Соленоид клапан: Электромагнитный (соленоидный) клапан

Содержание

Электромагнитный (соленоидный) клапан

Электромагнитные (соленоидные) клапаны –  это электромеханические управляющие устройства, используемые для контроля и управления потоком различных сред, таких например, как вода или газ, а также многих других. Электромагнитным клапан называется потому, что для активации управляющего устройства используется электромагнитная катушка (соленоид).

Как работает электромагнитный клапан?

Когда возникает нужда в перекрытии потока среды  (закрытии клапана) с управляющего устройства на электромагнитную катушку подается электрическое напряжение. Под действием электричества сердечник опускается, (или поднимается — в зависимости от конструкции клапана), и перекрывает поток среды. Когда напряжение пропадает, сердечник возвращается в исходное состояние.

 

В чем заключаются преимущества и недостатки электромагнитного клапана?

ПреимуществаНедостатки
Быстрая работаВ случае исчезновения управляющего сигнала (например в случае обрыва сети), клапан становится неработоспособным.
Высокая надежность
Длительный срок службы
Компактность

Применение электромагнитных клапанов.

Электромагнитные клапаны используются в различных отраслях промышленности. Они используются в машиностроении, химической и нефтегазовой промышленности, системах очистки, холодильном оборудовании, системах центрального отопления, системах автоматического пожаротушения и многих других областях

Виды электромагнитных клапанов и их механизмов работы

В зависимости от состояния клапана до подачи на него напряжения, клапаны делятся на нормально закрытые клапаны, и нормально-открытые клапаны. Нормально-закрытые клапаны в нерабочем состоянии закрыты, а при подаче напряжения – открываются. Нормально-открытые клапаны открыты в рабочем состоянии, и закрываются при подаче напряжения. 

В зависимости от степени воздействия на поток, клапаны могут быть отсечными – они используются тогда, когда нужно мгновенное перекрытие потока, например при возможной аварии, и регулирующими – они предназначены для постепенного изменения мощности потока, а также для их смешивания

По способу подключения к трубопроводу, клапаны могут быть муфтовыми (крепится при помощи резьбового соединения), фланцевыми (с использованием фланцев), межфланцевыми  (клапан находится между фланцами, стягивающихся специальными шпильками) и приварными (присоединеие осуществляется при помощи электросварки)

По характеру действия клапаны бывают одноходовые, двухходовые, трехходовые, и четырехходовые,

Механизмов работы таких клапанов тоже два:

  • Прямого действия, использующийся на небольших расходах – то есть, регулировка происходит исключительно при подаче напряжения на катушку и приведению в движение сердечника;
  • Пилотного действия, использующийся на больших расходах – подача напряжения воздействует на пилотный, а открытие основного клапана происходит посредством использования  энергии потока воды.
    Такой механизм работы требует обязательного наличия перепад давления около 0,2 атм. По такому принципу работает электромагнитный обратный клапан для воды, предотвращающий обратный поток в трубопроводе.

Какие материалы используются в электромагнитных клапанах?

Электромагнитные клапаны используются в самых разных комбинациях оборудования, в том числе и для контроля сред с высокой  агрессивностью. Корпус клапана должен быть изготовлен из высокопрочного материала, для того, чтобы предотвратить его преждевременный выход из строя. Наиболее важными компонентами тут являются материалы уплотнения.

Как подобрать уплотнение для клапана?

Подбор уплотнения – наиболее сложный аспект подбора электромагнитного клапана. Тут нужно учитывать химические свойства среды, температуру и давление. Наиболее распространенными уплотнительными материалами  являются  бутадиен-нитрильный каучук (NBR), этилен-пропиленовый каучук (EPDM), фторкаучук VITON  и политетрафторэтилен (ПТФЭ).

Материалы уплотнений для клапанов

МатериалНаиболее распространенные средыХорошая сопротивляемостьПлохая сопротивляемость
NBR

 

  • Вода
  • Воздух
  • Различные виды топлива
  • Масла, газы

 

 

  • Алифатические углеводороды
  • Нефть
  • Топливо
  • Минеральное масло
  • Растительное масло
  • Гидравлические жидкости
  • Алкоголь
  • Кислоты 

 

  • Озон
  • Ацетон
  • Метилэтилкетон
  • Хлорированные углеводороды
  • Простые и сложные эфиры

 

EPDM

 

  • Горячая / холодная вода
  • Фреон
  • Воздух

 

  • Тепло
  • Озон
  • Окислительные химикаты
  • Кислоты средних классификаций
  • Щелочи
  • Противопожарные гидравлические жидкости
  • Кетоны и спирты 

 

  • Масла и топливо
  • Углеводороды
  • Ароматические и алифатические углеводороды
  • Галогенированные растворители
  • Концентрированные кислоты 
Viton

 

  • Горячая вода
  • Кислота
  • Щелочь
  • Масло
  • Углеводороды
  • Растворы солей 

 

  • Углеводороды
  • Агрессивные химикаты
  • Разбавленные кислоты
  • Слабые щелочи
  • Минеральные масла
  • Алифатические и ароматические углеводороды
  • Хлорированные углеводороды
  • Озон 
  • Кетоны
  • Ацетоны 

 

 

Как работают электромагнитные клапаны (видео)

Принцип работы электромагнитных клапанов НЗ с плавающей мембраной.

Клапаны – электромагнитные (соленоидные) 2/2-ходовые нормально закрытые непрямого действия для воды и воздуха с плавающей мембраной.

Преимущество электромагнитных клапанов непрямого действия с плавающей мембраной, состоит в низком потреблении электроэнергии: она необходима лишь для открытия небольшого пилотного отверстия. Мембрана же, закрывающая пропускное отверстие, откроется под действием силы давления рабочей среды.


Принцип действия электромагнитного клапана НЗ с плавающей мембраной

1

В исходном положении вода или воздух, поступающая в электромагнитный клапан, проходит через перепускное отверстие мембраны и заполняет полости над мембраной и над пилотным отверстием.

Пилотное отверстие закрыто плунжером, закреплённым сердечнике электромагнитного клапана. Сердечник удерживается в исходном положении силой упругости пружины. Мембрана, прижатая пружиной к седлу, закрывает проходное отверстие.

Давление среды на входе (под мембраной) и над мембраной одинаково. Электромагнитный клапан закрыт, среда не проходит дальше.


2

При подаче напряжения на электромагнитную катушку клапана (в линейке они представлены в исполнении 12в, 24в или 220в), в трубке сердечника создаётся магнитное поле, которое приводит к втягиванию сердечника и открытию пилотного отверстия.

Вода(или воздух, газ) из полостей над мембраной и открытым пилотным отверстием начинает выходить из электромагнитного клапана через пилотное отверстие.

Пилотное отверстие шире перепускного, поэтому среда выходит из внутренних полостей быстрее, чем снова их заполняет.

Давление среды во внутренних полостях (в т.ч. над мембраной) падает и становится меньше, чем давление среды на входе соленоидного клапана.

В итоге давление поступающей среды оказывается сильнее давления пружины, прижимающей мембрану к седлу: мембрана поднимается и открывает проходное отверстие. Электромагнитный клапан открыт, среда проходит через клапан.


3

До тех пор пока катушка находится под напряжением – сердечник с плунжером подняты, пилотное отверстие открыто и давление над мембраной и сила упругости пружины меньше давления поступающей рабочей среды.

Сила давления рабочей среды оставляет мембрану в поднятом положении, и среда свободно проходит через электроклапан.


4

Для закрытия электромагнитного клапана необходимо прекратить подачу напряжения на катушку.

В трубке сердечника исчезает магнитное поле. Сердечник под действием пружины вновь опускается, и плунжер, закреплённый на нём, перекрывает пилотное отверстие.


5

Рабочая среда перестает выходить через пилотное отверстие и накапливается во внутренних полостях электромагнитного клапана, в т. ч. над мембраной.

Давление на входе (под мембраной) и над мембраной становится одинаковым, и под силой упругости пружины (и под силой давления рабочей среды) мембрана прижимается к седлу и закрывает пропускное отверстие.


6

Электромагнитный клапан закрыт, среда не проходит дальше.

Принцип работы электромагнитного клапана | ValveSale

Соленоидный клапан

Запорный элемент электромеханического действия, выполняющий функцию дистанционного автоматического контроля направлений движения жидкой и газообразной рабочей среды внутри трубопровода. С помощью электромагнитной катушки происходит дозированная подача необходимых объемов потока в определенный момент времени.

Широко применяется на бытовом уровне и в крупных промышленных конструкциях в широком диапазоне рабочих температур. В трубопроводах жилищно-коммунального хозяйства клапан выполняет регулирование среды внутри водопроводной или канализационных систем, центрального отопления. Используется на технологических линиях химических и нефтеперерабатывающих предприятиях, фильтрационных гидропроводах. Применим в сельском хозяйстве: поливочных конструкциях, системах дозирования и смешения.

Принцип работы электромагнитного клапана

Для производства электромагнитных клапанов используются материалы, соответствующие требованиям ГОСТ и международным стандартам. Электромагнитный клапан состоит из нескольких основных элементов:

  • Корпус. Может изготавливаться из нержавеющей стали, чугуна, коррозионностойкой латуни, химических полимеров.

  • Индукционная катушка с сердечником (соленоид). Располагается в герметичном корпусе, обмотка выполнена из высокопрочной технической меди.

  • Уплотнитель. Для обеспечения максимальной герметичности используется полимер политетрафторэтилен (тефлон), термостойкая резина, силикон, каучук, фторопласт.

  • Функциональные элементы: плунжер, пружина, шток из нержавеющей маркированной стали.  

Как работает электромагнитный клапан

Принцип работы электромагнитного клапана основан на работе элемента управления — электромагнитной катушки. При отсутствии постоянного или переменного тока под механическим давлением пружины, мембрана (поршень) клапана расположены в седле устройства. При подаче электрического напряжения различной мощности к клеммам соленоида, сердечник вовлекается внутрь катушки, обеспечивая открытие или закрытие протокового отверстия. Обесточивание соленоида приводит к закрытию створок. Конструктивные особенности устройства соленоидного клапана могут меняться, в зависимости от его типа.

Типы электромагнитных клапанов

Электромагнитные клапаны распределены на несколько категорий.

По типу рабочего положения выделяют:

  • Нормально-открытые клапаны. По умолчанию, затворный элемент находится в открытом положении и не создает препятствий движению потоков.




  • Нормально-закрытые клапаны. Отсутствие напряжения на катушке характеризуется закрытой позицией затвора.




По принципу действия электромагнитные клапаны разделяют на:

  • Клапан прямого действия. смена положений затворного компонента осуществляется под воздействием движения сердечника, при подаче электронапряжения.

  • Клапан непрямого действия. Воздействие энергии рабочей среды приводит к открытию и закрытию условного прохода. Управляется дистанционно, под действием пилотного клапана, срабатывающего при подаче электрического тока к катушке.



По типу присоединения к трубопроводу:

  • Муфтовые. Монтаж производится при помощи внутренней трубной резьбы цилиндрической формы, с различным диаметром условного прохода и резьбовым шагом. Условное обозначение диаметра соленоидного клапана указывается в техническом паспорте изделия.
  • Фланцевые. Присоединение к трубопроводу с помощью парных фланцев с отверстиями для болтов и шпилек. Применяется в трубопроводах крупного диаметра. При монтаже используется уплотнительное кольцо или прокладка из паронита.

По типу уплотнительной мембраны:

  • Мембрана FKM (фтористый каучук). Стандартное уплотнение, применяется для большинства неагрессивных рабочих сред.

  • Мембрана NBR (бутадиен-нитрильный каучук). Используется в средах продуктов нефтепереработки: бензин, масла, керосин, диз.топливо.

  • Мембрана EPDM (этилен-пропиленовый каучук). Характеризуется повышенной устойчивостью к температурам, работает в среде химических растворов и соединений: щелочей, спиртов, гликолей, кетона, воды и др.

Правила монтажа и эксплуатации

Любые монтажные работы с клапаном проводятся при отсутствии рабочей среды в системе и обесточивании электрической цепи. Перед началом работ следует очистить трубопровод от механических частиц и взвесей.

Как подключить электромагнитный клапан соленоидный. Подключение электромагнитных клапанов в системе производится в горизонтальном положении, катушкой вверх.

  • Для правильной работы устройства направление движения среды должно соответствовать указательной стрелке на корпусе.

  • Установка электромагнитного клапана производится в месте, доступном для последующего ремонта или обслуживания.

  • Запрещена установка клапана в местах с высокими показателями конденсации или вибрации, участках с возможным обледенением трубы, вблизи течей и порывов.

  • Установка дополнительных сетчатых фильтров подходящего типоразмера защитит клапан от попадания загрязнений, и, как следствие, снижения его гидравлических характеристик.

Преимущества электромагнитных клапанов
  • Автоматический тип работы

  • Высокое быстродействие

  • Возможность удаленного управления

  • Компактность (малые габаритные и весовые показатели)

  • Длительный срок эксплуатации

  • Простота монтажа и обслуживания

Причины поломок и методы устранения

Правильная эксплуатация и соблюдение технических параметров, указанных в паспорте изделия обеспечат надежную и длительную работу устройства. В некоторых случаях преждевременные неисправности электромагнитного клапана возможны по нескольким причинам.

  • Снижение герметичности изделия может быть вызвано попаданием механических частиц на седло устройства. Рекомендуется демонтаж и чистка устройства с последующей установкой в системе сетчатого фильтра до клапана.

  • Выход из строя индукционной катушки может быть обусловлен неправильной мощностью напряжения, подаваемого к клеммам или превышением граничных параметров температуры и давления внутри трубопровода. Следует провести демонтаж устройства и заменить катушку. Попадание влаги на катушку может вызвать короткое замыкание и поломку устройства.

  • Неполное открытие/закрытие клапана может стать следствием загрязнения управляющего отверстия, дефектами мембраны или прокладки, остаточным напряжением на соленоиде и др.

Ремонт электромагнитного клапана должен производиться квалифицированным специалистом, имеющим допуск к работе с электрическими сетями.


Производство соленоидных клапанов осуществляется на специализированных заводах трубной арматуры, расположенные практически в каждой стране Европы. Одни из ведущим мировым производителем электромагнитных клапанов являются SMART HYDRODYNAMIC SYSTEMS. Стоимость электромагнитного клапана зависит от его функций, конструктивного типа, диаметра резьбы и фирмы- производителя электромагнитных (соленоидных) клапанов. Для определения необходимого вида устройства можно проконсультироваться со специалистами или посмотреть видео электромагнитного клапана.


В нашем магазины вы можете купить электромагнитный клапан по выгодной цене оптом и в розницу со склада в Москве с доставкой по России. Быстрые отгрузки в города: Санкт-Петербург, Екатеринбург, Казань, Краснодар, Самара, Воронеж, Нижний Новгород, Волгоград, Ростов-на-Дону, Челябинск, Новосибирск, Омск, Уфа, Красноярск, Пермь.

Соленоидный клапан (клапан электромагнитный) 2W21

Каталог / Исполнительное оборудование / Клапаны отсечные ( соленоидные ) / Соленоидный клапан (клапан электромагнитный) 2W21

Назначение клапана 2W21

Клапан 2W21 прямого действия с диафрагмой. Нормально закрытый. Срабатывание при нулевом давлении. Высокая частота срабатывания катушки.


  • Габаритные размеры Ду=12, 15, 20, 25 мм
  • Габаритные размеры Ду=32, 40, 50 мм
  • Чертеж 2W21

  • Технические характеристики клапана 2W21

    Рабочая средавода, масла, воздух, алкоголь
    Температура рабочей среды-10…120 °С
    Рабочее давление0…1,0 МПа, срабатывание при «0» давлении
    Катушка

    S51H: ~40 ВА; =30 Вт, IP65

    SD01B: ~35 ВА; =30 Вт, IP65

    Материал корпуса латунь, нержавеющая сталь
    Материал мембраныVITON -10…+120 °С
    ПитаниеDC: 12В, 24В. AC: 24В, 110В, 220В

    Форма заказа:

    ОбозначениеДу, ммKv, м³/чСпособ присоединенияМин. давлениеМакс. давлениеМатериал мембраныМатериал корпусаКатушка
    2W2112GBV124,5Резьба 3/8″0.0 МПа1.0 МПа VITON латуньS51H
    2W2112GSV124,5Резьба 3/8″0.0 МПа1.0 МПа VITON нержавеющая стальS51H
    2W2115GBV154,5Резьба 1/2″0.0 МПа1. 0 МПа VITONлатуньS51H
    2W2115GSV154,5Резьба 1/2″0.0 МПа1.0 МПа VITONнержавеющая стальS51H
    2W2120GBV209,3Резьба 3/4″0.0 МПа1.0 МПа VITONлатуньS51H
    2W2120GSV209,3Резьба 3/4″0.0 МПа1.0 МПа VITONнержавеющая стальS51H
    2W2125GBV2512Резьба 1″0. 0 МПа1.0 МПа VITONлатуньS51H
    2W2125GSV2512Резьба 1″0.0 МПа1.0 МПа VITONнержавеющая стальS51H
    2W2132GBV3224Резьба 1 1/4″0.0 МПа1.0 МПа VITONлатуньSD01B
    2W2132GSV3224Резьба 1 1/4″0.0 МПа1.0 МПа VITONнержавеющая стальSD01B
    2W2140GBV4029Резьба 1 1/2″0. 0 МПа1.0 МПа VITONлатуньSD01B
    2W2140GSV4029Резьба 1 1/2″0.0 МПа1.0 МПа VITONнержавеющая стальSD01B
    2W2150GBV5048Резьба 2″0.0 МПа1.0 МПа VITONлатуньSD01B
    2W2150GSV5048Резьба 2″0.0 МПа1.0 МПа VITONнержавеющая стальSD01B

    Также при заказе необходимо указать питание ~220В (базовое исполнение, при заказе выставляется по умолчанию), ~24В, ~110В, =12В, =24В.

    Документация:

    назначение, применение, проверка и ремонт

    Клапан с электромагнитным приводом — это современный вид запорной арматуры. Они позволяют на расстоянии управлять потоками жидкости или газа в трубопроводных системах. Такие затворы хорошо встраиваются в автоматизированные системы управления технологическими процессами, позволяют экономить дефицитные человеческие ресурсы и делают работу предприятий более безопасной. Существует большое количество различных видов клапанов для разных сред, различаются они и по своему устройству и назначению.

    Назначение и применение электромагнитных клапанов

    Электромагнитный клапан предназначен для управления потоками жидких и газообразных продуктов на расстоянии. Он может быть запорным и регулирующим. Управление при этом может осуществляться как вручную, так и с помощью систем автоматики. По своей конструкции и назначению электромагнитный затвор весьма похож на обычный, с той разницей, что в движение запорный элемент приводится в движение не мускульной силой, а соленоидом, электромагнитом с подвижным сердечником. При подаче напряжения на катушку индуктивности соленоида, она, в зависимости от полярности, втягивает или выталкивает сердечник, соединенный со штоком клапана.

    Такие запорные и регулирующие устройства используются как в сложных промышленных установках, так и в домашних системах отопления, водоснабжения, в бытовой технике. Применяются они и в транспортных средствах, работающих на жидком топливе.

    Устройство клапана

    Соленоидный клапан по составу основных деталей и узлов во многом совпадает с обычным устройством с ручным управлением:

    • Корпус с подводящим и отводящим патрубком.
    • Рабочая камера с седлом.
    • Тарельчатый, шаровой или лепестковый запорный элемент.
    • Возвратная пружина.
    • Шток, соединенный с запорным элементом и сердечником соленоида
    • Соленоид.

    Корпус магнитного клапана изготавливается из металлических немагнитных сплавов или прочных пластиков. Высокая герметичность корпуса позволяет применять клапан в различных средах, в том числе и активных. Соленоидные клапана для воды в качестве уплотняющих прокладок используют резину, для более активных сред выбирают фторопласт. Открывать и закрывать клапан соленоид за время службы должен тысячи или даже десятки тысяч раз, поэтому для обмоток берут самые высококачественные медные провода, покрытые изолирующей эмалью.

    Управление электромагнитным клапаном осуществляется по проводам, для их присоединения на корпусе снаружи предусмотрены контактные группы.

    Устройство должно быть устойчивым к воздействию внешних электромагнитных полей, шумов и вибраций.

    Существуют и другие типы электромеханических приводов, такие, как электродвигатель с редуктором, пневматические или гидравлические.

    Принцип работы электромагнитных систем

    Принцип работы электромагнитного запорного клапана основан на физическом явлении электромагнитной индукции. При протекании тока по катушке индуктивности внутри нее возникает магнитное поле, воздействующее на сердечник из магнитных материалов силой, приложенной в продольном направлении. Эта сила, в зависимости от полярности приложенного напряжения, пытается втянуть сердечник внутрь катушки либо вытолкнуть его. При этом происходит открытие либо закрытие затворного элемента.

    Катушки соленоидных клапанов могут работать как на постоянном токе напряжением от 5 до 36 вольт, так и на переменном токе напряжением 220 В.

    Устройства с низким управляющим напряжением обладают небольшой мощностью и ограниченным усилием, передаваемым на запорный элемент. Это позволяет использовать для управления ими низковольтные полупроводниковые схемы. Применяются такие устройства в системах низкого напора рабочей среды, на трубопроводах малых диаметров.

    Приводы, работающие на переменном токе, развивают гораздо большие усилия и могут применяться на магистральных трубопроводах высокого давления и больших диаметров.

    О разновидностях изделий

    Классификация изделий проводится по нескольким параметрам.

    Исходя из положения запорного элемента в отсутствие напряжения на катушке различают:

    • Нормально открытые, или НО. Проход для жидкости или газа открыт, а при подаче напряжения- он закрывается.
    • Нормально закрытые, или НЗ. Проход для среды перекрыт, а при подаче напряжения он открывается.

    Некоторые модели выпускаются универсальными, а нормально положение запорного элемента настраивается при установке и подключению к управляющей сети. Такие переключаемые устройства называют бистабильными.

    В зависимости от рабочей среды запорную арматуру выпускают для:

    • Воздуха.
    • Воды.
    • Пара.
    • Активных сред.
    • Горюче-смазочных материалов.

    Приборы для работы в радиоактивных средах отличаются специальным подбором материалов с повышенной радиационной стойкостью. Вакуумный электромагнитный клапан должен обеспечивать особо высокую герметичность

    Исходя из характеристик внешней среды, исполнение прибора может быть:

    • Обычное
    • Для влажных помещений.
    • Термостойкие (для высоких температур).
    • Морозостойкие (для экстремально низких температур).
    • Взрывозащищенное. Такие устройства не должны искрить при включении либо выключении. Для этого в них применяются специальные конструктивные решения и материалы.

    По типу питающего напряжения катушки делятся на

    • Переменного тока, высокого напряжения. Развивают большие усилия, используются на магистральных трубопроводах высокого давления и больших диаметров.
    • Постоянного тока, низкого напряжения. Применяются на трубах небольшого сечения и низкого напора.

    Есть отдельный класс электромагнитных отсечных клапанов высокого давления. Их называют отсечными. Они предназначены для моментального перекрытия трубопроводов или герметизации емкостей в случае возникновения нештатных или аварийных ситуаций.

    И, наконец, по типу функционирования клапаны делятся на

    • Одноходовые. Такой затвор имеет только входящий патрубок. Обычно они нормально закрытые и открывают путь водяному или воздушному потоку во внешнюю среду. Используются в качестве предохранительных.
    • Двухходовые. Самый распространенный вид, имеют входящий и выходящий патрубки и монтируется в разрыве трубопровода. Применяются для управления потоком в одном из контуров трубопроводной системы.
    • Трехходовые. Могут иметь один входной и два выходных патрубка либо два входных и один выходной.

    Трехходовые клапаны первого типа применяются для перенаправления потоков из одного контура в другой (например, в системе отопления). Это позволяет поддерживать температуру рабочей среды постоянной без изменения параметров работы источника тепла. Устройства второго типа используются для смешения двух потоков, имеющих разную температуру. Характерным примером служит однорычажный шаровой смеситель на кухне или в ванной.

    Область использования

    Применение электромагнитных клапанов осуществляется в самых разных областях человеческой деятельности, везде, где возникает необходимость управлять потоками жидкостей и газов дистанционно. Сюда входит:

    • Бытовые системы отопления.
    • Системы водоснабжения и водоподготовки.
    • Технологические установки.
    • Трубопроводный транспорт.
    • Генерация и распределение тепла.
    • Бытовые приборы.
    • Канализация.
    • Орошение.
    • Транспортные средства.

    Использование электромагнитных клапанов на транспорте понемногу снижается, поскольку все больше видов транспортных средств переходят на электрические источники энергии и отказываются от жидкого топлива и гидравлики, заменяя их на более надежные электрические приводы. Сходные перспективы просматриваются и в системах отопления. Но в водоснабжении, канализации и других отраслях роль электромагнитных затворов будет только возрастать.

    Преимущества электромагнитных клапанов для воды

    Главным преимуществом устройства является возможность удаленного и быстрого регулирования потоков рабочей среды. Без электромагнитных затворов становится невозможной работа сложных технологических установок и простых бытовых приборов, таких, как кофеварка и стиральная машина.

    Кроме того, электропривод позволяет:

    • Подключать соленоидный клапан к централизованной и автоматизированной системе управления. Это многократно повышает точность и оперативность регулировок параметров по сравнению с ручным управлением.
    • Снижать трудозатраты на управление технологическими процессами.
    • Повышать безопасность производства и исключать воздействие на оператора вредных факторов производственной среды.
    • Повышать эффективность работы бытовых приборов и производственных установок за счет точного и быстрого управления потоками рабочих сред и их параметров.

    Важным достоинством соленоидного привода по сравнению с электромотором и редуктором является отсутствие зубчатых и червячных передач, исключительная простота устройства и минимум подвижных частей.

    Это обеспечивает высокую надежность оборудования, минимальный износ и долгий срок его службы.

    Недостатком данного типа устройств являет невозможность плавной регулировки степени открытия затвора. Обеспечивается только два положения: «открыто» и «закрыто».

    Установка электромагнитного клапана для воды своими руками

    Прежде чем приступать к установке, необходимо определить тип подключения. Наиболее часто применяемыми являются:

    • Резьбовое. Входной и выходной патрубки снабжены внешней либо внутренней резьбой, через соответствующие фитинги арматура встраивается в разрыв трубопровода. Наиболее удобное для самостоятельной установки, лучше выбрать подключение такого типа.
    • Фланцевое. Патрубки оборудованы фланцами, на концах труб также должны быть фланцы соответствующего типоразмера, они стягиваются между собой болтами. Обеспечивают высокое давление и интенсивность потока, чаще применяются на магистралях высокого и среднего давления.

    До начала монтажа устройства следует выполнить ряд подготовительных операций. Трубы должны быть размечены, обрезаны под размер и зачищены. Место для установки электромагнитного устройства должно давать свободный доступ к устройству для его монтажа, обслуживания и ремонта. Опытные мастера сформулировали также несколько рекомендаций:

    • Все работы по установке или снятию прибора можно проводить только в отключенном от сети виде.
    • Трубопроводную систему необходимо дополнить фильтром механической очистки. Это предотвратит загрязнение и повреждение деталей посторонними включениями, такими ка песок, чешуйки ржавчины и известковые отложения.
    • Корпус устройства не должен принимать на себя вес участка трубопровода.
    • Следует подключать устройство в соответствии с нанесенными на корпусе стрелками. Они указывают направление потока.
    • При уличной установке следует защитить клапан от воздействия природных явлений. Обычно бывает достаточно водонепроницаемого кожуха. При работе в условиях низких температур нужно обеспечить подогрев кожуха.
    • Резьбовые соединения нужно обязательно уплотнять лентой ФУМ или сантехнической нитью.
    • Кабель для подключения к управляющей системе следует выбирать медный. Он должен иметь достаточное поперечное сечение не менее 2 мм2.

    Подбор конкретной модели осуществляется на основе расчетов параметров трубопроводной системы.

    Следует учитывать напор, сечение труб, необходимую скорость срабатывания и характеристики управляемой среды.

    Признаки неисправности электромагнитного клапана карбюратора

    В карбюраторах последних моделей применяется соленоидный привод управления подачей топлива. Как проверить электромагнитный клапан на исправность?

    Его поломку определяют по следующим признакам:

    • Двигатель неустойчиво работает на низких оборотах.
    • Мотор глохнет при использовании наката.
    • После выключения двигателя наблюдается детонация рабочей смеси.

    Косвенными признаками неисправности также является снижение оборотов при подключении мощных потребителей электроэнергии, таких, как магнитола, ближний или дальний свет, подогрев стекол.

    Проверка клапана

    Проверять клапан карбюратора следует на следующих режимах:

    • На холостом ходу. После запуска доводят обороты до 2100 и вслушиваются в работу карбюратора. Должен быть слышен резкий характерный звук, означающий закрытие затвора. Далее плавно снижают обороты до значения в 1900, должен быть слышен щелчок открывания.
    • Торможение двигателем. Нужно сбросить газ, не выключая передачу. Исправный клапан в этом случае не сработает, даже если обороты снизились до 1900. Если слышен щелчок – устройство неисправно.
    • После остановки двигателя. Если при выключенном зажигании в цилиндрах продолжаются самопроизвольные вспышки детонирующей рабочей смеси, двигатель дергается и вибрирует – значит, клапан не перекрывает подачу горючего в камеры и далее в цилиндры.
    • Если при работающем моторе вытащить из разъема провод питания электроклапана- двигатель должен заглохнуть. Если он продолжает работать- значит, клапан неисправен.

    Кроме способов проверки электромагнитного клапана «на ходу», можно вывинтить клапан из корпуса карбюратора и попробовать подать на него напряжение с аккумулятора. Один провод от батареи присоединяют к контактной колодке, другой- к корпусу прибора. При подключении напряжения клапан должен щелкнуть и втянуть иглу внутрь себя. После размыкания цепи слышен еще один щелчок, и возвратная пружина втянет иглу. Заодно можно проверить, не загрязнены ли детали устройства смолистыми отложениями. Их нужно отмочить в бензине и удалить мягкой ветошью.

    Нужно проверить также, подается ли на контакты управляющее напряжение. Его нормальное значение — 10,5-14,4 в. Если на блоке управление напряжение есть, а на контакте –нет, значит, неисправен провод. Его надо отремонтировать или заменить.

    Если на разъеме блока управления напряжения нет, то, скорее всего, неисправен сам блок. Его проверяют, подключив клапан к батарее еще одним временным проводом. К выводу блока управления, управляющему клапаном, подключают вольтметр или контрольную лампочку. Далее следует запустить двигатель. По достижении оборотов в 900 об/мин лампочка должна вспыхнуть, при 2100 об/мин- погаснуть. Если снизить обороны до 1900 об/мин-опять вспыхнуть. Такое поведение лампочки означает исправность блока управления. Если же лампочка вообще не загорается и не гаснет, а также включается и выключается при других оборотах- блок управления подлежит углубленной проверке и, возможно, замене.

    Соленоидный клапан Spool SV-01/T электромагнитный Динарм

    Соленоидный клапан нормально закрытый, непрямого действия, Динарм модели Spool SV-01/T, 1/2″ — 3″ может применяться как пусковой элемент дренчерного клапана системы пожаротушения, а так же как электрическое запорное устройство.

    ПРИНЦИП РАБОТЫ
    При подаче давления перед соленоидом, жидкость через отверстие А попадает в пространство над мембраной (отверстие С закрыто) и давлением закрывает отверстие В. При подаче напряжения открывается отверстие С, давление в полости над мембраной падает, в следствие чего она открывает отверстие В.

     

     

     

    (3/8″ снят с производства)

    Внимание!

    Для перехода клапана в закрытое состояние необходимо обеспечить минимальное давление на входе 0,2бара

    ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ

    Материалы:
    корпус, крышка – латунь CuZn40Pb2; уплотнение – NBR (EPDM – по запросу).

    Соединение: внутренняя резьба BSP (Ду ½» — 3″) по ISO 228-1.

    Напряжение: 24 – 110 – 220 – 240 переменное; 12 – 24 постоянное.

    Максимальная температура: 90ºС.

    Максимальное давление: 10 бар.

    Тип: нормально закрытый.

    Минимальный дифференциал давления: 0,2 бар.

    Мощность:
        Катушка 24 В – 9 Вт (постоянный ток),
        Катушка 220 В – 8 Вт (переменный ток).

    Степень защиты: IP65.

     

    КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ

    Электромагнитные клапаны больших диаметров, а именно Ду 65 (2½») и Ду 80 (3″), могут управляться вручную. Для этого на корпусе клапана имеются два регулировочных винта: один со стороны электромагнитной катушки, другой с противоположной стороны. Регулировочный винт со стороны катушки имеет обозначения «С» и «А». Если символ «С» направлен к катушке, а «А» к корпусу клапана, то клапан работает в нормальном режиме, то есть без напряжения закрыт. Если регулировочный винт повернуть в положение «А» к катушке, а «С» к корпусу, то клапан будет всегда открыт, независимо от наличия напряжения на катушке. Второй регулировочный винт, находящийся с противоположной стороны, служит для ручного регулирования скорости срабатывания клапана. Если винт закручен до упора, то клапан будет постоянно открыт, так как давления над запорной мембраной не будет. Если регулировочный винт выкрутить до упора, то клапан будет закрываться с максимальной скоростью. Промежуточные положения будут влиять только на скорость запирания клапана.

    какой выбрать? Особенности, отличия, эксплуатационные ограничения

    Введение

    При управлении потоками жидких и газообразных сред на современных промышленных предприятиях наиболее часто используются два типа клапанов: соленоидные клапаны и клапаны с пневмоприводом. Огромное количество различных моделей клапанов обоих типов, предназначенных для самых разнообразных задач, привело к тому, что выбор между соленоидным (электромагнитным) клапаном и клапаном с пневмоприводом перестал быть очевидным.

    В данной статье рассмотрены конструктивные особенности клапанов обоих типов и то, как эти особенности влияют на выбор клапанов и их эксплуатацию. Описываемые явления и полученные выводы справедливы практически для всех клапанов, независимо от модели или производителя, поскольку причины этих явлений сосредоточены в самом принципе действия клапанов рассматриваемых типов.

    1. Виды, принцип работы и особенности эксплуатации электромагнитных клапанов

    1.1. Конструкция соленоидных клапанов прямого действия

    Устройство наиболее простого соленоидного клапана представлено на рисунке 1.

    Рисунок 1 – Конструкция соленоидного клапана прямого действия

    Катушка (1) установлена на трубке сердечника (2), внутри которой расположен сердечник (3), прижимаемый к седлу клапана (5) пружиной (4). При подаче напряжения на катушку, внутри неё и, соответственно, внутри трубки сердечника создаётся электромагнитное поле, в результате воздействия которого сердечник поднимается, открывая проход жидкости через седло клапана.

    Таким образом, клапаны данного типа работают за счет электромагнитного поля, создаваемого катушкой. Саму же катушку часто называют соленоидом, отсюда и название клапана — «соленоидный» или «электромагнитный». Поскольку электромагнитное поле катушки воздействует напрямую на сердечник, перекрывающий проходное отверстие клапана, такие электромагнитные клапаны называют клапанами прямого действия.

    Сложность при создании электромагнитных клапанов прямого действия проявляется по мере увеличения их размера для обеспечения большего расхода жидкости. Это связано с резким увеличением силы втягивания катушки, необходимой для подъёма сердечника и открытия клапана.

    Пример расчёта усилия, необходимого для втягивания сердечника

    В общем случае, для любой однородной жидкой или газообразной среды, давление связано с силой следующим образом:

    P=FS,P= {F} over {S},(1)

    где:
    Р – давление среды;
    F — усилие, оказываемое средой на поверхность;
    S — площадь поверхности.2} times {{A} over {2 times %mu_0},(6)

    где:
    I – ток, потребляемый катушкой;
    N — число витков провода внутри катушки;
    µr — магнитная проницаемость сердечника;
    µ0 — магнитная постоянная, равная 4π·10-7 Гн/м;
    L — длина намотки провода внутри катушки;
    A — площадь поперечного сечения сердечника.

    Мощность W, потребляемая катушкой из электрической сети, равна:

    где:
    R – сопротивление катушки.

    Выражая квадрат тока из формулы (7) и подставляя его значение в формулу (6), получим:

    F=W×(N×μr×μ0)2×A2×L2×μ0×RF= W times(8)

    Обозначим совокупность всех коэффициентов, определяемых конструкцией узла клапана «катушка-сердечник» как Kcc

    Kcc=(N×μr×μ0)2×A2×L2×μ0×RK_cc= { ( N times %mu_r times %mu_0 )}^2 times A over { 2 times L^2 times %mu_0 times R }(9)

    Тогда формула, втягивающего усилия катушки примет следующий вид

    F=W×KccF=W times K_cc(10)

    Формула (10), показывает что втягивающее усилие катушки зависит от конструкции узла клапана «катушка-сердечник» и пропорционально электрической мощности, потребляемой катушкой.

    Рассмотрим два электромагнитных клапана с катушками разной мощности, но имеющих одинаковую конструкцию катушки и сердечника. Тогда втягивающее усилие F1 и F2 и потребляемые мощности W1 и W2 будут соотносится следующим образом:

    F1W1=F2W2{F_1} over {W_1} = {F_2} over {W_2}(11)

    Выражая из данного равенства W2 получим:

    W2=W1F2F1{ {W_2} = W_1 {F_2} over {F_1}(12)

    Подставив в формулу (12) значения необходимых минимальных усилий втягивания F1, рассчитанного по формуле (4), F2, рассчитанного по формуле (5) и паспортного значения мощности катушки AMISCO EVI 5P/13 W1 = 17 Вт, получим:

    W2=W1F2F1=17Вт1962,5Н11,8Н=2827Вт≈3кВт{ {W_2} = W_1 {F_2} over {F_1} =17Вт {1962,5Н} over {11,8Н} =2827Вт approx 3 кВт(13)

    Таким образом, мы рассчитали мощность катушки, необходимую для обеспечения работы электромагнитного клапана прямого действия с диаметром седла 50 мм и рабочим давлением 10 бар. Разумеется, эти расчеты носят приблизительный характер, однако, порядок полученных значений верный. Очевидно, что применение катушек такой мощности неоправданно.

    Тем не менее, существуют электромагнитные клапаны, удовлетворяющие условиям задачи, но с катушками мощность которых не превышает 10 – 20 Вт. Дело в том, что эти клапаны имеют другую конструкцию, описанную ниже.

    1.2 Устройство соленоидных клапанов непрямого действия

    Для уменьшения энергопотребления соленоидных клапанов больших диаметров и для работы с большими давлениями была разработана конструкция электромагнитного клапана непрямого действия, представленная на рисунке 2а.

    Рисунок 2 – Конструкция и принцип действия соленоидных клапанов с плавающей мембраной

    В таких электромагнитных клапанах основное проходное сечение перекрывается мембраной, которая прижата к седлу. Открытие клапана осуществляется за счет подъема мембраны, вызванного перераспределением величины давления рабочей среды в зонах над мембраной и под мембраной.

    В исходном состоянии (см. рисунок 2а) напряжение на катушку клапана не подано. Жидкость, поступающая на вход электромагнитного клапана, через небольшое перепускное отверстие в мембране, проникает в область над мембраной. Площадь поверхности мембраны, с которой взаимодействует жидкость, в зоне над мембраной больше, чем в зоне под мембраной. При равенстве давлений над и под мембраной, это приводит к возникновению силы, прижимающей мембрану к седлу клапана. Одним из ключевых элементов конструкции, оказывающих влияние на работу электромагнитного клапана, является перепускное отверстие. Его расположение на схеме и фотография показаны на рисунке 2б.

    Подача напряжения на катушку (см. рисунок 2в) вызывает подъём сердечника. В результате этого жидкость из области над мембраной через пилотное отверстие начинает поступать на выход электромагнитного клапана. Диаметр пилотного отверстия больше диаметра перепускного отверстия, поэтому давление над мембраной уменьшается, а сама мембрана поднимается, открывая основной проход клапана.

    Подъём мембраны осуществляется за счет давления жидкости, поступающей на вход клапана, поэтому клапаны такой конструкции не могут работать при низком давлении среды. Разница давлений между входом и выходом, как правило, должна составлять не менее 0.3 – 0.5 бар. Этот параметр указывается в технических характеристиках электромагнитного клапана.

    До тех пор, пока катушка находится под напряжением (см. рисунок 2г), сердечник поднят и пилотное отверстие открыто. Это приводит к тому, что давление над мембраной и сила упругости сжатой пружины становится меньше давления жидкости под мембраной. В результате чего мембрана остается поднятой, а клапан открытым.

    При снятии напряжения с катушки (см. рисунок 2д), сердечник под действием пружины опускается и перекрывает пилотное отверстие электромагнитного клапана. Жидкость перестает выходить из области над мембраной, в результате чего давление в этой зоне растет и становится равным давлению жидкости под мембраной (на входе клапана). Под действием силы упругости сжатой пружины мембрана начинает опускаться, перекрывая проход жидкости через клапан.

    После закрытия клапана (см. рисунок 2е) мембрана плотно прижимается к седлу за счет силы, вызванной давлением жидкости и разной площадью смоченной поверхности мембраны.

    В вышеописанном процессе при открытии электромагнитного клапана мембрана поднимается под действием жидкости – «всплывает», поэтому клапаны такой конструкции часто называют соленоидными клапанами с плавающей мембраной.

    Примеры клапанов с плавающей мембраной

    Описанный принцип действия справедлив для нормально закрытых (НЗ) электромагнитных клапанов. Нормально открытые (НО) электромагнитные клапаны устроены аналогичным образом, но пилотное отверстие открыто в нормальном состоянии и закрывается при подаче напряжения на катушку. Мембрана этих клапанов также поднимается в результате воздействия на неё давления жидкости. Таким образом, если перепад давления ΔP меньше минимально допустимого ΔPмин, то мембрана будет закрывать основной проход клапана, но пилотное отверстие будет открыто. Поэтому при ΔP мин НО клапан будет открыт, но расход через него будет значительно меньше, чем в рабочем режиме, когда ΔP > ΔPмин.

    Электромагнитные клапаны с плавающей мембраной корректно работают при ΔPмин макс. При ΔP мин клапаны работают, но расход рабочей среды через них намного меньше номинального.

    Существует ещё одна распространённая конструкция электромагнитных клапанов непрямого действия – клапаны с мембраной принудительного подъёма. Она изображена на рисунке 3. Принцип действия этих клапанов аналогичен ранее рассмотренным.

    Рисунок 3 – Конструкция и принцип действия электромагнитных клапанов с мембраной принудительного подъем

    В исходном состоянии (см. рисунок 3а) напряжение на катушку клапана не подано. Жидкость, поступающая на вход клапана через небольшое перепускное отверстие, проникает в область над мембраной и прижимает мембрану к седлу клапана.

    Подача напряжения на катушку (см. рисунок 3б) вызывает подъем сердечника. Через пилотное отверстие жидкость начинает поступать на выход клапана и давление над мембраной падает.

    Мембрана поднимается за счет разности давлений над и под ней, открывая основное проходное сечение соленоидного клапана (см. рисунок 3в).

    В отличии от ранее рассмотренных клапанов, электромагнитные клапаны с мембраной принудительного подъёма могут работать без перепада давления (ΔP = 0 бар). В такой ситуации подъем мембраны осуществляется за счет усилия электромагнитной катушки, втягивающей сердечник. Он поднимает мембрану, связанную с сердечником пружиной.

    Способность этих клапанов работать без перепада давления привела к тому, что их часто ошибочно называют клапанами прямого действия. Более правильное название – соленоидные клапаны с мембраной принудительного подъема – обусловлено тем что при отсутствии давления, мембрана поднимается принудительно (не зависимо от рабочей среды) за счет усилия, создаваемого электромагнитным полем катушки.

    Примеры клапанов с плавающей мембраной

    Выше были рассмотрены три наиболее распространенные конструкции клапанов с электромагнитным приводом. Однако, все они имеют следующие общие особенности:

    • рабочая жидкость, проходящая через клапан, находится вокруг сердечника клапана, внутри трубки сердечника;
    • внутри имеется не менее одного небольшого отверстия, критически важного для работы клапана;
    • большая часть электромагнитных клапанов непрямого действия, имеют мембрану из гибкого материала. Как правило, это одна из разновидностей резины: NBR – нитрилбутадиеновая, EPDM – этилен-пропиленовая или FPM – фтористая.

    1.3. Факторы, ограничивающие использование соленоидных клапанов

    1.3.1 Рабочая жидкость, проходящая через клапан, находится вокруг сердечника клапана и внутри трубки сердечника

    Если через клапан проходит чистая и однородная среда без каких-либо примесей, она практически не влияет на работу самого соленоидного клапана. Однако, если среда загрязнена и содержит в себе мелкодисперсные элементы (например, вода с примесями ржавчины), эти частицы со временем оседают на сердечнике и стенках трубки сердечника. Загрязнение трубки сердечника может привезти к заклиниванию сердечника внутри неё, что вызывает залипание клапана (см. рисунок 4). При этом электромагнитный клапан может остаться как в открытом, так и в закрытом состоянии.

    Рисунок 4 – Заклинивание сердечника клапана вследствие загрязнения

    Также прямой контакт рабочей жидкости с трубкой сердечника обеспечивает хороший теплообмен между ними. Поэтому если через электромагнитный клапан проходит горячая среда (пар или горячая вода), то сердечник будет нагреваться, вызывая нагрев катушки и ускоренное старение межвитковой изоляции. Как правило, катушки соленоидных клапанов, рассчитанных на работу с паром, имеют высокий класс нагревостойкости изоляции (F или H). Несмотря на это, перегрев и дальнейшее перегорание катушки парового клапана не яв- ляется чем-то необычным и встречается достаточно часто.

    В случаях, когда через соленоидный клапан проходит холодная среда (например, охлажденный раствор пропиленгликоля), трубка сердечника охлаждается до температуры ниже температуры окружающей среды. Это приводит к выпадению конденсата, под действием которого ржавеют металлические части катушки и нарушается целостность изоляционной оболочки (см. рисунок 5). В итоге, влага проникает внутрь катушки, вызывает повышенное токопотребление, а со временем, и пробой изоляции.

    Рисунок 5 – Повреждение катушки под воздействием агрессивной окружающей среды

    Для защиты от этого явления следует исключить выпадение конденсата на клапанах (например, уменьшением влагосодержания цехового воздуха). Если полностью исключить конденсат не удаётся, то можно добиться существенного уменьшения его негативного влияния, воспользовавшись клапанами, катушка которых имеет влагозащиту, например, электромагнитными клапанами GEVAX серии 1901R-KBN. Если же и это невозможно, то следует вручную герметизировать уязвимые узлы катушки, защитив их от попадания конденсата.

    1.3.2 Внутри клапана имеется не менее одного небольшого отверстия, критически важного для работы всего клапана

    Для соленоидных клапанов прямого действия – основное проходное сечение, имеющее малый диаметр; для соленоидных клапанов непрямого действия – перепускное и пилотное отверстия. Дело в том что засорение перепускного или пилотного отверстия приводит к нарушению нормальной работы соленоидного клапана. Как правило, это не вызывает необратимых разрушений конструкции, и подобные неисправности могут быть легко устранены путем чистки клапана. Однако, очистка внутренних частей клапана требует его разборки и, как следствие, невозможна во время его работы.

    Таким образом, чистота рабочей среды является одним из наиболее важных факторов, позволяющих обеспечить длительную и безотказную работу соленоидных клапанов.

    1.3.3 Большая часть электромагнитных клапанов непрямого действия имеют мембрану из гибкого материала

    Ранее было отмечено, что соленоидные клапаны рассчитаны на работу с чистыми средами. Наличие в среде крупных загрязнений может привести не только к засорам клапана, но и к разрыву мембраны, после чего потребуется её замена.

    При возникновении в системе гидроударов также возможно повреждение мембраны из-за кратковременного превышения допустимого давления.

    Энергия среды, проходящей через клапан, является одним из основных факторов, обеспечивающих как открытие клапана, так и его герметичность в закрытом состоянии. Поэтому соленоидные клапаны непрямого действия являются однонаправленными – корректная работа обеспечивается только при протекании среды от входа к выходу. Верное направление подачи среды показано на рисунке 6. Если при монтаже клапана вход и выход будут перепутаны, то рабочая среда будет поступать только в зону под мембраной, в результате чего «передавит» пружину и откроет клапан (см. рисунок 7).

    Рисунок 6 – Верное направление подачи жидкости в клапан Рисунок 7 – Не верное направление подачи жидкости в клапан

    Определить правильное положение при монтаже можно по стрелке на корпусе клапана (см. рисунок 8).

    Рисунок 8 – Стрелка на корпусе клапана для определения направления подачи среды

    Однако, даже при правильном направлении потока жидкости, мембранная конструкция может вызывать проблемы при эксплуатации. Они проявляются в момент подачи жидкости на вход клапана или при резких изменениях давления газообразных сред.

    Дело в том, что перепускное отверстие в мембране имеет небольшой размер. Жидкость, проходящая через него, не может сразу заполнить всю полость над мембраной клапана (см. рисунок 9а). В этот момент времени давление жидкости под мембраной больше, чем давление жидкости над ней. Это вызывает подъем мембраны и самопроизвольное открытие электромагнитного клапана. Клапан будет находиться в открытом состоянии до тех пор, пока жидкость не заполнит область над мембраной через перепускное отверстие (см. рисунок 9б). После завершения этого процесса давление над и под мембраной клапана уравновешивается и клапан закрывается (см. рисунок 9в).

    Рисунок 9 – Последовательность возникновения эффекта самопроизвольного открытия соленоидного клапана с плавающей мембраной при подаче жидкости

    Время открытия клапана в описанном переходном процессе зависит от многих факторов, но даже для больших клапанов оно не превышает 1…2 с. Однако, за это время через клапан может пройти несколько литров жидкости.

    Несмотря на то, что давление среды, как правило, не выходит за пределы рабочего диапазона, клапан подвергается повышенным ударным нагрузкам. Частое повторение данного явления при эксплуатации приводит к повышенному износу мембраны и пружины клапана, а со временем и к их поломке.

    1.4. Ключевые особенности эксплуатации соленоидных клапанов

    • Соленоидные клапаны предназначены для работы с чистыми, гомогенными средами. Загрязненная среда вызывает нарушение работы клапана, а иногда и его поломку.
    • Использование соленоидных клапанов для управления потоком среды, температура которой сильно отличается от температуры окружающей среды, имеет свои особенности и требует особой внимательности при выборе клапана и его эксплуатации.
    • Направление подачи среды в электромагнитный клапан является критически важным. Соленоидный клапан следует считать однонаправленным, если иное не указано в технической документации.

    Несмотря на то, что были рассмотрены лишь наиболее часто встречающиеся факторы, ограничивающие использование соленоидных клапанов, может сложиться впечатление, что соленоидный клапан является источником проблем и частых неполадок. На самом деле это не так. Электромагнитные клапаны являются надежным устройством управления потоком жидкости или газа при соблюдении условий эксплуатации.

    2. Принцип работы и особенности эксплуатации клапанов с пневмоприводом

    2.1. Устройство угловых седельных клапанов с пневмоприводом

    Конструкция седельного клапана с пневматическим приводом показана на рисунке 10.

    Рисунок 10 – Конструкция седельного клапана с пневмоприводом

    Внутри корпуса пневмопривода (1) находится поршень (2), герметично прилегающий к стенкам пневмопривода за счет уплотнения (3). Под действием пружины (4) поршень занимает положение, соответствующее начальному состоянию пневмоклапана (закрытому для НЗ клапанов и открытому для НО клапанов). На поршне жестко закреплён шток (5) с диском (6). В закрытом состоянии диск надежно прижимается к седлу (7) и обеспечивает герметичность клапана. Большая часть клапанов с пневмоприводом имеет визуальный индикатор (8), механически связанный с поршнем клапана.

    Для открытия клапана (см. рисунок 11) необходимо подать сжатый воздух в пневмопривод. Пневмоклапан открывается под действием сжатого воздуха, перемещающего поршень вместе со штоком вверх, что также приводит к сжатию пружины.

    Рисунок 11 – Клапан с пневмоприводом в открытом состоянии

    Для закрытия клапана достаточно сбросить воздух из пневмопривода. Поршень под действием пружины опускается вниз, прижимая диск к седлу.

    Открытие клапана с пневмоприводом осуществляется только за счет давления сжатого воздуха, а закрытие – за счет мощной пружины. Таким образом, работа клапанов с пневмоприводом существенно меньше зависит от параметров среды, проходящей через него, в отличии от соленоидных клапанов.

    Примеры угловых клапанов с пневмоприводом

    2.2. Схема управления клапанами с пневмоприводом

    Для управления пневмоклапанами используются специальные электромагнитные клапаны, называемые пилотными или распределительными клапанами. Эти клапаны называются так, потому что они не просто перекрывают подачу рабочей среды, но и перераспределяют её между различными входными и выходными портами.

    Для управления клапанами с пневмоприводом используются распределительные клапаны типа 3/2, схема работы которых показана на рисунке 12.

    Рисунок 12 – Пневматическая схема распределителя 3/2

    Порт 1 соединяется со входным портом пневмопривода, к порту 2 подключается подвод сжатого воздуха, а порт 3 остается открытым и используется для выхлопа – выпуска воздуха из пневмопривода в атмосферу при закрытии клапана с пневмоприводом.

    До тех пор, пока катушка распределительного клапана обесточена, порт 1 соединен с портом 3, а порт 2 перекрыт. Таким образом, сжатый воздух в пневмопривод не поступает, а сам пневмопривод соединен с атмосферой – клапан с пневмоприводом закрыт.

    При подаче напряжения на катушку порт 1 соединяется с портом 2, а порт 3 перекрывается. Сжатый воздух поступает в пневмопривод, за счет чего пневмоклапан открывается.

    На рисунке 13 показаны распределительные электромагнитные клапаны 3/2 различной конструкции.

    Рисунок 13 – Распределительные клапаны 3/2 различных конструкций

    У клапана, изображенного слева, выхлоп в атмосферу проходит сквозь трубку сердечника. У клапана, изображенного справа, порты подачи воздуха и выхлопа находятся сверху и снизу клапана.

    На рисунке 14 показана обобщенная схема управления клапаном с пневмоприводом.

    Рисунок 14 – Обобщенная схема управления клапаном с пневмоприводом

    Электрический сигнал из системы управления поступает на распределительный клапан (2), который осуществляет управление потоком сжатого воздуха, подавая его в пневмоклапан (1). Требуемая степень очистки воздуха и стабилизация давления обеспечивается фильтром-регулятором (3).

    Распределительные клапаны могут быть установлены непосредственно на клапане с пневмоприводом (см. рисунок 15) или отдельно в шкафу управления (см. рисунок 16).

    Рисунок 15 – Монтаж пилотного клапана на клапан с пневмоприводомРисунок 16 – Монтаж распределительных клапанов в шкафу управления

    Каждый из этих способов монтажа имеет свои преимущества и недостатки.

    Установка распределителей на клапанах с пневмоприводом

    Преимущества

    1. +  Меньше время срабатывания клапанов (так как воздух поступает сразу в пневмопривод).
    2. +  Выше энергоэффективность за счет экономии сжатого воздуха (при каждом срабатывании клапана с пневмоприводом весь воздух после распределительного клапана сбрасывается в атмосферу; при монтаже распределителя непосредственно на привод клапана между ними отсутствует пневмотрубка, следовательно расходуемый объем сжатого воздуха ниже).

    Недостатки

    1.   Необходимость прокладки двух линий до клапана: пневматической и электрической.
    2.   Распределитель находится возле клапана с пневмоприводом, где может подвергаться негативному воздействию окружающей среды.

    Установка распределителей в шкафу управления

    Преимущества

    1. +  Упрощение разводки электрических цепей (все распределители в одном шкафу, до клапана с пневмоприводом прокладывается только одна линия – пневматическая).
    2. +  Все распределители легко доступны для обслуживания, так как находятся в шкафу управления.
    3. +  Все распределители надежно защищены от воздействия окружающей среды (повышенная температура, запыленность, мойка оборудования химическими реагентами и так далее).

    Недостатки

    1.   Больше время срабатывания клапанов с пневмоприводом.
    2.   Повышенный расход воздуха.

    3. Сравнение клапанов с пневмоприводом с соленоидными клапанами

    Основным преимуществом клапанов с пневмоприводом перед электромагнитными клапанами является их повышенная устойчивость к воздействию негативных факторов окружающей среды и среды, проходящей через клапан. Это обусловлено тем, что клапаны с пневмоприводом:

    • приводятся в действие сжатым воздухом, а не средой, проходящей через клапан;
    • не имеют дополнительных перепускных отверстий, которые легко забиваются малейшими загрязнениями;
    • менее подвержены влиянию окружающей среды, так как имеется возможность вынести распределительный клапан в шкаф управления, где он будет защищен от вредных воздействий.

    Каким же образом система, построенная на клапане с пневмоприводом, может оказаться надежнее системы, основанной на соленоидных клапанах? Ведь любой клапан с пневмоприводом требует своего распределителя, что увеличивает количество последовательно соединенных элементов системы. Это должно приводить к уменьшению общей надежности системы. Данное замечание справедливо при эксплуатации клапанов в идеальных условиях.

    Однако, при неблагоприятных условиях запаса устойчивости соленоидного клапана может оказаться недостаточно. Это вытекает из особенностей его конструкции, описанных выше.

    Следующим фактором, говорящим в пользу клапанов с пневмоприводом, является их меньшее гидравлическое сопротивление и, как следствие, больший расход среды при том же давлении на входе. Это достигается благодаря угловой (наклонной) конструкции клапана. Проходящий через него поток существенно меньше отклоняется от прямолинейного движения, следовательно расходует меньше энергии на преодоление сопротивления клапана. Для примера в таблице 1 приведены данные коэффициента расхода Kv для электромагнитных клапанов GEVAX серии 1901R-KBN и клапанов с пневмоприводом VALMA серии ASV.

    Таблица 1 – Сравнение коэффициента расхода Kv клапанов разных конструкций
    Тип клапанаЭлектромагнитный клапанКлапан с пневмоприводом
    Схема движения потока жидкости
    Размер клапанаКоэффициент расхода Kv, л/мин
    DN 156570 (+ 8%)
    DN 20110150 (+ 36%)
    DN 25180308 (+ 71%)
    DN 32250608 (+ 143%)
    DN 40390700 (+ 79%)
    DN 50575910 (+ 58%)

    В отличии от соленоидных клапанов, клапаны с пневматическим приводом преимущественно являются двунаправленными, то есть могут пропускать среду как в прямом, так и в обратном направлении (см. рисунок 17). Направление, показанное на изображении слева, называют «вход под диском», на изображении справа – «вход над диском».

    Рисунок 17 – Допустимые направления движения жидкости для клапанов с пневмоприводом

    Очевидно, что при подаче рабочей среды «над диском», её давление препятствует открытию клапана. Этот эффект приводит к снижению рабочего давления клапана, однако в некоторой мере он может быть скомпенсирован увеличением управляющего давления воздуха.

    Пример изменения рабочего давления при подаче среды над и под диском

    На рисунке 18 изображен шильдик клапана с пневмоприводом VALMA ASV-T-040-AL063.

    Рисунок 18 – Шильдик клапана с пневмоприводом VALMA ASV-T-040-AL080-U

    Рабочее давление пневмоклапана при подаче среды «под диском» составляет 6 бар, при подаче среды «над диском» – 5 бар. Эти данные указаны для давления управляющего воздуха 6 бар. Однако, изменением давления управления возможно увеличить рабочее давление клапана при подаче среды «над диском». Данная зависимость показана на рисуноке 19.

    Рисунок 19 – График зависимости давлений рабочей и управляющей среды

    По графику видно, что увеличение управляющего давления до 8 бар позволяет увеличить давление рабочей среды (при входе «над диском») до 10 бар, а увеличение управляющего давления до 9 бар позволяет увеличить давление рабочей среды до 12 бар.

    Однако, соленоидные клапаны тоже имеют преимущества перед клапанами с пневмоприводом. Системы, построенные на основе соленоидных клапанов, как правило, проще и дешевле систем, построенных на основе клапанов с пневмоприводом, поскольку состоят из меньшего числа компонентов.

    Электромагнитные клапаны могут применяться на объектах, в составе которых отсутствует пневмосистема. Установка оборудования для сжатия воздуха и его очистки на таких объектах приводит к сильному удорожанию и усложнению системы в целом.

    Заключение

    В данной статье описана конструкция электромагнитных клапанов и седельных клапанов с пневмоприводом, рассмотрены их преимущества и недостатки. Вся информация, изложенная в статье, основана на конструктивных особенностях клапанов обоих типов и может быть применима к клапанам указанных конструкций независимо от конкретных моделей или изготовителей клапанов.

    Обобщенные преимущества и недостатки электромагнитных клапанов и клапанов с пневмоприводом приведены ниже.

    Электромагнитные клапаны

    • +  Подключаются напрямую к электрической системе управления
    • +  Не требуют подвода сжатого воздуха
    • +  Системы на основе данных клапанов, как правило, проще и дешевле
    •   Имеют особые требования к чистоте рабочей среды
    •   Однонаправленные

    Клапаны с пневмоприводом

    • +  Устойчивы к загрязнениям рабочей среды
    • +  Давление, вязкость, скорость потока и другие параметры рабочей среды не влияют на работу клапана
    • +  Как правило, двунаправленные
    •   Для подключения к системе управления, требуют установки распределительных (пилотных) электромагнитных клапанов
    •   Для работы требуют подключение сжатого воздуха

    Инженер ООО «КИП-Сервис»
    Быков А.Ю.

    Читайте также:

    Что такое электромагнитный клапан и как он работает?

    Электромагнитные клапаны используются везде, где требуется автоматическое регулирование потока жидкости. Они все в большей степени используются в самых разных типах установок и оборудования. Разнообразие доступных конструкций позволяет выбрать клапан в соответствии с конкретным применением.

    ОБЩЕЕ

    Электромагнитные клапаны используются везде, где требуется автоматическое регулирование потока жидкости. Они все в большей степени используются в самых разных типах установок и оборудования.Разнообразие доступных конструкций позволяет выбрать клапан в соответствии с конкретным применением.

    СТРОИТЕЛЬСТВО

    Электромагнитные клапаны — это блоки управления, которые при включении или отключении электропитания либо перекрывают, либо пропускают поток жидкости. Привод выполнен в виде электромагнита. При подаче напряжения создается магнитное поле, которое натягивает плунжер или поворотный якорь против действия пружины. В обесточенном состоянии плунжер или поворотный якорь возвращается в исходное положение под действием пружины.

    РАБОТА КЛАПАНА

    По режиму срабатывания различают клапаны прямого действия, клапаны с внутренним управлением и клапаны с внешним управлением. Еще одна отличительная черта — это количество подключений к портам или количество потоков («путей»).

    КЛАПАНЫ ПРЯМОГО ДЕЙСТВИЯ

    В соленоидном клапане прямого действия уплотнение седла прикреплено к сердечнику соленоида. В обесточенном состоянии отверстие седла закрыто, которое открывается, когда клапан находится под напряжением.

    КЛАПАНЫ ПРЯМОГО ДЕЙСТВИЯ 2-ХОДОВЫЕ

    Двухходовые клапаны — это запорные клапаны с одним входным и одним выходным отверстиями (рис.1). В обесточенном состоянии пружина сердечника при помощи давления жидкости удерживает уплотнение клапана на седле клапана, перекрывая поток. При подаче напряжения сердечник и уплотнение втягиваются в катушку соленоида, и клапан открывается. Электромагнитная сила больше, чем объединенная сила пружины и силы статического и динамического давления среды.

    фигура 1

    КЛАПАНЫ ПРЯМОГО ДЕЙСТВИЯ 3-ХОДОВЫЕ

    Трехходовые клапаны имеют три штуцера и два седла клапана.Одно уплотнение клапана всегда остается открытым, а другое закрытым в обесточенном режиме. Когда катушка находится под напряжением, режим меняется на противоположный. Трехходовой клапан, показанный на рис. 2, выполнен с сердечником плунжерного типа. Различные операции клапана могут быть получены в зависимости от того, как текучая среда соединена с рабочими портами на рис. 2. Давление текучей среды нарастает под седлом клапана. Когда катушка обесточена, коническая пружина плотно прижимает нижнее уплотнение сердечника к седлу клапана и перекрывает поток жидкости.Порт A выпускается через R. Когда катушка находится под напряжением, сердечник втягивается, седло клапана в Порте R закрывается подпружиненным верхним уплотнением сердечника. Текучая среда теперь течет от P к A.

    фигура 2 В отличие от версий с сердечником плунжерного типа, клапаны с поворотным якорем имеют все портовые соединения в корпусе клапана. Изолирующая диафрагма предотвращает контакт текучей среды с камерой змеевика. Клапаны с поворотным якорем могут использоваться для управления любым трехходовым клапаном.Базовый принцип конструкции показан на рис. 3. Клапаны с поворотным якорем стандартно оснащены ручным дублером.

    фигура 3

    ЭЛЕКТРОМАГНИТНЫЕ КЛАПАНЫ С ВНУТРЕННИМ ПИЛОТОМ

    В клапанах прямого действия силы статического давления увеличиваются с увеличением диаметра отверстия, что означает, что магнитные силы, необходимые для преодоления сил давления, соответственно становятся больше. Поэтому электромагнитные клапаны с внутренним управлением используются для переключения более высоких давлений в сочетании с отверстиями большего размера; в этом случае перепад давления жидкости выполняет основную работу по открытию и закрытию клапана.

    ДВУХХОДОВЫЕ КЛАПАНЫ С ВНУТРЕННИМ ПИЛОТОМ

    Электромагнитные клапаны с внутренним управлением оснащены 2- или 3-ходовым пилотным соленоидным клапаном. Мембрана или поршень обеспечивают уплотнение для седла главного клапана. Работа такого клапана показана на рис. 4. Когда пилотный клапан закрыт, давление жидкости увеличивается с обеих сторон диафрагмы через выпускное отверстие. Пока существует разница давлений между впускным и выпускным портами, запорная сила доступна за счет большей эффективной площади в верхней части диафрагмы.Когда пилотный клапан открыт, давление сбрасывается с верхней стороны диафрагмы. Большая эффективная сила чистого давления снизу теперь поднимает диафрагму и открывает клапан. Как правило, клапаны с внутренним управлением требуют минимального перепада давления для обеспечения удовлетворительного открытия и закрытия. Omega также предлагает клапаны с внутренним управлением, спроектированные с соединенным сердечником и диафрагмой, которые работают при нулевом перепаде давления (рис. 5).

    фигура 4

    МНОГООБХОДИМЫЕ ЭЛЕКТРОМАГНИТНЫЕ КЛАПАНЫ С ВНУТРЕННИМ ПИЛОТОМ

    4-ходовые электромагнитные клапаны с внутренним управлением используются в основном в гидравлических и пневматических системах для приведения в действие цилиндров двустороннего действия.Эти клапаны имеют четыре патрубка: впускной патрубок P, два патрубка A и B цилиндра и один патрубок выпускного патрубка R. На рис. 6 показан 4/2-ходовой тарельчатый клапан с внутренним управлением. пилотный клапан открывается при соединении входа давления с пилотным каналом. Теперь обе тарелки главного клапана находятся под давлением и переключаются. Теперь соединение порта P подключено к A, а B может выходить через второй ограничитель через R.

    цифра 5

    КЛАПАНЫ С НАРУЖНЫМ УПРАВЛЕНИЕМ

    В этих типах для приведения в действие клапана используется независимая управляющая среда.На рис. 7 показан поршневой клапан с угловым седлом и закрывающей пружиной. В безнапорном состоянии седло клапана закрыто. Трехходовой электромагнитный клапан, который может быть установлен на приводе, управляет независимой управляющей средой. Когда электромагнитный клапан находится под напряжением, поршень поднимается против действия пружины, и клапан открывается. Версия с нормально открытым клапаном может быть получена, если пружина расположена на противоположной стороне поршня привода. В этих случаях независимая управляющая среда подключается к верхней части привода.Версии двойного действия, управляемые 4/2-ходовыми клапанами, не содержат пружины.

    рисунок 6

    МАТЕРИАЛЫ

    Все материалы, из которых изготовлены клапаны, тщательно отбираются в соответствии с различными типами применения. Материал корпуса, материала уплотнения и материала соленоида выбирается для оптимизации функциональной надежности, совместимости с жидкостями, срока службы и стоимости.

    КУЗОВ

    Корпуса клапанов нейтральной жидкости изготовлены из латуни и бронзы.Для жидкостей с высокими температурами, например пара, доступна коррозионно-стойкая сталь. Кроме того, полиамидный материал используется по экономическим причинам в различных пластиковых клапанах.

    СОЛЕНОИДНЫЕ МАТЕРИАЛЫ

    Все части электромагнитного привода, контактирующие с жидкостью, изготовлены из аустенитной коррозионно-стойкой стали. Таким образом обеспечивается устойчивость к коррозионному воздействию нейтральных или умеренно агрессивных сред.

    МАТЕРИАЛЫ УПЛОТНЕНИЯ

    Конкретные механические, термические и химические условия в приложении влияют на выбор материала уплотнения.Стандартным материалом для нейтральных жидкостей при температурах до 194 ° F обычно является FKM. Для более высоких температур используются EPDM и PTFE. Материал PTFE универсально устойчив практически ко всем техническим жидкостям.

    НОМИНАЛЬНОЕ ДАВЛЕНИЕ — ДИАПАЗОН ДАВЛЕНИЯ

    Все значения давления, приведенные в этом разделе, представляют собой манометрическое давление. Номинальное давление указано в фунтах на квадратный дюйм. Клапаны надежно работают в заданных диапазонах давления. Наши цифры действительны для диапазона пониженного напряжения от 15% до перенапряжения 10%.Если 3/2-ходовые клапаны используются в другом режиме, допустимый диапазон давления изменяется. Более подробная информация содержится в наших технических паспортах.

    В случае работы в вакууме необходимо следить за тем, чтобы вакуум был на стороне выхода (A или B), в то время как более высокое давление, то есть атмосферное давление, подключено к входному отверстию P.

    ЗНАЧЕНИЯ РАСХОДА

    Скорость потока через клапан определяется конструкцией и типом потока.Размер клапана, требуемый для конкретного применения, обычно определяется номиналом Cv. Этот показатель разработан для стандартных единиц и условий, то есть расхода в галлонах в минуту и ​​использования воды с температурой от 40 ° F до 86 ° F при перепаде давления 1 фунт / кв. Дюйм. Приведены значения Cv для каждого клапана. Стандартизированная система значений расхода также используется для пневматики. В этом случае воздушный поток в SCFM вверх по потоку и падение давления 15 фунтов на квадратный дюйм при температуре 68 ° F.

    СОЛЕНОИДНЫЙ ПРИВОД

    Общей особенностью всех электромагнитных клапанов Omega является система соленоидов с эпоксидной изоляцией.В этой системе вся магнитная цепь — катушка, соединения, ярмо и направляющая трубка сердечника — объединены в один компактный блок. Это приводит к тому, что высокая магнитная сила удерживается в минимальном пространстве, обеспечивая первоклассную электрическую изоляцию и защиту от вибрации, а также внешних коррозионных воздействий.

    КАТУШКИ

    Катушки Omega доступны для всех обычно используемых напряжений переменного и постоянного тока. Низкое энергопотребление, особенно в случае соленоидных систем меньшего размера, означает, что возможно управление через полупроводниковую схему.

    рисунок 7 Доступная магнитная сила увеличивается по мере уменьшения воздушного зазора между сердечником и заглушкой, независимо от того, используется ли переменный или постоянный ток. Электромагнитная система переменного тока имеет большую магнитную силу, доступную при большем ходе, чем сопоставимая соленоидная система постоянного тока. Графики характеристического хода в зависимости от силы, показанные на рис. 8, иллюстрируют эту взаимосвязь.

    Ток, потребляемый соленоидом переменного тока, определяется индуктивностью. С увеличением хода индуктивное сопротивление уменьшается и вызывает увеличение потребления тока.Это означает, что в момент обесточивания ток достигает максимального значения. Противоположная ситуация применима к соленоиду постоянного тока, где потребление тока зависит только от сопротивления обмоток. Сравнение во времени характеристик включения соленоидов переменного и постоянного тока показано на рис. 9. В момент подачи питания, то есть когда воздушный зазор максимален, электромагнитные клапаны потребляют гораздо более высокие токи, чем когда сердечник полностью заполнен. втянут, т. е. воздушный зазор закрыт.Это приводит к высокой производительности и расширенному диапазону давления. В системах постоянного тока после включения тока поток увеличивается относительно медленно, пока не будет достигнут постоянный ток удержания. Таким образом, эти клапаны могут управлять только более низким давлением, чем клапаны переменного тока, при тех же размерах отверстий. Более высокие давления могут быть получены только за счет уменьшения размера отверстия и, следовательно, пропускной способности.

    ТЕПЛОВЫЕ ЭФФЕКТЫ

    Когда на катушку соленоида подано напряжение, всегда выделяется определенное количество тепла.Стандартная версия электромагнитных клапанов имеет относительно небольшой подъем температуры. Они предназначены для достижения максимального повышения температуры 144 ° F в условиях непрерывной работы (100%) и при 10% перенапряжении. Кроме того, обычно допустима максимальная температура окружающей среды 130 ° F. Максимально допустимые температуры жидкости зависят от конкретных материалов уплотнения и корпуса. Эти цифры можно получить из технических данных.

    ОПРЕДЕЛЕНИЕ ВРЕМЕНИ (VDE0580) ВРЕМЯ ОТВЕТА

    Небольшие объемы и относительно высокие магнитные силы, связанные с электромагнитными клапанами, позволяют получить быстрое время отклика.Для специальных применений доступны клапаны с разным временем отклика. Время реакции определяется как время между подачей сигнала переключения и завершением механического открытия или закрытия.

    ПО ПЕРИОДУ

    Период включения определяется как время между включением и выключением тока соленоида.

    ПЕРИОД ЦИКЛА

    Общее время включенного и выключенного периодов — это период цикла. Предпочтительный период цикла: 2, 5, 10 или 30 минут.

    ОТНОСИТЕЛЬНЫЙ РАБОЧИЙ ЦИКЛ

    Относительный рабочий цикл (%) — это процентное отношение периода под напряжением к общему периоду цикла. Непрерывная работа (100% рабочий цикл) определяется как непрерывная работа до достижения установившейся температуры.

    РАБОТА КЛАПАНА

    Кодировка клапана всегда состоит из заглавной буквы. Сводка слева подробно описывает коды различных операций клапана и указывает соответствующие стандартные символы цепи.

    ВЯЗКОСТЬ

    Технические данные действительны для вязкости до указанного значения.Допускается более высокая вязкость, но в этих случаях диапазон допуска напряжения уменьшается, а время отклика увеличивается.

    ДИАПАЗОН ТЕМПЕРАТУР

    Температурные пределы для текучей среды всегда подробно описаны. Различные факторы, например однако условия окружающей среды, цикличность, скорость, допуск напряжения, детали установки и т. д. могут влиять на температурные характеристики. Поэтому приведенные здесь значения следует использовать только в качестве общего руководства. В случаях, когда речь идет о работе при экстремальных температурах, вам следует обратиться за советом в технический отдел Omega.

    Техническое обучение Техническое обучение

    Как работает электромагнитный клапан

    Что такое электромагнитный клапан?

    Определение электромагнитного клапана — это электромеханический клапан, который обычно используется для управления потоком жидкости или газа.Существуют различные типы электромагнитных клапанов, но основные варианты — с пилотным или прямым действием. Клапаны с пилотным управлением, наиболее широко используемые, используют давление в трубопроводе системы для открытия и закрытия главного отверстия в корпусе клапана.

    В то время как соленоидные клапаны прямого действия напрямую открывают или закрывают отверстие главного клапана, которое является единственным каналом потока в клапане. Они используются в системах, требующих низкой пропускной способности, или в приложениях с низким перепадом давления на отверстии клапана.

    Принцип действия электромагнитных клапанов

    Принцип действия электромагнитного клапана заключается в управлении потоком жидкостей или газов в положительном, полностью закрытом или полностью открытом режиме. Их часто используют для замены ручных клапанов или для дистанционного управления. Функция электромагнитного клапана включает открытие или закрытие отверстия в корпусе клапана, что позволяет или предотвращает прохождение потока через клапан. Плунжер открывает или закрывает отверстие, поднимаясь или опускаясь внутри гильзы за счет подачи питания на катушку.

    Электромагнитные клапаны состоят из змеевика, плунжера и втулки.В нормально закрытых клапанах возвратная пружина плунжера прижимает плунжер к отверстию и препятствует потоку. Когда на катушку соленоида подано напряжение, результирующее магнитное поле поднимает плунжер, обеспечивая поток. Когда катушка соленоида находится под напряжением в нормально открытом клапане, плунжер закрывает отверстие, что, в свою очередь, предотвращает поток.

    Почему используется электромагнитный клапан?

    В большинстве приложений управления потоком необходимо запускать или останавливать поток в контуре, чтобы контролировать жидкости в системе.Для этого обычно используется электромагнитный клапан с электронным управлением. Электромагнитные клапаны, приводимые в действие соленоидом, могут быть расположены в удаленных местах и ​​могут управляться с помощью простых электрических переключателей.

    Электромагнитные клапаны являются наиболее часто используемыми элементами управления в жидкостях. Они обычно используются для отключения, выпуска, дозирования, распределения или смешивания жидкостей. По этой причине они используются во многих областях. Соленоиды обычно обеспечивают быстрое и безопасное переключение, длительный срок службы, высокую надежность, низкую мощность управления и компактную конструкцию.

    Где используется электромагнитный клапан?

    Электромагнитные клапаны применяются в широком диапазоне промышленных настроек, включая общее двухпозиционное управление, контуры управления заводом, системы управления технологическим процессом и различные приложения производителей оригинального оборудования, и это лишь некоторые из них.

    Электромагнитные клапаны можно найти во многих различных секторах, в том числе:

    • Водоснабжение
    • Очистка питьевой воды
    • Очистка сточных вод
    • Очистка / очистка серой и черной воды
    • Машиностроение
    • Охлаждение, смазка и дозирование
    • Услуги в строительстве
    • Большие системы отопления, климат-контроль
    • Техника безопасности
    • Системы защиты водопроводов и пожаротушения
    • Компрессоры
    • Сброс давления и дренаж
    • Подача топлива
    • Транспортные и резервуарные помещения
    • Пожары системы
    • Газовый и жидкий автомат горения
    • Газовая хроматография
    • Регулировка газовой смеси
    • Приборы для анализа крови
    • Контроль процессов очистки

    Как заменить электромагнитные клапаны

    Для правильного и точного управления работой, электромагнитные клапаны должны быть настроены и выбраны в соответствии с конкретным приложением.Наиболее важными параметрами для выбора электромагнитного регулирующего клапана являются значение Kv (выраженное в кубических метрах в час) и диапазон давления в приложении.

    Чем ниже отверстие клапана или чем прочнее змеевик, тем выше давление, при котором клапан может отключиться. На основе рассчитанного значения Kv и диапазона давления для планируемого применения можно определить соответствующий тип клапана и его требуемое отверстие.

    Что такое электромагнитный клапан NAMUR?

    NAMUR — это аббревиатура от User Association of Automation Technology in Process Industries, которая служит стандартом для технологии автоматизированных клапанов.Стандартные интерфейсы полезны для монтажа приводов, поскольку они помогают снизить затраты на изготовление и установку соленоидов. Bürkert предлагает для покупки широкий выбор электромагнитных клапанов NAMUR. Посетите наш веб-сайт сегодня, чтобы просмотреть полный ассортимент электромагнитных клапанов.

    Где купить электромагнитный клапан

    Клапаны Bürkert можно найти практически во всех отраслях промышленности. От сварочных роботов до гидротехнических сооружений, от пылеудаления при добыче полезных ископаемых до контроля давления в кабине самолета — все возможно с нашими клапанами в качестве надежного компонента вашей системы.Если вам нужен отдельный клапан, клапанные блоки или индивидуальные решения, вся наша продуктовая линейка ориентирована на обеспечение контролируемого обращения с жидкостями и газами.

    Наша продукция предназначена для предоставления:

    • Высокая гибкость благодаря модульной конструкции
    • Разнообразный выбор материалов
    • Высокая надежность и длительный срок службы
    • Низкое воздействие на окружающую среду

    Приобретите высококачественные электромагнитные клапаны в интернет-магазине Burkert прямо сегодня . Или, чтобы получить дополнительную информацию, позвоните нам по телефону +44 1285 648 720, по электронной почте[email protected] или заполните нашу контактную форму.

    Самые популярные электромагнитные клапаны Bürkert

    Не все электромагнитные клапаны созданы одинаково. Да, здесь, в Bürkert, мы регулярно разрабатываем невероятно инновационные соленоиды — это то, чем мы занимаемся! Однако часто требуется прочная, надежная рабочая лошадка соленоида, которая, как вы можете быть уверены, многократно выполнит свою работу в течение длительного и выдающегося жизненного цикла. Следующие три электромагнитных клапана Bürkert являются воплощением надежности.

    Получить дополнительную информацию

    Что такое электромагнитные клапаны?

    Автор: Джош Косфорд, редактор.

    Электромагнитные клапаны — это клапаны с электрическим приводом, обычно используемые для управления потоком или направлением воздуха или жидкости в гидравлических системах. Золотниковая или тарельчатая конструкция большинства электромагнитных клапанов, используемых как в пневматических, так и в гидравлических функциях привода, делает их идеальными для различных функций и применений.

    Золотник или тарелка клапана соединяется с плунжером из черного металла, который обычно центрируется или смещается пружиной, но вместо этого может фиксироваться.Плунжер скользит по трубке с сердечником из цветного металла, окруженной катушкой электрических обмоток. Катушка существует с любым диапазоном напряжения от 12-48 В постоянного тока до 110-220 В переменного тока. Когда мощность передается через катушку, создается магнитное поле, которое толкает или тянет плунжер, сдвигая клапан.

    Самыми простыми электромагнитными клапанами являются двухходовые двухпозиционные тарельчатые клапаны, которые просто открываются и закрываются, изменяя свой путь потока, когда на их катушку подается напряжение. Они доступны в версиях «нормально открытые» и «нормально закрытые», что означает нормально проточные и нормально закрытые, соответственно.Нормально разомкнутый в гидравлической энергии противоречит нормально разомкнутому в электронике, что означает размыкание переключателя или контакта и отсутствие протекания электронов.

    Трехходовые, двухпозиционные тарельчатые клапаны также распространены, перенаправляя поток из одного канала в другой. Два параллельных 3/2 клапана могут использоваться для двунаправленного управления цилиндром. Хотя конструкция различается в зависимости от использования, этот тип клапана может использоваться как для пневматики, так и для гидравлики, но чаще встречается в пневматических системах.

    Золотниковые электромагнитные клапаны состоят из обработанного золотника, который скользит внутри обработанного корпуса клапана.На один или оба конца катушки воздействует плунжер, и при активации любой из катушек толкает катушку в одну или другую сторону, обеспечивая три позиционных конверта. Гидравлический соленоидный клапан 4/3 — один из самых популярных, позволяющий осуществлять двунаправленное управление цилиндром или двигателем с одного корпуса клапана. «Пути» соленоидного клапана относятся к тому, сколько портов он содержит, а «положения» соленоидного клапана относятся к количеству дискретных состояний, в которых он работает. Трехпозиционный клапан использует нейтральное состояние с пружинным центрированием и два положения срабатывания.

    Для двунаправленного управления двигателем или цилиндром пневматические клапаны имеют пять отверстий и обычно называются клапанами 5/3. «Пути» пневматического клапана также включают его выпускные отверстия, которых обычно два. Иногда эти же клапаны описываются как 4-ходовые 3-позиционные клапаны, хотя при внимательном осмотре обнаруживаются два выпускных отверстия, разделяющих напорное отверстие пополам.

    Электромагнитные клапаны для гидравлического или пневматического применения доступны как модульные блоки, смонтированные на коллекторе, такие как пневматические или гидравлические клапаны ISO.Эти клапаны имеют стандартные схемы установки и подключения, что позволяет устанавливать клапаны любого производителя на один и тот же манифольд. Чаще всего эти клапаны также довольно экономичны и легко доступны в готовом виде.

    Электрические катушки электромагнитного клапана могут быть оснащены разъемами DIN, подводящими проводами, разъемами Deutsch, центральным соединением или любой другой популярной формой электрического соединения, используемой в гидравлической энергии и автоматизации. Большинство катушек электромагнитных клапанов заменяются на месте, что упрощает ремонт и техническое обслуживание для технических специалистов.Катушки также имеют широкий спектр применения и назначения. Некоторые из них предназначены для промышленной среды с постоянными атмосферными условиями. Мобильные среды гораздо более требовательны, и управляющие катушки выдерживают как экстремальные температурные диапазоны, так и воздействие дорожной пленки и соли, например.

    Как работают электромагнитные клапаны — Инженерное мышление

    Как работают электромагнитные клапаны

    Как работают электромагнитные клапаны, в этой статье мы рассмотрим, как работают электромагнитные клапаны. Мы рассмотрим основные операции двух типов электромагнитных клапанов.Мы также расскажем, как выглядят настоящие электромагнитные клапаны, почему используются электромагнитные клапаны, где используются электромагнитные клапаны и как работают электромагнитные клапаны.
    Прокрутите вниз, чтобы просмотреть видео на YouTube по этой статье.

    Если вы работаете с соленоидными клапанами, вам нужно загрузить приложение Magnetic Tool от Danfoss.
    Приложение Magnetic Tool, входящее в состав Danfoss CoolApps Toolbox, позволяет быстро и легко тестировать катушку электромагнитного клапана и доступно во всем мире для Android и iPhone.

    🎁 Загрузите Magnetic Tool за бесплатно — щелкните здесь

    Электромагнитные клапаны используются для преобразования электрической энергии в механическую.

    Часть электромагнитного клапана

    Электромагнитные клапаны имеют весьма характерный внешний вид. Как и следовало ожидать, у них есть корпус клапана, но сверху у них есть колодка с выходящими проводами. Эта верхняя часть является соленоидом, а нижняя часть — клапаном, поэтому образует соленоидный клапан.

    Эти клапаны бывают разных форм и размеров, я просто покажу вам несколько примеров ниже.Вариация формы зависит от емкости клапана, давления, с которым он работает, и различных внутренних механизмов.

    Типы электромагнитных клапанов

    Почему мы используем электромагнитные клапаны

    Почему мы используем электромагнитные клапаны? Эти клапаны позволяют инженерам автономно и удаленно управлять потоком жидкости в системе. Эта жидкость может быть жидкостью или газом. Например, вода, воздух, природный газ, масло, пар, хладагент и т. Д. Список можно продолжать и продолжать.

    Катушка соленоида используется для управления клапаном, пропуская через нее электрический ток для создания электромагнитного поля и управления клапаном.Это означает, что, если он подключен к контроллеру, им можно управлять автономно и удаленно с помощью компьютера без необходимости для инженеров физически открывать и закрывать клапаны. Это позволяет системам работать более эффективно и безопасно.

    Где мы используем электромагнитные клапаны

    Где мы используем или находим электромагнитные клапаны? Короткий ответ — ВЕЗДЕ! Электромагнитные клапаны можно найти во всем, от стиральных машин до космических ракет, хотя в этом видео мы сосредоточимся на промышленных приложениях и системах отопления, вентиляции и кондиционирования воздуха.

    Приведем примеры.

    В коммерческих холодильных системах мы почти наверняка найдем в системе хотя бы один соленоидный клапан, который обычно находится в жидкостной линии рядом с расширительным клапаном. Мы также рассмотрели, как работают расширительные клапаны ранее, проверьте это, нажав здесь.

    Электромагнитный клапан, пример AHU

    Пример: блок обработки воздуха.
    Внутри имеется двойной охлаждающий змеевик прямого расширения для контроля температуры воздуха, циркулирующего по всему зданию.Верхний расширительный клапан и охлаждающий змеевик всегда включены, когда система работает, но второй расширительный клапан и змеевик включаются только летом, когда охлаждающая нагрузка слишком велика для одиночного змеевика. Поэтому здесь электромагнитный клапан используется для изоляции второй змеевики и расширительного клапана до тех пор, пока он не понадобится. Затем контроллер посылает сигнал клапану на открытие и обеспечение дополнительного охлаждения.

    Электромагнитный клапан размораживания горячим газом

    Пример: размораживание горячим газом
    Еще одно очень распространенное применение электромагнитных клапанов в холодильных системах — это линия размораживания горячим газом для управления потоком горячего хладагента в испаритель во время цикла размораживания.Когда влага в воздухе конденсируется на трубках испарителя, она замерзает и вызывает образование льда. Нам нужно удалить это, чтобы обеспечить эффективную работу, поэтому мы открываем соленоидный клапан, чтобы направить горячий хладагент из компрессора и через испаритель вместо конденсатора. Затем, когда размораживание завершено, электромагнитный клапан закрывается, и система продолжает работать в обычном режиме в режиме охлаждения.

    Электромагнитный клапан завода по производству напитков

    Пример: Производство напитков
    В промышленных приложениях мы можем использовать эти клапаны для точного управления потоком и смешиванием жидкостей, например, чтобы налить идеальное количество газированного напитка в бутылку на производственной линии.

    Мы также можем найти электромагнитные клапаны, используемые в производственной линии для предотвращения утечек. Если датчик обнаруживает утечку в трубопроводе, электромагнитный клапан в этой части технологической линии автоматически отключается, чтобы предотвратить отходы продукта и защитить производственное оборудование до тех пор, пока инженеры не смогут это исправить.

    Как они работают

    Есть несколько вариантов работы клапана в зависимости от требуемой производительности и давления, с которым он работает. Мы сосредоточимся на клапане прямого действия, который является самой простой версией.

    С клапаном прямого действия у нас есть соленоид наверху, который по сути представляет собой катушку с проволокой. Как вы, возможно, видели в наших обучающих видео по электрике. Когда мы пропускаем электрический ток через катушку, мы генерируем электромагнитное поле. Это магнитное поле управляет клапаном.

    Как работает соленоидный клапан

    У нас есть два типа клапанов: нормально открытый и нормально закрытый. Давайте сначала посмотрим на нормально закрытый тип.

    Нормально закрытые электромагнитные клапаны

    Внутри клапана находится якорь.Над ним помещается соленоид, который полностью окружает якорь, так что он находится в центре его магнитного поля. Внутри цилиндра якоря находится плунжер и пружина.

    Как работают нормально закрытые электромагнитные клапаны

    Пружина толкает плунжер вниз в клапане нормально закрытого типа. Поскольку плунжер толкается пружиной, он будет находиться в нижнем положении, чтобы закрыть клапан на неопределенное время. Но если катушка получает электрический ток, она генерирует электромагнитное поле, и это магнитное поле проходит через плунжер и заставляет его двигаться вверх против пружины, открывая клапан.(См. Видео на YouTube для получения подробной анимации)

    В центре катушки линии магнитного поля являются наиболее компактными и, следовательно, самыми прочными. Поэтому мы помещаем поршень в центр.

    Когда электрический ток прекращается, магнитное поле исчезает, и пружина снова заставляет плунжер опуститься, чтобы закрыть клапан.

    Нормально открытые электромагнитные клапаны

    Нормально открытые электромагнитные клапаны

    При нормально открытых клапанах катушка снова располагается вокруг якоря, но на этот раз пружина толкает плунжер в верхнее положение, так что клапан всегда открыт, если на катушку соленоида не подается питание. .

    Если затем пропустить через катушку ток, он снова создаст электромагнитное поле, но на этот раз поле толкает поршень, а не тянет его. Когда плунжер нажимается, он закрывает клапан и останавливает поток жидкости в системе.

    Когда электрический ток прекращается, пружина заставляет плунжер вернуться в верхнее положение и снова открывает клапан.

    Электромагнитные клапаны — Bürkert

    AfghanistanAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntarcticAntigua и BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBoliviaBonaireBosnia и HerzegovinaBotswanaBrazilBritish Virgin IslandsBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCayman IslandCentral Африканский RepChadChileChinaChristmas IslandCocos IslandColombiaComorosCongoCook IslandCosta RicaCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFaroe IslandsFiji IslandsFinlandFranceFrench GuianaFrench PolynesiaGabonGambiaGeorgiaGermanyGhanaGreeceGreenlandGrenadaGuadeloupeGuatemalaGuinea, BissauGuinea, RepGuyanaHaitiHondurasHong KongHungaryIcelandIndiaIndonesiaIranIraqIrelandIsraelItalyIvory CoastJamaicaJapanJordanKazakhstanKenyaKiribatiKorea, SouthKosovoKuwaitKyrgyzstanLaoLaosLatviaLebanonLesothoLiberiaLibyaLiechtensteinLithuaniaLuxembourgMacau МадагаскарМалавиМалайзияМальдивыМалиМальтаМариана островМаршалл-АйлендМартиникаМавританияМаврикийМайоттМексикаМикронезия (Федеративные Штаты) МолдоваМонакоМонголияМонтенегроМонтсерратМароккоМозамбикМьянмаНамибияНаур.AntillesNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNorfolk IslandNorth MacedoniaNorwayOmanPakistanPalauPanamaPapua Новый GuineaParaguayPeruPhilippinesPitcairn IslandPolandPortugalPuerto RicoQatarRomaniaRussiaRwandaRéunionSaint Киттс и NevisSaint LuciaSaint Пьер и MiquelonSaint Винсент и GrenadinesSaudi ArabiaSenegal RepublicSerbia, Республика ofSeychellesSingaporeSlovakiaSloveniaSolomon IslandSomaliaSouth AfricaSpainSri LankaSudanSurinameSwazilandSwedenSwitzerlandSyriaTaiwanTajikistanTanzaniaThailandTogoTokelauTongaTrinidad и TobagoTunisiaTurkeyTurkmenistanTuvaluUgandaUkraineUnited арабских EmiratesUnited KingdomUnited StatesUnited Штаты Virgin IslandsUruguayUzbekistanVanuatuVenezuelaVietnamWallis и Футуна IslandWestern SamoaYemenZambiaZimbabwe

    Что такое пневматический соленоидный клапан?

    Электромагнитный клапан, также известный как клапан с электрическим приводом, представляет собой клапан, для работы которого используется электромагнитная сила.Когда электрический ток проходит через катушку соленоида, создается магнитное поле, которое заставляет стержень из черного металла двигаться. Это основной процесс, который открывает клапан, и он работает прямо или косвенно с воздухом.

    Электромагнитные клапаны могут быть нормально открытыми или нормально закрытыми:

    • Нормально открытые (N / O) , клапан остается открытым, когда соленоид не заряжен.
    • Нормально закрытый (НЗ) , клапан остается закрытым, когда соленоид не заряжен.
    Зачем нужен электромагнитный клапан?

    Электромагнитные клапаны устраняют необходимость в ручном или пневматическом управлении пневматическим контуром и требуют для работы только электрического входа (и давления воздуха для управляемых клапанов), что упрощает их программирование и установку в широком спектре приложений.

    Какие бывают типы электромагнитных клапанов?

    Как мы увидим ниже, электромагнитные клапаны можно разделить на следующие большие категории: прямого действия или управляемые соленоиды.Электромагнитные управляемые клапаны можно разделить на клапаны с внутренним или внешним управлением, и их иногда называют электромагнитными клапанами с сервоуправлением.

    В случае электромагнитных клапанов прямого действия сила, создаваемая соленоидом, должна быть больше силы, создаваемой давлением воздуха. Для работы им не требуется давление в трубопроводе, и они могут работать в условиях вакуума.

    В клапанах прямого действия с размыкающим контактом стержень соленоида прикреплен к золотнику и удерживается на месте пружиной.Когда соленоид заряжен, магнитное поле заставляет стержень соленоида подниматься, перемещая катушку и позволяя воздуху проходить на другую сторону. В запорном клапане происходит обратное — пружина удерживает золотник в открытом положении.

    Электромагнитные клапаны прямого действия имеют ограниченное применение и встречаются только в 10% случаев. Это связано с тем, что поток может быть ограничен, и они потребляют большое количество электроэнергии.

    В отличие от соленоидов прямого действия, клапаны с внутренним управлением работают с давлением в системе, чтобы способствовать управлению, а не противодействовать ему.Это позволяет им управлять воздушным потоком, используя меньшую мощность, чем давление в линии.

    В клапанах с внутренним управлением соленоид закрывает меньший проход между линией и полостью за золотником. Когда он открыт, давление в линии толкает золотник поперек, открывая клапан. Поскольку соленоид управляет отверстиями гораздо меньшего размера, для его перемещения требуется гораздо меньше энергии по сравнению с соленоидным клапаном прямого действия.

    Электромагнитные клапаны с внешним управлением работают аналогично клапанам с внутренним управлением, но для содействия движению клапана используется воздух из внешнего источника, а не давление внутри клапана.Это должно происходить перед клапаном, но также может быть обеспечено от отдельного контура. Этот внешний источник воздуха подается в дополнительный порт клапана. Клапаны с внешним управлением обычно используются в сценариях низкого давления, вакуума или альтернативных портов, когда в самом клапане низкое, отрицательное или нулевое давление для облегчения движения.

    Как управляется электромагнитный клапан?

    На простейшем уровне соленоидами можно управлять с помощью электрического переключателя включения / выключения с ручным управлением, которого достаточно в некоторых случаях.Однако в большинстве случаев требуется более сложное управление с помощью платы управления. Платы управления в цифровом виде настраивают клапаны на работу через определенные промежутки времени или могут быть запрограммированы на управление клапаном при выполнении определенных условий, например, когда он получает сигнал от реле давления. Электромагнитными клапанами можно управлять с помощью компьютера, что упрощает их интеграцию в системы Индустрии 4.0.

    Как выбрать электромагнитный клапан

    Тип необходимого соленоида будет зависеть от нескольких факторов.

    • Какое давление в линии? Это будет определять, сколько энергии требуется. Он также сообщит вам, нужен ли клапан прямого действия, с внутренним или внешним управлением.
    • Как быстро клапан должен открываться или закрываться? Управляемые клапаны переключаются дольше, чем клапаны прямого действия, но требуют меньше энергии.
    • Вам нужен N / O или N / C клапан? Клапан должен соответствовать области применения. Единственным наиболее важным соображением является потенциальный эффект отключения электроэнергии или отказа клапана — безопаснее ли остановить или продолжить поток, если это произойдет? Если нет соображений безопасности, подумайте, будет ли линия большую часть времени открыта или закрыта.Если линия будет в основном проточной, тогда потребуется нормально открытый клапан. Если верно обратное, то потребуется нормально закрытый клапан. Неправильный ответ приведет к увеличению затрат на электроэнергию и потенциальному выгоранию соленоида.
    • Какой требуемый расход, размер порта и количество портов? Как и в случае любого клапана, эти факторы полностью зависят от функции клапана и от того, в какую систему он интегрируется.
    Нужно ли мне что-нибудь еще для работы электромагнитного клапана?

    Да, для подключения к вашей системе потребуются фитинги, электрические соединения и трубки.Также требуется источник питания, чтобы клапан мог работать. Наконец, необходимы средства управления для управления клапаном с помощью переключателя, платы управления или более сложных средств управления.

    Производители электромагнитных клапанов | Поставщики электромагнитных клапанов

    Список производителей электромагнитных клапанов

    Благодаря преимуществам, которые они предлагают в виде безопасного и быстрого переключения, надежности, длительного срока службы и компактной конструкции, соленоиды очень популярны в различных отраслях промышленности.Однако чаще всего они используются в жилищном, бытовом, промышленном и коммерческом секторах.

    Некоторые общие приложения включают охлаждение, HVAC и кондиционирование воздуха, мойку с электроприводом, кондиционирование воздуха в сельском хозяйстве, пневматические и гидравлические системы (двигатели, цилиндры, буферы и т. Д.), Системы сжатого воздуха, автомобильную технику и бытовую технику.

    История электромагнитных клапанов

    Первым электромагнитным клапаном был электромагнитный регулирующий клапан, проданный и произведенный в 1910 году компанией ASCO Numatics.Затем, в 1950-х годах, производители начали продавать пластмассовые формованные соленоидные клапаны. Переход на пластик означал, что электромагнитные клапаны стали более эффективными, надежными, устойчивыми к коррозии и химическим воздействиям.


    Миниатюрные электромагнитные клапаны — International Polymer Solutions

    Эта тенденция к совершенствованию продолжалась до конца 20 века. Например, начиная с 70-х годов производители начали производить автоматические запорные электромагнитные клапаны, которые были безопаснее и проще в эксплуатации, чем запорные клапаны с ручным управлением.

    В 1990-х годах правительства по всему миру, а также независимые организации начали разработку стандартизации электромагнитных клапанов, что позволило увеличить частоту международной торговли, упростить сотрудничество между компаниями и упростить техническое обслуживание. Сегодня новые стандарты также ограничивают использование опасных веществ при изготовлении клапанов, чтобы повысить их экологичность. Сегодня большая часть инноваций в производстве и использовании клапанов сосредоточена на здоровье и устойчивости.

    Дизайн

    Производственный процесс
    Производители производят электромагнитные клапаны с помощью различных процессов, таких как: обработка с ЧПУ, лазерная сварка, литье под давлением и намотка катушек.После изготовления компонентов клапана они собирают их.

    Эти компоненты включают в себя: катушку электромагнитного клапана, клапан, впускной порт, выпускной порт, пружину, диафрагму и привод. Часто соленоид также имеет уплотнения.

    Материалы
    Производители имеют широкий выбор материалов, из которых они могут построить свои электромагнитные клапаны. Клапаны могут быть изготовлены как из пластика, так и из металла, например ПВХ, природного полипропилена, ПТФЭ, ХПВХ, нержавеющей стали, бронзы, алюминия и латуни.Уплотнения, такие как уплотнения из витона или nbr, обычно изготавливаются из какой-либо резины. Иногда производители делают уплотнения из нержавеющей стали.

    Проектирование и настройка
    Производители электромагнитных клапанов делают выбор на основе технических характеристик, таких как: природная жидкость / газ внутри трубы (коррозионная активность, опасность, вязкость, кислотность и т. Д.), Окружающая среда, частота, с которой будет использоваться труба и требования стандарта приложения. В зависимости от технических характеристик они могут выбирать такие аспекты конструкции, как размер клапана, материал клапана, тип и конфигурация клапана, а также количество портов.

    Поставщики могут настраивать вашу систему электромагнитных клапанов несколькими способами. Например, они обычно создают клапаны с двумя участками соединения и одним отверстием, но они также могут создавать клапаны с тремя участками соединения и двумя отверстиями. Аналогичным образом, хотя они обычно проектируют клапаны для работы от источника постоянного тока на 12 В, они также могут настроить их для работы с источниками питания на 3, 6 или 24 В. Они также могут предоставить вам специализированные данные: уровни давления, возврат пружины, размер клапана и т. Д.

    Характеристики

    Электромагнитные клапаны работают с использованием двух основных компонентов: соленоидной катушки и клапана. Катушка представляет собой катушку из намагниченной проволоки, которая оживает от серии электрических зарядов, а затем излучает электрический ток. Этот ток генерирует магнитное поле, которое преобразует электрическую энергию в механическую для перемещения привода. Привод является продолжением клапана; он вместе с прикрепленной струной отвечает за перемещение клапана из открытого в закрытое положение.

    Электромагнитные клапаны обычно изготавливаются как нормально закрытые (NC) или нормально открытые (NO). Нормально закрытые клапаны работают с внутренним плунжерным стержнем или штифтом, называемым плунжером, удерживаемым на месте катушкой соленоида, которая блокирует ток. Чтобы активировать поток в NC-клапане, через катушку должен быть направлен электромагнитный заряд, который затем поднимет плунжер в сторону, чтобы позволить потоку. С другой стороны, клапаны NO — это наоборот. Они закроются при срабатывании соленоида.

    Типы

    Электромагнитные клапаны определяются тремя основными компонентами, чтобы помочь производителям выбрать, какой клапан может быть лучшим:

    1. Контролируемый материал, например, соленоидные водяные клапаны и соленоидные воздушные клапаны

    2. Конструкция / конструкция клапана , как пропорциональные электромагнитные клапаны, 3-ходовые электромагнитные клапаны и пластиковые электромагнитные клапаны

    3. Как они питаются, например, 12-вольтовые электромагнитные клапаны и пневматические электромагнитные клапаны

    Электромагнитный водяной клапан
    Водяной соленоидный клапан, также называемый гидравлическим соленоидом клапаны, прямой поток воды с пилотным управлением, нормально открытые клапаны.

    Электромагнитный воздушный клапан
    Электромагнитные воздушные клапаны, также называемые газовыми соленоидными клапанами, воздушными клапанами или пневматическими соленоидными клапанами, регулируют поток воздуха и газа с помощью диафрагм и давления газа. Они способны поддерживать как постоянное давление, например, для отопления и охлаждения дома, так и чрезвычайно высокое давление, например, регулируемое для работы с электроинструментом.

    Пропорциональный электромагнитный клапан
    Пропорциональные электромагнитные клапаны работают как обычные пневматические клапаны, за исключением того факта, что они работают с более продвинутыми возможностями управления потоком, которые позволяют им устанавливать переменный поток, пропорциональный электрическому управляющему сигналу клапана.

    Двенадцатавольтный электромагнитный клапан
    Двенадцатавольтный соленоидный клапан питается от источника постоянного тока напряжением 12 вольт. (Стандартно — двенадцать вольт.)

    Электромагнитные клапаны бывают пилотного или прямого действия.

    Электромагнитный клапан с пилотным управлением
    Электромагнитный клапан с пилотным управлением, который представляет собой комбинацию гидравлического или пневматического клапана и соленоидного клапана меньшего размера, использует диафрагму, а не плунжер для создания перепада давления и, таким образом, управления поток.

    Электромагнитный клапан прямого действия
    Электромагнитный клапан прямого действия использует плунжер, который имеет прямой контакт с отверстием корпуса клапана в потоке, называемым диафрагмой. В этом случае плунжер открывает и закрывает отверстие для регулирования потока.

    Электромагнитный клапан полупрямого действия
    Электромагнитный клапан полупрямого действия заимствует свойства клапанов как прямого, так и непрямого действия. Это позволяет им работать при давлении от 0 бар (0 фунтов на кв. Дюйм) при работе с высоким расходом.Обычно они используются для приложений высокого давления.

    Электромагнитный клапан высокого давления
    Электромагнитные клапаны высокого давления являются отличным средством управления потоком в областях, несовместимых с другими клапанами, например, в рабочих зонах, которые связаны с опасным оборудованием или недоступными линиями.

    Электромагнитный клапан из нержавеющей стали
    Электромагнитные клапаны из нержавеющей стали, как следует из их названия, имеют корпус из нержавеющей стали. Поскольку нержавеющая сталь устойчива к коррозии и истиранию, соленоидные клапаны из нержавеющей стали хорошо работают с химическими процессами, которые требуют исключительного контроля щелочей, кислот и аналитических реагентов.

    Миниатюрный электромагнитный клапан
    Миниатюрные электромагнитные клапаны идеального размера для деликатного медицинского оборудования, такого как биотехнологическое оборудование, портативные медицинские устройства и газоанализаторы.

    Дроссельная заслонка
    Дроссельная заслонка — это электромагнитный клапан, который регулирует или изолирует поток жидкости. Его закрывающий механизм представляет собой вращающийся диск, расположенный в центре трубы, где стержень пропускает его через него к приводу на его внешней стороне. Когда привод вращается, диск также будет вращаться перпендикулярно или параллельно потоку.Дроссельная заслонка всегда присутствует в потоке.

    Шаровой кран с приводом
    Шаровой кран с приводом назван так потому, что он содержит шар с небольшим отверстием посередине, которое помогает ему контролировать поток материала через трубу, и привод, который вращает шар. Когда привод катит шар, поток либо запускается, либо останавливается. Одним из наиболее распространенных типов шаровых кранов является трехходовой шаровой кран с тремя отверстиями. В первую очередь шаровые краны с приводом используются для запуска и остановки потока, но не обязательно для управления им.Шаровые краны с приводом лучше всего подходят для приложений с высоким расходом и приложений, требующих возможности ручного дублирования.

    Трубчатый электромагнитный клапан
    Трубчатый соленоидный клапан представляет собой соленоидный клапан в форме трубы. Обычно они используются только с источниками питания постоянного тока.

    Тарельчатый клапан
    Тарельчатый клапан, иногда называемый грибовидным клапаном, состоит из овального или круглого отверстия, а также дискообразной конической заглушки, расположенной на конце вала, называемого штоком клапана.Тарельчатый клапан, который может быть закрытого или открытого типа, используется для управления количеством и синхронизацией потока воздуха / газа в двигателе. Он изготовлен из нержавеющей стали или латуни.

    Латунный электромагнитный клапан
    Электромагнитные клапаны из латуни отлично подходят для работы с некоррозионными веществами, такими как инертный газ, вода или легкое масло. Они недостаточно прочны, чтобы переносить сильно коррозионные вещества.

    Электромагнитный клапан PTFE
    Электромагнитные клапаны, изготовленные из PTFE, также известного под торговой маркой Teflon®, являются отличным выбором для агрессивных газов и агрессивных жидкостей.

    Преимущества электромагнитных клапанов

    Есть много причин для покупки электромагнитных клапанов перед другими. С меньшим количеством движущихся частей, чем у других клапанов, электромагнитные клапаны сравнительно не требуют обслуживания. Они также могут управляться удаленными устройствами, что является бесценной функцией для опасных приложений. Кроме того, их можно сделать портативными. Наконец, электромагнитные клапаны гибкие; возможность использования гидравлической или пневматической энергии.

    Принадлежности

    Типичные принадлежности для электромагнитных клапанов включают: соединители, коллекторы, винты, прокладки и фонари.Из них наиболее распространены разъемы. Они помогают собирать более сложные клапаны в сборе. Чтобы узнать, какие аксессуары лучше всего подходят для вашего приложения, обратитесь к производителю.

    Установка

    Вы, ваш поставщик или профессиональное третье лицо можете установить ваши клапаны. Нет ничего плохого в том, чтобы не сделать это самостоятельно. Если вы все же решите установить клапаны самостоятельно, примите следующий совет, а также совет, предложенный вашим производителем:

    Устанавливайте электромагнитные клапаны в критических точках, чтобы дать любой системе возможность оптимально работать в течение многих лет. .Всегда устанавливайте их в сухом и хорошо вентилируемом помещении, потому что они могут сильно нагреваться во время работы, и вы не хотите, чтобы они перегревались или реагировали с чем-то вокруг. Следите за стрелкой на корпусе клапана, которая указывает направление потока. Установите его в этом направлении.

    Правильный уход за электромагнитными клапанами

    При небольшом внимании ваши электромагнитные клапаны прослужат долго. Один из способов ухода за клапанами — это просто их регулярно чистить по установленному графику.С соответствующими инструментами, такими как те, что входят в комплект для обслуживания, вы можете сделать это без полной разборки клапана. В дополнение к регулярной очистке, если и когда вы заметите утечки, чрезмерный шум или медленную работу, вам следует как можно скорее очистить клапаны.

    Чтобы улучшить работу клапанной системы, избегайте использования несовместимых жидкостей, поскольку это может вызвать преждевременный износ. Кроме того, никогда не позволяйте веществам внутри клапана замерзать. Точно так же всегда держите содержимое клапана при надлежащей температуре и давлении.

    Стандарты

    Стандарты, которым должны соответствовать ваши электромагнитные клапаны, зависят от вашего приложения, отрасли и местоположения.

    Если ваши клапаны будут контактировать с питьевой водой, например, ваши электромагнитные клапаны не должны содержать свинца. В Соединенных Штатах, правила для питьевой воды и водопровода требуют, чтобы оборудование RO (обратного осмоса) было сертифицировано NSF и / или соответствовало NSF 61-G, нормативам по фильтрам и свинцу, выпущенным NSF (Национальным научным фондом).Если вы собираетесь использовать электромагнитные клапаны за границей, они должны быть сертифицированы NSF International как бессвинцовые и аккредитованы как ANSI, так и Советом по стандартам Канады.

    Кроме того, NEMA (Национальная ассоциация производителей электрооборудования) предлагает стандартные обозначения пригодности клапана. Вообще говоря, чем выше номер типа NEMA, тем более жесткое воздействие может выдержать клапан. Например, клапаны NEMA Type 1 хорошо подходят для использования внутри помещений, а клапаны NEMA Type 7 и 9 лучше всего подходят для сред, содержащих взрывоопасную пыль или пары.

    На что следует обратить внимание

    При поиске электромагнитных клапанов для вашего приложения вы должны убедиться, что производитель, с которым вы работаете, может выполнить все ваши спецификации, включая сертификаты, сроки поставки и бюджет.

    Обновлено: 01.05.2021 — 17:08

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *