нагрева в электрических каминах самый простой. Чаще всего это открытая спираль, которая сильно «сжигает кислород» и «осушает воздух». Можно сказать, что бытовой «ветерок» встроили в камин, и получили электрокамин со всеми его положительными свойствами и нюансами.

Электрические масляные электронагреватели

Это полноценный отопительный прибор, который может быть использован как для дополнительного обогрева, так и в качестве основного отопления. Масляный обогреватель имеет полый корпус и сделан в виде батареи. Внутри есть масло, а в нижней внутренней части находится ТЭН, который нагревает масло. Масло, в свою очередь, распределяет тепло по всему корпусу обогревателя. Температура корпуса в различных конструкциях таких обогревателей колеблется в разных пределах. Она достаточно высокая, поэтому нужно быть осторожнее, чтобы не обжечься.

Такой масляный обогреватель с точки зрения науки называется прибором с промежуточным теплоносителем. ТЭН здесь нагревает масло, а масло нагревает воздух. Масло здесь – промежуточная среда.

При передаче тепла от ТЭНа к маслу и от масла к воздуху происходят потери на сопротивление и, следовательно, не вся мощность ТЭНа идет на обогрев. С этой точки зрения масляный обогреватель нельзя назвать экономичным.


Также масляный обогреватель нельзя оставлять без присмотра. Современные приборы комплектуются различными датчиками перегрева и защиты, но масло внутри конвектора в процессе работы со временем теряет свои свойства, и возможно его возгорание или взрыв обогревателя.

Сжигания кислорода здесь нет, но из-за высокой температуры корпуса обогревателя происходит значительное «осушение воздуха», однако оно ниже, чем у обогревателей с открытыми спиралями.

Инфракрасные электронагреватели

Последнее десятилетие быстро развивается рынок инфракрасных обогревателей. Это действительно перспективное оборудование, которое считается очень экономичным. Конструкции таких обогревателей различны, но их объединяет один способ получения тепла.

Работают они от обычного электричества, но вместо классического способа нагрева воздуха, такие конвекторы вырабатывают не тепло, а испускают инфракрасные волны.

Такие волны не воздействуют непосредственно на воздух, а, попадая на предметы, начинают их нагревать. Уже теплые предметы в свою очередь вторично нагревают воздух. Такие обогреватели эффективны и совершенно бесшумны. Однако существуют определенные нюансы использования, – когда такие обогреватели устанавливаются в помещениях, где долгое время находится человек, то вместе с предметами нагревается и сам человек. Длительное воздействие инфракрасного излучения очень вредно для человека, может повлиять на здоровье и самочувствие.

Обогреватель можно установить в пол, и тогда лучи на человека попадать не будут. При таком расположении можно получить экономичный обогреватель и отсутствие прямых инфракрасных лучей на человека. Однако располагать оборудование на полу не очень удобно и эстетично. Чаще всего инфракрасные обогреватели располагаются в верхней части помещения, и используются, когда в помещении нет людей. В остальное время предпочтительнее применять другой тип отопления.

Сжигание кислорода здесь отсутствует, так как нет открытых спиралей накаливания, а вот «осушение воздуха» здесь имеет место быть, так как чем выше температура нагрева, тем больше эффект «осушения воздуха».

Электронагреватели конвекторные

Электрические конвекторы – это самый распространенный тип приборов отопления, которые можно использовать как в качестве основного, так и в качестве вспомогательного источника отопления.

Такие конвекторы с каждым годом становятся все более совершенными и не требуют специальных знаний для их эксплуатации. Лучше всего рассматривать брендовых производителей (например, бренд NOBO), которые могут предложить качественное и надежное оборудование. Завод производит конвекторы уже более 100 лет и полностью учитывает потребности современного пользователя.


Такие конвекторы бесшумны, совершенно не «сжигают кислород», так как спираль накаливания находится внутри ТЭНа, который, к тому же, заполнен кварцевым песком, что полностью исключает контакт воздуха со спиралью накаливания.

Поверхность конвектора имеет настолько низкую температуру, что процесс осушения если и присутствует, то протекает очень медленно и очень долго, даже в сравнении с инфракрасными обогревателями.

Экономичность работы электрического конвектора также можно приблизить к инфракрасным обогревателям, и даже выше, если использовать работу конвекторов с учетом ночного тарифа электроэнергии, или применяя недорогие современные гаджеты NOBO. Потребление электроэнергии можно снизить на 20-25%.


Поэтому на данный момент электрические конвекторы надежных дорогих брендов остаются на сегодня самыми доступными, экономичными, и совершенно безвредными для человека.

Сухой и мокрый ТЭН водонагревателя. В чем разница? Почему сухой ТЭН лучше?

Выбирая водонагреватель, современный человек столкнётся с огромным выбором моделей бойлеров, которые представлены на полках магазинов. Всё они находятся в разных ценовых категориях и сделать выбор бойлера зачастую не просто. Отличаются производители, материалы из которых сделан бойлер, технологии покрытия бака, формы, размеры и ТЭН. В современном бойлере, как правило, встречаются два варианта электрических нагревателей (ТЭНов) — сухой и мокрый. О них и поговорим. Постараемся объяснить разницу и помочь сделать правильный выбор.

Мокрый ТЭН. Этот нагревательный элемент имеет форму загнутой спирали, делают мокрый ТЭН чаще из меди, т.к. этот материал очень хорошо проводит тепло. Мокрым ТЭН называется, потому что он находится в непосредственном контакте с водой и имеет температуру,  близкую к температуре воды. Главное преимущество мокрого ТЭНа — невысокая цена. Благодаря этому преимуществу, водонагреватели с мокрым ТЭНом всегда стоят значительно дешевле аналогов с сухим нагревательным элементом.

 

Теперь пройдёмся по недостаткам Мокрого ТЭНа. 

  • Покупая бойлер с мокрым ТЭНом, будьте готовы к тому, что вам прийдется полностью сливать воду при замене нагревательного элемента, в случае выхода его из строя.
  • Существует риск пробоя ТЭНа и удара электрическим током, хотя подобных историй на нашей практике не случалось ни разу.
  • Ну и последний недостаток, о котором упоминают все производители и эксперты. Из-за постоянного непосредственного контакта с водой, ТЭН постепенно обрастает накипью, при этом теряя свою эффективность и гораздо чаще выходя из строя. Хочется отметить, что накипь образовывается не из-за конструкции ТЭНа, а в большей степени из-за качества воды, которая находится в трубах. Независимо от вида нагревателя, накипь является основным врагом бойлера и процесс борьбы с накипью не отличается у водонагревателей различных моделей: это элементарная ежегодная чистка и замена магнитного анода, который, постепенно растворяясь, препятствует образованию накипи на стенках ТЭНа и бойлера. Как правило, все производители современных бойлеров откажут вам в гарантийных обязательствах, если вы будете пренебрегать ежегодным обслуживанием вашего бойлера. 
    Но данное свойство «мокрого» медного ТЭНа также является и его Большим преимуществом. Когда магниевый анод в баке вашего бойлера полностью разрушен, накипь «выбирает» следующий самый мягкий металл. В ситуации, когда в бойлере установлен мокрый нагревательный элемент из меди — этим самым мягким металлом является именно он. Как результат, накипь «съедает» ТЭН и выводит его из строя. Но при этом, стенки бака остаются неповрежденными, а необходимая замена ТЭНа наверняка повлечет чистку бака от накипи и необходимую замену магниевого анода. В случае с «Сухим» Тэном вероятнее, что накипь «займется» стенками бака и, если в них образуется течь, никакие чистки вам уже не помогут, бойлер придется только менять на новый.

Сухой ТЭН. Название «сухой», нагреватель получил благодаря своей конструкции, которая конструктивно отличается от мокрого. В сухом ТЭНе, нагревательный элемент помещается в дополнительную трубку (как правило, с керамическими вставками) , и не контактирует с водой своим корпусом. Поскольку прямого контакта с водой нет, температура такого ТЭНа всегда больше температуры воды, но это не является проблемой, т.к. сухой ТЭН расчитан прежде всего для нагрева воздуха и срок их службы никак не ниже, чем у мокрого ТЭНа. Основным недостатком отметим более высокую цену и самого бойлера и ТЭНа, как расходника.

Преимущества сухого ТЭНа. 

  • Благодаря конструкции, возможна быстрая замена перегоревшего ТЭНа без слива воды из бака. Достаточно вытянуть из колбы старый элемент и, переподключив питание, уже можно пользоваться новым.
  • Также, накипь в меньшей степени влияет на эффективность нагрева сухого ТЭНа, и большинство производителей устанавливают большие гарантийные сроки на такие бойлеры. Но обязательство ежегодного обслуживания — чистки бака и замены магнитного анода, все равно сохраняется, как обязательное условие гарантии. У некоторых бойлеров с сухим ТЭНом, производитель увеличивает срок обязательного обслуживания на срок 2 года, но, все равно это является обязательным условием.
  • Риск поражения током также сохраняется, но он практически ничтожен. Ведь для этого требуется повреждение колбы, в которой находится ТЭН, а это может произойти только в водонагревателях, которые не обслуживали на протяжении очень длительного времени. Все благодаря тому, что нагревательный элемент заключен в специальную металлическую колбу повышенной прочности и выполнен не из металла, а из керамики – силиката магния (стеатита).
  • «Сухой» ТЭН имеет меньшие, более компактные размеры, по сравнению с «мокрым» ТЭНом. Это позволяет в одном бойлере использовать не один, а сразу два нагревательных элемента. В таком случае значительно увеличивается срок службы водонагревательного прибора и его надежность. Но это скорее маркетинговое преимущество, уже начали появляться водонагреватели с 2мя мокрыми ТЭНами.

Итак. Мы рассмотрели все плюсы и минусы двух видов нагревателей воды в бойлере — сухого и мокрого. Мы постарались ответить на вопрос чем лучше сухой ТЭН и стоит ли платить больше за бойлер с сухим ТЭНом. Решение принимать вам. Наше мнение — Бойлер с сухим ТЭНом имеет больше преимуществ и, если у вас есть финансовая возможность, лучше выбрать именно такой вариант. Если же бюджет на покупку бойлера ограничен, не стоит переживать, что вы купили гораздо худший вариант. Зачастую, бойлера с мокрым ТЭНом показывают удивительное долгожительство и, при этом, за более скромные деньги. 

Для удобства, плюсы и минусы сухого и мокрого ТЭНа представим в таблице. Это поможет вам принять верное решение

Преимущества / недостатки

Сухой ТЭН

Мокрый ТЭН

1

Срок гарантии и, условно!, срок службы водонагревателя.

Как правило, выше

Как правило, ниже

2

Необходимость ежегодного обслуживания

Есть разные варианты

Обязательно

3

Простота ежегодного обслуживания

Требуется сливать воду

Требуется сливать воду

4

Простота замены ТЭНа

НЕ требуется сливать воду

Требуется сливать воду

5

Стоимость бойлера и ТЭНа

Как правило, выше

Как правило, ниже

6

Риск поражения током

Минимальный

Есть

7

Эффективность работы, при образовании накипи

Лучше

Хуже

8

Модели водонагревателей с двумя ТЭНами

Есть

Нет

 

На сайте магазина Теплота, водонагреватель можно выбрать не только по определённым характеристикам, но и по размерам. Если есть ограничение в месте установки, укажите максимально допустимые значения высоты, ширины или глубины бойлера и Выбирайте только среди моделей, которые вам подходят. 

Купить водонагреватель

Как расшифровать маркировку ТЭНа в счёте и надпись на ТЭНе?

Стандартная маркировка в счёте указывается в соответствии с ГОСТом 13268-88 «Электронагреватели трубчатые». Рассмотрим образец маркировки.

!!! Если нет времени читать статью, то пишите в чат Ватсап (можно прикрепить фото маркировки) https://wa.me/79122094292 и мы вам обязательно поможем.

1. ТЭН – аббревиатура расшифровывается как трубчатый электронагреватель. Другие возможные варианты в маркировке:

ТЭНР — трубчатый электронагреватель оребренный (на трубу сверху навивается стальная лента, обеспечивает большую площадь для съема тепла и применяется как правило для нагрева воздуха). Пример маркировки: ТЭНР 54 А13/2,0 О 220 ф.1

ТЭНП – трубчатый электронагреватель патронного типа. В отличие от стандартного ТЭНа двухконцевого (выводы токоведущих контактов на обоих концах трубки), ТЭНП имеет контакты с одной стороны, второй конец трубки при этом запаян наглухо. Такие электронагреватели применяются чаще всего в пресс-формах, экструдерах. Пример маркировки: ТЭНП 10-12,5/0,3 L 220

ТЭНБ – блок трубчатых электронагревателей. Представляет собой сборку чаще всего двух-трех ТЭНов U-образной формы на общем фланце. Возможна сборка блоков и с одним ТЭНом, и с шестью ТЭНами, и с любым количеством (встречаются и по 12, 24, 48 ТЭНов в одном блоке). Наиболее распространены блоки ТЭНБ для нагрева воды, так называемые СЭВ (секция электроводонагревательная) с тремя ТЭНами на фланце с трубной резьбой G 2½˝. Пример обозначения: ТЭНБ (СЭВ) 6 нерж.; ТЭНБ 3,0 J 220/380 L=500мм G2˝.

2. Развернутая длина обозначает длину трубки (без учета изоляторов и шпилек) в сантиметрах — сумма длин прямолинейных и изогнутых участков ТЭН. Если ТЭН сложной формы растянуть в одну прямую трубку, то длина этой трубки по торцам и будет равна развернутой длине ТЭНа. ТЭН 60 – длина трубки 60 см, ТЭН 280 – длина трубки 2,8 м.

3. Условное буквенное обозначение длины контактных стержней в заделке – так называемая негреющая часть ТЭНа. По ГОСТу принято каждому значению заделки контактного стержня (токоведущая металлическая деталь, служащая для подключения ТЭН к сети питания) присваивать соответствующее буквенное обозначение. Буквы латинского алфавита от А (самая короткая заделка 40мм) до H (самая длинная заделка 630мм). В показанном выше примере указана заделка В, что соответствует негреющей части ТЭНа в 65 мм с каждого конца.

  Номинальная длина контактных стержней в заделке, мм     40     65     100     125     160     250     400     630
  Условное обозначение      А      B      C      D      E      F      G      H

4. Диаметр ТЭНа в мм. Здесь все просто: указывается диаметр трубки нагревателя в мм. Как правило эта цифра не превышает значения в 20 мм.

5. Номинальная мощность нагревателя в кВт – соответствует рассчитанной выходной мощности нагревателя при заданном номинальном напряжении в питающей электросети. При отклонении напряжения в сети мощность нагревателя так же будет меняться.

6. Условное обозначение нагреваемой среды и материала оболочки по ГОСТу 13268-88, в котором есть таблица принятых обозначений:

 Условное обозначение нагреваемой среды     Нагреваемая среда      Характер нагрева      Удельная мощность, Вт/см , не более       Материал оболочки ТЭН
     Х      Вода, слабый раствор щелочей и кислот (рН от 5 до 9)      Нагревание, кипячение с максимальной температурой на оболочке 100 °С      9,0      Медь и латунь (с покрытиями)
     J       Вода, слабый раствор кислот (рН от 5 до 7)       То же       15,0      Нержавеющая жаростойкая сталь
     Р      Вода, слабый раствор щелочей (рН от 7 до 9)       То же       15,0      Углеродистая сталь
     S      Воздух и пр. газы и смеси газов      Нагрев в спокойной газовой среде до рабочей температуры на оболочке ТЭН 450 °С      2,2      Углеродистая сталь
     Т      Воздух и пр. газы и смеси газов      Нагрев в спокойной газовой среде с температурой на оболочке ТЭН св. 450 °С       5,0      Нержавеющая жаропрочная сталь
     O      То же      Нагрев в среде с движущимся со скоростью 6 м/с воздухом до рабочей температуры на оболочке ТЭН 450 °      5,5         Углеродистая сталь
     K      То же      Нагрев в среде с движущимся со скоростью не менее 6 м/с воздухом, с рабочей температурой на оболочке ТЭН св. 450 °      6,5      Нержавеющая жаростойкая сталь
     R        Нагрев в среде с движущимся со скоростью менее 6 м/с воздухом до рабочей температуры на оболочке ТЭН 450 °С       3,5         Углеродистая сталь
     N       Воздух и пр. газы и смеси газов      Нагрев в среде с движущимся со скоростью менее 6 м/с воздухом, с рабочей температурой на оболочке ТЭН св. 450 °С       5,1      Нержавеющая жаростойкая сталь
     Z      Жиры, масла       Нагрев в ваннах и др. емкостях      3,0      Углеродистая сталь
     V      Щелочь, щелочно-селитровая смесь      Нагрев и плавление в ваннах и др. емкостях с рабочей температурой на оболочке ТЭН до 600 °С      3,5      То же
     W      Легкоплавкие металлы: олово, свинец и др      То же, с рабочей температурой на оболочке ТЭН до 450°С      3,5      То же
     L       Литейные формы, пресс-формы      ТЭН вставлены в отверстия. Имеется гарантированный контакт с нагреваемым металлом. Нагрев с рабочей температурой на оболочке ТЭН до 450 °      5,0      То же

Таким образом, можно определить, что ТЭН по образцу маркировки предназначен для нагрева воды и выполнен из нержавеющей стали.

7. Номинальное напряжение, В – указывается расчетное напряжения питающей сети. Варианты: 24, 36, 48, 114, 127, 220, 380 и др.

8. Далее в маркировке указывается форма ТЭНа. Для понимания принято различать десять форм ТЭНов. Например: форма 1 (ф.1) – прямой ТЭН без гибов, форма 2 (ф.2) – ТЭН U-образный, форма 7 (ф.7) – ТЭН в форме «скрепки». Если форма ТЭНа не стандартная, а сложная, то как правило в конце маркировки указывают (эскиз).

9. Радиус гиба, мм. – рассчитывается для ТЭНов, имеющих гибы, по расстоянию между центрами контактных шпилек (межцентровое расстояние). Чем больше радиус гиба, тем больше будет межцентровое расстояние у готового ТЭНа.

10. Обозначение крепежной арматуры – для установки ТЭНов в оборудование часто применяют различные крепежи. Это могут быть пластины (привариваются на определенном расстоянии от торца ТЭНа), штуцера (несъемные крепятся обжимом, пайкой, сваркой), фланец (несъемный крепится обжимом, пайкой). В маркировке указывается информация о крепежной арматуре: «пластина», Ш (штуцер G½˝), ШМ14х1,5 (штуцер с метрической резьбой М14 с шагом 1,5мм), ШМ22х1,5 (штуцер с метрической резьбой М22 с шагом 1,5мм).

На самом ТЭНе на определенном расстоянии от края ТЭН наносится маркировка с буквенным обозначением среды нагрева и материала оболочки (как в таблице из ГОСТа выше), числовым значением номинальной мощности (кВт), числовым значением расчетного напряжения (В), двух последних цифр текущего года изготовления, и буквенным обозначением изготовителя.
Например: P 3,0 220 19 УТ – ТЭН мощностью 3,0 кВт на 220В для воды с оболочкой из углеродистой стали изготовлен в 2019 году УралТЭН.

Электрическое отопление — Ensto

Цель любой системы отопления – поддерживать в помещении определенную, необходимую пользователю температуру вне зависимости от температуры окружающего воздуха. Если мы говорим о системах отопления, логичным будет считать, что температура окружающей среды ниже, чем необходимая в помещении. Для того, чтобы понять как правильно строить систему отопления, необходимо понять — в чем фундаментальные причины охлаждения здания? Причины очень просты: законы физики говорят, что любая (изолированная) система стремиться к термодинамическому равновесию, т. е. к состоянию, когда параметры системы (в нашем случае температуры), будут неизменны во времени. Т.е. дом будет стремиться остыть, а окружающая среда нагреться, таким образом, что их температуры уровняются. Учитывая, что теплоемкость окружающей среды существенно превосходит теплоемкость дома, интуитивно понятно, что охлаждаться будет дом. Механизмы этого охлаждения различны – охлаждение через стены и окна, воздушная конвекция через вентиляцию, тепловая радиация. Вся совокупность таких процессов принято называть теплопотерями. Самая простая модель теплопотерь выглядит следующем образом Pтеп= K ( Tвнут-Tвнеш ). Где P – теплопотери помещения за единицу времени, К- некий коэффициент, зависящий от степени теплоизоляции здания , а Т – внутренняя и внешняя температуры. Т.е., говоря простым языком, Теплопотери прямо пропорциональны разности температур в помещении и за его пределами.

Пример: У меня есть собственный дом с электрообогревом, объемом около 250 куб. м, я подсчитал и померял на практике, что его теплопотери равны 150 Вт. Исходя из этого, я ожидал, что при морозе -30 градусов и температуре +23 в помещении мне понадобится 7,8 кВт. Этот факт с высокой точностью подтвердился. Такой опыт при наличии амперметра, может сделать практически каждый в своем собственном доме.

Зачем нужно отопление и какую мощность нужно закладывать?

Цель системы отопления – компенсация теплопотерь здания. Иными словами, чтобы в вашем помещении постоянно поддерживалась необходимая температура Вам необходимо рассеивать внутри помещения тепловую мощность, равную текущим теплопотерям. При таком соотношении мощностей, ваша система будет находиться в полном термодинамическом равновесии (т.е. температура внутри будет оставаться неизменной).

Ниже приведен график необходимой мощности для приведенного выше примера:

Как работает электрический конвектор ЭНСТО:

Конвектор – достаточно простой прибор, состоящий из нагревательного элемента ТЭНа, термостата, реле перегрева, корпуса и шнура с вилкой. Рассмотрим поэтапно для чего требуются все перечисленные компоненты устройства.

Нагреватель: Не будем детально останавливаться на шнуре с вилкой, однако с его помощью, через определенную схему, ТЭН соединяется с источником напряжения 230V AC. Цель ТЭНа проста – он преобразует электрическую энергию в потери (то есть в тепло), причем делает это с КПД равным 100%. ТЭН представляет из себя обыкновенный нагревательный элемент (резистор) с сопротивлением R= U2/P . К примеру у конвектора номинальной мощности 1 кВт, сопротивление резистора = 52 Ом. Сопротивление ТЭНа является неизменным. Поэтому, например, при падении напряжения, мощность конвектора будет падать пропорционально квадрату падения напряжения. Нагревательный элемент у конвекторов ЭНСТО окружен Х-образным радиатором, такую комбинацию также принято называть Х-образным ТЭНом. Наличие радиатора связано с единственной причиной. Для обеспечения комфортной работы конвектора, температура ТЭНа должна быть минимальна, что обеспечивается максимальным увеличением площади Х-образного радиатора. Низкая температура ТЭНа позволяет минимизировать сгорание на нём пыли и, как следствие, уменьшение количества канцерогенов (дыма) в помещении.

Термостат: Вернемся к нашему примеру, приведенному выше. Очевидно, чтобы обеспечить комфортную жизнь в моем доме даже при температуре -30С , нам необходимо будет установить в дом 9 конвекторов мощностью 1 кВт (возможны и любые другие комбинации, однако суть из должна сводиться к тому, что суммарная мощность должна быть равной 9 кВт, все зависит от количества помещений, ваших эстетических предпочтений, решений вашего личного дизайнера и т.д.). Если бы у конвекторов не было бы термостатов, то , после такой установке, при внешней температуре воздуха -5С, температура в доме неминуемо стала бы равной 9000/150 – 5 = 55C, что вероятно не есть наша цель. Для того, чтобы решить эту проблему, каждый конвектор снабжен термостатом. Термостат, по сути представляет из себя термореле, настроенное на определенную температуру окружающего воздуха. Термостат выключает ТЭН, при температуре выше установленной, снижая таким образом мощность системы отопления до необходимой, т.е. равной текущим теплопотерям помещения. Например, возвращаясь к примеру, приведенному выше, можно с уверенностью сказать, что если все термостаты установлены на 23 градуса, то при температуре воздуха -5С, все конвекторы будут работать 46.6(6) % времени. Т.е. за час, интегральная мощность системы отопления будет равна 4200 кВт. Фактически каждый конвектор в разных помещениях будет включаться и выключаться в зависимости от температуры окружающего воздуха, следя за соблюдением этого параметра, но суммарно, все они будут работать только 46% своего времени.

Корпус: Кроме очевидной эстетической и конструктивной функции, корпус на самом деле имеет огромное значение в конвекторе. Как мы знаем из физики, система всегда стремиться к термодинамическому равновесию. Говоря русским языком, ТЭН конвектора будет нагреваться до того момента, пока тепловая энергия, уносимая с его поверхности транспортной конвекцией (воздухом) не станет равной его мощности. Учитывая тот факт, что конвекция тем больше, чем выше разность температуры ТЭНа и воздуха, такое равновесия рано или поздно наступит. Так вот, основной задачей изготовителей конвекторов, является создание устройства, когда подобное равновесие наступает в определенном пределе температур, которые определены российскими и международными стандартами (которые, между прочим, одинаковы в отношении конвекторов). Температура решетки радиатора не может быть выше чем 120 С° + Т окр. среды и средняя температура поверхности должна не превышать 70 С°. Таким образом, размер корпуса, форма и количество отверстий радиатора решают именно эту проблему. Прибор II класса защиты не требует заземления, т.к. нет контакта токоведущих частей с корпусом прибора и все компоненты с двойной изоляцией. Так же следует сказать, что наши конвекторы на мой «необъективный» взгляд имеют лучший на рынке дизайн и изготовлен из горячеоцинкованной стали (кровельные железо) высочайшего качества финской компании Ruukki.

Реле перегрева: Цель его проста: любой производитель знает, какая температура для его устройства является критической и может привести к перегреву ТЭНа. Исходя из этого, в нашем конвекторе установлено реле, предустановленное на определенную безопасную температуру. При превышении этой температуры внутри корпуса конвектора, он выключится, и будет выключено до восстановления безопасной температуры. Причины повышения температуры могут быть различными: закрытие решёток радиатора различными предметами (кто-то решил что-то посушить), падение, засорение решёток пылью, повышение напряжения и т.д.

Интересные факты и наши конкуренты:

Электрический конвектор удивительное по своим свойствам устройство — КПД конвектора 100%. Причина очень простая. Это устройство преобразует электроэнергию в потери, т.е. в тепло. Этот процесс – процесс преобразования энергии в потери ¬- возможно единственный, который удается человечеству с эффективностью 100%. Если мы рассмотрим практически любые электрические приборы, работающие в доме как в замкнутой системе, то они также греют помещение столь же эффективно как конвектор. Исключение могут составлять устройства типа стиральных и посудомоечных машин, которые обычно сливают теплую воду за пределы помещения, бойлеры, по той же причине, радиостанции, которые производя электромагнитные волны покидающие здание и пр. А вот пылесос, мощностью 2 кВт или вентилятор мощностью 2 кВт будут греть помещение столь же эффективно как и конвектор. Часть их энергии обращается в потери (нагрев электромотора) , часть передается воздуху, который за счет трения о прочий воздух в помещении неминуемо остановится, затратив свою энергию на трение и выделив ее в виде тепла. Можно было бы с уверенностью сказать, что все электроприборы греют одинаково и отличаются лишь дизайном, однако это не совсем так.

Мы провели тестирование нескольких китайских производителей в нашей лаборатории и выяснили интересные подробности:

Большинство изделий из поднебесной сделаны изначально для Китайского рынка т.е. 220 VAC. Таким образом они уже заведомо работают в легком перегреве = U2фактическое/U2номинальное= 230V * 230V / 220V*220V = 9,2%. По этой причине или по причине стремления удешевления продукции (т.е. за счет уменьшеня габаритных размеров корпуса) все тестированные нами устройства уже при комнатной температуре перегреваются и у них срабатывает реле защиты от перегрева. Некоторые из них, при комнатной температуре работают лишь 50% времени. Вот и получается, что имея номинальную модность 1000 Вт фактически они выдают в помещение только около 500 Вт — в зависимости от температуры окружающей среды. Возвращаясь к моему примеру, следует сказать, что в мой дом пришлось бы установить 18 конвекторов подобных производителей, что фактически было бы дороже в полтора раза, с одной стороны, проблематично с точки зрения места в доме, с другой стороны, ну и вообще как-то опасно, т.к. если производитель выпускает продукцию заведомо ненадлежащего качества, остаётся еще вопрос доверия к безопасности. Тоже самое относится к значительному количеству масляных радиаторов и прочих чудо-приборов, которые можно найти на нашем огромном рынке.

Резюме простое: если Вам нужно только лишь что-то согревающее под столом, то конечно, можно рассматривать в качестве нагревателя любой прибор, без оглядки на его характеристики. Но если же Вы хотите обустроить систему отопления для своего дома, то не стоит выбирать азиатские продукты малоизвестных брендов.

Слухи и иллюзии:

1. Конвекторы «сушат воздух»

Процесс сушки это процесс изъятия воды из воздуха. Вопрос: куда она в таком случае деется, ведь если конвектор ее забирает из воздуха, значит, она должна где-то собираться. В действительности этого никто не наблюдал (в отличии от кондиционера например). На самом деле тепловентиляторы и в меньшей мере конвекторы сушат кожу, т.к. создают конвекцию воздуха в помещении. Да, лучше греться теплыми полами, но у них КПД меньше, т.к. они греют еще соседа под перекрытием.

2. Лучше топиться электрокотлом, чем конвекторами

Совсем странное заявление. С точки зрения КПД, оба варианта совершенно идентичны, однако, учитывая стартовые инвестиции, обслуживание и сложности с построением удаленного контроля первый вариант проигрывает в разы.

3. «Качество работы» конвектора

Любые попытки определить «качество работы конвектора вручную» обречены на провал. Если два нагревательных устройства потребляют из сети одинаковую мощность, то может быть уверены — они нагревают помещение одинаково.

выбор и сравнение систем промышленного отопления зданий и предприятий

Оглавление:

  1. Электрическое отопление
  2. Газовое отопление
  3. Водяное отопление
  4. Дизельные пушки
  5. Сравнение дизельной и газовой пушки
  6. Сравнение тепловой пушки и тепловентилятора
  7. Инфракрасное отопление
  8. Промышленные котлы

Выбор и сравнение систем промышленного отопления перед покупкой и установкой является важным этапом. Процесс этот довольно трудоемкий и проблематичный.

Причины этому таковы:

  1. Правильный учет и соотношение стоимости, функциональности и надежности.
  2. Необходимость специального оборудования для больших площадей от 50 кв.м.

Промышленный обогрев в части оборудования имеет определённые критерии:

  1. Должна быть максимальная экономия пространства. Тем более, если монтаж предполагается на потолке или стенах.
  2. Возможность перехода в экономичный режим.
  3. Возможность обогрева отдельных зон большого промышленного помещения.
  4. Простота монтажа, а также легкость демонтажа, если оборудование нужно переместить на другую локацию.
  5. Должен быть большой объем продуваемого воздуха, что позволит промышленному помещению прогреваться равномерно.
  6. Адекватная стоимость отопления промышленных предприятий.

Электрическое отопление

Электрическое промышленное отопление имеет ряд своих особенностей:

  1. Автоматизированная работа по обогреву, что позволяет вырабатывать КПД до 99%.
  2. Может быть использовано в качестве источника снабжения горячей водой.
  3. Воздух в помещении остается чистым.

Преимущества:

  1. Быстрое развертывание системы обогрева
  2. Можно поддерживать оптимальную температуру в здании путем регулирования.
  3. Есть возможность выбора приборов по оптимальной цене и конфигурации

Недостатки:

  1. Не все помещения имеют высокую мощность подводимого электричества.
  2. Высокая температура ТЭНов уменьшает уровень кислорода в помещении.
  3. Не рекомендуется использовать в помещениях с повышенной влажностью.

Электрические тепловые пушки

Помогают быстро нагреть воздух в помещении и понизить в ней уровень влажности. В промышленных масштабах используются большие тепловые пушки от 380 Вольт. Прибор состоит из трех основных элементов:

  • вентилятор;
  • блок управления;
  • ТЭН (непосредственно нагреватель).

Принцип работы:

  • после подсоединения к электросети лопасти начинают вращаться;
  • давление вокруг нагревателя становится низким;
  • в специальные отверстия воздух поступает внутрь прибора в теплообменник;
  • воздух нагревается и под давлением покидает корпус.

Плюсы:

  • подходят для ангаров, цехов, складов;
  • можно быстро отогревать замерзшее оборудование;
  • хорошо просушивают помещение;
  • мобильность;
  • просто управлять;
  • редко возникают ситуации перегрева оборудования.

Минусы:

  • в обычных условиях сильно пересушивают воздух.
  • при высоких потолках теплых воздух уходит наверх;
  • высокий уровень шума;
  • крупногабаритные модели имеют большой вес.

Мощность можно рассчитать, исходя из руководства производителя электрической пушки. Однако есть и формула, которая выглядит так:

((S х h) / 30) х К = P кВт

В ней:

  • S — площадь помещения;
  • h — высота потолков;
  • K — коэффициент, указывающий на степень утепленности помещения:
  • если он неизвестен, используем «1» по умолчанию,
  • если тонкие стены ангары и прочие слабо утеплённые конструкции «1,5», если в помещении достаточно температуры -15 используем коэффициент «0,5»

 

Электрическая тепловая пушка BALLU BHP-МЕ-5

 

Площадь обогрева:

50 м.кв

Нагрев:

Электрический

Мощность нагрева:

4.5 кВт

Ступени мощности:

1/2 кВт

Продув воздуха:

400 м.куб

Термостат:

Есть

Прирост t воздуха:

34 0C

Максимальный ток:

21 А

Подключение к сети:

Клеммы на корпусе

Класс защиты IP:

20

Нагревательный элемент:

ТЭН

Способ нагрева:

Прямой

Форма корпуса:

Прямоугольная

Гарантия:

2 года

Легко использовать в условиях российского климата, имеется антивандальное покрытие, можно использовать без нагрева, имеются 2 ступени мощности, встроенный термостат, до 50 кв.м.

Плюсы: легкая, компактная, антивандальное исполнение, не подвергается коррозии
Минусы: нельзя подключить к стандартной розетке.

Электрическая тепловая пушка BALLU BHP-М-36 MASTER

 

Площадь обогрева:

375 м.кв

Нагрев:

Электрический

Мощность нагрева:

36 кВт

Ступени мощности:

1/2 кВт

Продув воздуха:

2500 м.куб

Термостат:

Есть

Прирост t воздуха:

44 0C

Максимальный ток:

55 А

Подключение к сети:

Клеммы на корпусе

Класс защиты IP:

20

Нагревательный элемент:

ТЭН

Способ нагрева:

Прямой

Форма корпуса:

Прямоугольная

Гарантия:

2 года

Подходит для помещений, в которых идет ремонт или те, что находятся на стадии строительства, а также любых производственных объектов, хорошо выдерживает суровые российские условия, до 350 кв.м.

Плюсы: летом можно использовать как вентилятор, подходит для больших площадей, устойчивая рама, устанавливаются точные температуры.
Минусы: требуется мощная проводка.

Электрическая тепловая пушка BALLU BHP-М-24 MASTER

 

Площадь обогрева:

250 м.кв

Нагрев:

Электрический

Мощность нагрева:

24 кВт

Ступени мощности:

1/2 кВт

Продув воздуха:

1700 м.куб

Термостат:

Есть

Прирост t воздуха:

43 0C

Максимальный ток:

36.4 А

Подключение к сети:

Клеммы на корпусе

Класс защиты IP:

20

Нагревательный элемент:

ТЭН

Способ нагрева:

Прямой

Форма корпуса:

Прямоугольная

Гарантия:

2 года

До 240 кв.м. – охват площади, имеется антивандальное покрытие, отличное решение для обогрева производственных объектов, можно регулировать мощность.

Плюсы: есть ручной перезапуск, большая площадь обогрева, быстро поднимает температуру.
Минусы: возможен перегрев, нет вилки на корпусе.

Электрические тепловые завесы

С помощью электрических тепловых завес создается плоский и мощный поток воздуха. Их основная функция – это создание завесы-препятствия для проникновения холодных воздушных масс в помещение. В этом и заключается основная особенность тепловых завес.

Принцип работы:

  • мощный направленный поток воздуха выходит из прямоугольной щели;
  • сильный поток создает встроенный вентилятор;
  • имеется нагревательный элемент, который делает воздух теплым.

Плюсы:

  • работает практически бесшумно;
  • отличная защита помещения от проникновения в него холодного воздуха;
  • создается благоприятный для человека микроклимат.

Минусы:

  • сложности монтажа, необходимы профессионалы для установки;
  • большие затраты по электроэнергии.

Электрическая тепловая завеса ТЕПЛОМАШ КЭВ-6П2211Е

Тепловая завеса в прочном корпусе из нержавеющей стали, предназначена для тамбуров и входных групп, управление: проводное и дистанционное, для помещений до 60 кв.м.

Плюсы: хорошо справляется со своим предназначением, приятный дизайн, доступная цена
Минусы: не обнаружено.

Электрическая тепловая завеса ТЕПЛОМАШ КЭВ-12П3041Е

Для дверных проемов до 3,5 м, высокая степень защиты от коррозии, используется как вспомогательный источник обогрева, подходит для помещений до 120 кв.м.

Плюсы: удобный режим управления, в том числе и дистанционно.
Минусы: не выявлено.

Электрическая тепловая завеса ТЕПЛОМАШ КЭВ-36П4021Е

Подходит для склада и иных площадей до 120 кв.м., используются оребренные электрические ТЭНы, обладает низким уровнем вибрации.

Плюсы: надежная модель, доступная стоимость, есть пульт управления.
Минусы: нет.

Электрические тепловентиляторы

Хороши тем, что можно использовать круглогодично. Летом могут работать на охлаждение воздуха. Широко применяются на производстве, складах, теплицах, гаражах, ангарах и т.п.

Принцип работы довольно прост, так как тепловентиляторы не имеют сложной конструкции: двигатель, вентилятор, блок управления, корпус, регулируемые жалюзи.

Плюсы:

  • просты в эксплуатации;
  • есть мобильные и стационарные устройства на выбор;
  • не нужно контролировать уровень топлива;
  • многие модели могут работать круглосуточно.

Минусы:

  • спиральные преждевременно выходят из строя.

Электрический тепловентилятор ТЕПЛОМАШ КЭВ-15С40Е

За короткий промежуток времени нагревает большую площадь, хорош для стройки, в том числе площадью 150 кв.м., мало затрачивается электроэнергии.

Плюсы: компактные, бесшумные, есть термореле, быстрый нагрев.
Минусы: не выявлено.

Электрический тепловентилятор ТЕПЛОМАШ КЭВ-35Т20Е

Внутри качественного корпуса располагается ТЭН из нержавеющей стали, теплый воздух выходит через защитную решетку, есть терморегулятор с возможностью установки от +5 до +40 градусов по Цельсию.

Плюсы: надежный, долгий срок службы, охват площади до 350 кв.м., приемлемая стоимость.
Минусы: не обнаружено.

Электрический тепловентилятор ТЕПЛОМАШ КЭВ-100Т20Е

Корпус из качественного полимерного покрытия, нагрев воздуха до +40 градусов по Цельсию, подходит для помещений до 350 кв.м.

Плюсы: доступная цена, мобильность, быстрый нагрев воздуха, есть терморегулятор на корпусе.
Минусы: не обнаружено.

Электрические котлы

Данное оборудование предназначено для отопления и горячего водоснабжения крупных объектов, чаще всего сельскохозяйственных и производственных. Электрические котлы работают по принципу повторного перегрева теплоносителя. При этом, вода нагревается до +130 град. по Цельсию, чтобы образовался пар. Далее, пар поступает в специальный коллектор, где оседает жидкость. Образовавшийся сухой пар нагревается повторно. Под давлением такой пар выходит наружу, обогревая площади.

Плюсы:

  • бесшумная работа;
  • экономное оборудование;
  • предусмотрен электронный блок управления;
  • гарантия неизменной температуры в помещении;
  • возможно автономное обеспечение горячей водой.

Минусы:

  • высокая стоимость;
  • нужны линии электропередачи высокой мощности.

Котел электрический Эван ЭПО – 36А

Котел может использоваться в качестве основного или резервного отопления помещений, изготовлены из нержавеющей стали, обогрев площади до 350 кв.м., надежная теплоизоляция. Есть система самодиагностики.

Плюсы: есть аварийный термовыключатель, компактный размер, высокий КПД
Минусы: высокая стоимость.

Котел электрический Эван ЭПО – 72А

Качественный профессиональный котел для помещений до 720 кв.м., ТЭНы изготовлены из нержавеющей стали, есть автоматический и ручной режим работы.

Плюсы: долгий срок службы, компактный размер, высокий КПД.
Минусы: высокая стоимость.

Котел электрический Эван ЭПО – 216

Единый корпус с антикоррозийным покрытием, цифровой дисплей системы управления, термостат программируемый, можно использовать сертифицированную незамерзающую жидкость.

Плюсы: долгий срок службы, компактный размер, высокий КПД, есть система самодиагностики, для помещений площадью до 2200 кв.м.
Минусы: высокая стоимость.

Газовое отопление

Для такого вида отопления необходимо подключение к централизованному магистральному газу. Оборудование имеет:

  • газовые горелки, которые подают газ;
  • теплообменник из меди высокого качества;
  • насос для подачи воды;
  • манометр и термометр;
  • бак;
  • встроенную систему безопасности.

Плюсы:

  • недорогой вид промышленного отопления;
  • подходит для большинства помещений: склады, цеха, полигоны и т.п.;
  • можно регулировать обогрев;
  • можно установить режим подачи тепла.

Минусы:

  • оборудование имеет сложную структуру, что требует тщательного контроля;
  • чтобы не возникало аварийных ситуаций, оборудование нуждается в постоянном техническом обслуживании;
  • сложная система монтажа.

Обычно производитель оборудования указывает площадь обогрева помещения. Но есть и формула для расчета тепловой мощности: ((S х h) / 30) х К = P кВт.

Газовые тепловые пушки

Газовая тепловая пушка Master BLP 103 ET

 

Площадь обогрева:

1000 м.кв

Нагрев:

Газовый

Мощность нагрева:

103 кВт

Ступени мощности:

57/103 кВт

Продув воздуха:

3260 м.куб

Термостат:

Нет

Максимальный ток:

1 А

Подключение к сети:

Есть кабель и вилка

Класс защиты IP:

20

Способ нагрева:

Прямой

Расход топлива:

5.02 кг/ч

Форма корпуса:

Цилиндрическая

Гарантия:

1 год

Служат для прямой горизонтальной подачи теплового воздуха, есть кабель с вилкой в комплекте, обогрев площади до 100 кв.м., тележка для перемещения, электронный поджиг.

Плюсы: мощное оборудование, контроль пламени, используется при монтаже натяжных потолков.
Минусы: не выявлено.

Газовая тепловая пушка NEOCLIMA NPG-60

 

Площадь обогрева:

570 м.кв

Нагрев:

Газовый

Мощность нагрева:

57 кВт

Продув воздуха:

1400 м.куб

Термостат:

Есть

Максимальный ток:

0.48 А

Подключение к сети:

Есть кабель и вилка

Класс защиты IP:

20

Способ нагрева:

Прямой

Расход топлива:

4.1 кг/ч

Форма корпуса:

Цилиндрическая

Гарантия:

2 года

Работа на пропан-бутане, есть защита от перегрева, направленный поток прогретого воздуха, рассчитана на обогрев площади до 570 кв.м.

Плюсы: быстрый нагрев воздуха, высокая мощность, небольшая стоимость оборудования.
Минусы: механическое управление.

Газовая тепловая пушка BALLU BHG-60

 

Площадь обогрева:

530 м.кв

Нагрев:

Газовый

Мощность нагрева:

53 кВт

Продув воздуха:

1450 м.куб

Термостат:

Есть

Максимальный ток:

0.48 А

Подключение к сети:

Есть кабель и вилка

Класс защиты IP:

10

Способ нагрева:

Прямой

Расход топлива:

5 кг/ч

Форма корпуса:

Цилиндрическая

Гарантия:

1 год

Рассчитан на площадь до 570 кв.м., оснащен камерой сгорания из оцинкованной стали, постоянная вентиляция воздуха.

Плюсы: бездымное сгорание топлива, высокий уровень КПД, мгновенный перевод в рабочее состояние, низкая стоимость.
Минусы: не выявлено.

Газовые тепловентиляторы

Газовый тепловентилятор Тепломаш КЭВ-55THG

Используется для площадей до 550 кв.м., для воздушного отопления промышленных помещений, прямая горизонтальная подача теплого воздуха.

Плюсы: в комплекте есть пульт управления с термостатом, быстрое достижение выбранной температуры, большая длина воздушного потока.
Минусы: высокая стоимость.

Газовые котлы

Газовый котел Baxi LUNA Duo-tec MP 1.99

Конденсационный тип работы, размещается на стене, используется природный газ, закрытая камера сгорания, цифровая индексация температуры и давления.

Плюсы: высокая мощность, компактный размер, возможность каскадной установки до 16 колов, встроенная погодозависимая автоматика.
Минусы: не обнаружено.

Газовый котел Buderus Logano G334-146 WS

Популярный напольный котел премиум класса, рассчитан до 1000 кв.м., соответствует всем нормам, бесшумная работа системы.

Плюсы: надежный, мощный агрегат, есть защитная заслонка.
Минусы: не обнаружено.

Газовый котел Protherm Гризли 150 KLO

Инжекторная горелка, возможность работы по сезонам, самодиагностика, на дисплее размещена информация с различных датчиков, есть возможность подключения в каскад.

Плюсы: доступная цена, надежное оборудование.
Минусы: нет встроенного подогрева воды по ГВС.

Водяное отопление

Водяное отопление подходит для больших промышленных помещений. Источником может быть центральное отопление или собственная котельная.

Принцип работы заключается в том, что по трубопроводам вода поступает в отопительные приборы. Обычно на производстве таковыми являются радиаторы и водяные тепловентиляторы.

Положительные моменты:

  • повышенный КПД, так как нагретый воздух распределяется равномерно;
  • данную систему отопления можно соединять с вентиляцией и системой кондиционирования;
  • недорогая стоимость монтажа.

Минусы:

  • нужно организовывать теплопункт дополнительно.

Водяные тепловентиляторы

Водяной тепловентилятор ТЕПЛОМАШ КЭВ-60М5W1

Эффективны в промышленных и производственных помещениях, имеется мощный 3-скоростной вентилятор, для установки нужен специальный монтажный кронштейн, который поворачивается в различных направлениях.

Плюсы: есть проводной и дистанционный пульт, к которым можно подключить до 3 подобных приборов, низкая стоимость.
Минусы: тяжелый.

Водяной тепловентилятор VOLCANO VR2 AC

Популярная и востребованная модель для обогрева промышленных и производственных помещений, а также спортивных объектов, теплиц, парников, супермаркетов, двухъядерный теплообменник, улучшенный осевой вентилятор помогает направлять воздух до 25 м.

Плюсы: экономно потребляет электроэнергию, с помощью жалюзи можно направлять поток воздуха.
Минусы: не выявлено.

Водяной тепловентилятор VOLCANO VR MINI AC

Подходит для гаражей, теплиц и других производственных помещений, эффективное оборудование для нагрева воздуха.

Плюсы: гарантия 5 лет, соотношение «цена-качество», легкий, компактный, экономичный.
Минусы: не выявлено.

Водяные радиаторы регистры

Радиатор алюминий Rifar Alum 500×10

Настенный секционный, алюминиевый корпус, боковое подключение, нагревается до 135 градусов по Цельсию.

Плюсы: качественное надежное изделие, невысокая стоимость.
Минусы: не обнаружено.

Радиатор секционный биметаллический Rifar SUPReMO 500

Настенный с боковым подключением, биметаллический корпус, максимальный нагрев до 135 градусов по Цельсию.

Плюсы: надежный качественный агрегат, доступная цена.
Минусы: нет монтажного комплекта.

Радиатор секционный биметаллический Rifar Base 500

Описание: секционный, настенный с боковым креплением, межосевое расстояние – 500мм, нагрев до 135 градусов по Цельсию.

Плюсы: хорошая теплоотдача, красивый, доступная цена, надежный производитель.
Минусы: не обнаружено.

Тепловые пушки

Эффективный отопительный прибор с высокой производительностью. Принцип работы как у тепловентиляторов. Вентилятор встроен для принудительной циркуляции воздушных масс. Обычно корпус изготовлен из металла. А установка осуществляется на полу.

Плюсы:

  • прочные;
  • способны работать долгий промежуток времени;
  • переносные, поэтому их можно устанавливать в любое место.
  • просты в эксплуатации и обслуживании.

Минусы:

  • после отключения температура в помещении быстро падает;
  • очень шумные.

Обычно производители указывают в инструкции на какую площадь рассчитана пушка. Однако можно и самостоятельно узнать по формуле, которая была указана выше.

Дизельные пушки

Дизельная тепловая пушка BALLU BHDР-20

 

Площадь обогрева:

200 м.кв

Нагрев:

Дизельный

Мощность нагрева:

20 кВт

Продув воздуха:

590 м.куб

Термостат:

Есть

Прирост t воздуха:

250 0C

Подключение к сети:

Есть кабель и вилка

Класс защиты IP:

XX

Способ нагрева:

Прямой

Расход топлива:

1.6 кг/ч

Объем бака:

12 л

Форма корпуса:

Цилиндрическая

Гарантия:

1 год

Рассчитана на 200 кв.м., высокий уровень КПД, есть фильтр очистки воздуха, встроен датчик уровня топлива, предусмотрена многоуровневая система безопасности, работают на дизельном топливе, предназначены для промышленных помещений.

Плюсы: надежная, экономичная, доступная цена.
Минусы: зависит от электросети, требуется удлинитель.

Дизельная тепловая пушка MASTER B 180 ПРЯМОЙ НАГРЕВ

 

Площадь обогрева:

480 м.кв

Нагрев:

Дизельный

Мощность нагрева:

48 кВт

Термостат:

Есть

Продув воздуха:

1550 м.куб

Максимальный ток:

1.5 А

Подключение к сети:

Есть кабель и вилка

Класс защиты IP:

41

Способ нагрева:

Прямой

Расход топлива:

3.8 кг/ч

Объем бака:

36 л

Форма корпуса:

Цилиндрическая

Гарантия:

1 год

Рассчитан на площадь до 480 кв.м., есть два топливных фильтра, оснащен тележкой для транспортировки, система стабилизации пламени электронная.

Плюсы: надежный, невысокая стоимость, известный производитель.
Минусы: не обнаружено.

Дизельная тепловая пушка MASTER BV 471 S НЕПРЯМОЙ НАГРЕВ

 

Площадь обогрева:

1360 м.кв

Нагрев:

Дизельный

Мощность нагрева:

136 кВт

Термостат:

Доп. опция

Продув воздуха:

8500 м.куб

Максимальный ток:

6.9 А

Подключение к сети:

Есть кабель и вилка

Класс защиты IP:

55

Способ нагрева:

Не прямой

Расход топлива:

10.86 кг/ч

Объем бака:

150 л

Форма корпуса:

Прямоугольная

Гарантия:

1 год

Для площадей до 1360 кв.м., осевой вентилятор, есть термостат защиты от перегрева, есть летний и зимний режим работы, имеется тележка для транспортировки, 2 топливных фильтра.

Плюсы: экономичный, рассчитан на большую площадь, надежный, известный производитель.
Минусы: не обнаружено.

Дизельная или газовая тепловая пушка

Сравнение оборудования:

  1. У дизельных тепловых пушек сфера применения ограничена, так как топливо подается с помощью насоса или компрессора. При этом нужно постоянно проветривать помещение, чтобы продукты сгорания выходили из помещения. Газовая же пушка – более экологически чистое оборудование, так как продукты сгорания практически отсутствуют.
  2. У газовых тепловых пушек КПД равен практически 100%.
  3. В отличие от дизельных, газовые тепловые пушки более экономичны.
  4. Все устройства просты в эксплуатации.

Чтобы сделать правильный выбор, нужно определиться с тем, для какого помещения будут они использованы, какие в здании технические характеристики.

Тепловые пушки или тепловентиляторы

Сравнение оборудования:

  1. Функциональная нагрузка тепловентилятора в среднем колеблется в пределах от 1 до 2 кВт/час, тепловая пушка — более 4 кВт/час. Таким образом, тепловая пушка больше подходит для больших производственных помещений.
  2. Тепловентилятор всегда привязан к сети, а тепловые пушки могут работать и на газе, и на топливе автономно.
  3. И в тепловых пушках, и в вентиляторах для обогрева присутствует защита при опрокидывании, что снижает риск пожаров.

При выборе также надо ориентироваться на площадь для обогрева, наличие электросети, длительность работы приборов.

Инфракрасное отопление

Главная особенность – минимальное потребление электроэнергии, а также высокая эффективность. Принцип работы довольно сложен, но сводится к тому, что предметы от прибора прогреваются и передают тепло в окружающий воздух только в рабочей зоне ИК обогревателя. Нет необходимости прогревать все большое помещение, только рабочую зону.

Плюсы:

  • помещение быстро нагревается;
  • выдерживает скачки напряжения;
  • не пересушивает воздух;
  • простота монтажа.

Минусы:

  • такая система требует предварительного проектирования и грамотного распределения в промышленном помещении.

Инфракрасный обогреватель BALLU BIH-S-0.3

Используется двойная теплоизоляция, как основной источник тепла для 3 кв.м. и дополнительный до 6 кв.м., есть защита от перегрева.

Плюсы: надежный, недорогой, подходит для потолков армстронг. 
Минусы: не обнаружено.

Инфракрасный обогреватель FRICO EZ115N

Как основной источник тепла для 7 кв.м. и дополнительный – до 15 кв.м., максимальная температура поверхности до 280 кв.м., возможно крепление к потолку.

Плюсы: очень надежный, известный бренд.
Минусы: не выявлено.

Промышленные котлы

Промышленные котлы отличаются друг от друга по виду топлива, которое применяется. Например, они могут быть твердотопливные и дизельные. Однако те и другие подходят для промышленных и производственных помещений, ангаров и гаражей.

Плюсы:

  • доступность топлива;
  • автономная работа;
  • высокая эффективность.

Минусы:

  • необходимо постоянное обслуживание;
  • от дизельного топлива может быть запах;
  • некоторые модели довольно дороги.

Твердотопливные котлы

Твердотопливный котел Protherm Бобер 50 DLO

Используются дрова или уголь, мощность 39 кВт, независим от электросети, одноконтурный, КПД равен 92%, устанавливается на пол, открытая камера сгорания.

Плюсы: доступная цена, надежная работа.
Минусы: греется низ.

Твердотопливный котел Buderus Logano S111-2-45D

Классический вид твердотопливного котла, мощность 45 кВт, КПД 82%, используется уголь, угольные брикеты, дрова, древесные брикеты, кокс, открытая камера сгорания, установка на полу.

Плюсы: надежный агрегат, приемлемая стоимость.
Минусы: не обнаружено.

Твердотопливный котел Protherm Бобер 60 DLO

Мощность 48 кВт, энергонезависимый, используются в качестве топлива дрова и уголь, КПД 90%, установка на полу, открытая камера сгорания.

Плюсы: приятная цена, надежная работа.
Минусы: не обнаружено.

Дизельные котлы

Жидкотопливный котел Kiturami TURBO HI FIN 30

Мощность 34,9 кВт, работа на дизельном топливе, КПД 87%, устанавливается на пол, двухконтурный.

Плюсы: хорошо справляется со своей задачей.
Минусы: подходит для однофазной сети.

Жидкотопливный котел Viessmann Vitorondens 200-T BR2A035

Установка напольная, подходит для однофазной сети, мощность 42,8 кВт, жидкотопливный конденсационный, используется дизель.

Плюсы: КПД 103%.
Минусы: не обнаружено.

Комбинированный котел Protherm Бизон 40 NL

Котел комбинированного типа, мощность составляет 38 кВт, в качестве топлива используется дизель и газ, КПД 89%, напольная установка, открытая камера сгорания, одноконтурный.

Плюсы: высокая эффективность, надежность.
Минусы: не обнаружено.

Способы обогрева дачи электричеством | Статьи

Традиционно дачу считают летней постройкой, но люди также уезжают отдыхать за город в холодную весеннюю или осеннюю погоду, в период новогодних праздников. Проблему обогрева коттеджа, возникающую в подобных случаях, можно решить монтажом разнообразных электрических нагревателей.

Если в холода вы не используете дом регулярно, нецелесообразно устанавливать в нем газовое или водяное отопление. Также не ко всем дачным поселкам подводят центральную магистраль газоснабжения, а электрообогреватели легко монтируются в любом коттедже. Они надежны, просты в использовании, мобильны. Отопление электричеством не всегда экономно, но по эффективности и экологичности опережает другие способы.

В статье мы расскажем о типах устройств, подходящих для дачи.

Электронагреватели

Современные приборы успешно справляются с обогревом помещений. Настраивая терморегулятор, можно поддерживать заданную температуру даже в отсутствие дачников.

Некоторые модели оборудуют таймером, который можно, еще находясь в городе, запрограммировать на включение отопительной системы. Предусмотрена возможность управления с помощью отправки СМС. Используя их, легко включать или отключать электроприбор.

Конвекторы

Монтаж оборудования не занимает много времени. В большинстве случаев устройства закрепляют на стене, реже – на полу. В основе работы – принцип конвекции воздуха.

Для приборов характерны:

  • настенный или напольный формат,
  • небольшой аккуратный корпус,
  • набор дополнительных опций,
  • рациональное потребление электричества.

Для обогрева комнат используется металлическая спираль высокого сопротивления, закрытая компактным корпусом. ТЭН, встроенный в нижней части, подогревает проходящий через него воздух. Воздушные потоки быстро повышают температуру в помещениях, термостат поддерживает ее постоянное значение.

Масляные радиаторы

По своему виду электрические масляные батареи напоминают привычные водяные, но нагрев теплоносителя (масла), находящегося в металлическом корпусе, выполняется благодаря электрической энергии. Поверхность прибора разогревается и делает дом более теплым. Чтобы ускорить теплообмен, некоторые устройства оснащают вентиляторами.

Масляные обогреватели качественно прогревают воздух в комнатах площадью от 10 до 25 м². Обычно их монтируют на полу, дополняя таймером, термостатом или другими полезными опциями.

Инфракрасные обогреватели

Их устанавливают на потолке. Излучаемые приборами инфракрасные волны поглощаются окружающими поверхностями, превращаются в тепловую энергию. При нагреве поверхности отдают тепло воздуху. С помощью этого оборудования можно организовать отопление определенных участков, если не требуется обогревать все помещение.

К преимуществам приборов относят:

  • быстрый нагрев,
  • безопасность и экономичность,
  • высокую степень автоматизации,
  • поддержку комфортного уровня влажности воздуха.

Среди недостатков можно указать высокую стоимость и характерный громкий звук, издаваемый инфракрасным обогревателем во время работы.

Теплые полы

Теплый пол – это экологичный и высокоэффективный способ организовать дополнительную или основную систему равномерного обогрева. Современные модели поддерживают наиболее комфортную комнатную температуру. На даче можно установить простое классическое устройство с механическим управлением или сенсорное оборудование, которое легко запрограммировать, подключить по Wi-Fi. Для регулировки предусмотрены стационарные терморегуляторы. Также можно воспользоваться приложением для смартфона.

Производители предлагают разные виды оборудования. Уровень пола при монтаже устройств поднимается только на 1–5 см.

  • Нагревательные маты. Их применяют в качестве основного или дополнительного источника отопления.
  • Кабель. Как правило, он служит единственным источником обогрева и подходит для укладки в помещениях сложных геометрических форм.
  • Пленка. Она может быть основным («Национальный комфорт» мощностью 220 Вт/м²) или дополнительным источником тепла. Пленку укладывают без стяжки и клея, не поднимая уровень пола.
  • Мобильный теплый пол под ковер. Его не нужно монтировать. С помощью вилки он подключается к электросети. Лицевой слой контактирует с ковровым покрытием, а подложка – с напольным. Мобильный пол можно укладывать под ворсовые, безворсовые или плетеные ковры.

Даже простой терморегулятор увеличивает экономию электроэнергии на 30%. Для программируемых приборов этот показатель вырастает до 70%. Теплые полы не сушат воздух в комнате, не меняют его состав. Модели безопасны для аллергиков и астматиков. Высокий уровень пожарной безопасности гарантирован благодаря кабелям с экранирующей конструкцией.

Полотенцесушители

Эти приборы предназначены для сушки текстиля и обогрева ванных комнат. Корпус выполняют из устойчивой к повреждениям и воздействию влаги нержавеющей стали или стекла.

Полотенцесушители монтируют на вертикальных опорах. Также их можно закреплять на стенах с покрытием из негорючих материалов: металла, бетона, керамической плитки, цементной или гипсовой штукатурки. Время нагрева до комфортной температуры составляет всего 30 минут.

Автономные отопительные системы

Для отопления большого дачного дома нередко используют котел. При его монтаже выполняют разводку труб и устанавливают радиаторы. Хозяева коттеджа получают надежную, эффективную и экологичную систему теплоснабжения.

Современные котлы имеют компактные размеры. К их преимуществам относят:

  • бесшумную работу;
  • высокий коэффициент полезного действия;
  • исключение необходимости получать разрешительные документы;
  • отсутствие потребности доставлять и хранить топливо;
  • простой монтаж, элементарный принцип использования.

Выделяют 3 разновидности электрокотлов:

  • индукционные,
  • ТЭНы,
  • электродные.

Обогрев дома индукционным устройством имеет более низкую стоимость, чем ТЭНы, но само оборудование продается по достаточно высокой цене. Экономным можно считать электродный нагреватель, но он не подходит для нагрева полов. Подобрав котел для дачи на основе расчета мощности, вы будете применять всего один прибор для эффективного обогрева всей площади.

Тепловентиляторы

Если дачный дом имеет небольшую площадь, отапливать его можно с помощью недорогого тепловентилятора в компактном корпусе. При этом важно учитывать, что устройство не предназначено для создания комфортного микроклимата, оно нередко пересушивает воздух. Также необходим постоянный контроль, так как тепловентилятор не отличается высокой пожаробезопасностью.

Каждый дачный дом имеет собственную планировку, поэтому выбор прибора для электрического отопления всегда индивидуален. Вы можете ознакомиться с характеристиками распространенных типов обогревателей и приобрести необходимый именно вам.


Отопление ТЭНами, как сделать, стоит ли использовать

ТЭН — электронагреватель жидкости в виде металлической трубки, внутри которой находится спираль. Конструкций, разновидностей множество. Нагреватели изготовляют и на крупный и на малых производствах.

Эти нагреватели массово устанавливаются, например, в электрических бойлерах и электрокотлах, поэтому производятся также известными производителями.

Но на любом рынке можно встретить ТЭНы предназначаются для установки в радиаторы отопления. Эти устройства изготовлены чаще в Польше, Украине, Китае. Они могут снабжаться встроенными термодатчиками, т.е. работать в полуавтоматическом режиме, отслеживая степень нагрева.

На основе таких электрических нагревателей, можно легко создать отопительный прибор своими руками. Чем и пользуются домашние мастера, конструируя простейший обогрев и «экономя» при этом, как они, думают, изрядные суммы денег.

Но так ли выгодно использовать ТЭНы?
Где обычно, в каких ситуациях, применяют эти электронагреватели воды? Как нужно устанавливать и применять ТЭНы…

Насколько большая выгода от ТЭНов

Если имеется старая батарея, то почему бы ее не превратить с помощью ТЭНа в систему отопления для небольшого подсобного помещения, — курятника, мастерской, гаража…

Существуют даже мифы, что тенами отапливать выгодно. Но «мечты разбиваются о суровую реальность», — электричеством отапливать дороже всего. Так как используется самый дорогой энергоноситель.

Неважно, имеется ли фирменный программируемый электрокотел, или установлена бочка с опущенным в нее на проволоке ТЭНом, — КПД подобных электронагревателей около 97%. А дальше платим по счетчику…

Обогреваться ночью

Но есть лазейка, — ночной дешевый тариф на электроэнергию. Узнать точно, о действующих тарифах и возможности подключения ночного, можно в местной электросети.

Правда и ночное электричество нельзя назвать дешевым, но в совокупности с показателем «Комфортность», ночное отопления становится весьма привлекательным для пользователя.
Какой вид топлива больше всего подходит для дома

Но цена на саму систему отопления с электрическим нагревом может значительно варьироваться.

Нагреватели в батареях

Когда в квартирах с центральным отоплением холодно, то отапливают дополнительно электричеством, а также газовой кухонной плитой или колонкой.

Вот тут и применяется парочка тяжелых чугунных батарей с ТЭНами. По сравнению с фирменными электроконвекторами они обладают гораздо большей теплоемкостью, поэтому их можно отключать на дольше и не следить за их работой. Но и нагрев соответственно продолжительнее.

Такие радиаторы умельцы устанавливают в основном в гаражах, где любят проводить время. Или, например, для обогрева животных в морозы на небольших фермах.

Оборудование систем отопления

Бывает, что на дачке, в гараже и т.п. имеются остатки былой системы отопления, например, пару батарей со стальными трубами. Вернуть систему к жизни проще всего, вставив в нее электрические нагреватели….

Но ТЭНы могут создавать и вспомогательный подогрев в домашней системе отопления. Электрический обогрев отлично дополняет твердотопливный котел. Особенно ночью, с дешевым тарифом. И здесь «самодельное производство» также востребовано.

Если в достаточно большой металлической трубе закрепить пару тенов по 2 кВт, то получится 4-киловаттный электрокотел. Нюанс в том, что ночью его можно включать в маломощную сеть 220 В, так как другие потребители «спят», кроме холодильника, например.

Такое «творение», на практике, может стать основным отоплением в течении сезона в утепленном доме, если, конечно, применяется буферная емкость — теплоаккумулятор.
Как подключить теплоаккумулятор в систему

Какая мощность понадобится

В системе отопления целого дома лучше использовать 2-киловатные образцы электронагревателей.

Но в отдельных радиаторах самодельных регистрах, обрезках отопления в гаражах… применять слишком мощные ТЭНы нельзя.

Дело в том, что тепловое реле не может считаться надежной защитой. А доводить жидкость до температуры кипения, перегревать прибор свыше +75 градусов — опасно.

Следовательно, мощность тена не должна быть больше, чем тепловая мощность, отдаваемая прибором при +70 градусах. Это примерно 75% от паспортной мощности радиатора.

Одна секция и чугунного и алюминиевого радиаторов (500 мм между трубами) обладает мощностью теплоотдачи 170 Вт при 90 град жидкости и 20 град воздуха. При +70 град. нагрева — одна секция — 140 Вт, 7 секций — 1080 Вт, 10 секц. — 1400 Вт.
Таким образом, для радиатора из 7 секций мощность ТэНа не должна быт больше чем 1 кВт. А для радиатора из 10 секций — не больше 1,4 кВт.

Труднее обстоит дело с самодельными регистрами, — неизвестна их теплоотдача. Остается лишь начинать использовать наименее мощные нагреватели.

Какие тены для радиатора выбрать

ТЭНы для радиаторов сделаны на основе заглушки (основания) со стандартным диаметром резьбы 40 мм. Остается из радиатора выкрутить нижнюю пробку, на ее место вкрутить нагреватель.

О подборе этих нагревателей по мощности для радиаторов было сказано выше. Не стоит брать более мощный приборы, во избежание аварийных ситуаций. Не нужно перегревать радиатор, добиваясь большей теплоотдачи.

Но эти нагреватели различаются и по длине. Для отдельно стоящего радиатора, без движения жидкости, предпочтительней тены подлиннее. Тогда и прогрев будет более равномерным.

В проточном электрокотле другой приоритет подбора — меньшее гидравлическое сопротивление. Минимизировать влияние нагревателей путем удачного подвода трубок и конфигурации их расположения для домашнего умельца не проблема.

Производитель, — «китайцев», по прежнему, ругают больше всего, лучшими ТЭНами считаются местного разлива — российско-украинские.

Как применяются

ТЭНы могут включаться комнатным термостатом. Тогда они управляются по заданной температуре воздуха.

Но в большинстве случаев используют нагреватели со встроенными температурным реле, — нагрев по температуре теплоносителя.

Жидкость при нагреве расширяется. Нельзя отдельные радиаторы, и другие замкнутые системы отопления, заполнять жидкостью полностью. В системах отопления для компенсации расширения используется расширительный бак.
Расширительные баки для системы отопления

В случае с отдельным радиатором достаточно оставить не менее 10% внутреннего объема не заполненным, — заливать радиатор по верхнюю пробку.

Установка ТЭНа следующая. Система сливается, выкручивается пробка радиатора, вкручивается тен. При этом обычно используется лен со смазкой в качестве уплотнителя (металл-по металлу).

Нагреватель подключается к электросети в соответствии с ПУЭ, с соответствующей изоляцией контактов.

Масло не допустимо

Можно встретить рекомендации залить радиатор маслом, — якобы получится аналог «масляного нагревателя». Прежде чем следовать подобным советам, рекомендуется изучить опыт «пиротехника», который налил масло на картон, поджег, а затем пробовал потушить.
Маслонаполненные промышленные электроагрегаты (например, высоковольтные маслянные разъединители) эксплуатируются с особыми мерами пожарной безопасности.

Если система замораживается, необходимо использовать незамерзающие жидкости, для одного радиатора можно использовать тот же автомобильный Тосол. Горючие жидкости недопустимы.

Встречаются и другие нарушения.

Конструирование своими руками — выгодно?

Самостоятельное конструирование электрообогревательных приборов не приветствуется по соображениям безопасности.

Гораздо целесообразнее приобрести готовый электрический обогреватель для помещений, например, электроконвектор, отвечающий требованиям… За его эксплуатационные качества несет ответственность производитель.

Экономическая целесообразность в ТЭНах может возникнут, как говорилось, когда в наличии имеется «заброшенная» и «бесплатная» оболочка для него.

Но вопросы безопасности, на самом деле, гораздо важнее, чем выгода, получаемая подобным образом.
Сейчас это понимают чаще, потому ТЭНами интересуются все меньше.

К тому же, средний по площади дом выгоднее отапливать электрокотлом с водяными радиаторами, чем отдельными конвекторами. Далее по теме — выгодно ли отапливать конвекторами электрическими

Системы тепловых насосов | Министерство энергетики

Ряд нововведений улучшают производительность тепловых насосов.

В отличие от стандартных компрессоров, которые могут работать только на полную мощность, двухскоростные компрессоры позволяют тепловым насосам работать близко к тепловой или охлаждающей способности, необходимой при любой конкретной температуре наружного воздуха, экономя энергию за счет сокращения операций включения / выключения и износа компрессора. Двухскоростные тепловые насосы также хорошо работают с системами управления зонами. В системах зонального контроля, которые часто встречаются в больших домах, используются автоматические заслонки, позволяющие тепловому насосу поддерживать разные температуры в разных комнатах.

Некоторые модели тепловых насосов оснащены двигателями с регулируемой скоростью или двухскоростными двигателями на своих внутренних вентиляторах (нагнетателях), наружных вентиляторах или обоих. Регулируемые скорости этих вентиляторов стремятся поддерживать комфортную скорость движения воздуха, сводя к минимуму сквозняки и максимизируя экономию электроэнергии. Это также сводит к минимуму шум от нагнетателя, работающего на полной скорости.

Некоторые высокоэффективные тепловые насосы оснащены пароохладителем , который утилизирует отработанное тепло из режима охлаждения теплового насоса и использует его для нагрева воды.Тепловой насос с пароохладителем может нагревать воду в 2–3 раза эффективнее, чем обычный электрический водонагреватель.

Еще одним достижением в технологии тепловых насосов является спиральный компрессор , который состоит из двух спиральных спиралей. Один остается неподвижным, в то время как другой вращается вокруг него, сжимая хладагент, направляя его во все более мелкие области. По сравнению с обычными поршневыми компрессорами спиральные компрессоры имеют более длительный срок службы и работают тише.По некоторым данным, тепловые насосы со спиральными компрессорами обеспечивают более теплый воздух на 10–15 ° F (5,6–8,3 ° C) в режиме обогрева по сравнению с существующими тепловыми насосами с поршневыми компрессорами.

Хотя большинство тепловых насосов используют электрические резистивные нагреватели в качестве резерва в холодную погоду, тепловые насосы также могут быть оборудованы в сочетании с газовой печью, иногда называемой двухтопливной или гибридной системой, в дополнение к тепловому насосу. Это помогает решить проблему менее эффективной работы теплового насоса при низких температурах и снижает потребление электроэнергии.Есть несколько производителей тепловых насосов, которые объединяют оба типа тепла в одном корпусе, поэтому эти конфигурации часто представляют собой две меньшие по размеру, расположенные бок о бок стандартные системы, использующие один и тот же воздуховод.

По сравнению с топкой, работающей на горящем топливе, или обычным тепловым насосом, этот тип системы также может быть более экономичным. Фактическая экономия энергии зависит от относительной стоимости топлива для сжигания по сравнению с электричеством.

Солнечные системы горячего водоснабжения и отдельные компоненты

Решения для солнечного нагрева воды

Stiebel Eltron разрабатывает солнечные тепловые системы уже 40 лет.Поскольку каждая установка индивидуальна, у нас есть полная линейка комплектов SOLkits, монтажного оборудования и отдельных компонентов, необходимых для солнечных тепловых установок. Мы стремимся производить и поставлять лучшие солнечные тепловые компоненты. Мы находимся в авангарде технологий водяного отопления более 95 лет. Как лидер в этой области, мы не собираемся стоять на месте.

Почему солнечная тепловая энергия?

Затраты на приготовление горячей воды — самые большие коммунальные расходы для домашнего хозяйства.В среднем около 20% бытовой энергии расходуется только на горячее водоснабжение (приготовление пищи, уборка, купание). Этот показатель возрастает примерно до 50%, если для отопления также используется горячая вода. Имеет смысл максимально сэкономить на горячей воде, а это именно то, на что способна солнечная тепловая энергия.

Солнечная тепловая энергия использовалась для улавливания солнечной энергии и превращения ее в горячую воду в течение десятилетий, прежде чем солнечная фотоэлектрическая (PV) стала возможной. Солнечная энергия в 3-5 раз эффективнее улавливает солнечную энергию, чем фотоэлектрическая.Солнечные батареи могут сэкономить до 75% на счетах за отопление воды. Это уменьшает углеродный след и увеличивает стоимость дома.

Федеральные налоговые льготы предоставляются в размере 30% от установленной стоимости солнечной тепловой системы. Государственные скидки и льготы, а также льготы для местных предприятий существуют во многих частях страны.

Как работает солнечная тепловая система

Коллекторы поглощают солнечную тепловую энергию и передают ее теплоносителю в системе.Насос перемещает горячую жидкость в резервуар для воды для бытового потребления, где тепло передается воде через теплообменник. Теперь уже остывший теплоноситель циркулирует обратно в коллектор, чтобы собрать больше тепла.

Stiebel Eltron разрабатывает и производит солнечные тепловые компоненты в течение 40 лет. Как и вся продукция Stiebel Eltron, наши солнечные компоненты тщательно спроектированы. Они предназначены для работы как индивидуально, так и в рамках всей системы, чтобы обеспечить вам максимальную производительность и надежность.

Изучите действующую солнечную тепловую установку

Вы можете взаимодействовать с действующей солнечной тепловой установкой Stiebel Eltron в режиме реального времени, чтобы узнать больше о том, как работает наша система.

›Оперативная панель установки ГВС в жилых домах

Системы для любых нужд

Солнечные тепловые системы могут быть адаптированы для удовлетворения практически любых потребностей или существующей механической ситуации. На схемах показаны три распространенные солнечные тепловые установки. Многие компоненты солнечной тепловой системы универсальны для всех систем.

Солнечные тепловые коллекторы
Поглощает энергию солнца, превращая ее в тепло.

Теплоноситель
Пропиленгликоль, пищевой и фармацевтический раствор, который удерживает и передает тепло от коллекторов к резервуару. Жидкий теплоноситель морозостойкий для холодных ночей.

Насосная станция
Перемещает теплоноситель по системе.

Бак для ГВС
Внутренний теплообменник передает тепло от теплоносителя к горячей воде для бытового потребления, которую хранит бак.Резервный нагревательный элемент поддерживает температуру бака, когда не светит солнце.

Контроллер
Электронное устройство, контролирующее работу насоса и безопасность системы.

Опции резервного копирования
Резервная система используется для добавления дополнительного тепла к горячей воде в доме, если это необходимо. Такая ситуация может произойти, например, в очень пасмурный день, если солнечная система не может производить достаточно горячей воды, чтобы удовлетворить спрос или сделать ее достаточно горячей.Резервуары Stiebel Eltron SB E в комплектах SOLkits имеют встроенное электрическое резервное копирование, но другие возможные решения включают безрезервуарные электрические водонагреватели Stiebel Eltron Tempra ® или существующие резервные системы для конкретного объекта.

Блоки водяного отопления SOLkit

Наборы

Stiebel Eltron SOLkits подчеркивают наш 40-летний опыт работы в области солнечной энергетики, объединяя лучшие солнечные компоненты в законченные пакеты. Наборы SOLkits бывают 1, 2 или 3 размеров панелей в конфигурации под крышей и 2 или 3 размеров панелей поперек крыши.Выбор правильного комплекта зависит от размера семьи, потребностей в горячей воде и отоплении помещения, если это необходимо. Наши опытные представители службы поддержки доступны по телефону или электронной почте для получения помощи и рекомендаций. В комплект входят рекомендованная насосная станция, контроллер и резервуар. Комплект стойки и линейка для конкретной установки завершают комплект, поставляя все необходимые компоненты. Наши компоненты разработаны с учетом максимальной совместимости, простоты установки и надежности.

Коллекторы

Плоские коллекторы

Stiebel Eltron SOL 27 Premium — это высокоэффективный солнечный тепловой коллектор, входящий в десятку лучших коллекторов, измеренных SRCC по мощности. Чистая абсорбирующая поверхность более 25 квадратных футов обеспечивает максимальную производительность 31 300 БТЕ / день на панель (рейтинг чистых дней SRCC). SOL 27 Premium отличается высокоселективным абсорбирующим покрытием, закаленным солнцезащитным остеклением с низким содержанием железа и очень эффективной изоляцией вокруг абсорбирующей пластины.Внутренние жидкостные трубки выполнены из меди, а пластина абсорбера — из алюминия. Низкий 3˝ профиль SOL 27 делает его визуально менее навязчивым и способным удовлетворить самые разные архитектурные и инженерные потребности.

Коллекторы

SOL 27 Premium доступны как в стандартной (вертикальной), так и в широкой (горизонтальной) конфигурации. Производство наших коллекторов и стеллажных систем в США также означает, что мы можем анодировать рамы и стойки коллекторов на заказ в соответствии с конкретными архитектурными цветовыми требованиями.

Коллекторы вакуумные

Солнечные коллекторы S-Power Stiebel Eltron спроектированы и произведены в Германии. Они в три-пять раз эффективнее улавливают солнечную энергию, чем фотоэлектрические (PV) системы. Их медные абсорбирующие пластины по новейшим технологиям герметизированы внутри одностенных патентованных стеклянных трубок с бескомпромиссным вакуумным уплотнением. Идеально подходят для условий, в которых температура наружного воздуха низкая, а потребность в тепловой энергии высока, они особенно хорошо подходят для комбинированных систем, где требуется горячее водоснабжение, отопление помещений и кондиционирование воздуха.

Танки

Баки ГВС Stiebel Eltron SB 300 и 400 E производятся на нашем заводе в Словакии. Они бывают объемом 80 галлонов (300 л) и 110 галлонов (400 л) и могут служить в качестве специального солнечного накопителя большой емкости как в жилых, так и в коммерческих установках.

Баки и теплообменники Stiebel Eltron изготовлены из толстолистовой стали. Все поверхности, контактирующие с горячей водой, после дробеструйной обработки покрываются толстой фарфоровой эмалью для очистки стальной поверхности.Кроме того, на внешнюю поверхность сосудов наносится легкое фарфоровое покрытие. Двухдюймовая изоляция из пенополиуретана гарантирует, что горячая вода останется горячей, а потери тепла в режиме ожидания сведены к минимуму. Резервуары Stiebel Eltron SBB оснащены большими расходуемыми анодами с индикатором износа и очень большим отверстием для очистки для простоты обслуживания.

Накопительные баки

SB 300 и 400 E оснащены электрическим нагревательным элементом мощностью 3 кВт для поддержки солнечного производства. Этот нагревательный элемент заключен в стальной цилиндр внутри резервуара, и его можно снимать и заменять без необходимости сброса давления и слива резервуара.

Вспомогательные порты позволяют использовать дополнительные установки, включая резервный котел, разделенные тепловые насосы и гидравлические системы.

Stiebel Eltron также продает резервуары для хранения с одним и двумя змеевиками немецкого производства без резервного электрического питания.

Контроллер Stiebel Eltron

Контроллер SOM 6 Plus используется для всех стандартных солнечных тепловых систем Stiebel Eltron. Контроллер оснащен дисплеем с подсветкой для мониторинга системы. Регулировку и управление солнечной системой можно легко выполнить с помощью удобного отображения пиктограмм.SOM 6 Plus оснащен 4 датчиками температуры, счетчиком часов работы от солнечной батареи, регулируемой скоростью насоса, режимом отпуска и стандартным разрешением vBus ® .

Другие контроллеры Stiebel Eltron доступны для крупных жилых и коммерческих систем, включая сложные коммерческие системы.

Насосная станция

Насосные станции

Stiebel Eltron специально разработаны для солнечных систем с замкнутым контуром. Трехскоростной циркуляционный насос Wilo разработан для идеальной интеграции с нашим контроллером SOM ​​6 Plus.Трубопровод насосной станции изготовлен из высококачественной латуни. Насосные станции поставляются в предварительно собранном виде со стальным настенным кронштейном
и оснащены 2 сливными клапанами, латунными обратными клапанами для предотвращения термосифонирования, встроенным расходомером и включают фитинги для крепления резервуара, а также переходники NPT. Насосная станция может быть полностью изолирована от системы, поэтому во время обслуживания не требуется сливать воду.

Онлайн-регистрация данных

Дополнительный регистратор данных Solarwave DL2

Stiebel Eltron предоставляет владельцам удаленный доступ через Интернет к их солнечной тепловой системе.Панели мониторинга предназначены как для владельцев, так и для установщиков и включают представление схем для виртуального осмотра системы. Установщики могут удаленно управлять системами и контролировать их, а также устанавливать дополнительные оповещения по электронной почте для уведомления о проблемах с производительностью. Удаленный доступ снижает затраты на обслуживание на месте.

Монтажные системы

Монтажные системы

Stiebel Eltron производятся в США из экструдированного алюминия. Стойки доступны в трех различных конфигурациях: комплект стойки 45 °; комплект стойки 30–60 °, адаптируемая стойка, допускающая установку как под углом 30 °, так и 60 °; и комплект для скрытого монтажа.Все комплекты стоек доступны в версиях как для стандартных (вертикальных), так и для широких (горизонтальных) коллекторов.

Комплект для скрытого монтажа используется для установок, когда сама конструкция крыши находится под правильным углом для установки коллекторов. Комплекты стоек 45 ° и 30-60 ° разработаны для установки на плоской крыше или для других установок, где существующий угол наклона крыши сам по себе не является оптимальным.


Простая и прочная конструкция наших стоек с U-образным каналом выдерживает сильный ветер и сильный снегопад.Монтажные системы Stiebel Eltron могут быть собраны с использованием только двух разных размеров розеток. В дополнение к стойкам для скрытого монтажа и фиксированным уголкам доступны дополнительные компоненты для монтажа, такие как оборудование.

Стойки

для утопленного монтажа стандартно поставляются с наборами SOLkits, но при необходимости комплекты приподнятых стоек могут быть указаны с любым заказом SOLkit.

Общие сведения о тепловых системах: гидравлические системы отопления и охлаждения

В прошлом месяце эта колонка была посвящена системам воздуховодов, используемых для HVAC в коммерческих зданиях.В этом месяце мы обсудим водяные системы отопления и охлаждения и сосредоточимся на низкотемпературных системах, системах с охлажденной водой и двухтемпературных системах. В гидравлических системах жидкая вода циркулирует по трубам для обогрева и охлаждения зон здания. Хотя некоторые считают, что паровое отопление относится к этой категории, мы рассмотрим паровые системы в одной из следующих рубрик.

Гидравлические системы состоят из источника энергии (бойлера, водонагревателя или чиллера), а также связанных насосов и трубопроводов, которые соединяют источник с подходящими оконечными теплообменниками, расположенными в помещениях.Хотя существуют некоторые системы с гравитационным приводом, циркуляция в подавляющем большинстве гидравлических систем обеспечивается насосами с электрическим приводом. Изоляция широко используется в гидравлических системах для ограничения теплового потока и контроля конденсации (в системах с охлажденной водой).

Системы

Hydronic имеют преимущества, связанные с относительно низкими начальными затратами на установку, низкими эксплуатационными расходами и практически бесшумной работой. Основным недостатком гидравлических систем является то, что они не удовлетворяют требованиям вентиляции, предъявляемым жителями здания.Также контроль влажности либо отсутствует, либо плохой. Гидравлические системы часто комбинируются с воздушными системами для устранения этих недостатков.

Гидравлические системы часто классифицируют по рабочей температуре. Справочник ASHRAE 1 определяет 5 категорий:

Низкотемпературная вода (LTW) ° F
Среднетемпературная вода (MTW) ​​250 ° F до 350 ° F
Высокотемпературная вода (ГВ)> 350 ° F
Охлажденная вода (CW) 40 ° F до 55 ° F
Двухтемпературная вода (DTW) LTW и CW

Большинство систем, используемых в коммерческих зданиях, представляют собой низкотемпературные (LTW) системы, системы с охлажденной водой (CW) или двухтемпературные (DTW) системы.

На рисунке 1 показана базовая система LTW, состоящая из (1) источника — в данном случае водогрейного котла, (2) циркуляционного насоса, (3) нагревательных змеевиков, расположенных в обслуживаемых помещениях, (4) соединительного трубопровода. устройства и (5) расширительный бак. Назначение расширительного бака — обеспечить объемное расширение и сжатие воды из-за изменений температуры в системе и поддерживать необходимое давление в системе. Хотя расширительный бак не находится непосредственно на пути потока, он обычно изолирован на том же уровне, что и трубопровод, чтобы минимизировать теплопотери / приток тепла в систему.

Трубопровод

Трубопроводы обычно изготавливаются из стали или меди. Сталь обычно дешевле и используется для размеров более 1 дюйма. Медь дороже, но предпочтительнее для меньших размеров из-за простоты установки. Системы трубопроводов могут быть спроектированы как системы «с прямым возвратом» или «с обратным возвратом». Схема прямого возврата показана на рисунке 1. Недостатком этой системы прямого возврата является то, что длина путей потока (и, следовательно, сопротивление потоку) различается для различных оконечных устройств.Путь потока через блок A значительно короче, чем путь через блок B. Скорость потока будет выше через блок A. То же самое верно для блоков C — E. нежелательно. Необходимо добавить балансировочные клапаны, чтобы уравновесить поток после установки системы.

Аналогичная система с обратным возвратом показана на рисунке 2. Преимущество системы с обратным возвратом состоит в том, что сопротивление потоку для каждого из отдельных путей потока примерно одинаково, поэтому система по существу самобалансируется.Система обратного обратного трубопровода является более дорогостоящей из-за требуемой дополнительной длины обратного трубопровода, но часто оправдана там, где контроль потока имеет решающее значение.

Для гидравлических систем, которые обеспечивают как обогрев, так и охлаждение, распределительная система может быть сконфигурирована как двухтрубная, так и четырехтрубная. Двухтрубная система показана на рис. 3. Здесь один контур трубопровода используется для подачи либо охлажденной воды в течение сезона охлаждения, либо горячей воды в течение отопительного сезона. Для этой системы оператор несет ответственность за выбор дня, когда система переключается с охлаждения на нагрев (и наоборот).Это означает, что в промежуточные сезоны в одних помещениях будет слишком холодно, а в других — слишком тепло.

Альтернативой является 4-трубная система (Рисунок 4), которая дает оператору возможность циркулировать как горячую, так и охлажденную воду в промежуточные сезоны. Четыре трубы (2 подающие и 2 обратные) обслуживают каждый из оконечных устройств. Система более дорогая, поскольку количество трубопроводов увеличивается примерно вдвое, но общий комфорт пассажиров значительно повышается.

Изоляция для гидравлических трубопроводов требуется большинством строительных норм.Международный кодекс энергосбережения (IECC) 2015 года требует, чтобы толщина изоляции составляла от 1/2 дюйма до 1 дюйма для трубопроводов охлажденной воды с номинальным размером трубы (NPS) менее 8 дюймов — в зависимости от рабочей температуры и размера трубы. Для систем горячего водоснабжения, работающих при температуре ниже 200 ° F, IECC 2015 требует толщины изоляции от 1 до 2 дюймов. Большинство кодексов включают исключение для тех участков трубопроводов, где приток тепла или потери тепла не увеличивают потребление энергии. Например, трубопровод, проходящий через обогреваемое пространство к модульному нагревателю, не потребует изоляции, поскольку любые потери тепла из трубопровода помогут компенсировать тепловую нагрузку в помещении.

В гидравлических системах трубопроводов используются различные изоляционные материалы. Изоляция из минерального волокна (стекловолокно и минеральная вата) с универсальной оболочкой, приклеенной на заводе-изготовителе, часто используется как на горячих, так и на холодных гидравлических трубопроводах в коммерческих зданиях. Гибкие эластомерные и полиолефиновые изоляционные материалы без оболочки также часто встречаются в гидравлических системах. Также широко используются полиизоциануратные, фенольные, экструдированные полистиролы и пеностекла.

Терминальные блоки

В гидравлических системах используются различные оконечные устройства, включая змеевики нагрева / охлаждения в центральных кондиционерах, змеевики зонального или центрального повторного нагрева, ребристые радиаторы, конвекторы, блочные нагреватели, фанкойлы, панели лучистого отопления / охлаждения. , и водо-водяные теплообменники.

Самыми простыми оконечными устройствами являются радиаторы с оребрением (рис. 5). Обычно они используются для обогрева зданий по периметру. Управление локальной зоной обеспечивается либо регулирующим клапаном, который изменяет поток воды, либо, в некоторых установках, регулировкой воздушной заслонки для регулирования конвективного потока через змеевики. Системы периметра часто используют сброс температуры наружного воздуха, стратегию управления, которая увеличивает температуру воды на входе при понижении температуры наружного воздуха.

Типичный фанкойл показан на рисунке 6.В этом устройстве используется вентилятор с электрическим приводом для циркуляции воздуха в помещении через змеевики нагрева / охлаждения. Зонное регулирование обычно обеспечивается термостатом, который изменяет скорость вращения вентилятора в зависимости от нагрузки зоны. Обратите внимание, что на рисунке показаны 2 отдельных змеевика — один для нагрева, а другой для охлаждения, что делает этот блок подходящим для 4-трубной системы. Некоторые фанкойлы расположены так, что в них может поступать вентиляционный воздух через проем во внешней стене. Агрегаты ИВЛ аналогичны устройствам, но обычно предназначены для подачи в помещение до 100% наружного воздуха.

Насосы

В гидравлических системах используются различные насосные устройства. Системы с одним центробежным насосом с постоянной скоростью являются обычными для небольших установок, но установки с несколькими насосами обеспечивают резервирование на случай выхода насоса из строя или его вывода из эксплуатации для проведения технического обслуживания. Насосы могут быть установлены в параллельной или последовательной конфигурации. Для параллельной конфигурации насосы оснащены обратными клапанами для предотвращения рециркуляции через выключенный насос. Приводы с регулируемой скоростью становятся экономичными, что позволяет более точно согласовывать работу насоса с требованиями.Насосы обычно изолированы на том же уровне, что и трубопроводы, с использованием сборных коробок или съемных / многоразовых крышек для облегчения технического обслуживания.

Номер ссылки

  1. Справочник ASHRAE, 2012 г. — Системы и оборудование HVAC. ASHRAE, 1791 Tullie Circle, Атланта, Джорджия.

Вспомогательный нагреватель — обзор

3.15.3.3 Серийные системы с тепловым насосом на солнечных батареях

Систему серии SAHP можно назвать солнечным тепловым насосом, поскольку солнечная энергия является единственным источником тепла, используемым для теплового насоса.В большинстве серийных систем SAHP существует два основных режима работы системы (она также может иметь дополнительный нагрев, и тогда его можно рассматривать как третий режим работы):

солнечный нагрев — если температура накопленного или накопленного тепла (в зависимости от конфигурации системы) достаточно велико, тогда солнечная энергия используется непосредственно для отопления;

Непрямое солнечное нагревание с помощью теплового насоса — если температура собираемого или хранимого тепла слишком низкая для прямого нагрева, то для удовлетворения потребности в отоплении используется тепловой насос, то есть солнечная энергия преобразуется в полезную тепло используется в качестве источника тепла для теплового насоса.

Следует отметить, что в странах средних и высоких широт используются в основном жидкостные солнечные коллекторы (плоская пластина или вакуумная трубка) с антифризной смесью, циркулирующей в коллекторном контуре и накопительном баке, с водой в качестве носитель информации. Накопительный бак — центральный компонент системы отопления. Хранение тепла улучшает тепловые характеристики системы и увеличивает ее надежность [20, 30]. Расположение накопительного бака может отличаться в зависимости от конфигурации системы, которая влияет на режим работы.Для улучшения способности аккумулировать тепло можно использовать ПКМ (резервуар для хранения наполнен ПКМ), а затем происходит аккумулирование тепла за счет как удельной, так и скрытой теплоты воды и носителя ПКМ [21–23]. В странах с низкими и средними широтами используются жидкостные, в основном водяные или воздушные солнечные коллекторы.

В случае коллекторов воздуха они обычно применяются для обогрева помещений здания, в основном пассивным способом, и обычно интегрируются с южным фасадом здания.Наружный (окружающий) воздух циркулирует в пространствах или каналах южного фасада солнечных коллекторов. Воздухосборники также могут активно использоваться, когда вентиляторы используются для принудительной циркуляции воздуха или когда они (коллекторы) помогают испарителю теплового насоса воздух-воздух или воздух-вода. Если солнечные воздушные коллекторы пассивной солнечной системы очень часто используются для отопления помещений напрямую зимой, даже в теплом климате (например, в Средиземноморье), они не работают постоянно из-за слишком низкой температуры окружающей среды и слишком низкой солнечной энергии. уровень облучения [31].Однако, если эти коллекторы используются для подачи наружного воздуха, нагретого солнечным излучением, в качестве источника тепла для теплового насоса, то они могут использоваться круглый год и нет необходимости использовать какие-либо другие нагревательные устройства. Этот тип систем серии SAHP может работать в гибридном режиме, то есть они основаны одновременно на пассивной (коллекторы) –активной (тепловой насос) режимах. Если тепловой насос используется только для отопления помещений, это может быть тепловой насос воздух-воздух. Однако, если он используется для нескольких функций, в основном для обогрева и охлаждения помещений и ГВС, тогда можно использовать тепловой насос воздух-вода, а обогрев и охлаждение помещения можно осуществлять, например, с помощью фанкойлов.

Идея серийных систем SAHP с солнечными коллекторами появилась в конце 1970-х годов [18]. Пример традиционной серии SAHP представлен на Рис. 8 . Цифры, приведенные на рисунке, относятся к основным компонентам системы. В серийной системе SAHP рабочая жидкость-теплоноситель (вода или смесь антифриза) циркулирует в контуре солнечного коллектора и передает тепло, собираемое солнечными коллекторами, к теплообменнику в накопительном баке. В накопительном баке есть еще один теплообменник, который соединяет этот накопительный бак с накопительным баком ГВС и / или с отопительным контуром здания или с испарителем теплового насоса.Это означает, что система ГВС теоретически не зависит от отопления помещения, а бак-накопитель оборудован дополнительным нагревателем. Отопление здания может осуществляться непосредственно от накопительного бака или с помощью теплового насоса. Жидкий теплоноситель, которым обычно является вода, передает тепло от накопительного бака к испарителю теплового насоса. Хладагент теплового насоса забирает тепло из воды, которая после охлаждения возвращается в накопительный бак. Тепло от конденсатора теплового насоса отбирается рабочей жидкостью отопительного контура для обеспечения теплом здания.В зависимости от типа системы отопления в качестве теплоносителя используется вода или воздух.

Рисунок 8. Система SAHP стандартной серии. Обозначения: 1, солнечный коллектор; 2 — теплообменник; 3, накопительный бак; 4, тепловой насос. 5, контур отопления помещения; 6 — грунтовый теплообменник; 7, трехходовой регулирующий клапан; 8, датчик температуры; 9, циркуляционный насос. 10, накопительный бак ГВС; 11 — предохранительный клапан; 12, расширительный бачок; 13, солнечный контроль; 14, датчик температуры в коллекторном контуре. 15, кровотечение; 16 — обратный клапан; 17, датчик температуры; 18, датчик температуры в контуре заземления.19, циркуляционный насос в контуре заземления. 20, контроль; 21, холодное водоснабжение; 22, основной накопительный бак; 23, дополнительный отопитель.

Для описания работы стандартной системы SAHP, представленной на рис. 8 , энергетический баланс накопителя в нестационарном состоянии может быть представлен как

[12] (Vcρ) dTsdt = Qu (t) −Qloss (t) −Qhd (t) −Qhp (t) −QDHWd (t)

Член в левой части уравнения [12] выражает емкость накопителя в резервуаре ( Vcρ (J K ​​ — 1 )) и колебания температуры хранения T s во времени, вызванные (термины в правой части) приростом полезной солнечной энергии Q u , поставляемой солнечными коллекторами, которая уменьшается из-за потери тепла от накопителя Q потери (при качественной теплоизоляции бака потерями можно пренебречь) и тепло, используемое непосредственно для отопления помещений Q hd и для нагрева горячей воды Q DHWd (тепло подается в резервуар горячей воды бытового потребления) и из-за тепла, подаваемого в ah ем насос испарителя Q л.с. .Температура хранения T s в уравнении [12] относится к хранению с полным перемешиванием среды хранения (воды) или может рассматриваться как усредненное значение, если существует эффект расслоения в резервуаре для хранения.

Основные режимы работы рассматриваемой системы серии САХП (потери тепла от накопителя не учитываются, Q потери = 0) следующие:

ГВС на солнечной энергии: Тепло, накопленное в накопительном баке, передается в бак ГВС.Когда температура T sDHW накопленного тепла в баке ГВС достаточно высока, то есть, если T sDHW > T DHWmin , то вся нагрузка ГВС поступает из резервуара ГВС, Q DHWd = Q DHW , и дополнительный нагреватель выключен, поэтому Q aux = 0. Когда температура воды в баке DHW слишком низкая, T sDHW ГВС , тогда дополнительный нагреватель включается и подает остальную (вспомогательную) теплоту, таким образом, Q ГВС = Q ГВС + Q доп .Когда температура воды в баке ГВС ниже минимального уровня, T sDHW DHWmin , то дополнительный нагреватель включен и обеспечивает всю потребность в ГВС, Q DHW = Q доп. . В зависимости от уровня солнечной радиации и разницы между температурой солнечных коллекторов и основного накопителя контур солнечного коллектора может работать или нет.

Прямое солнечное отопление здания, когда солнечная энергия используется непосредственно для обогрева здания: Когда температура T с накопленного тепла достаточно высока, то есть, если T с > T smin , затем Q hd = Q нагрев и тепловой насос выключен, поэтому Q hp = 0; в зависимости от солнечного излучения и разницы между температурой солнечных коллекторов и накопителя, контур солнечного коллектора может работать ( Q u > 0) или нет ( Q u = 0).

Непрямое солнечное отопление здания с помощью теплового насоса: Когда температура накопленного или накопленного тепла слишком низкая для прямого нагрева, то есть, если T с T смин , то используется тепловой насос, который подает тепло для удовлетворения потребности в отоплении помещения. Принимая во внимание уравнение [2c], тепло, отбираемое из накопительного бака в качестве источника тепла теплового насоса, равно

[13] Qhp (t) = Qheat (t) (1−1COPhp (t))

а тепло, подаваемое в здание, отбирается из конденсатора теплового насоса, поэтому Q hpcon = Q heat и Q hd = 0, и Q u > 0 или Q u = 0, в зависимости от того, работают солнечные коллекторы или нет.

Непрямое солнечное отопление здания с помощью теплового насоса и дополнительного отопления: когда тепловой насос используется для подачи тепла, но он не может обеспечить все потребности в отоплении (например, существует предел для самого низкого значения COP), тогда дополнительный нагреватель используется для удовлетворения остальной потребности в отоплении помещения, и Q л.с.кон + Q доп. = Q тепло .

КПД теплового насоса дается в общем виде по формуле [2c].Однако коэффициент COP также применяется для определения тепловых характеристик всей системы SAHP. COP всей системы SAHP определяется как отношение общего количества полученного тепла к общему объему работы, затраченной на систему отопления. Таким образом, в случае последовательной системы SAHP, используемой только для отопления здания, COP можно выразить следующим образом:

[14] COP = QheatWtotal = Qhd + QhpconWtotal = mcCp [(Tsout − Tsin) + (Tconout −Tconin)] W + WpumpSd + WpumpShp + Wheat

Числитель уравнения [14] представляет количество тепловой энергии на радиаторе, то есть Q тепла , которое поставляется солнечной системой напрямую Q hd ( T sout — температура подачи на выходе из накопителя, а T sin — температура обратки на входе в накопительный бак) и тепловым насосом от теплового насоса конденсатор Q hpcon в контур отопления (вода или воздух с удельной теплоемкостью C p и массовым расходом м c ; T conout и T conin являются температура на выходе и входе конденсатора, res предположительно).Знаменатель представляет собой общую потребляемую работу в системе SAHP, то есть не только потребляемую работу Вт , необходимую для привода компрессора теплового насоса, но также потребляемую мощность Вт pumpSd для циркуляционных насосов солнечная система отопления (без части ГВС) в режиме прямого нагрева, рабочая мощность Вт pumpShp для циркуляционных насосов солнечной системы отопления (без части ГВС) во время нагрева с помощью теплового насоса, а рабочая мощность Вт heat для циркуляционных насосов контура водяного отопления в здании или для вентиляторов в случае системы воздушного отопления.

КС рассматриваемой системы серии САХП можно также записать с учетом дополнительного отопления; тогда числитель уравнения [14] представляет количество всей тепловой энергии, подаваемой в здание Q heattotal , то есть непосредственно солнечной системой Q hd , тепловым насосом от теплового насоса конденсатор Q hpcon , и дополнительный нагреватель Q aux . Знаменатель представляет собой общие затраты работы, включая затраты на работу Вт aux для дополнительного электрического нагревателя, а уравнение [14] принимает следующий вид:

[15] COP = QheattotalWtotal = Qhd + Qhpcon + QauxW + WpumpSd + WpumpShp + Wheat + Waux

Коэффициент COP, определяемый уравнениями [14] и [15], должен применяться только для системы отопления помещений рассматриваемой системы SAHP.Это связано с тем, что тепловой насос соединен напрямую с гелиосистемой только для обогрева помещений. Система приготовления горячей воды представляет собой в некотором роде независимую солнечную тепловую систему со своим собственным дополнительным нагревателем. Система ГВС работает параллельно с системой отопления помещений SAHP. Следовательно, даже если имеется общий накопительный бак для обеих систем (в результате происходит некоторое взаимодействие между двумя системами), в рассматриваемом случае лучше не включать работу системы солнечного нагрева ГВС при определении COP. системы серии САХП.

В одной из очень простых форм последовательной системы SAHP солнечная энергия, собранная солнечными коллекторами, используется только в качестве источника тепла для теплового насоса, и нет другого режима работы, поэтому нет прямой подачи солнечная энергия (собираемая солнечными коллекторами) в систему отопления [32]. В такой системе есть два резервуара для хранения: резервуар для хранения при низких температурах и резервуар для хранения при высоких температурах. Бак-накопитель для низких температур расположен между контуром солнечного коллектора и испарителем теплового насоса, а резервуар-хранилище для высоких температур — между конденсатором теплового насоса и контуром отопления помещения в здании.Эта идея также была проверена экспериментально [33]. Испаритель теплового насоса может быть расположен непосредственно в низкотемпературном накопительном баке, а конденсатор теплового насоса — непосредственно в высокотемпературном накопительном баке. Однако также возможно использовать теплообменники в низко- и высокотемпературных резервуарах-хранилищах для соединения с испарителем и конденсатором теплового насоса, соответственно. Конечно, в систему также может быть включен дополнительный пиковый нагреватель, например, в высокотемпературном накопительном баке.

Существуют различные модификации серии САХП.Один из них реализуется за счет внедрения долговременного хранения отдельно от кратковременного. Однако такая система больше не является типичной серийной системой SAHP. Следует отметить, что в прошлом подготовка горячей воды (ГВС) была независимой функцией (от отопления помещений), а ГВС обеспечивалась солнечной энергией и дополнительным нагревателем (обычно электрическим) параллельно с обогревом помещения, что выполнялось серия САХП система. Отопление дома и нагрев ГВС тогда были независимыми.В настоящее время подготовка горячей воды — одна из стандартных функций системы SAHP. Обычно накопление (с расслоением) является центральным компонентом системы отопления, а отопление помещений и ГВС подаются с помощью комбинированной системы отопления. Система автоматического управления управляет подачей тепла в систему ГВС и обогрев помещения или, в конечном итоге, в систему охлаждения или кондиционирования воздуха.

Как работает тепловой насос | HVAC

В тепловом насосе с воздушным источником тепла используются передовые технологии и цикл охлаждения для обогрева и охлаждения вашего дома.Это позволяет тепловому насосу обеспечивать комфорт в помещении круглый год, независимо от времени года.

Тепловой насос в режиме кондиционирования воздуха

При правильной установке и функционировании тепловой насос может поддерживать прохладную комфортную температуру, снижая при этом уровень влажности в вашем доме.

  1. Теплый воздух изнутри вашего дома втягивается в воздуховоды с помощью моторизованного вентилятора.
  2. Компрессор обеспечивает циркуляцию хладагента между внутренним испарителем и наружными конденсаторными блоками.
  3. Теплый воздух в помещении затем направляется к воздухообрабатывающему устройству, в то время как хладагент перекачивается из внешнего змеевика конденсатора во внутренний змеевик испарителя. Хладагент поглощает тепло, проходя через воздух в помещении.
  4. Этот охлажденный и осушенный воздух затем проталкивается через соединительные внутренние воздуховоды к вентиляционным отверстиям по всему дому, снижая внутреннюю температуру.
  5. Цикл охлаждения продолжается снова, обеспечивая постоянный метод охлаждения.


Тепловой насос в тепловом режиме

Тепловые насосы уже много лет используются в регионах с более мягкими зимами. Тем не менее, технология тепловых насосов с воздушным источником тепла претерпела значительные изменения, что позволяет использовать эти системы в районах с длительными периодами отрицательных температур.

  1. Тепловой насос может переключаться из режима кондиционирования воздуха в режим нагрева путем реверсирования цикла охлаждения, в результате чего внешний змеевик работает как испаритель, а внутренний змеевик — как конденсатор.
  2. Хладагент проходит через замкнутую систему холодильных линий между наружным и внутренним блоком.
  3. Несмотря на низкие температуры наружного воздуха, достаточное количество тепловой энергии поглощается из наружного воздуха змеевиком конденсатора и выделяется внутри змеевиком испарителя.
  4. Воздух изнутри вашего дома втягивается в воздуховоды с помощью моторизованного вентилятора.
  5. Хладагент перекачивается из внутреннего змеевика во внешний змеевик, где он поглощает тепло из воздуха.
  6. Этот нагретый воздух затем проталкивается через соединительные каналы к вентиляционным отверстиям по всему дому, повышая внутреннюю температуру.
  7. Цикл охлаждения продолжается снова, обеспечивая постоянный способ согреться.

Детали теплового насоса


Чтобы лучше понять, как ваш воздух нагревается или охлаждается, полезно немного узнать о деталях, составляющих систему теплового насоса. Типичная система теплового насоса с воздушным источником представляет собой раздельную или состоящую из двух частей систему, в которой в качестве источника энергии используется электричество.Система содержит наружный блок, похожий на кондиционер, и комнатный кондиционер. Тепловой насос работает вместе с устройством обработки воздуха, распределяя теплый или холодный воздух по внутренним помещениям. Помимо электрических компонентов и вентилятора, система теплового насоса включает:

Компрессор: Перемещает хладагент по системе. Некоторые тепловые насосы содержат спиральный компрессор. По сравнению с поршневыми компрессорами спиральные компрессоры тише, имеют более длительный срок службы и обеспечивают на 10–15 ° F более теплый воздух в режиме нагрева.

Плата управления: Определяет, должна ли система теплового насоса находиться в режиме охлаждения, обогрева или размораживания.

Змеевики: Конденсатор и испарительный змеевик нагревают или охлаждают воздух в зависимости от направления потока хладагента.

Хладагент: Вещество в холодильных линиях, которое циркулирует через внутренний и наружный агрегаты.

Реверсивные клапаны: Измените поток хладагента, который определяет, охлаждается или нагревается ваше внутреннее пространство.

Термостатические расширительные клапаны: Регулируют поток хладагента так же, как кран крана регулирует поток воды.

Аккумулятор: Резервуар, который регулирует заправку хладагента в зависимости от сезонных потребностей.

Холодильные линии и трубы: Подсоедините внутреннее и внешнее оборудование.

Нагревательные полосы: Электрический нагревательный элемент используется для дополнительного нагрева. Этот добавленный компонент используется для добавления дополнительного тепла в холодные дни или для быстрого восстановления после низких температур.

Воздуховоды: Служат воздушными туннелями в различные помещения внутри вашего дома.

Термостат или система управления: Устанавливает желаемую температуру

Солнечные водонагреватели: полное руководство

Последнее обновление 14.07.2021

Вы используете горячую воду дома каждый день, когда принимаете душ, стираете белье или моете посуду.Солнечные водонагревательные системы используют энергию солнца для нагрева воды в вашем доме.

Солнечные водонагреватели (также известные как солнечные водонагреватели ) являются альтернативой обычным системам водяного отопления, включая водонагреватели без резервуаров, газовые водонагреватели, электрические водонагреватели или водонагреватели с тепловым насосом (все из которых используют либо газ, нефть или электричество для их питания.) Мы использовали солнечную энергию для нагрева воды на протяжении веков, но только в 1980-х годах компании по производству солнечной горячей воды начали набирать обороты в США.S., делая солнечную горячую воду жизнеспособным вариантом для владельцев недвижимости

Обзор солнечных водонагревателей

  • Солнечная система горячего водоснабжения использует солнце для производства теплой воды для вашего дома
  • Солнечное тепло улавливается коллекторами на вашей крыше
  • Вы можете почти полностью отказаться от счетов за отопление воды с помощью солнечного водонагревателя
  • Вы можете установить солнечную горячую воду в дополнение к обычному водонагревателю

С солнечной системой горячего водоснабжения вы можете использовать энергию солнца для экономии денег, уменьшив вашу зависимость от традиционных источников энергии, таких как нефть, электричество и газ.Солнечная система горячего водоснабжения сокращает выбросы парниковых газов в атмосферу, а также помогает вам в долгосрочной перспективе сэкономить деньги за счет сокращения счетов за газ и электроэнергию.


Как работает солнечная система водяного отопления: основы

Солнечные системы горячего водоснабжения улавливают тепловую энергию солнца и используют ее для нагрева воды в вашем доме. Эти системы состоят из нескольких основных компонентов: коллекторов, накопительного бака, теплообменника, системы управления и резервного нагревателя.

Коллекционеры

Панели солнечной тепловой системы известны как «коллекторы» и обычно устанавливаются на крыше.

Эти коллекторы отличаются от фотоэлектрических солнечных панелей, с которыми вы, вероятно, знакомы, потому что вместо выработки электроэнергии они вырабатывают тепло. Солнечный свет (или «солнечное излучение») проходит через стеклянное покрытие коллектора и попадает на компонент, называемый пластиной поглотителя, которая имеет покрытие, предназначенное для улавливания солнечной энергии и преобразования ее в тепло. Вырабатываемое тепло передается «теплоносителю» (антифризу или питьевой воде), содержащемуся в небольших трубках в пластине.

Коллекторы бывают разных размеров. Размер и количество коллекторов, которые вы установите, зависят от того, сколько солнечного света получает ваша крыша и сколько горячей воды вы используете в своем доме. Также они изготавливаются в двух стилях: плоская пластина и вакуумная трубка. Плоские коллекторы обычно дешевле, но могут улавливать меньше солнечного света и менее эффективны в более холодных условиях. Вакуумные трубчатые коллекторы занимают меньше места на крыше, но они более тяжелые и хрупкие.

Теплообменник и накопительный бак

Когда теплоноситель в ваших коллекторах нагревается, он перемещается в ряд труб, известных как «теплообменник», который расположен внутри резервуара для хранения вашей горячей воды.Когда эти трубы заполнены нагретой передающей жидкостью, тепло передается от труб к вашей воде, делая горячую воду готовой для использования в вашем доме.

Система управления

Большинство солнечных систем горячего водоснабжения имеют систему управления, которая гарантирует, что вода в накопительном баке не станет слишком горячей. Системы контроллеров также могут предотвратить циркуляцию холодной воды через систему, когда на улице очень холодно и перекачивающая жидкость недостаточно нагревается.

Резервный нагреватель

Наконец, каждая солнечная система горячего водоснабжения оснащена резервной системой. В дни, когда слишком облачно для выработки достаточного количества нагретой воды за счет солнечной энергии, срабатывает резервный обогреватель и вырабатывает горячую воду для вашего дома с помощью газа или электричества. На резервные нагреватели будет приходиться примерно 20 процентов вашего потребления горячей воды в течение года.

Типы солнечных водонагревателей: прямые и непрямые, активные и пассивные

Каждая солнечная система горячего водоснабжения состоит из одинаковых основных частей, но есть некоторые различия в конструкции системы.Вы должны выбирать между прямой или косвенной системой, которая влияет на то, как жидкость нагревается в коллекторах. Вы также должны решить, хотите ли вы активную или пассивную солнечную систему горячего водоснабжения, которая влияет на то, как жидкость движется через вашу систему.

Прямое и косвенное нагревание воды от солнечной энергии

Основное различие между прямым и непрямым солнечным нагревом воды заключается в типе жидкости, используемой для сбора тепла в системе. В непрямой системе солнечная энергия собирается и удерживается в специальной антифризной жидкости.Антифриз циркулирует в резервуаре для горячей воды, который нагревает воду для использования в вашем доме. Для сравнения: при прямой установке ваша вода получает тепло непосредственно от солнца, а не сначала собирается в переносящей жидкости.

Большинство солнечных систем горячего водоснабжения в США используют косвенные солнечные системы горячего водоснабжения. Непрямые системы более устойчивы к холоду и лучше сохраняют тепловую энергию в холодные зимние месяцы. Однако косвенные системы также более дороги, чем прямые системы.

Прямые солнечные системы горячего водоснабжения могут работать для некоторых домовладельцев в самых южных частях страны, но большинство жителей США захотят установить косвенную систему, чтобы избежать потерь эффективности в более холодные периоды года.

Активное и пассивное солнечное горячее водоснабжение

В вашей солнечной установке для горячего водоснабжения антифриз или вода перемещаются по системе с помощью регулирующего насоса или под действием силы тяжести. Контроллерные насосы используются только в активных солнечных установках для горячего водоснабжения.Пассивные системы полагаются на гравитацию для перемещения жидкости и воды.

Хотя пассивные системы менее сложны в установке, они также намного менее эффективны, чем активные системы. Кроме того, для работы некоторых пассивных систем резервуар для хранения должен быть установлен выше, чем коллекторы, что может создать большую нагрузку на вашу крышу. Большинство солнечных систем горячего водоснабжения в США активны, что означает, что у них есть контроллер, который прокачивает воду или антифриз через систему.


Часто задаваемые вопросы: работают ли солнечные системы горячего водоснабжения в пасмурную погоду?

Ваши солнечные тепловые коллекторы будут поглощать немного тепла в пасмурные дни, но не будут работать так хорошо, как в солнечную погоду. Солнечные системы горячего водоснабжения обычно включают резервный водонагреватель, который можно использовать, если вы переживаете несколько пасмурных или дождливых дней подряд.

Подробнее

Тепловые системы — НАСА Марс

Тепловая подсистема поддерживает нужную температуру во всех частях космического корабля.Это может показаться простым, но оказывается, что это не так. Солнце нагревает одну сторону космического корабля, а черное пространство с другой стороны отводит тепло. Таким образом, горячая сторона на сотни градусов горячее, чем холодная. Кроме того, части космического корабля, использующие электроэнергию, будут выделять тепло внутри и сильно нагреваться. Теперь, на Земле, когда в вашем доме становится слишком жарко, вы можете охладить вещи с помощью вентиляторов или кондиционеров. Или, когда становится слишком холодно, включаешь печь. Все эти методы работают, добавляя или отнимая тепло от воздуха, а затем перемещая его (это называется конвекцией).В космосе нет воздуха, поэтому конвекция не работает. Другие физические процессы — теплопроводность и излучение — должны использоваться для перемещения тепла по космическому кораблю и, в конечном итоге, избавления от излишков.

Электропроводность — это процесс, при котором тепло перемещается через вещества и между веществами, которые находятся в контакте, такими как вода в бассейне и ваша кожа или холодные металлические перила и ваша рука. Тепло перемещается вокруг космического корабля в основном за счет теплопроводности (в меньшей степени также за счет излучения).

Радиация, или, точнее, электромагнитное излучение, включает в себя все, от рентгеновских лучей до солнечного света и радиоволн.Наши глаза чувствительны только к очень небольшой части этого спектра, которую мы называем видимым светом. Тепло, которое вы чувствуете на своем лице, когда приближаетесь к огню, является результатом инфракрасного излучения, которое представляет собой тип электромагнитного излучения, выходящего за пределы диапазона ваших глаз. Единственный способ, которым космический корабль действительно может поглотить или избавиться от тепла, — это электромагнитное излучение.

Mars Reconnaissance Orbiter использует несколько методов на основе проводимости и излучения для контроля температуры:

Радиаторы

Некоторые материалы лучше других выделяют инфракрасное излучение при нагревании.Для компонентов, которые в противном случае стали бы слишком горячими, к ним можно прикрепить пластину из такого материала и выставить ее в космос. Тепло, генерируемое компонентом, передается радиатору за счет теплопроводности и, наконец, в космос за счет излучения.

Покрытия поверхностей

Эти покрытия изменяют способ взаимодействия излучения с объектом. Поверхностные покрытия, часто имеющие форму специальной краски, определяют, сколько тепла поглощается, излучается или отражается от внешних источников тепла.Повседневный пример — белая одежда, которую предпочитают жители пустыни. Белый имеет тенденцию отражать больше тепла, чем поглощать, и поэтому хорошо подходит для защиты владельца от солнечного тепла.

Многослойная изоляция или тепловые одеяла

Сделанные из нескольких слоев майлара или подобных материалов, эти одеяла образуют защитный слой вокруг большей части космического корабля. Они сохраняют тепло, а также включают в себя различные покрытия поверхности с описанными выше преимуществами. Кстати, они также обеспечивают некоторую защиту от ударов микрометеороидов, образуя своего рода бронежилет для космического корабля.

Обогреватели

Это просто провод, который из-за своего сопротивления потоку электричества выделяет тепло при прохождении через него тока.

Обновлено: 13.10.2021 — 01:55

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *