Самотечная система отопления из полипропилена: Самотечная система отопления из полипропилена

Содержание

Самотечная система отопления из полипропилена

Система отопления с естественной циркуляцией: принцип работы и варианты реализации

Как работает система водяного отопления с естественной циркуляцией? Каковы основные принципы ее монтажа?

Какие основные схемы можно реализовать, не прибегая к помощи циркуляционного насоса? Давайте постараемся выяснить.

А если выбросить из этой схемы насос?

Что это такое

Если для системы с принудительной циркуляций нужен перепад давлений, создаваемый циркуляционным насосом или обеспеченный подключением к теплотрассе, то здесь картина иная. Отопление естественной циркуляцией использует простой физический эффект — расширение жидкости при нагреве.

Если отбросить технические тонкости, принципиальная схема работы такова:

  • Котел нагревает некий объем воды. Так, понятное дело, расширяется и, благодаря меньшей плотности, вытесняется более холодной массой теплоносителя вверх.
  • Поднявшись в верхнюю точку отопительной системы, вода, постепенно остывая, самотеком описывает круг по системе отопления и возвращается к котлу.
    При этом она отдает тепло отопительным приборам и к тому моменту, когда снова оказывается у теплообменника, имеет большую плотность, чем вначале. Далее цикл повторяется.

Полезно: понятное дело, ничто не мешает включить в схему циркуляционный насос. В штатном режиме он будет обеспечивать более быструю циркуляцию воды и равномерный прогрев, а при отсутствии электричества отопительная система будет работать с естественной циркуляцией.

Работа насоса в естественной системе циркуляции.

На фото видно, как решена проблема взаимодействия насоса и системы естественной циркуляции. При работе насоса срабатывает обратный клапан, и вся вода идет через насос.

Стоит его выключить — клапан открывается, и по более толстой трубе вода циркулирует за счет теплового расширения.

Общая информация

Основные моменты

  • Отсутствие циркуляционного насоса и вообще подвижных элементов и замкнутый контур, в котором количество взвесей и минеральных солей конечно, делает срок службы системы отопления этого типа весьма продолжительным. При использовании оцинкованных или полимерных труб и биметаллических радиаторов — не менее полувека.
  • Естественная циркуляция отопления означает довольно небольшой перепад давлений. Трубы и отопительные приборы неизбежно оказывают движению теплоносителя определенное сопротивление. Именно поэтому рекомендованный радиус интересующей нас системы отопления оценивается примерно в 30 метров. Понятно, это не означает, что при радиусе в 32 метра вода застынет — граница довольно условна.
  • Инерционность системы будет довольно большой. Между растопкой или запуском котла и стабилизацией температуры во всех отапливаемых помещениях может пройти несколько часов. Причины понятны: котлу предстоит прогреть теплообменник, и лишь тогда вода начнет циркулировать, причем довольно медленно.
  • Все горизонтальные участки трубопроводов делаются с обязательным уклоном по ходу движения воды. Он обеспечит свободное движение остывающей воды самотеком с минимальным сопротивлением. Что не менее важно — в этом случае все воздушные пробки будут вытеснены в верхнюю точку отопительной системы, где монтируется расширительный бачок — герметичный, с воздушником, или открытый.

Весь воздух соберется в верхней точке.

Саморегуляция

Отопление дома с естественной циркуляцией — саморегулирующаяся система. Чем холоднее в доме, тем быстрее циркулирует теплоноситель. Как это работает?

Дело в том, что циркуляционный напор зависит от:

  • Разницы в высоте между котлом и нижним отопительным прибором. Чем ниже котел относительно нижнего радиатора — тем быстрее вода будет переливаться в него самотеком. Принцип сообщающихся сосудов, помните? Этот параметр стабилен и неизменен в процессе работы отопительной системы.

Схема демонстрирует принцип работы отопления наглядно.

Любопытно: именно поэтому отопительный котел рекомендуется устанавливать в подвале или просто как можно ниже внутри помещения. Однако автору доводилось видеть прекрасно функционирующую систему отопления, в которой теплообменник в топке печи был заметно выше радиаторов. Система была полностью рабочей.

  • Разницы в плотности воды на выходе из котла и в обратном трубопроводе. Которая, понятно, определяется температурой воды. И вот именно благодаря этой особенности естественное отопление делается саморегулирующимся: как только температура в помещении падает, отопительные приборы остывают.

С падением температуры теплоносителя его плотность увеличивается, и он начинает быстрее вытеснять нагретую воду из нижней части контура.

Скорость циркуляции

Помимо напора, скорость циркуляции теплоносителя будет определяться рядом других факторов.

  • Диаметром труб разводки. Чем меньше внутреннее сечение трубы, тем большее сопротивление она будет оказывать движению жидкости в ней. Именно поэтому для разводки в случае естественной циркуляции берутся трубы с намерено завышенным диаметром — ДУ32 — ДУ40.
  • Материалом трубы. Сталь (особенно поврежденная коррозией и покрытая отложениями) оказывает потоку в несколько раз большее сопротивление, чем, к примеру, полипропиленовая труба с тем же сечением.
  • Количеством и радиусом поворотов. Поэтому основную разводку по возможности лучше делать максимально прямой.
  • Наличием, количеством и типом запорной арматуры
    . разнообразных подпорных шайб и переходов диаметра трубы.

Каждый вентиль, каждый изгиб вызывает падение напора.

Именно из-за обилия переменных точный расчет системы отопления с естественной циркуляцией выполняется крайне редко и дает весьма приблизительные результаты. На практике же достаточно воспользоваться уже приведенными рекомендациями.

Расчет мощности

Эффективная тепловая мощность котла рассчитывается теми же способами, что и во всех других случаях.

По площади

Простейший способ — рекомендованный СНиП расчет по площади помещения. 1 КВт тепловой мощности должен приходиться на 10 м2 площади помещения. Для южных районов берется коэффициент 0,7 — 0,9, для средней полосы страны — 1,2 — 1,3, для районов Крайнего Севера — 1,5-2,0.

Как и любой грубый подсчет, этот способ пренебрегает многими факторами:

  • Высотой потолков. Она далеко не везде составляет стандартные 2,5 метра.
  • Утечками тепла через проемы.
  • Расположением помещения внутри дома или у внешних стен.

Все способы расчетов дают большие погрешности, поэтому тепловая мощность обычно закладывается в проект с некоторым запасом.

По объему с учетом дополнительных факторов

Более точную картину даст другой способ расчета.

  • За основу берется тепловая мощность в 40 ватт на кубический метр объема воздуха в помещении.
  • Районные коэффициенты действуют и в этом случае.
  • Каждое окно стандартного размера прибавляет к нашим подсчетам 100 ватт. Каждая дверь — 200.
  • Расположение комнаты у внешней стены даст в зависимости от ее толщины и материала коэффициент 1,1 — 1,3.
  • Частный дом, у которого внизу и вверху — не теплые соседние квартиры, а улица, рассчитывается с коэффициентом 1,5.

Однако: и этот расчет будет ОЧЕНЬ приблизительным. Достаточно сказать, что в частных домах, построенных по энергосберегающим технологиям, в проект закладывается мощность обогрева в 50-60 ватт на КВАДРАТНЫЙ метр. Слишком многое определяется утечками тепла через стены и перекрытия.

Схемы разводки

Конкретных примеров и схем того, как может быть реализовано отопление с естественной циркуляцией своими руками, ОЧЕНЬ много. Мы приведем по одному примеру простейших решений для двухтрубной и однотрубной разводки.

Двухтрубная

Разводка двухтрубного отопления с естественной циркуляцией.

Обозначения на схеме:

  1. Отопительный котел.
  2. Расширительный бак, который служит для компенсации изменения объема теплоносителя при колебаниях температуры и собирает вытесненный воздух.
  3. Отопительные приборы — конвектора или радиаторы.

Т1 — нагретая котлом вода, Т2 — остывшая. Красными и синими стрелками показано направление движения теплоносителя.

Здесь при разводке актуальны те же основные принципы, которые были перечислены выше:

  • Котел устанавливается по возможности ниже радиаторов.
  • По току воды делается уклон в 5-7 градусов.
  • Розливы там, где от них запитаны несколько радиаторов, выполняются трубой не ниже ДУ32 мм. Желательно — полимерной или металлопластиковой. Подводки к радиаторам традиционно выполняются трубой ДУ20.

Важно: не путайте ДУ, примерно равной внутреннему сечению трубы, с ее внешним диаметром. В случае полипропилена внешний диаметр 32 миллиметра соответствует всего-то ДУ20.

Двухтрубное отопление частного дома с естественной циркуляцией при правильно подобранных диаметрах труб не требует балансировки, однако дроссели на подводках к радиаторам не помешают.

Наличие двух контуров по всему периметру дома будет довольно накладным: цена полипропиленовых армированных труб не так уж мала, да и сам монтаж займет значительное время. Поэтому для большинства одноэтажных домов применяется однотрубная разводка.

Однотрубная

Простейшая однотрубная схема барачного типа — Ленинградка.

Уклон и диаметр труб здесь такие же. Есть несколько нюансов, важных именно для этой схемы.

  • Радиаторы не разрывают основное кольцо, а врезаются параллельно ему. Не переживайте, что в отопительных приборах не будет циркуляции — опыт доказывает обратное.
  • Помимо расширительного бачка, воздушником снабжается каждый радиатор. Собственно, если не стравливать воздух полностью из одного отопительного прибора — без расширительного бачка и вовсе прекрасно можно обойтись. Если, конечно, система отопления закрытого типа (изолированная от атмосферного воздуха).
  • Дроссели или термоголовки помогут выровнять температуру ближних к котлу и дальних радиаторов.

Вариант однотрубной схемы для двухэтажного дома с котлом в подвале.

Заключение

Дополнительная информация о системах отопления с естественной циркуляцией, как всегда, в видео в конце статьи. Теплых зим!

Самотечная система отопления для частного дома: простая и недорогая схема с естественной циркуляцией

Централизованная система отопления постепенно отживает свое, поскольку, как можно заметить, она не способна справиться с возложенными на нее задачами по отоплению помещений. Поэтому, все чаще можно встретить использование автономного отопления.

Наиболее актуальным данный вопрос является для частных домов, по причине отсутствия какого-либо источника тепла. Существует несколько схем отопления, что дает возможность каждому выбрать свою по душе и в соответствии с финансовыми предпочтениями.

Разновидности

Рассмотрим варианты систем отопления для частных и многоквартирных домов:

• с использованием принудительной циркуляции теплоносителя;

• естественная циркуляция с использованием самотёка теплоносителя.

Системы с естественной циркуляцией получили широкое распространение, главным образом, благодаря своим сильным сторонам:

• функционирование системы с естественной циркуляцией независимо от того есть напряжение в сети или нет;

• высокие показатели инерционности системы, где внешние факторы не влияют на распространение тепла.

Примите к сведению: следует с особым вниманием подойти к выбору диаметра используемых труб для системы отопления, учитывая то, что больший диаметр улучшает циркуляцию воды, однако и здесь тоже следует знать меру.

Принцип функционирования оборудования

Система предусматривает проталкивание горячей воды наверх. Использование данной схемы отопления дома позволяет выполнять монтаж котла ниже отопительных радиаторов.

С верхней части вода в трубе с небольшим углом продвигается дальше. Здесь нужно обратить внимание на трубы, что отходят от главной ветки, подключенные к отопительным батареям, поскольку они должны быть тоньше.

Наиболее актуальным этот принцип является для систем с верхним типом раздачи, откуда самотечная система проталкивает воду к радиаторам.

В случае, когда используется схема, подразумевающая нижнюю раздачу, отопление частного двухэтажного дома самотечным способом возможно, только если есть разгонный контур. Это означает, что следует создать перепад высот, путем подключения трубы к котлу, подымающуюся к расширительному бачку. Далее труба опускается на уровень окон и оттуда делается разводка по батареям.

Следует учесть: помехой самотечной системы отопления может быть низкий потолок, поскольку предусмотрено, что труба от верхней точки котла должна на 1,5 метра отходить, и плюс расстояние на расширительный бачок.

Наибольшим плюсом, которым обладает гравитационная отопительная система, является, то, что самотек воды выполняется без участия других систем. Это означает, что в случае использования дровяного котла. горячая вода будет поступать в систему самотеком без использования насоса или какого-либо другого оборудования, требующего включения электричества.

Правда, при помощи таких схем можно обогревать только дома небольшой площади, поскольку существует ограничение длины контура труб не более 30 метров. Такая система еще носит название ленинградка.
Разновидности самотечных отопительных систем

Используется одна или две трубы, и это не влияет на принцип работы, поскольку вода поднимается как можно выше, где учитывается уклон, а далее она поступает во все элементы системы. Двухтрубный вариант системы закрытого типа отличается тем, что вода переходит в соседнюю ветку, через вход обратки котла.

Отличием однотрубной системы является то, что здесь на вход вода поступает от последнего радиатора. Подобный принцип применяется и в отопительных системах, сделанных своими руками.

Используемые радиаторы отопления

Наиболее значимый показатель здесь – это минимальное сопротивление потоку воды. А от ширины просвета радиатора зависит струя теплоносителя, вне зависимости от того, используете вы трубы из полипропилена или из других материалов. Однако, чугунные радиаторы в данном отношении будут просто идеальными, особенно когда используется однотрубная система. Они имеют наименьшее гидравлическое сопротивление.

Хорошо себя зарекомендовали в использовании алюминиевые и биметаллические радиаторы. но нужно обращать внимание на их внутренний диаметр, который не должен быть менее 3/4”. Этого будет для отопления одноэтажного дома вполне достаточно, не используя циркуляционный насос. Разрешается использовать стальные трубчатые батареи.

Обратите внимание: нежелательно использовать на водяное отопление панельные батареи из стали или другие с маленьким сечением, через которые вода или не сможет протекать вообще, или же будет проходить очень небольшой струйкой, что в однотрубной разновидности ограничит циркуляцию или станет для нее препятствием.

Разновидности схем подключения радиаторов

Характерно, что для хорошего отопления недостаточно того, чтобы котлы хорошо нагревали воду. Очень важно для поступления теплоносителя в радиаторы правильно их подключить.

На практике для однотрубного используется нерегулируемое последовательное подключение. Правда, этой проблемы удастся избежать, если у вас будет использована двухтрубная система. Данная система также не использует регулятор, однако, если радиатор завоздушится, система будет функционировать, поскольку вода будет проходить через перемычку (байпас). Правда для такой системы, как теплый пол, данный вариант не подходит.

Установка за перемычкой двух шаровых кранов позволяет, перекрыв поток, снять или отключить радиаторы, при этом систему останавливать не нужно. Так правильный расчет радиаторов отопления позволит Вам помещение оснастить теплоаккумулятором.

Совет специалиста: циркуляция воды в системе осуществляется за счет разницы температур и разной плотности, поэтому обратный клапан устанавливать не нужно.

Выбор труб

Выбирая трубы для отопления, большое значение имеет не только диаметр, но и материал, из которого они изготовлены, а, если быть точнее, гладкость их стенок, поскольку это коренным образом влияет на систему.

Также, на выбор материала большое влияние оказывает котел, поскольку в случае с твердотопливным предпочтение следует отдать стальным, оцинкованным трубам или же изделиям из нержавейки, в связи с высокой температурой рабочей жидкости.

Однако, металлопластиковые и армированные трубы предполагают использование фитингов, что значительно сужает просвет, армированные полипропиленовые трубы будут идеальным вариантом, при рабочей температуре 70С, и пиковой – 95С.

Изделия из особого пластика PPS имеют рабочую температуру 95С, и пиковую – до 110С, что позволяет использовать в открытой системе.

Особенности систем самотеком

Ввиду того, что образуются турбулентные потоки, точные расчеты систем провести не удается, поэтому при их проектировке берутся усредненные значения, для этого:

• максимально поднимают точку разгона;

• используют широкие трубы подачи;

Далее от начала первого расхождения до каждого последующего подключают трубу меньшего диаметра на шаг, равный ему, что задействует инерционные потоки.

Также существуют и другие особенности монтажа самотечных систем. Так, трубы должны прокладываться под углом 1-5%, на что влияет протяженность трубопровода. Если в системе достаточный перепад высот и температур, можно использовать и горизонтальную разводку. Важно следить, чтобы не было участков с отрицательным углом, поскольку движением теплоносителя их не удастся достать, по причине образования в них воздушных пробок.

Так, принцип работы может основываться на открытом типе или быть мембранного (закрытого) типа. Если сделать монтаж горизонтальной ориентации, рекомендуется на каждом радиаторе установить краны Маевского. поскольку с их помощью легче ликвидировать воздушные пробки в системе.

Смотрите видео, в котором специалист рассказывает об условиях возможности применения самотечной, безнасосной, гравитационной системы отопления:

Самотечная система отопления с естественной циркуляцией – расчеты, уклоны, виды

Система с гравитационной циркуляцией чувствительна к ошибкам, допущенным во время монтажа отопления.

Принцип работы системы с естественной циркуляцией

Схема отопления частного дома с естественной циркуляцией пользуется популярностью благодаря следующим преимуществам:

  • Простой монтаж и обслуживание.
  • Отсутствие необходимости в установке дополнительного оборудования.
  • Энергонезависимость – во время работы не требуются дополнительные расходы на электроэнергию. При отключении электричества, система обогрева продолжает работать.

Принцип работы водяного отопления, с использованием самотечной циркуляции, основан на физических законах. При нагревании уменьшается плотность и вес жидкости, а при остывании жидкостной среды, параметры возвращаются в первоначальное состояние.

При этом, давление в системе отопления практически отсутствует. В теплотехнических формулах принимается соотношение 1 атм. на каждые 10 м. напора водяного столба. Расчет системы отопления 2-х этажного дома покажет, что гидростатическое давление не превышает 1 атм. в одноэтажных зданиях 0,5-0,7 атм.

Так как при нагреве жидкость увеличивается в объеме, для естественной циркуляции, обязательно потребуется расширительный бак. Вода, проходящая через водяной контур котла, нагревается, что приводит к увеличению в объеме. Расширительный бачек должен находиться на подаче теплоносителя, в самом верху системы отопления. Задачей буферной емкости является компенсация увеличения объема жидкости.

Система отопления с самоциркуляцией может применяться в частных домах, делая возможным следующие подключения:

  • Подсоединение к теплым полам – требует установить циркуляционный насос, только на водяной контур, уложенный в пол. Остальная система продолжит работать с естественной циркуляцией. После отключения электричества, помещение продолжит отапливаться с помощью установленных радиаторов.
  • Работа с бойлером косвенного нагрева воды – подключение к системе с естественной циркуляцией возможно, без необходимости в подключении насосного оборудования. Для этого бойлер устанавливают в верхней точке системы, чуть ниже воздушного расширительного бака закрытого или открытого типа. Если это невозможно, тогда насос устанавливают непосредственно на накопительную емкость, дополнительно устанавливая обратный клапан, чтобы избежать рециркуляции теплоносителя.

В системах с гравитационной циркуляцией, движение теплоносителя осуществляется самотеком. Благодаря естественному расширению, нагретая жидкость поднимается вверх по разгонному участку, а после, под уклоном «стекает», через трубы, подключенные к радиаторам, обратно к котлу.

Виды систем отопления с гравитационной циркуляцией

Несмотря на простое устройство системы водяного отопления с самоциркуляцией теплоносителя, существует как минимум четыре, пользующихся популярностью, схемы монтажа. Выбор типа разводки зависит от характеристик самого здания и ожидаемой производительности.

Чтобы определить, какая схема будет работоспособной, в каждом отдельном случае требуется выполнить гидравлический расчет системы, учесть характеристики отопительного агрегата, рассчитать диаметр трубы и т. п. При выполнении вычислений может потребоваться помощь профессионала.

Закрытая система с самотечной циркуляцией

В странах ЕС, системы закрытого типа пользуются наибольшей популярностью среди других решений. В РФ схема пока не получила широкого применения. Принципы действия водяной системы отопления закрытого типа с безнасосной циркуляцией заключается в следующем:

  • При нагревании теплоноситель расширяется, происходит вытеснение воды из контура отопления.
  • Под давлением жидкость поступает в закрытый мембранный расширительный бак. Конструкция емкости представляет полость, разделенную мембраной на две части. Одна половина бачка заполнена газом (в большинстве моделей используется азот). Вторая часть остается пустой для наполнения теплоносителем.
  • При нагревании жидкости создается давление, достаточное, чтобы продавить мембрану и сжать азот. После остывания, происходит обратный процесс, и газ выдавливает воду из бачка.

В остальном, системы закрытого типа, работают, как и остальные схемы отопления с естественной циркуляцией. В качестве минусов можно выделить зависимость от объема расширительного бака. Для помещений с большой отапливаемой площадью, потребуется установить вместительную емкость, что не всегда целесообразно.

Открытая система с самотечной циркуляцией

Система отопления открытого типа отличается от предыдущего типа только конструкцией расширительного бака. Данная схема чаще всего использовалась в старых зданиях. Преимуществами открытой системы является возможность самостоятельного изготовления емкости из подручных материалов. Бачок, обычно имеет скромные габариты и устанавливается на кровле или под потолком жилой комнаты.

Главным недостатком открытых конструкций является попадание воздуха в трубы и радиаторы отопления, что приводит к усилению коррозии и быстрому выходу из строя греющих элементов. Завоздушивание системы также частый «гость» в схемах открытого типа. Поэтому, радиаторы устанавливаются под углом, обязательно предусматриваются краны Маевского, для стравливания воздуха.

Однотрубная система с самоциркуляцией

Однотрубная горизонтальная система с естественной циркуляцией имеет низкую теплоэффективность, поэтому используется крайне редко. Суть схемы такова, что подающая труба последовательно подключена к радиаторам. Нагретый теплоноситель поступает в верхний патрубок батареи и выводится через нижний отвод. После этого тепло поступает к следующему узлу отопления и так до последней точки. От крайней батареи к котлу возвращается обратка.

Преимуществ у данного решения несколько:

  1. Отсутствует парный трубопровод под потолком и над уровнем пола.
  2. Экономятся средства на монтаж системы.

Недостатки такого решения очевидны. Теплоотдача радиаторов отопления и интенсивность их нагрева снижается по мере отдаленности от котла. Как показывает практика, однотрубная система отопления двухэтажного дома с естественной циркуляцией, даже при соблюдении всех уклонов и подбора правильного диаметра труб, зачастую переделывается (посредством монтажа насосного оборудования ).

Двухтрубная система с самоциркуляцией

Двухтрубная система отопления в частном доме с естественной циркуляцией, имеет следующие конструктивные особенности:

  1. Подача и обратка проходят по разным трубам.
  2. Подающий трубопровод подсоединен к каждому радиатору через входной отвод.
  3. Второй подводкой батарея подключается к обратке.

В результате, двухтрубная система радиаторного типа дает следующие преимущества:

  1. Равномерное распределение тепла.
  2. Отсутствие необходимости в добавлении секций радиатора для лучшего прогрева.
  3. Проще выполнить регулировку системы.
  4. Диаметр водяного контура, по крайней мере, на размер меньше чем в однотрубных схемах.
  5. Отсутствие строгих правил установки двухтрубной системы. Допускаются небольшие отклонения относительно уклонов.

Главным достоинством двухтрубной системы отопления с нижней и верхней разводкой является простота и одновременно эффективность конструкции, что позволяет нивелировать ошибки, допущенные в расчетах или во время проведения монтажных работ.

Как правильно сделать водяное отопление с естественной циркуляцией

Все гравитационные системы объединяет общий недостаток – отсутствие давления в системе. Любые нарушения во время проведения монтажных работ, большое количество поворотов, несоблюдение уклонов, моментально отражаются на работоспособности водяного контура.

Чтобы сделать грамотно отопление без насоса, учитывается следующее:

  1. Минимальный угол уклонов.
  2. Тип и диаметр труб, используемых для водяного контура.
  3. Особенности подачи и вид теплоносителя.

Какой уклон труб нужен при самотечной циркуляции

Нормы проектирования внутридомовой системы отопления с гравитационной циркуляцией, подробно прописаны в строительных нормах. В требованиях учитывается, что движению жидкости внутри водяного контура будет мешать гидравлическое сопротивление, препятствия в виде углов и поворотов, и т.д.

Уклон отопительных труб регламентируется в СНиП. Согласно указанным в документе нормам, на каждый погонный метр требуется сделать наклон в 10 мм. Соблюдение данного условия гарантирует беспрепятственное движение жидкости в водяном контуре. Нарушение наклона при прокладке труб, приводит к завоздушиванию системы, недостаточному прогреву отдаленных от котла радиаторов, и, как следствие, снижению теплоэффективности.

Нормы уклона труб при естественной циркуляции теплоносителя указаны в СНиП 41-01-2003 «Прокладка трубопроводов отопления».

Какие трубы применяют для монтажа

Выбор труб для изготовления отопительного контура имеет важное значение. Каждый материал имеет свои теплотехнические характеристики, гидравлическую сопротивляемость и т.д. При самостоятельном выполнении монтажных работ, дополнительно учитывают сложность монтажа.

Чаще всего используют следующие строительные материалы:

  • Стальные трубы – к достоинствам материала следует отнести: доступную стоимость, устойчивость к высокому давлению, теплопроводность и прочность. Недостатком стали является сложный монтаж, невозможный, без применения сварочного оборудования.
  • Металлопластиковые трубы – имеют гладкую внутреннюю поверхность, не дающую контуру засориться, небольшой вес и линейное расширение, отсутствие коррозии. Популярность металлопластиковых труб несколько ограничивает небольшой срок эксплуатации (15 лет) и высокая стоимость материала.
  • Полипропиленовые трубы – получили широкое применение благодаря простоте монтажа, высокой герметичности и прочности, длительному сроку эксплуатации и устойчивости к размерзанию. Трубы из полипропилена монтируются с помощью паяльника. Срок службы не менее 25 лет.
  • Медные трубы – не получили широкого распространения за счет большой стоимости. Медь имеет максимальную теплоотдачу. Выдерживает нагрев до + 500°С, срок эксплуатации свыше 100 лет. Особенной похвалы достоин внешний вид трубы. Под воздействием температуры, поверхность меди покрывается патиной, что только улучшает внешние характеристики материала.

Какого диаметра должны быть трубы при циркуляции без насоса

Правильный расчет диаметров труб на водяное отопление с естественной циркуляцией осуществляется в несколько этапов:

  • Подсчитывается потребность помещения в тепловой энергии. К полученному результату добавляют около 20%.
  • СНиП указывает соотношение тепловой мощности к внутреннему сечению трубы. Высчитываем по приведенным формулам сечение трубопровода. Чтобы не выполнять сложные вычисления, стоит воспользоваться он-лайн калькулятором.
  • Диаметр труб системы с естественной циркуляцией должен быть подобран согласно теплотехническим расчетам. Чрезмерно широкий трубопровод приводит к снижению теплоотдачи и увеличению расходов на отопление. На ширину сечения влияет тип используемого материала. Так, стальные трубы не должны быть уже 50 мм. в диаметре.

Существует еще одно правило, помогающее усилить циркуляцию. После каждого разветвления трубы, диаметр сужают на один размер. На практике это значит следующее. К котлу подключена двухдюймовая труба. После первого разветвления контур сужают до 1 ¾, дальше до 1 ½ и т.д. Обратку наоборот собирают с расширением.

Если расчеты диаметра были выполнены верно, и соблюдены уклоны трубопроводов при проектировании и выполнении монтажных работ системы отопления с самотечной циркуляцией, проблемы в работе встречаются крайне редко и в основном происходят по причине неправильной эксплуатации.

Какой розлив лучше сделать – нижний или верхний

Естественная циркуляция воды в системе отопления одноэтажного дома во многом зависит и от выбранной схемы подачи теплоносителя непосредственно к радиаторам. Принято классифицировать все типы подключения или розлива на две категории:

  • Система с нижним розливом – имеет привлекательный внешний вид. Трубы располагаются на уровне пола. Однотрубная система с нижней разводкой имеет малую теплоэффективность и требует тщательного планирования и проведения расчетов. Схемы с нижним розливом наиболее востребованы для трубопроводов высокого давления.

  • Система с верхним розливом – данное решение оптимально подходит для частного дома. Подача горячей воды осуществляется посредством трубы, расположенной под потолком. Поступающий сверху теплоноситель, вытесняет скопившийся воздух (воздух стравливается через краны Маевского). Однотрубная система водяного отопления с верхним розливом, также отличается эффективностью.

    Ошибки в выборе типа розлива приводят к необходимости модифицировать водяной контур посредством установки циркуляционного оборудования.

    Какой теплоноситель лучше для систем с самоциркуляцией

    Оптимальный теплоноситель для системы отопления с естественным движением жидкости – это вода. Дело в том, что антифриз имеет большую плотность и меньшую теплоотдачу. Для нагрева гликолевых составов до необходимого состояния, требуется больше времени, сжигаемого топлива, при этом теплоотдача остается на уровне воды.

    За использование незамерзающей жидкости, в качестве довода можно привести два довода:

    1. Высокая текучесть материала, улучшающая циркуляцию.
    2. Способность сохранять текучесть при достижении -10°С, -15°С.

    Антифриз используют, если планируется в течение долгого времени не отапливать помещение, или делать это с периодичностью, а постоянно сливать жидкость из системы нет возможности.

    Какое отопление лучше выбрать – естественное или принудительное?

    Конструктивные особенности системы с естественной гравитационной циркуляцией, простота монтажа и возможность самостоятельного выполнения работ, сделали такую схему достаточно популярной у отечественного потребителя. Но самоциркулирующая конструкция проигрывает по сравнению с контуром, подключенным к насосному оборудованию, в следующих аспектах:

    • Начало работы – система отопления с естественной циркуляцией начинает работать при температуре теплоносителя около 50°С. Это необходимо, чтобы вода расширилась в объеме. При подключении к насосу, жидкость двигается по водяному контуру сразу после включения.
    • Падение мощности отопительных приборов при естественной циркуляции теплоносителя по мере отдаленности от котла. Даже при грамотно собранной схеме, разница температуры составляет порядка 5°С.
    • Влияние воздуха – основной причиной отсутствия циркуляции является завоздушивание части водяного контура. Воздух в системе отопления может образовываться из-за несоблюдения уклонов, использования открытого расширительного бачка и других причин. Чтобы продавить систему, приходится включать котел на максимальную мощность, что приводит к существенным затратам.
    • Отопление двухэтажного дома при естественной циркуляции теплоносителя затруднено по причине существующих препятствий для движения жидкости.
    • Относительно регуляции нагрева, самоциркулирующие системы также уступают контурам, подключенным к насосам. Современное циркуляционное оборудование подключается к комнатным термостатам, что обеспечивает точность теплоотдачи и нагрев температуры в помещении с погрешностью до 1°С. Установка терморегуляторов допускается и в схемах с самоциркуляцией, но погрешность настроек составит 3-5°С.

    Выбрать систему с естественной циркуляцией, оправдано, в случае отопления небольших одноэтажных зданий. Если требуется отапливать коттеджи и загородные дома площадью более 150-200 м², нужна установка циркуляционного оборудования.

    Главным достоинством схем с самоциркуляцией является их энергонезависимость, но произведя несложные расчеты, можно прийти к выводу, что экономия на электроэнергии не оправдывает потери тепла в процессе самостоятельного движения теплоносителя. Схемы с принудительной циркуляцией имеют большую теплоотдачу и эффективность.

    Расчет мощности и температуры тёплого водяного пола

    Источники: http://otoplenie-gid. ru/cirkulyaciya/estestvennaya/113-sistema-otopleniya-s-estestvennoj-cirkulyaciej, http://teplo.guru/sistemy/shema-s-estestvennoy-tsirkulyatsiey.html, http://avtonomnoeteplo.ru/armatura/696-sistema-otopleniya-s-estestvennoy-cirkulyaciey.html

  • Диаметр полипропиленовых труб для открытой системы отопления

    Одним из наиболее частых вопросов по диаметру труб задается относительно труб из полипропилена для открытой системы отопления. Несмотря на то что вопрос не корректный из за того что в нем не существует таких переменных как мощность котла, площадь помещения и количество радиаторов отопления, то точного ответа тоже на этот вопрос не существует.

    Однако однозначно нужно отметить что любая открытая система отопления относится к термосифонной системе циркуляции теплоносителя. Поэтому трубы должны быть максимального размера для того что бы обеспечивалась надежная циркуляция теплоносителя внутри самотечной системы отопления.

    Для хорошей циркуляции самотеком важны в первую очередь гидро-уклоны и конечно же основной самотечный контур из труб большого сечения для наименьшего сопротивления.

    Кроме того циркулирует мнение что только открытые системы с наличием расширительного бака способны на на то что бы самостоятельно – без насосов обеспечивать циркуляцию теплоноситля в системе отопления.  Это не так – раширительный бак ни как не способствует циркуляции жидкости а служит лишь только для того что бы вбирать в себя излишек жикости из системы отопления.  С этой задачей вполне прекрасно может справиться экспанзомат или в простонародье (груша).

    Груша – экспанзомат, можно устанавливать в любом месте отопительной системы в отличии от расширительного бака который в обязательном порядке придется установить непосредственно над котлом, что может быть не всегда удобно.  С точки зрения практического сравнения экспанзомата и расширительного бвчка нет ни какой разницы в достижении самотечного эффекта циркуляции теплоносителя в системе. Однако использование открытой системы с расширительным баком позволяет кислороду попадать в теплоноситель и распределяться по всей системе отопления из за чего стальные трубы и чугунные радиаторы подвергаются коррозии в большей степени нежели в открытой.

    Вывод: Ставьте трубы как можно толще и не бойтесь делать самотечную или термосифоннуй закрытого типа. Вода по ней потечет в лбом случае лишь бы были правильно соблюдены гидроуклоны.

          Рекомендации

    Использование полипропиленовых труб и фитингов в системе отопления (горячего водоснабжения) частного дома

    Использование полипропиленовых труб при монтаже водяной системы отопления частного дома наиболее типичный случай рассказать, на что надо обратить внимание при проведении этой работы.

    Что такое система отопления в индивидуальном доме? Это совокупность котлов, радиаторов, расширительного бака, приборов визуального контроля и вспомогательных устройств (элементов), соединенных между собой трубопроводами и фитингами.

    Первое в обустройстве системы отопления – это проект 

    Проект системы отопления индивидуального дома разрабатывается на основе общего проекта здания (предполагается, что он разработан специализированной организацией) и является необходимым приложением к нему. При этом необходимо систему отопления «увязывать» с системами водоснабжения и внутренней канализации.

    Прежде чем приступить к проектированию системы отопления необходимо учесть следующее:
    • тип водоснабжения частного дома (скважина, централизованное водоснабжение, другое), характеристики поступающей воды (жесткость, наличие нерастворимых примесей и др).

    • возможность подключения дома к централизованной системе отопления.

    • общую площадь здания и отапливаемую площадь, этажность здания.

    • возможность выделения в здании отдельного помещения (котельной), в котором будут размещены котел отопления и циркуляционный насос.

    • тип системы отопления: однотрубная или двухтрубная, самотечная или с принудительной циркуляцией теплоносителя.

    • тип котла отопления (газовый, на жидком топливе, на твердом топливе, электрический).

    • материал труб и фитингов, из которых будет сооружаться система отопления.

    Все эти показатели существенно повлияют на будущий проект.

    Проект системы отопления включает следующие основные разделы: 
    • теплотехнический расчет, включающий расчеты по рабочей и максимальной температуре и давлению;
    • подбор оборудования и материалов для системы;

    • подбор радиаторов отопления по теплотехническому расчету;

    • схема разводки радиаторного отопления по этажам;

    • аксонометрическая схема;

    • спецификация необходимого оборудования и материалов;

    • последовательность выполнения работ, особенности монтажа отдельных участков системы отопления (горячего водоснабжения). Применяемые инструменты и специальное оборудование (выполнение правил СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование»).

    • требования к квалификации специалистов, которые будут осуществлять монтаж системы отопления/горячего водоснабжения.

    Поскольку назначением настоящей статья является использование полипропиленовых труб и фитингов в отопительной системе, в дальнейшем рассматриваем только эти материалы.

    Требования при выборе труб и фитингов для системы отопления (горячего водоснабжения).

    Современный ассортимент труб и фитингов для отопления достаточно разнообразен – базовый материал, диаметры и толщина стенок труб, отсутствие или наличие армирования, физические и эксплуатационные характеристики (гибкость, линейное расширение, удобство в работе, срок службы), цена и даже цвет. Все это учитывается при составлении спецификации к проекту системы отопления.

    Если вы принимаете решение использовать пластиковые трубы для системы отопления (горячего водоснабжения) своего дома, то необходимо знать следующее:
    1. Рабочая температура жидкости для пластиковых труб должна быть в диапазоне 70 – 80 оC с возможностью кратковременного повышения до температуры 90 оC. Даже при максимальном нагреве труба не должна деформироваться и ухудшать свои технические характеристики.

    2. В отопительной системе пластиковые трубы должны выдерживать давление до 25 Бар (25.6 кг/см²) и иметь толщину стенок не менее 3 мм. В системах горячего водоснабжения достаточно выдерживать давление до 20 Бар (20,4 кг/см²) и меть толщину стенок от 2.5 мм.

    3. Коэффициент линейного термического расширения пластиковых труб должен обеспечить минимальное изменение их размеров в пределах всего диапазона рабочей температуры. Использование армированных пластиковых труб, например стекловолокном, позволит снизить коэффициент линейного расширения примерно на 75% в сравнении с неармированными трубами из пластика.

    4. Внутренняя поверхность пластиковых труб должна быть максимально гладкой с целью минимизации отложения солей или накипи.

    5. Материал труб и фитингов должен быть инертен к воде и к рабочей жидкости (теплоносителю) в системе отопления даже при максимальной температуре в системе.

    6. Срок службы пластиковых труб для горячего водоснабжения/отопления должен быть не менее 25 – 30 лет и не ниже, чем у основных элементов системы.

    7. Стоимость пластиковых труб и фитингов должна быть достаточно оптимальной и не занимать максимальную долю в общей стоимости системы отопления в целом.

     

    Еще один существенный момент при подборе труб и фитингов для отопительной системы – это их закупка от одного производителя (понимается проверенный изготовитель с современным оборудованием и качественной продукцией). Во-первых, это облегчит претензионную работу в случае выявления дефектов. Во-вторых, пластиковые трубы и фитинги от разных производителей могут иметь несколько отличные допуски в размерах. При стыковке элементов от различных производителей существует вероятность некачественного стыка, которая в последствии может привести к неисправности.

     

    На современном рынке для отопительных систем жилых и административных зданий массово представлены пластиковые трубы и фитинги на основе полиэтилена и полипропилена различных исполнения и ценовых категорий.

    Наиболее оптимальны по сумме экономических и технических характеристик трубы и фитинги из статического полипропилена третьего типа изготовленные по ГОСТ Р 32415-2013 «Трубы напорные из термопластов и соединительные детали к ним для систем водоснабжения и отопления. Общие технические условия» и имеющие величину номинального рабочего давления от PN20 до PN25.

    Недорогие трубы из полиэтилена недостаточно стабильны в условиях высоких температур и их применение в отоплении чаще всего ограничивается системами теплого пола. В системах отопления успешно используются металлопластиковые трубы на основе полиэтилена, но их стоимость выше аналогичных по характеристикам труб из полипропилена.

     

    Основные свойства полипропиленовых труб используемых для систем отопления:
    • незначительная масса полипропиленовых изделий значительно упрощает их перевозку к объекту и доставку к месту проведения работ.

    • высокая термопластичность полипропилена обеспечивает его легкую, быструю и надежную сварку.

    • полипропилен инертен ко всем теплоносителям, применяемых в отопительных системах, он не изменяет их свойств и обеспечивает нормативный срок использования. Он достаточно хорошо гасит шумы, возникающие при прохождении теплоносителя по трубам.

    • введение в состав полипропиленовых труб стабилизаторов позволяет им быть стойкими к резкому изменению температуры и давления (естественно в пределах нормативных значений). Высокая эластичность полиэтиленовых труб обеспечивает их сохранность даже при замерзании находящейся в них воды.

    • невысокая цена пластиковых труд и фитингов в сочетании с широким ассортиментом этих изделий и массовым предложением от различных производителей.

    • низкая теплопроводность полипропиленовых труб обеспечивает минимальное снижение температуры теплоносителя при его прохождении к радиаторам отопления (в сравнении с металлическим трубами потери тепла меньше на 10 – 20%).

    • низкая стойкость «чистого» полипропилена к проникновению через стенки трубы кислорода воздуха.

     

    Это свойство полипропилена нельзя считать критичным при выборе пластиковых труб для системы отопления. Да, отдельные теплоносители, чаще всего дешевые, весьма восприимчивы к кислороду воздуха и при контакте с ним ухудшаются их свойства. Но, эта проблема решается и достаточно успешно. Во-первых, большинство производителей полипропиленовых труб за счет добавок и армирования (стекловолокном или алюминием) существенно снижают проницаемость кислородом воздуха своей продукции. Во-вторых, над этой проблемой успешно работают и производители теплоносителей путем введения в состав своей продукции соответствующих стабилизаторов.

    Правильный выбор пластиковых труб их качественный монтаж обеспечит комфортное использование системы отопления на долгие годы.


    Самотечная система отопления двухэтажного дома. Когда выгодна однотрубная система отопления двухэтажного дома


    Схема однотрубной системы отопления двухэтажного дома

    Когда выгодна однотрубная система отопления двухэтажного дома — схема, монтаж и эксплуатация

    Домовладельцам нравится однотрубная система отопления двухэтажного дома, схема которой считается наиболее экономичной. Длина труб в ней меньше двухтрубного варианта, хотя диаметр труб больше, прогрев батарей неравномерный, повышенный объем теплоносителя, перекачивая который расходуется больше электроэнергии.

    Выгодна ли самотечная однотрубная система двухэтажного дома

    Намереваясь смонтировать данную дешевую схему, домовладелец сильно ошибается. Самотечная система (в просторечии, «самотек») обойдется вдвое-втрое дороже оснащенной циркуляционным насосом. Естественная циркуляция требует:

    • толстых труб для минимизации гидравлического сопротивления теплоносителю;
    • достаточности уклонов магистральных труб;
    • расположения отопительного котла ниже уровня отопительных приборов в приямке на кухне /в подвале, показанного на рисунке ниже.

    Самотечному отоплению 2-х этажного дома присущ стандартный недостаток — батареи второго этажа прогреваются лучше первого. Установка байпасов, регулировочных устройств наращивает стоимость системы.

    В каких домах выгоден однотрубный «самотек»?

    Только не в 3-х этажном доме. «Самотечный» теплоноситель движется «лениво». Имеющиеся 20 кг разницы в весе тонны нагретой и холодной воды не создадут достаточной разницы давлений между «подачей и «обраткой для интенсивного движения по трубам, батареям.

    В двухэтажном доме «самотек» будет работать неплохо, но второй этаж должен быть полноценным, имеющим чердак, позволяющий установить расширительный бачок. От котла в подвале (приямке) до бачка идет главный вертикальный стояк подачи. От стояка отходит т.наз. «лежак», уклоняющийся вниз. От «лежака» опускаюся стояки к этажным радиаторам. Эта вертикальная система, показанная на рисунке ниже, напоминает устройство отопления многоэтажного дома.

    Самотечная однотрубная вертикальная система 2-х этажного дома.

    Мансардный второй этаж вашего дома, имеющий окна в крыше (невысоких стенах) затрудняет монтаж самотечной системы. Мансарда исключает установку открытого расширительного бачка, наполненного антифризом. Герметичный бачок с газоотводящей трубкой, выведенной наружу, спасет положение, увеличивая затраты.

    Наклонные трубы-«лежаки» плохо вписываются в пространство мансарды, могут пересекать оконные проемы, портя интерьер помещения.

    «Самотек» больше подходит одноэтажным домам в местностях, характеризуемых ненадежным электроснабжением.

    Однотрубная система отопления двухэтажного дома с циркуляционным насосом

    Включает этажные контура с горизонтальной однотрубной разводкой, соединенные вертикальными стояками «подачи» и «обратки», Последние пространственно разнесены или объединены в двухтрубный стояк. Циркуляционный насос включается в обратную магистраль («обратку») перед отопительным котлом.

    Простейшая однотрубная система отопления двухэтажного дома, схема которой содержит два контура по 3 радиатора, показана ниже.

    Однотрубная горизонтальная система 2-х этажного дома с насосом.

    Расход теплоносителя по горизонтальной магистрали в N раз больше (N – число последовательно соединенных радиаторов), требемого двухтрубной схемой. «Однотрубка», имеющая одинаковое числе отопительных приборов с «двухтрубкой», оснащается циркуляционным насосом большей мощности.

    В каких домах выгоден монтаж насосных однотрубных систем?

    Снижение длины труб отопления относительно двухтрубных схем присуще многоэтажным жилым домам, промышленным зданиям (цехам, складам), характеризуемым длинами контуров отопления в сотни метров. Применение «однотрубки» в них реально экономит отопительные трубы. Широкое применение в индивидуальном строительстве объясняется недопониманием реального соотношения затраты-достоинства данного типа отопления заказчиками и теплотехниками-практиками.

    В небольших двухэтажных домах площадью около 100 кв.м (50 кв.м – первый этаж, 50 кв.м – второй) часто монтируют «однотрубку», хорошо работающую при коротких контурах, содержащих 4-5 отопительных приборов. Большие дома со множеством радиаторов плохо подходят для однотрубных схем, хотя реально работают объекты с десятком батарей в этажном контуре, как в показанной ниже смешанной вертикально — горизонтальной однотрубной схеме.

    Однотрубная система смешанного (вертикально — горизонтального) типа.

    Распространенные ошибки при монтаже

    Выше изображены «ленинградские» схемы горизонтальных однотрубных этажных контуров с радиаторами, подключенными к общей магистрали двумя тройниками. Через каждый прибор протекает только часть полного объема теплоносителя, циркулирующего по контуру. Можно встретить ошибочное подсоединение без магистральной трубы (см. контур первого этажа на рис. ниже).

    Виды подключения радиаторов в горизонтальных однотрубных контурах.

    Такой способ подключения радиаторов отопления является предельно дешевым. На каждый радиатор приходится один фитинг для присоединения металлопластиковой трубы Ду20 или Ду25 и отрезок трубы между соседними приборами. Дешевле не придумать. Но расплата за дешевизну – плохая работа половины радиаторов. Первый их них (по ходу движения теплоносителя) нагрет до температуры 55 °С, а последний при N=6-8 нагревается всего до 35 °С, поскольку теплоноситель, проходя через радиаторы, интенсивно остывает в них.

    А как работает правильно собранная схема?

    При выполнении классической однотрубной схемы («ленинградской»), когда под радиаторами проложена магистральная труба, ситуация другая. Движущийся теплоноситель, встречая на своем пути первый тройник, распределяется на два потока в соответствии с величинами гидравлических сопротивлений прямого пути и бокового отвода тройника. Из-за большего гидросопротивления бокового отвода в радиатор затекает небольшая часть общего потока теплоносителя (обычный «коэффициент затекания» составляет 0,2-0,3). Эта малая часть остывает внутри батареи на несколько градусов, как показано на рисунке ниже, подмешиваясь на выходе к основному неостывшему потоку. Результирующая его температура оказывается выше, чем при пропускании всего объема жидкости через отопительный прибор.

    Распределение теплоносителя в обвязке радиатора «ленинградской» схемы.

    При движении по контуру температура жидкости все равно снижается, но в меньшей степени, до температуры уже не 35 °С, а примерно 45 °С, т.е. батареи в цепочке оказываются более выровненными по нагреву. Специалисты высказывают мнение, что однотрубная схема («Ленинградка») позволяет добиться равномерного прогрева до 10-11 радиаторов в контуре (по десять секций в каждом приборе).

    Как выровнять неравномерность нагрева радиаторов?

    Обычный способ выравнивания их теплоотдачи при неодинаковом прогреве — постепенное наращивание тепловой мощности (или, что эквивалентно, числа секций) радиаторов по ходу движения теплоносителя в контуре. Если мощность первого в контуре отопительного прибора принять за 100 %, то у следующего она 110 %, и так далее вплоть до 150-200 % мощности у последнего (в зависимости от числа последовательных радиаторов).

    При выполнении однотрубной системы отопления двухэтажного дома, схема которой включает магистральную трубу, диаметр последней берется большим. Так при выполнении подводок к радиаторам металлопластиковой трубой Ду16, для восьми-девяти отопительных приборов в этажном контуре следует брать «магистралку» с Ду40. Труба Ду32 работать будет, но устойчивость системы понизится. Это означает, что любое изменение температуры теплоносителя будет вести к ее разбалансировке, т.е. заметному изменению разности температур нагрева соседних радиаторов в контуре.

    Распространены схемы «однотрубок» с обвязкой радиаторов т.наз. «байпасами», как показано на фото ниже.

    Подключение радиатора в «ленинградской» схеме с байпасом.

    Это участки меньшего диаметра, включаемые в разрывы магистрали под радиаторами, иногда еще и с устанавленным устройством регулирования расхода (игольчатым вентилем или др. ). Регулировочные вентили ставятся и в одну (или в обе!) подводки к радиаторам. Получается, что вместо сплошной магистрали одного диаметра имеется труба переменного диаметра. При этом монтажники-практики ошибочно полагают, что для разветвления потока теплоносителя на две составляющих в тройнике подводки к радиатору требуется сузить основной проход для него. Это неверно, поскольку жидкость, находящаяся под давлением, заполнит любой свободный объем, встречающийся на пути ее потока.

    Конечно, если в такой схеме со множеством устройств регулирования расхода постоянно заниматься ручным управлением прогревом каждого прибора, то можно-таки, тратя уйму времен, постоянно добиваться их равномерного нагрева. Но стоит ли «овчинка выделки»? Если делать «однотрубку», то присоединять радиаторы следует к магистрали неизменного большого диаметра, обеспечивая им стабильную работу при небольшом снижении нагрева приборов вдоль контура.

    Заключение

    Если радиаторы в однотрубной схеме присоединить к магистральной трубе с диаметром, по крайне мере вдвое превышающим диаметр подводок к ним (при соответствующем размере фитингов), то ценой таких затрат на материалы можно добиться снижения температуры в цепочке до 8-10 приборов. В двухтрубной схеме тот же результат достигается при небольшом диаметре всех труб отопления.

    Как реализовать альтернативное отопление частного дома

  • Двухтрубная система отопления частного дома — классификация, разновидности и практические навыки проектирования

  • Однотрубная и двухтрубная разводка отопления в частном доме

  • Коллекторная система отопления частного дома – преимущества и недостатки

    Однотрубная система отопления двухэтажного частного дома

    Обязательным условием комфорта для каждого дома в нашей стране является наличие надежной и экономичной системы отопления. В нынешних условиях для большинства потребителей используются газовые котлы, так как этот вид топлива относится к наиболее доступным и удобным в эксплуатации.

    При этом важно брать в расчет и нюансы, связанные с магистральной разводкой теплоносителя по дому. Одной из популярных и востребованных является однотрубная система отопления двухэтажного дома, схема которой может применяться и в строениях большей этажности.

    Конструкционные особенности

    Данный тип обогрева не использует в своей конструкции традиционного деления веток на подающие (отводящие теплоноситель от теплогенератора) и обратные (возвращающие остывшую жидкость в котел). Деление по этой схеме является лишь условным, как правило, половина магистрали после котла принимается «подачей», а дальше – «обратка».

    Традиционная схема однотрубной системы отопления двухэтажного дома включает в себя следующие элементы:

    • Телогенератор (котел) обеспечивающий передачу энергии теплоносителю (жидкость в системе). В роли первого могут выступать газовые, электрические или даже твердотопливные котлы. Жидкость – подготовленная мягкая вода или антифриз.
    • Отопительные потребители – секции радиаторов. Материалом для разных моделей служит чугун, сталь, алюминий.
    • Расширительный бак, компенсирующий перепады давления внутри системы. Для открытых систем подбирается открытая конструкция бачка, а для закрытых систем – мембранные емкости.
    • Составные элементы разводной магистрали. В комплект входит достаточное количество труб, вентилей, фильтров, кранов и другой запорной арматуры.

    Принцип работы данной система отопления для 2х этажного дома (схемы имеются на сайте) не зависит от используемого типа котла.

    Отличительные характеристики

    Главной чертой, которая отличает однотрубную разводку от многообразия двухтрубных схем системы отопления двухэтажного дома, является отсутствие обратки. Фактически все потребители монтируются на единой магистральной петле.

    Деление однотрубных схем также предусмотрено по конструкционному признаку на вертикальные и горизонтальные схемы. В традиционной схеме отопление 2 этажного дома с одной трубой применяются кроме прочих элементов радиаторные регуляторы, шаровые краны, термостатические клапаны и т.д. Одним из бонусов является возможность монтажа магистральных труб под полом. В этом случае обеспечивается лучшая эстетическая составляющая.

    Также монтаж однотрубной разводки в отличие от двухтрубной системы отопления двухэтажного дома провести немного легче. При этом в случае укрытия под полом труб, удастся снизить тепловые потери.

    Минусы однотрубных систем водяного отопления

    Принципиальное отличие однотрубной схемы от двухтрубной заключается в способе соединения радиаторов в системе – оно последовательное. Это исключает возможность контролировать интенсивность теплоотдачи каждого из них по отдельности, не снижая температуру в последующих в цепи. То есть если в одной комнате (не последней) очень жарко, то убавив температуру на батарее именно в этой комнате, тем самым снижается температура во всех остальных.

    Второй более чем существенный недостаток – повышенное давление теплоносителя для того, чтобы система могла работать эффективно. Если речь идет об одном доме, такой недостаток при наличии хорошего циркуляционного насоса даже не заметен, но в централизованных котельных увеличение мощности насоса влечет за собой увеличение эксплуатационных расходов, интенсивное воздействие на магистраль, риск повреждения и протечек и т. д. Все это требует постоянного контроля воды в системе и ее подкачки. Это, в свою очередь, приводит к концентрации воздуха и увеличению воздушных пробок.

    Третий минус – вертикальная разводка, при которой расширительный бак всегда устанавливается в самой верхней точке. Если это частное домовладение, для его размещения вполне может быть задействован чердак, но при этом бак желательно утеплить во избежание его промерзания. В многоквартирных домах нужно выполнить целый ряд мер не только по утеплению, но и поддержанию температуры на приблизительно одинаковом уровне с верхнего по нижний этажи, что очень проблематично. На верхнем этаже жильцы всю зиму открывают форточки, а нижним приходится использовать камины, радиаторы и прочие ухищрения, чтобы согреться.

    Поскольку потеря тепловой энергии к нижним этажам превышает 50%, рекомендуется устанавливать на каждом этаже специальные «вилки» и увеличивать количество секций радиаторов на нижних этажах.

    Общая схема с учетом всех элементов обвязки

    Вертикальная разводка

    Перед тем, как правильно сделать отопление в двухэтажном доме, необходимо выбрать наиболее удобный тип разводки. Часто для таких строений предпочитают подбирать вертикальный тип. В этом случае разогретая вода поднимается по стояку, а дальше происходит ее распределение к отопительным радиаторам.

    • В большинстве случаев перемещение осуществляется естественным способом притом, что нагретая масса воды перемещается вверх за счет своих физических свойств.
    • С верхней точки осуществляется перемещение теплоносителя по трубам за счет сформированного во время монтажа уклона в несколько градусов.
    • Возврат происходит при достижении нижней точки системы, в которой обычно расположен котел.

    Данная схема отопления 2-х этажного частного дома является абсолютно независимой от наличия электричества. Хотя теплоноситель перемещается недостаточно быстро по трубам, но происходит экономия на использовании электроэнергии.

    В качестве недостата отмечается то, что трубы, расположенные под уклоном вряд ли удастся спрятать под пол.

    Горизонтальная разводка

    Данный тип не нуждается в вертикальном стояке. Основная магистраль может быть скрыта под полом либо находиться над его уровнем. Если осуществляется монтаж магистрали для отопления 2х этажного частного дома своими руками с возможностью укрытия под пол, то необходимо позаботиться о снижении тепловых потерь.

    Для этого проводится укрытие труб в термоизоляционные кожухи. Если в магистрали не предусмотрен циркуляционный насос, то прокладка трубопровода также должна осуществляться под небольшим уклоном.

    Оптимальный монтаж секций радиаторов

    Для подключения отопительных радиаторов специалисты предлагают использовать один из популярных способов:

    Проточное подключение

    Теплоноситель, перемещаясь по магистрали, поступает внутрь радиатора через верхнее отверстие, а затем, отдав часть тепловой энергии, удаляется через нижний патрубок в радиаторе. Проводить какие-либо регулировки, связанные с температурой или скоростью подачи, в таких системах нет никакой технической возможности. Данный вариант подключения является актуальным для относительно небольших отапливаемых площадей.

    С замковыми участками

    Эта схема однотрубной системы отопления двухэтажного дома подразумевает наличие замковых участков трубопровода. Запорная арматура устанавливается обычно перед входным патрубком радиатора, а также на вмонтированном участке магистрали, соединяющем точку входа и выхода из радиатора. Данный элемент разводки называется байпасом. Подобное решение позволяет разделить теплоноситель на два потока. Одна его часть проходит по радиатору, а вторая – отправляется через байпас. Таким образом удается проводить регулировку температуры в каждом из блоке радиаторов.

    ВИДЕО: Подключение радиатора

    Алгоритм монтажа системы

    Для правильной и эффективной работы необходимо по имеющемуся проекту системы отопления выполнить грамотный монтаж всех ее элементов. В таком случае необходимо соблюдать последовательность:

    • установка котла на постоянное место;
    • отделка стен под радиаторами;
    • монтаж секций с радиаторами под углом;
    • монтаж магистральной разводки с обозначением врезки радиаторов;
    • врезка радиаторов по меткам.

    Для подключения радиаторов рекомендуется использовать байпас и запорную арматуру – так намного проще ухаживать за всей системой.

    Работа по монтажу должна проводиться последовательно от первых секций, расположенных ближе к выходу трубы из котла до последних – монтируемых на условной части «обратки».

    Нельзя допускать обратного уклона, так как это приводит к завоздушиванию системы.

    ВИДЕО: Однотрубная система отопления

    Что собой представляет однотрубная система отопления двухэтажного дома: схема и особенности

    Монтаж системы отопления в одноэтажном частном доме, как правило, не вызывает вопросов и легко выполняется своими руками. И намного сложнее сделать грамотную схему однотрубной системы отопления двухэтажного дома. Распространенным решением можно считать однотрубную систему отопления с принудительной или естественной циркуляцией теплоносителя.

    Простейшая схема

    Основная сложность монтажа отопительной системы заключается в необходимости подачи теплоносителя на второй этаж здания. А главное преимущество однотрубных сетей — в их простоте и дешевизне монтажа. Независимо от способа разводки — верхнего или нижнего — они позволяют существенно сэкономить на материалах и комплектующих, сократив общую протяженность трубопровода. При необходимости разные типы систем отопления можно комбинировать между собой, увеличивая тем самым эффективность их работы.

    Схема однотрубной системы очень проста. От котла отходит одна труба, к которой подключаются радиаторы. Пройдя через все элементы отопительной сети, труба возвращается в нагревательный агрегат. В результате теплоноситель проходит по замкнутому кругу, повторяя этот цикл раз за разом.

    Особенность однотрубных схем заключается в разнице температуры теплоносителя в разных частях сети. Выходя из котла, вода имеет максимальную температуру. По мере прохождения по замкнутому контуру она постепенно остывает, отдавая свое тепло каждому из установленных радиаторов. Они в свою очередь отдают его воздушному пространству помещений.

    Принцип работы такой системы определяет ее технические особенности:

    • В сети может быть строго определенное количество радиаторов.
    • Система не может масштабироваться и изменяться в процессе эксплуатации.
    • Радиаторы, расположенные в удалении от котла, меньше нагреваются и, как следствие, хуже обогревают помещение.
    • Схема не подходит для домов большой площади с большим количеством отапливаемых помещений.

    Эти особенности определяют и недостатки однотрубных систем, а также ограничения на их использование. С другой стороны, если правильно смонтировать сеть отопления в двухэтажном частном доме и подобрать эффективное нагревательное оборудование, можно обеспечить комфорт, уют, оптимальный микроклимат и благоприятный для человека температурный режим.

    Однотрубные системы имеют и плюсы, чем и определяется их популярность. Важнейшее преимущество — дешевизна монтажа за счет сокращения количества труб и времени.

    Важно! Подобная схема подходит для домов разной этажности и с разной планировкой. Независимо от архитектурных особенностей дома она будет полностью охватывать все помещения.

    При монтаже допускается прокладывать лежак в стяжке пола. Для систем типа «теплый пол» однотрубная схема — идеальный выбор. Прокладка трубопровода может выполняться и по поверхности пола. В этом случае необходимо, чтобы лежак проходил как можно ниже.

    Естественная и принудительная циркуляция

    Однотрубные системы могут монтироваться с естественной или принудительной циркуляцией теплоносителя. Схема всегда выбирается исходя из планировки и архитектурных особенностей здания. Для 1-этажных домов предпочтительна естественная циркуляция воды в магистрали. Подходит такая схема и для двухэтажных частных домов. Нужно только учитывать планировочные особенности здания.

    Работоспособность системы отопления определяется правильным местом установки расширительного бачка. В одноэтажных домах нередко приходится выносить его в чердачные помещения, что чревато его перемерзанием в холодные месяцы зимы. В двухэтажном здании такая проблема отпадает сама собой. Расширительный бак можно разместить в любом месте на втором этаже. Такое расположение обеспечит необходимый сброс теплоносителя.

    Системы с естественной циркуляцией чаще всего монтируют с верхней разводкой, когда теплоноситель поступает в радиаторы сверху. Основной плюс такого способа — максимально равномерное прогревание отопительных приборов. Для обеспечения гравитационного движения воды в трубах их прокладывают под уклоном 3–5 градусов. Трубы подбираются таким образом, чтобы по мере подвода обратной магистрали к котлу их диаметр увеличивался. В результате получается эффективная, простая в эксплуатации и надежная система.

    Несмотря на достоинства система с естественной циркуляцией в двухэтажных зданиях монтируется не так уж часто. Основная причина этого — ограничения на площадь помещения, где можно создавать такие коммуникации. Напора теплоносителя, передвигающегося по трубам естественным путем, достаточно для того, чтобы обогреть дом не более 130 кв. метров. Этажность здания значения не имеет. Негативно сказывается на работе и значительная дельта температур в подающей трубе и обратке.

    Однотрубная система с принудительной циркуляцией более эффективна. Лучше использовать схему, при которой от котла отходят две ветви — одна на каждый этаж. При использовании такого подключения обязательно нужна установка запорной арматуры на входе трубы.

    Работа системы при этом выглядит следующим образом. Теплоноситель выходит из котла по подводящей трубе и расходится по двум веткам. На каждой ветке установлены радиаторы, нагреваемые за счет прохождения теплой воды. Далее теплоноситель поступает в единую трубу-обратку, которая ведет к котлу. Установка запорной арматуры позволяет обогревать не все помещение, а только его половину, поскольку при необходимости одну ветку можно легко отключить.

    Но подобное решение является энергозависимым, а в случае отключения электроэнергии дом останется без тепла. Ведь циркуляционный насос остановит свою работу.

    С байпасом или без?

    Одним из важных недостатков однотрубных систем является неравномерность прогрева помещений. Для сокращения последствий этого недостатка можно установить радиаторы с байпасной линией. Если нет такой возможности, существует еще один метод увеличения равномерности прогрева — монтаж батарей разной тепловой мощности. На практике это выглядит следующим образом — чем дальше от котла находится радиатор, тем больше в нем должно быть секций.

    Байпас — это инженерное устройство, позволяющее регулировать подачу воды к разным элементам. По сути, он представляет собой обычную перемычку, установленную между подающей и обратной проводкой батареи. Изготавливается байпас из небольшого отрезка трубы, диаметр которой меньше диаметра трубопровода на один калибр.

    Байпас позволяет вернуть в стояк или лежак избыточный теплоноситель, поступивший в батарею. Количество теплоносителя в радиаторах может регулироваться вручную или автоматикой. Установка байпаса имеет еще одно преимущество. Система становится ремонтопригодной даже в том случае, если находится в рабочем состоянии. Байпасная линия позволяет проводить ремонт отдельных элементов отопительных коммуникаций без полного слива воды из системы.

    В однотрубных сетях с принудительной циркуляцией байпас крайне необходим. Такие коммуникации энергозависимы, и при отключении электроэнергии они просто перестают функционировать. В таких ситуациях байпас позволяет перекрыть подачу воды на насосное оборудование. Сделать это можно вручную или с помощью автоматики. После таких несложных манипуляций система начинает работать как традиционная — в режиме естественной циркуляции.

    Заключение

    Однотрубные системы отопления можно считать устаревшими. В современных домах они монтируются все реже, но это не означает, что они полностью ушли в прошлое. В домах небольшой площади монтаж однотрубной сети позволяет решить две важные задачи — обеспечить эффективность работы коммуникаций и при этом сократить расходы на их обустройство. Однотрубные системы с байпасом эффективны и надежны, поэтому имеют право на жизнь. Для двухэтажных домов такие схемы — тоже неплохой выбор.

    Источники: http://vse-pro-otoplenie.ru/systema-otopleniya/61-odnotrubnaya-sistema-otopleniya-dvuhetazhnogo-doma-shema.html, http://www.portaltepla.ru/trubi-i-fitingi/odnotrubnaya-sistema-otopleniya-dvuhetaghnogo-chastnogo-doma/, http://gidotopleniya.ru/montazh-otopleniya/sxemy/odnotrubnaja-sistema-otoplenija-dvuhjetazhnogo-doma-shema-7557

  • teplosten24.ru

    Самотечная система отопления двухэтажного дома — схема с естественной циркуляцией

    Схема отопления двухэтажного дома с естественной циркуляцией — система отопления самотеком

    Самотечная система отопления двухэтажного дома является единственным выходом в условиях, когда отсутствуют газ и электричество. Естественно, подобных проблем в современном мире просто не существует. Однако все-таки случаются ситуации, в которых приходится монтировать отопление открытого типа.

    На что оказывает влияние отопление открытого типа?

    По каким-либо соображениям вы решаетесь начать монтаж самотечного вида отопления. При этом следует учитывать, что это отразится на подборе следующих факторов:

    1. дизайн в доме при данном типе обогрева должен отвечать пожарной безопасности;
    2. отсутствие контроля за равномерным распределением тепла;
    3. представленные схемы отопления с естественной циркуляцией позволяют производить обслуживание и ремонт всей системы без особых затрат;
    4. небольшие объемы работ, связанных с прокладкой трубопровода и подключением открытого расширительного бака для отопления;
    5. оптимальная стоимость необходимого материала.

    Если вас заинтересовала схема естественного отопления, то всевозможные примеры вы сможете отыскать на нашем сайте. Однако разобраться в чертежах удается не каждому специалисту. Поэтому мы рекомендуем обратиться за помощью к инженерам. Именно они смогут правильно рассчитать всю систему отопления, составить смету.

    Преимущества отопления частного дома с естественной циркуляцией

    Есть ли смысл рассказывать обо всех гранях использования самотечной системы отопления? Наверное, нет. Поэтому мы затронем лишь основные показатели тех преимуществ, которые вы оцените сразу же после запуска.

    1. Экономичность отопления частного дома с естественной циркуляцией – это важный фактор. Этот показатель можно оценить в самом начале работ. Ведь на монтаж системы, ее обслуживание и ремонт не потребуется больших финансовых затрат.
    2. Отсутствие дополнительного оборудования (насосов) можно считать основным преимуществом данной системы отопления. Как же так? Во время монтажа по схеме отопления (с естественной циркуляцией) и после запуска системы вы обнаружите, что отсутствуют вибрации, посторонние шумы.
    3. Снижение стоимости на электроэнергию гарантировано. Ведь насосы требуют энергообеспечения. В самотечном же варианте отсутствуют подобные нужды и, соответственно, траты.
    4. Постоянное движение выбранного вами теплоносителя в действующей системе отопления является залогом равномерного и постоянного распределения тепла между радиаторами.
    5. При работах по установке и запуску данного типа отопления не требуется особых умений, знаний и навыков.

    Единственный секрет, о котором стоит сказать сразу – в отоплении открытого типа теплоноситель должен быть химическим. Вода зимою замерзает, а значит, ваша цель достигнута не будет.

    Однако если вы планируете проводить самотечную систему в дачном доме. то вполне допускается использовать воду.

    Технология монтажа самотечной системы отопления

    1. Определение модели котла и его местоположения — это самое важное во всей самотечной системе отопления. Этот агрегат производит нагрев теплоносителя.
    2. Теперь, согласно самотечной системе отопления, по схеме определяем расположение трубопровода. Существуют 2 типа прокладки труб – одинарный и двойной.
    3. Выбираем радиаторы, которые будут располагаться в комнатах, подвале и на чердаке (при необходимости).
    4. Не забываем о том, что так же необходимо подобрать расширительный бак.

    В процессе монтажа трубопровода следует помнить о том, что создаваемая линия должна иметь определенный уклон. Этот показатель рассчитывают таким образом, чтобы каждый метр трубы наклонялся на 0,005 м. Направлять угол наклона следует в сторону нагревающего бака.

    Для чего необходимо реализовывать данное требование?

    • Наличие уклона трубы позволяет ускорить движение теплоносителя.
    • Во время работы системы отопления данного типа возникают пузырьки воздуха. Для того чтобы устранить их из труб, делается наклон трубопровода. В этом случае в процессе нагревания воды, происходит расширение теплоносителя. И пузыри оказываются в открытом расширительном баке для отопления. Здесь предусмотрен их вывод в атмосферу.

    Правила подбора котла

    В связи с тем, что самотечная система отопления двухэтажного дома рассчитана на то, что в здании отсутствует газ и электричество, следует правильно подобрать главный нагревательный элемент. Ведь покупка современного устройства, работающего от напряжения, окажется простой тратой бюджета. Следовательно, останавливаем выбор лишь на тех моделях котлов, которые работают на твердом топливе.

    Секрет монтажа расширительного бака

    Казалось бы, что может быть сложного в том, чтобы следовать готовой схеме системы отопления. Однако на чертеже невозможно показать, точное местоположение элементов отопления. И в результате потраченное время и усилия окажутся излишними. Ведь при монтаже расширительного бака стоит помнить, что его следует закреплять в верхней точке всей системы отопления.

    Порекомендуйте этот материал с сайта WikiТЕПЛО своим друзьям в социальных сетях, нажмите на ссылку:

    Оставить комментарий Отменить ответ

    По материалам сайта: http://wikiteplo.ru

    fix-builder.ru

    для двухэтажного дома, самотечная из полипропилена, расчет и принцип работы

    Гравитационная система отопления отлично подходит как для больших, так и маленьких домов На отопление жилья расходуется много средств. Система отопления с обычной циркуляцией воды – самая неприхотливая, надёжная и долговечная. Работает она за счёт естественной циркуляции воды. Достоинством гравитационной системы является то, что она энергонезависимая. Хозяева отопления с принудительной циркуляцией воды волнуются при отключении энергии, а владельцы с гравитационной системой отопления чувствуют себя спокойно. Минусом этой отопительной системы является то, что расширительный бак располагается в неотапливаемом месте и существует угроза замерзания в нём воды.

    Гравитационная система отопления двухэтажного дома: комфорт и надёжность

    Обогрев двухэтажного дома задача сложная, но посильная. Главное нужно грамотно подойти к этому вопросу и сделать такую систему обогрева, при которой во всех комнатах будет одинаково тёплая, комфортная температура. Лучше всего конечно обратиться за советом к специалисту. Составление проекта обогрева двухэтажного дома требует определённых навыков и глубоких знаний работы систем отопления.

    Перед установкой гравитационной системы отопления двухэтажного дома следует выполнить ее чертеж

    Грамотно рассчитанный и точно составленный проект отопительной системы двухэтажного дома, даст вам возможность эксплуатировать систему долго и без возникновения различного рода проблем.

    Самотечная отопительная система требует, чтобы её монтаж был произведён с соблюдением главного правила. Согласно этого правила, трубы должны быть установлены под уклоном, для обеспечения естественной циркуляции воды. Существует два вида гравитационных систем отопления.

    Виды гравитационных систем отопления:

    • Однотрубная отопительная система;
    • Двухтрубная отопительная система.

    При однотрубной системе обогрева вода с радиатора поступает по трубе сразу в котел. При двухтрубной системе остывшая вода поступает сначала в другую магистраль, обратную, и только потом в котёл. Отопительная система с естественной циркуляцией воды бывает открытого и закрытого типа. Вода в системе при нагревании испаряется через расширительный бачок. Иногда происходит уменьшение уровня воды в баке и её нужно доливать. Такая система называется открытой. В гравитационной системе закрытого типа в самой наивысшей точке ставят автоматический воздухоотводчик. В двухэтажном доме лучше устанавливать систему отопления с принудительной циркуляцией воды. Чтобы обеспечить подачу в доме горячей воды устанавливают двухконтурный котёл. Один контур котла обеспечивает отопление, второй нагреватель подаёт горячую воду.

    Самотечная отопительная система может быть сделана не только из металлических труб, но и из более современного материала. Таким материалом вполне заслуженно стал полипропилен. Систему отопления, выполненную из полипропиленовых труб, можно спрятать под отделкой или облицовкой. В результате этих действий площадь помещения не уменьшится, а вот аккуратность и эстетичность внешнего вида полипропиленовой системы вас приятно порадует.

    На сегодняшний день отопительная система из полипропилена – достойный конкурент чугунным и металлическим.

    Используя современный материал, вполне возможно сделать систему отопления своими силами. В этом случае полипропилен как нельзя лучше подходит для выполнения этой задачи. Трубы, изготовленные из полипропилена, имеют ряд преимуществ.

    Преимущества труб из полипропилена:

    • Полипропиленовые трубы не подвержены коррозии;
    • Имеют низкий коэффициент теплопроводности;
    • Не образуются отложения на внутренних поверхностях труб;
    • Цена полипропилена ниже чугуна и металла;
    • Нейтральность к агрессивной среде;
    • Пластичность;
    • Устойчивость к перепадам температуры;
    • Простота монтажа;
    • Длительный срок эксплуатации.

    Чтобы правильно подключить самотечную систему отопления, следует тщательно ознакомиться с теоретической частью процесса и рекомендациями специалистов

    Этот материал существенно отличается от металла и чугуна как по техническим характеристикам, так и по способу работы с ним. Естественно и инструмент, требуемый для выполнения этих работ, потребуется другой. Процесс пайки полипропиленовых труб не сложный и очень быстрый, но требует определённых навыков и знаний технологии.

    Расчёт гравитационной системы отопления: гарантия работы оборудования

    Перед тем как начать монтаж вашей системы обогрева нужно сделать расчёт всех параметров. Рассчитать какой мощности нужно поставить котёл, чтобы обогреть всю площадь помещения. Определится с диаметром требуемых труб и их длиной. Необходимо также рассчитать какой мощности батарею поставить в ту или другую комнату.

    Долговечность и нормальная работа системы отопления зависит от правильности расчёта системы обогрева вашего дома, правильности монтажа и качества приобретённого оборудования.

    Чтобы во время эксплуатации системы отопления не возникло всякого рода неполадок, нужно не нарушать правила эксплуатации. Своевременно производить профилактические работы систем обогрева их приборов и оборудования.

    Виды котлов для систем отопления:

    • Газовый;
    • Электрический;
    • Твёрдотопливный;
    • Жидкотопливный;
    • Комбинированный.

    Газовый котёл самый дешёвый в обслуживании. Современные газовые котлы отличаются высоким КПД, их не требуется устанавливать в отдельной комнате. Внешний вид котлов отличается малогабаритностью и аккуратностью дизайна. Растёт популярность твёрдотопливных котлов. В отличие от газового котла этот котёл каждые сутки нужно загружать топливом. Электрический котел даёт большую нагрузку на электропроводку. Жидкотопливный котёл небезопасен в эксплуатации. Монтажная часть системы отопления содержит много сложностей. Поэтому лучше всего, во избежание неожиданных неприятностей, отдать этот процесс в руки специалистов.

    Принцип работы системы отопления: простота и долговечность эксплуатации

    В принцип работы системы отопления заложено свойство воды расширятся при нагревании. В замкнутом контуре вода циркулирует по трубам за счёт разницы давления. По-другому, отопительная система с обычной циркуляцией имеет другое название – самотечная.

    Чтобы система отопления служила длительное время, ее регулярно нужно осматривать на наличие повреждений и выполнять чистку

    Схема гравитационной отопительной системы включает в себя:

    • Котёл;
    • Трубопроводы;
    • Радиаторы;
    • Расширительный бачок;
    • Гравитационный клапан;
    • Вентили;
    • Дроссели.

    Назначение котла передавать теплоносителю энергию от сгорающего топлива. В гравитационной системе закрытого типа этот процесс обеспечивает теплообменник. Трубопроводы осуществляют транспортировку жидкости от теплообменника к батареям отопления. Максимальное количество тепла в помещение передаётся и сохраняется именно радиаторами отопления. При открытой системе обогрева расширительный бачок устанавливается в самой высшей точке системы, обычно вверху над разгонным коллектором. Система отопления монтируется так, чтобы обеспечить подъём горячей воды в верхнюю точку и слив её самотёком по трубам, а также радиаторам в котёл. При всём этом пузырьки воздуха должны иметь возможность беспрепятственно перемещаться вверх. Обратный гравитационный клапан пропускает жидкость только в одном направлении. При изменении направления движения жидкости он закрывается автоматически.

    Монтаж системы отопления (видео)

    Отопительная техника постоянно совершенствуется и дополняется новым высокоэффективным оборудованием. Несмотря на это данная система отопления, как и прежде широко используется для отопления жилых домов и других помещений.

    Добавить комментарий

    teploclass.ru

    Однотрубная система отопления двухэтажного дома: схема и особенности монтажа

    Домовладельцам нравится однотрубная система отопления двухэтажного дома, схема которой считается наиболее экономичной. Длина труб в ней меньше двухтрубного варианта, хотя диаметр труб больше, прогрев батарей неравномерный, повышенный объем теплоносителя, перекачивая который расходуется больше электроэнергии.

    Выгодна ли самотечная однотрубная система двухэтажного дома

    Намереваясь смонтировать данную дешевую схему, домовладелец сильно ошибается. Самотечная система (в просторечии, «самотек») обойдется вдвое-втрое дороже оснащенной циркуляционным насосом. Естественная циркуляция требует:

    • толстых труб для минимизации гидравлического сопротивления теплоносителю;
    • достаточности уклонов магистральных труб;
    • расположения отопительного котла ниже уровня отопительных приборов в приямке на кухне /в подвале, показанного на рисунке ниже.

    Самотечному отоплению 2-х этажного дома присущ стандартный недостаток — батареи второго этажа прогреваются лучше первого. Установка байпасов, регулировочных устройств наращивает стоимость системы.

    В каких домах выгоден однотрубный «самотек»?

    Только не в 3-х этажном доме. «Самотечный» теплоноситель движется «лениво». Имеющиеся 20 кг разницы в весе тонны нагретой и холодной воды не создадут достаточной разницы давлений между «подачей и «обраткой для интенсивного движения по трубам, батареям.

    В двухэтажном доме «самотек» будет работать неплохо, но второй этаж должен быть полноценным, имеющим чердак, позволяющий установить расширительный бачок. От котла в подвале (приямке) до бачка идет главный вертикальный стояк подачи. От стояка отходит т.наз. «лежак», уклоняющийся вниз. От «лежака» опускаюся стояки к этажным радиаторам. Эта вертикальная система, показанная на рисунке ниже, напоминает устройство отопления многоэтажного дома.

    Самотечная однотрубная вертикальная система 2-х этажного дома.

    Мансардный второй этаж вашего дома, имеющий окна в крыше (невысоких стенах) затрудняет монтаж самотечной системы. Мансарда исключает установку открытого расширительного бачка, наполненного антифризом. Герметичный бачок с газоотводящей трубкой, выведенной наружу, спасет положение, увеличивая затраты.

    Наклонные трубы-«лежаки» плохо вписываются в пространство мансарды, могут пересекать оконные проемы, портя интерьер помещения.

    «Самотек» больше подходит одноэтажным домам в местностях, характеризуемых ненадежным электроснабжением.

    Однотрубная система отопления двухэтажного дома с циркуляционным насосом

    Включает этажные контура с горизонтальной однотрубной разводкой, соединенные вертикальными стояками «подачи» и «обратки», Последние пространственно разнесены или объединены в двухтрубный стояк. Циркуляционный насос включается в обратную магистраль («обратку») перед отопительным котлом.

    Простейшая однотрубная система отопления двухэтажного дома, схема которой содержит два контура по 3 радиатора, показана ниже.

    Однотрубная горизонтальная система 2-х этажного дома с насосом.

    Расход теплоносителя по горизонтальной магистрали в N раз больше (N – число последовательно соединенных радиаторов), требемого двухтрубной схемой. «Однотрубка», имеющая одинаковое числе отопительных приборов с «двухтрубкой», оснащается циркуляционным насосом большей мощности.

    В каких домах выгоден монтаж насосных однотрубных систем?

    Снижение длины труб отопления относительно двухтрубных схем присуще многоэтажным жилым домам, промышленным зданиям (цехам, складам), характеризуемым длинами контуров отопления в сотни метров. Применение «однотрубки» в них реально экономит отопительные трубы. Широкое применение в индивидуальном строительстве объясняется недопониманием реального соотношения затраты-достоинства данного типа отопления заказчиками и теплотехниками-практиками.

    В небольших двухэтажных домах площадью около 100 кв.м (50 кв.м – первый этаж, 50 кв.м – второй) часто монтируют «однотрубку», хорошо работающую при коротких контурах, содержащих 4-5 отопительных приборов. Большие дома со множеством радиаторов плохо подходят для однотрубных схем, хотя реально работают объекты с десятком батарей в этажном контуре, как в показанной ниже смешанной вертикально — горизонтальной однотрубной схеме.

    Однотрубная система смешанного (вертикально — горизонтального) типа.

    Распространенные ошибки при монтаже

    Выше изображены «ленинградские» схемы горизонтальных однотрубных этажных контуров с радиаторами, подключенными к общей магистрали двумя тройниками. Через каждый прибор протекает только часть полного объема теплоносителя, циркулирующего по контуру. Можно встретить ошибочное подсоединение без магистральной трубы (см. контур первого этажа на рис. ниже).

    Виды подключения радиаторов в горизонтальных однотрубных контурах.

    Такой способ подключения радиаторов отопления является предельно дешевым. На каждый радиатор приходится один фитинг для присоединения металлопластиковой трубы Ду20 или Ду25 и отрезок трубы между соседними приборами. Дешевле не придумать. Но расплата за дешевизну – плохая работа половины радиаторов. Первый их них (по ходу движения теплоносителя) нагрет до температуры 55 °С, а последний при N=6-8 нагревается всего до 35 °С, поскольку теплоноситель, проходя через радиаторы, интенсивно остывает в них.

    А как работает правильно собранная схема?

    При выполнении классической однотрубной схемы («ленинградской»), когда под радиаторами проложена магистральная труба, ситуация другая. Движущийся теплоноситель, встречая на своем пути первый тройник, распределяется на два потока в соответствии с величинами гидравлических сопротивлений прямого пути и бокового отвода тройника. Из-за большего гидросопротивления бокового отвода в радиатор затекает небольшая часть общего потока теплоносителя (обычный «коэффициент затекания» составляет 0,2-0,3). Эта малая часть остывает внутри батареи на несколько градусов, как показано на рисунке ниже, подмешиваясь на выходе к основному неостывшему потоку. Результирующая его температура оказывается выше, чем при пропускании всего объема жидкости через отопительный прибор.

    Распределение теплоносителя в обвязке радиатора «ленинградской» схемы.

    При движении по контуру температура жидкости все равно снижается, но в меньшей степени, до температуры уже не 35 °С, а примерно 45 °С, т.е. батареи в цепочке оказываются более выровненными по нагреву. Специалисты высказывают мнение, что однотрубная схема («Ленинградка») позволяет добиться равномерного прогрева до 10-11 радиаторов в контуре (по десять секций в каждом приборе).

    Как выровнять неравномерность нагрева радиаторов?

    Обычный способ выравнивания их теплоотдачи при неодинаковом прогреве — постепенное наращивание тепловой мощности (или, что эквивалентно, числа секций) радиаторов по ходу движения теплоносителя в контуре. Если мощность первого в контуре отопительного прибора принять за 100 %, то у следующего она 110 %, и так далее вплоть до 150-200 % мощности у последнего (в зависимости от числа последовательных радиаторов).

    При выполнении однотрубной системы отопления двухэтажного дома, схема которой включает магистральную трубу, диаметр последней берется большим. Так при выполнении подводок к радиаторам металлопластиковой трубой Ду16, для восьми-девяти отопительных приборов в этажном контуре следует брать «магистралку» с Ду40. Труба Ду32 работать будет, но устойчивость системы понизится. Это означает, что любое изменение температуры теплоносителя будет вести к ее разбалансировке, т.е. заметному изменению разности температур нагрева соседних радиаторов в контуре.

    Распространены схемы «однотрубок» с обвязкой радиаторов т.наз. «байпасами», как показано на фото ниже.

    Подключение радиатора в «ленинградской» схеме с байпасом.

    Это участки меньшего диаметра, включаемые в разрывы магистрали под радиаторами, иногда еще и с устанавленным устройством регулирования расхода (игольчатым вентилем или др.). Регулировочные вентили ставятся и в одну (или в обе!) подводки к радиаторам. Получается, что вместо сплошной магистрали одного диаметра имеется труба переменного диаметра. При этом монтажники-практики ошибочно полагают, что для разветвления потока теплоносителя на две составляющих в тройнике подводки к радиатору требуется сузить основной проход для него. Это неверно, поскольку жидкость, находящаяся под давлением, заполнит любой свободный объем, встречающийся на пути ее потока.

    Конечно, если в такой схеме со множеством устройств регулирования расхода постоянно заниматься ручным управлением прогревом каждого прибора, то можно-таки, тратя уйму времен, постоянно добиваться их равномерного нагрева. Но стоит ли «овчинка выделки»? Если делать «однотрубку», то присоединять радиаторы следует к магистрали неизменного большого диаметра, обеспечивая им стабильную работу при небольшом снижении нагрева приборов вдоль контура.

    Заключение

    Если радиаторы в однотрубной схеме присоединить к магистральной трубе с диаметром, по крайне мере вдвое превышающим диаметр подводок к ним (при соответствующем размере фитингов), то ценой таких затрат на материалы можно добиться снижения температуры в цепочке до 8-10 приборов. В двухтрубной схеме тот же результат достигается при небольшом диаметре всех труб отопления.

    buildip.ru

    Схема отопления двухэтажного дома — самые надежные и проверенные системы

    Схемы отопления должны быть разработаны на подготовительном этапе строительства дома. Благодаря этому можно заранее определить, сколько именно и какого материала вам потребуются. Крайне важно подобрать правильную систему, основываясь не только на материальных возможностях, но и на доступности ресурсов.

    Самые популярные схемы отопления двухэтажного дома

    Наиболее распространенная схема отопления двухэтажного дома — это водяное отопление, которое используется для нашего строения. Рассмотрим все варианты.

    Со стандартной разводкой.

    Она предполагает автономную регулировку температуры в той или иной комнате. Элементы при этом размещаются стандартно: две параллельные горизонтальные трубы, на них крепится радиатор. При этом желательно использовать трубы из пластика, ведь они более прочные и долговечные, нежели металлические.

    Видео — обзор систем отопления 2-ух этажного дома

    Они не не нуждаются в специфических умениях при монтаже, более того, они практически никогда не засоряются.

    Во время проектировки нужно определить, сколько именно соединений (в том числе и угловых) вам потребуется при установке. Также для каждого отдельного радиатора требуются кронштейны для крепления, размер которых будет зависеть от размера самого радиатора. Кроме того, на схеме указывается:

    1. Месторасположение котла.
    2. Насоса.
    3. Расширительного бака.

    Система может питаться от самых разных типов топлива, но вместе с тем самыми популярными остаются электричество и газ. Касательно твердого топлива, то в современных домах оно уже практически не используется.

    Нежели котел имеет незначительные габариты, то его можно установить практически в любой комнате — к примеру, в кладовой. Желательно повесить его на стену, дабы не занимать много пространства.

    А вот в библиотеке или спальне котел лучше не ставить, поскольку при его работе выделяется шум, хоть и незначительный. А вот касательно котлов большого размера, то их нужно размещать не то что в отдельной комнате, а в отдельной пристройке.

    Как размещается бак отопления

    Когда в доме имеется подвал или чердак, то используется один вариант размещения: сверху и снизу:

      1. Когда разводка находится сверху и обогреватель устанавливается на чердаке, то горячая жидкость посредством стояка будет поступать ко всей системе.

    1. Когда разводка установлена снизу и бак помещается в подвале, жидкость будет идти в трубы посредством электрического насоса.

    И вне зависимости от того, какой вариант будет выбран, расширительный бал в любом случае будет расположен в высшей точке помещения (иными словами, на крыше) и будет соединяться с обогревателем при помощи стояка.

    Еще одна система отопления двухэтажного дома: одна и две трубы

    Если будет одна труба, то она имеет вид кольца. И жидкость сначала идет на первый этаж, затем обратно в котел и уже потом поступает на второй.

    Получается, что на втором этаже будет теплее, чем на другом. И для некоторой компенсации подобного эффекта на первом этаже (где температуре несколько ниже) оборудуют радиаторы большего размера.

    Более того, в описанной нами системе отопления у вас не будет возможности выключить один определенный обогреватель — необходимо будет деактивировать всю систему полностью.

    А вот система с парой труб уже посложнее. Несмотря на то что установить ее очень трудно и хлопотно, она практически не имеет каких-либо недостатков. Свое название система получила оттого, что в ней будут иметься две трубы: для горячей жидкости и для холодной.

    Горячая же перемещается в радиаторы, проходит сквозь них и после этого остывает. Затем, естественно, она переходит в «холодную» часть. Один момент: если вы даже отключите определенный радиатор, то это никоим образом не повлияет на всю систему в целом.

    Виды систем отопления

    Далее мы рассмотрим основные виды систем отопления. Вначале стоит отметить, что сегодня люди используют преимущественно центральные системы парового или водяного отопления, различное воздушное отопления, а также малопопулярное печное отопление. Мы в общих чертах рассмотрим каждую из систем (за исключением печной) с максимально детальной классификацией, основываясь на свойствах носителей тепла.

    Водяное отопление

    В данном случае вода будет охлаждаться в радиаторах и возвращаться обратно в котел для последующего нагревания. Все водные системы условно делятся на:

    1. Гравитационные.
    2. Насосные.

    Гравитационные системы — это системы с естественной циркуляцией жидкости. Здесь применяется известное свойство воды менять свои физические характеристики при различных температурах. Движение воды естественное и появляется при воздействии силы гравитации планеты.

    Касательно насосных систем, то в них давление повышается при помощи специального механического насоса. Таким образом, в системе возникает необходимая циркуляция. Кроме того, такие системы можно поделить в зависимости от температуры носителей:

    • низкие температуры;
    • средние;
    • высокие.

    Стоит отметить, что сегодня максимальные показатели ограничиваются 150 °С. Идем дальше. Трубы системы могут размещаться вертикально и горизонтально.

    Паровая отопительная система частного дома

    В этом случае необходимая температура возникает после конденсации пара. Пройдя определенный цикл, конденсат исчезает из труб и перемещается обратно в котел. Теперь системы можно разделить в зависимости перемещения этого самого конденсата:

    1. Замкнутые системы, в которых конденсат возвращается самостоятельно.
    2. Разомкнутые, когда на конденсат возвращается под действием механического насоса.

    Нужно помнить, что в первом случае жидкость перманентно поступает в котел ввиду резкости разницы в давлении внутри системы. Именно поэтому котлы обязаны быть на максимальной высоте относительно вашего дома.

    А вот в разомкнутых системах конденсат все время перемещается в специальный резервуар и периодически поступает в тепловую станцию посредством того самого насоса. Здесь резервуар размещается так, чтобы конденсат мог свободно стекать из отопительного бака. Есть еще одна классификация систем, основанная на давлении пара:

    • субатмосферная;
    • низкого или высокого давления;
    • вакуумно-паровая.

    В большинстве случаев в подобных системах применяются стояки на две трубы, но не исключено, что могут быть использованы и на одну трубу.

    Воздушное отопление.

    В этом случае происходит циркуляция нагретого воздуха, который при контакте с радиаторами охлаждается и передает им свое тепло. Охладившись, воздух перемещается обратно в котел.

    Так же, как и в случае с водным отоплением, системы отопления воздухом могут делиться в зависимости от способа перемещения воздуха:

    1. Насосные (механические).
    2. Естественные (на основе гравитации).

    Принцип гравитационных систем предусматривает некоторую разницу в плотности воздуха при различных температурах. Как и в случае с водой, при взаимодействии жидкости разной температуры в трубах возникает естественное движение. Но вот если использовать в системе вентилятор, но движение уже будет вынужденным.

    В большинстве случаев воздух в такой системе не превышает отметки в шестьдесят градусов. Но некоторым исключением может считаться калориферная схема отопления двухэтажного дома. Калориферы способны обогреваться не только жидкостью, но и газом, а также электричеством. И, наконец, воздушные системы делятся на:

    • центральные;
    • местные.

    В последнем случае обогреватель находится в том же помещении, что и система.

    boldproject.ru

    Однотрубная система отопления с естественной циркуляцией: коротко о главном

    Современные домовладельцы часто выбирают системы отопления, функционирующие за счет естественной циркуляции. Современные насосы дороги, а гравитация — дешевая движущая сила, из-за которой происходит естественная циркуляция воды в системе отопления и вода движется по трубопроводу. Самотечные схемы используют там, где отсутствует электричество для питания насоса. Иногда насос все же присутствует, а при возникновении аварийной ситуации и отключении насоса теплоноситель двигается под воздействием гравитации. То есть, даже когда электрическое оборудование не работает, отопление с естественной циркуляцией продолжает функционировать.

    Такой вариант отопительной системы прекрасно подойдет для коттеджей, площадь которых не превышает 100 кв.м

    Минус конструкции — невозможность использовать ее в помещениях с большой квадратурой. Но для коттеджей, имеющих площадь менее сотни кв. м, такой вариант отлично подходит. По этой причине многие домовладельцы решаются сделать отопление с естественной циркуляцией без привлечения посторонней помощи.


    Принцип работы самотечной отопительной системы

    Принцип работы отопления выглядит просто: вода передвигается по трубопроводу, движимая гидростатическим напором, появившимся вследствие различной массы нагретой и остывшей воды. Еще такую конструкцию называют самотечная или гравитационная. Циркуляция – это перемещение остывшей в батареях и потяжелевшей жидкости под гнетом собственной массы вниз к нагревательному элементу, и вытеснение легкой нагревшейся воды в подающую трубу. Система функционирует, когда котел с естественной циркуляцией располагается ниже радиаторов.

    В контурах открытого типа он напрямую сообщается с внешней средой, и лишний воздух уходит в атмосферу. Увеличившийся от нагрева объем воды ликвидирован, постоянное давление нормализовано.

    Естественная циркуляция возможна и в закрытой системе отопления, если та оснащена расширительным баком с мембраной. Иногда конструкции открытого типа переоборудуют в закрытые. Закрытые контуры стабильнее в работе, теплоноситель в них не испаряется, но они так же независимы от электричества.
    Что влияет на циркуляционный напор

    Циркуляция воды в котле зависит от разницы в плотности горячей и холодной жидкости и от величины перепада высоты между бойлером и самым низко расположенным радиатором. Эти параметры просчитываются еще до начала монтажа отопительного контура. Естественная циркуляция возникает, т.к. температура обратки в системе отопления низкая. Теплоноситель успевает остыть, двигаясь через радиаторы, становится тяжелее и своей массой выталкивает из котла разогретую жидкость, заставляя ее продвигаться по трубам.

    Схема циркуляции воды в котле

    Плотность также регулирует напор: чем сильнее прогревается вода, тем меньше становится ее плотность в сравнении с обраткой. В результате она выталкивается с больше силой и напор увеличивается. По этой причине самотечные отопительные конструкции причисляют к саморегулирующимся, ведь если изменить температуру нагрева воды, поменяется и давление на теплоноситель, а значит, изменится его расход.

    При монтаже следует располагать котел в самом низу, ниже всех других элементов, чтобы обеспечить достаточный напор теплоносителя.


    Схема монтажа самотечных систем отопления

    Поскольку циркуляция воды в системе отопления происходит без участия насоса, для беспрепятственного течения жидкости по магистралям, они должны иметь диаметр больше, чем в схеме, где циркуляция воды обеспечивается принудительно. Самотечная система функционирует за счет снижения сопротивления, которое приходится преодолевать воде: чем дальше труба от котла, тем она шире.

    Водяное отопление с естественной циркуляцией может иметь верхнюю или нижнюю разводку. Когда разводка проектируется двухтрубной, нагретая вода поступает непосредственно в каждую батарею, а не проходит их поочередно, как в однотрубной схеме.

    Верхняя разводка, при которой теплоноситель сначала поднимается под потолок, а уже оттуда спускается к батареям, наилучшим образом подходит, чтобы осуществить монтаж такой конструкции. Если же разводка планируется нижняя, то сооружается разгонный контур: перепад высот, при котором вода от котла сначала идет наверх, где в верхней точке трубопровода попадает в расширительный бачок, а потом уже опускается к радиаторам отопления.

    Чем выше располагается нагревательный прибор, тем выше давление внутри трубопровода. Поэтому батареи верхних этажей часто прогреваются лучше, чем те, что на нижних. Соответственно, если делать отопление с естественной циркуляцией двухтрубным, батареи, размещенные на одном уровне с котлом или ниже, прогреваются недостаточно.

    Чтобы избежать такой ситуации, котельную основательно заглубляют, обеспечивая достаточно высокое давление для прохода теплоносителя по трубам с требуемой скоростью. Котел помещают в подвальном помещении, приблизительно на 3 метра ниже центра самого нижнего отопительного элемента. Трубы с горячей водой, наоборот, поднимают максимально вверх, располагая в высшей точке конструкции расширительный бачок, а затем вода от подающей трубы спускается к радиаторам.


    Однотрубная система для дома: расчет диаметра труб

    Однотрубная система отопления популярна, так как очень проста

    К отличительным чертам, которыми обладает однотрубная система отопления с естественной циркуляцией, можно отнести:

    • Отсутствие обратной магистрали: охлажденная обратка поступает обратно в нагревательный элемент по той же трубе.
    • Радиаторы нижних этажей прогреваются хуже, т.к. поступающая вниз вода уже охладилась в радиаторах, расположенных выше. Поэтому чем дальше батарея от котла, тем большим количеством секций она должна обладать, чтобы обеспечивать равномерный нагрев всех помещений.
    • Вода циркулирует по трубам, движимая разницей в температуре. На каждом радиаторе можно установить кран, который будет варьировать количество поступающей воды, отправляя остальную в другие радиаторы и регулируя обогрев помещения.
    • Если вода поступает последовательно из одного радиатора в другой, охлаждаясь по пути, не стоит размещать на радиаторах запорные краны, т.к. это может привести в замедлению движения теплоносителя по трубам.

    Системы отопления с естественной циркуляцией с последовательным подключением радиаторов монтируют, применяя верхнюю разводку. Соответственно, использовать одноконтурную схему можно только в доме с чердаком, где будет располагаться подающая магистраль. Несмотря на это, такая схема отопления с естественной циркуляцией пользуется популярностью, т.к. ее просто монтировать, а труб требуется меньше, чем для двухтрубной.

    Как регулировать температуру в принудительной закрытой системе подачи воды для отопления

    Чтобы контролировать микроклимат в помещении, можно разместить на радиаторах замыкающие участки. Разогретый теплоноситель, достигая радиатора, будет разделяться на два потока. Один проходит через радиатор, нагревая помещение, а второй протекает по байпасу, обводной трубе, направляющей часть потока теплоносителя мимо радиатора дальше по направлению движения. Добавляя в схему отопления обводные контуры, следует помнить, что они не должны быть равного диаметра с подводящей трубой, иначе в радиатор не будет поступать достаточного количества воды для обогрева. Обычно диаметр обводящего участка делают на один размер меньше диаметра подводящей трубы, чтобы избежать этой проблемы. Между обводным контуром и входным отверстием радиатора размещается вентиль, который регулирует поступление воды в батарею, меняя тем самым температурный режим. Однотрубная система отопления с естественной циркуляцией способна обогреть ваш дом без проблем.

    Помимо ручного вентиля можно использовать для контроля температуры радиаторные терморегуляторы. С их помощью задается желаемая температура в помещении, и термостат поддерживает ее самостоятельно, без постороннего вмешательства, ослабляя или усиливая поток теплоносителя. Терморегуляторы бывают со встроенными и выносными датчиками. Первые располагаются непосредственно на батарее отопления, а выносные или, как их еще называют, дистанционные вынесены за пределы отопительного прибора и соединяются с ним при помощи капилляра. Плюс выносных датчиков — точное измерение комнатной температуры, тогда как встроенные могут давать ложные показания под влиянием внешних факторов: расположения батареи в нише, влияние температуры самой батареи, декоративных элементов, закрывающих радиатор.

    Как проектировать двухтрубную систему под уклоном в частном одноэтажном доме с трубами из полипропилена

    В двухтрубной схеме есть подающая и обратная магистрали. Горячая вода поступает в радиаторы из верхнего трубопровода, а затем, остыв, утекает в бойлер через нижний. Расширительный бачок монтируется сразу после котла, его соединяет с контуром вертикальная труба. Устанавливают его таким образом, чтобы он находился в самой высокой точке конструкции.  Каждый отопительный элемент системы соединяется с обратным трубопроводом, по которому холодный теплоноситель поступает в котел.
    Плюсы и минусы обустройства отопления такого типа

    Отопление самотеком с вертикально расположенным стояком подразумевают обогрев здания с несколькими этажами. Такой вариант дороже, но защищен от образования воздушных пробок.

    Горизонтальный стояк – экономичный вариант, но при перемещении теплоноситель перемешивается с воздухом. Этот нюанс легко устранить: монтируя отопление с естественной циркуляцией своими руками, нужно добавить в систему воздухоотводчики.

    Преимущества системы отопления с естественной циркуляцией

    Плюсы естественной циркуляции:

    1. Простота монтажа и использования
    2. Высокая тепловая устойчивость контура
    3. Отсутствие шума во время работы (т.к. нет громко работающего насоса)
    4. Экономичный расход энергии (при должном утеплении труб и здания)
    5. Автономность: система отопления двухэтажного дома легко сможет работать без электричества
    6. Долговечность и износостойкость: при должном уходе самотечная система отопления частного дома может работать, не требуя ремонта, на протяжении 30-ти лет.

    Минусы однотрубной естественной циркуляции с насосом

    Слабые стороны гравитационной схемы отопления:

    ПОСМОТРЕТЬ ВИДЕО

    • Площадь строения, которое отапливает одно- или двухтрубная система отопления с естественной циркуляцией, не должна превышать 100 кв.м
    • Длина контура в горизонтальной плоскости – в пределах 30 м (иначе не хватит напора)
    • Невозможно установить отопление одноэтажного дома с естественной циркуляцией в здании без чердака, т.к. на чердаке размещается расширительный бачок.
    • Высокая вероятность замерзания воды, из-за которой трубы вне жилых помещений приходится тщательно утеплять.

    Система отопления с естественной циркуляцией проста и очень надежна.

    Краткое руководство по материалам — Системы пластиковых труб

    Полиэтилен или ПЭ — прочный термопластический материал. Трубопроводы из полиэтилена используются для широкого спектра применений, работающих под давлением, включая транспортировку питьевой воды и природного газа, ирригацию, канализацию и дренажные линии.

    PE используется для изготовления труб с начала 1950-х годов. Полиэтиленовые трубы различных размеров производятся методом экструзии. Он легкий, гибкий и легко поддается сварке. Его гладкая внутренняя отделка обеспечивает отличные характеристики текучести.Таким образом, постоянное развитие материала улучшило его характеристики, что привело к быстрому увеличению его использования крупными компаниями водоснабжения и газоснабжения по всему миру. Свариваемость позволяет выполнять сварку встык или электролитическую сварку труб на длинные отрезки и тем самым обеспечивать надежные соединения.

    Трубы также используются в технологии футеровки и бестраншейных технологиях, так называемых применениях без копания, когда трубы устанавливаются без рытья траншей и нарушают работу над землей.Здесь трубы могут быть использованы для прокладки старых трубопроводных систем, чтобы остановить утечку и улучшить качество воды. Таким образом, эти гениальные решения помогают инженерам восстанавливать трубопроводные системы из традиционных материалов. Земляные работы минимальны, и процесс проводится быстро под землей.

    В последующие годы полиэтиленовые материалы были разработаны с новыми свойствами. Одним из примеров является PE-RC, который имеет очень высокую устойчивость к распространению трещин и поэтому подходит для установки без копания с потенциальным риском поцарапать трубы при протягивании через землю или через старую и протекающую чугунную трубу.Кроме того, материал PE-RC позволяет использовать существующий засыпной материал вместо песка при прокладке труб в земле.

    Также в отношении материала полиэтиленовых труб несколько исследований продемонстрировали длительный срок службы с ожидаемым сроком службы более 100 лет.

    Полипропиленовое волокно: свойства, применение, продукты, структура

    Полипропилен — очень популярное волокно, которое может использоваться в производстве во многих формах и цветах.

    Полипропиленовое волокно , также известное как полипропилен или ПП, представляет собой синтетическое волокно, на 85% состоящее из пропилена и используемое в различных областях. Он используется во многих отраслях промышленности, но одной из самых популярных является производство ковровой пряжи. Например, из этого волокна делают большинство экономичных ковров для легких домашних хозяйств. Волокно термопластичное, эластичное, легкое, устойчивое к плесени и множеству различных химикатов.

    Что такое полипропилен?

    Полипропилен (PP) — первый стереорегулярный полимер, получивший промышленное значение.Это термопласт , что означает, что он становится пластичным или пластичным при определенной повышенной температуре и затвердевает при охлаждении. Полипропилен перерабатывается в пленку для упаковки и волокна для ковров и одежды.

    PP относится к группе полиолефинов и является частично кристаллическим и неполярным. По своим свойствам он аналогичен полиэтилену, но более твердый и термостойкий. Это прочный белый материал с высокой химической стойкостью. Полипропилен является вторым по популярности товарным пластиком (после полиэтилена) и часто используется для упаковки и маркировки продуктов.

    Полипропилен производится из газообразного пропилена в присутствии катализатора, такого как хлорид титана. Полипропилен — это побочный продукт добычи нефти. Вы можете найти более подробную научную информацию здесь.

    ПП имеет следующие свойства:

    • низкие физические свойства
    • низкая термостойкость
    • отличная химическая стойкость
    • от полупрозрачного до непрозрачного
    • низкая цена
    • легко обрабатывать

    Полипропиленовая крошка может быть преобразована в волокно / нить традиционным способом прядения из расплава .

    Первые волокна из полипропилена были представлены в текстильной промышленности в 1970-х годах и стали важным участником рынка синтетических волокон.

    Полипропиленовое волокно обладает хорошими теплоизоляционными свойствами и обладает высокой устойчивостью к кислотам, щелочам и органическим растворителям . Волокно чувствительно к теплу и свету, но на устойчивость к этим веществам можно повлиять добавлением стабилизаторов. Нити и моноволокна используются в производстве кабелей, сеток, фильтровальных тканей и обивки.В виде штапеля волокно используется в ковровых покрытиях, одеялах, тканях для верхней одежды, трикотажных изделиях и фильтровальных тканях. Текстурированное полипропиленовое волокно в основном используется для изготовления ковров.

    Рост спроса на полипропилен очень высок, в основном это связано с его отличительными техническими характеристиками:

    • легкий
    • сильный
    • гидрофобный
    • гибкий
    • имеет низкую теплопроводность и т. Д.

    Из-за всего этого широко используется для изготовления нижнего белья, курток для верхней одежды, купальных костюмов, фильтров, сумок и подгузников.

    Полипропилен перерабатывается на заводах в пленку, когда он предназначен для упаковки, и в волокна для ковров и одежды.

    Свойства полипропиленового волокна

    Структура и характеристики волокна

    Волокна

    PP состоят из кристаллических и некристаллических областей. Каждый кристалл окружен некристаллическим материалом. Прядение и вытяжка волокна могут влиять на ориентацию как кристаллических, так и аморфных областей.

    Степень кристалличности полипропиленового волокна обычно составляет 50-65%, в зависимости от условий обработки.Кристаллизация происходит между температурой стеклования и равновесной точкой плавления полипропилена. Скорость кристаллизации выше при низких температурах.

    В целом полипропиленовое волокно имеет отличную химическую стойкость к кислотам и щелочам, высокую стойкость к истиранию и устойчивость к насекомым и вредителям. Волокно PP также легко обрабатывать и недорого по сравнению с другими синтетическими волокнами. Он также имеет низкое влагопоглощение.

    Некоторые из основных характеристик волокна из полипропилена :

    • дает хорошую пухлость и покрывает
    • устойчив к истиранию, износу от химикатов, плесени, поту, гниению, пятнам, почве и погодным условиям
    • устойчивы к бактериям и микроорганизмам
    • Colorfast
    • быстросохнущий
    • антистатическое поведение
    • термически склеиваемый
    • сильный
    • сухая рука
    • удобный и легкий

    Из-за своего низкого удельного веса полипропилен дает наибольший объем волокна для данного веса.Такой высокий выход означает, что полипропиленовое волокно обеспечивает хороший объем и укрывистость, но при этом легче. Полипропилен — самое легкое из всех волокон (например, он на 34% легче полиэстера и на 20% легче нейлона), даже легче воды.

    Полипропиленовое волокно легко перерабатывать на заводах, а производство недорого.

    Механические свойства

    Полипропиленовые волокна производятся различных типов с различной прочностью , чтобы соответствовать различным требованиям рынка.Волокна для текстильных изделий общего назначения имеют прочность в диапазоне 4,5-6,0 г / ден. Высокопрочная пряжа до 9,0 г / ден производится для использования в веревках, сетях и других подобных изделиях. Волокна полипропилена с высокими эксплуатационными характеристиками обладают высокой прочностью и высоким модулем упругости.

    Эти методы включают ультра-вытяжку, экструзию в твердом состоянии и рост поверхности кристаллов. Возможно изготовление волокон с прочностью более 13,0 г / ден.

    Таблица механических свойств полипропиленовых волокон

    Предел прочности (гс / ден) 3.5 к 5,5
    Относительное удлинение (%) от 40 до 100
    Устойчивость к истиранию хорошо
    Поглощение влаги (%) от 0 до 0,05
    Температура размягчения (ºC) 140
    Температура плавления (ºC) 165
    Химическая стойкость в целом отлично
    Относительная плотность 0.91
    Теплопроводность 6,0 (с воздухом как 1,0)
    Электроизоляция отлично
    Устойчивость к плесени и моли отлично

    Степень ориентации, достигаемая вытяжкой, влияет на механические свойства полипропиленовых нитей. Чем выше степень растяжения, тем выше предел прочности на разрыв и меньше относительное удлинение.Коммерческие моноволокна имеют удлинение при разрыве в районе 12-25%. Мультифиламенты и штапельные волокна составляют от 20-30% до 20-35%.

    Тепловые свойства

    Полипропиленовые волокна имеют самую низкую теплопроводность среди всех натуральных или синтетических волокон (6,0 по сравнению с 7,3 для шерсти, 11,2 для вискозы и 17,5 для хлопка). Волокна полипропилена сохраняют больше тепла в течение более длительного периода времени, обладают отличными изоляционными свойствами в одежде и, в сочетании с их гидрофобной природой, сохраняют тепло и сухость в одежде.

    Полипропиленовые волокна имеют температуру размягчения около 150 ° C и точку плавления при 160-170 ° C. При низких температурах -70 ° C и ниже полипропиленовые волокна сохраняют отличную гибкость. При высокой температуре (но ниже 120 ° C) волокна PP почти сохраняют все свои обычные механические свойства. Волокна полипропилена имеют самую низкую теплопроводность среди всех коммерческих волокон, и в этом отношении они являются самыми теплыми волокнами из всех, даже более теплыми, чем шерсть.

    Что касается воздействия сильного холода, они остаются эластичными при температурах в районе -55 ° C.

    Окрашиваемость

    Окрашиваемость волокон определяется их химическими и физическими свойствами . Волокна, которые имеют полярные функциональные группы в повторяющихся звеньях молекулы, могут быть более легко окрашены. Эти полярные группы могут служить активными центрами для соединения с молекулами красителя за счет химических связей.

    Поскольку молекулярные цепи полипропилена не имеют полярных функциональных групп (активных центров химических связей или красителей) и имеют относительно высокую степень кристалличности (50-65%), молекулы красителя не могут химически притягиваться к волокнам.Молекулы красителя не могут даже сильно адсорбироваться поверхностью волокон из-за их гидрофобных свойств.

    В современной текстильной промышленности полипропиленовое волокно можно окрашивать практически в неограниченное количество цветов.

    По этим причинам окрашивание полипропилена оставалось очень важной задачей для химиков, занимающихся полимерами и текстилем, на протяжении многих десятилетий. Подходы к окрашиванию полипропилена с использованием полисмесей, сополимеров, плазменной обработки и специально разработанных красителей были тщательно изучены.

    Текущая технология производства окрашиваемого полипропилена в основном основана на технологиях полисмешивания, сополимеризации и прививки. Окрашиваемый полипропилен можно производить с помощью нанотехнологий. В современной промышленности полипропиленовое волокно может быть окрашено в массе (прядением) производителем практически в неограниченном количестве цветов.

    Как производится полипропиленовое волокно?

    Полипропиленовая крошка может быть преобразована в волокно / нить с помощью стандартного процесса прядения из расплава , хотя рабочие параметры можно регулировать в зависимости от конечных продуктов.

    Производство полипропиленового волокна варьируется от производителя. Производственный процесс отличается, так что могут быть достигнуты желаемые свойства, включая окрашиваемость, светостойкость, термочувствительность и т. Д.

    Основной производственный процесс включает полимеризацию газообразного пропилена с помощью металлического соединения, такого как хлорид титана. Полимер, образованный из пропилена, суспендируют в разбавителе для разложения катализатора, затем его фильтруют, очищают и, наконец, восстанавливают до полипропиленовой смолы.

    Смолу, образованную таким образом, расплавляют и экструдируют через фильеру в виде нити. Затем эти волокна обрабатываются для получения желаемых свойств.

    На фабриках полипропилен превращается в волокно путем прядения из расплава.

    Основные этапы производственного процесса:

    1. Дозирование : Один или несколько шестеренчатых прядильных насосов принимают расплавленный полимер и отправляют его через прядильный пакет для гомогенизации продукта, подачи прядильного пакета с постоянной скоростью и предотвращения колебаний из-за действия шнекового экструдера.Полимер в форме пеллет или гранул подается в экструдер, где он расплавляется и перекачивается через поршневой насос прямого вытеснения в комплект для центрифугирования расплава.
    2. Прядение : Прядильный агрегат состоит из фильтров и каналов, по которым расплавленный полимер подается в фильеру с несколькими нитями. Распределитель распределяет расплавленный полимер по поверхности фильеры. Диаметр матрицы варьируется от 0,5 до 1,5 мм в зависимости от требуемого денье.
    3. Закалка : Новые экструдированные расплавленные волокна, которые выходят из фильеры, охлаждаются, обычно холодным воздухом, без повреждения волокон, и затвердевают.Зона охлаждения может быть такой же простой, как область, в которой охлаждающий воздух продувается через волокна, или это может быть тщательно продуманная камера, сконструированная так, чтобы можно было строго контролировать охлаждающую среду.
    4. Отделка : Для улучшения антистатических свойств и уменьшения истирания.
    5. Горячее растяжение : Процесс улучшения физико-механических свойств.
    6. Обжим : Улучшение пухлости.
    7. Thermosetting : Обработка горячим воздухом или паром, снимающая внутренние напряжения и расслабляющая волокна.Полученные волокна подвергаются термофиксации с увеличенным денье.
    8. Раскрой : Волокна нарезаются на отрезки длиной от 20 до 120 мм, в зависимости от того, предназначены они для хлопчатобумажной или шерстяной ткани.

    Как используется полипропиленовое волокно?

    Полипропиленовое волокно может быть использовано в широком диапазоне применений . Это лишь некоторые примеры:

    • автомобильная промышленность
    • ковровое покрытие
    • упаковка
    • волокно, нить, пленка, трубы
    • обивочные ткани и покрывала
    • игрушки, пробки для бутылок, одноразовые
    • гигиена
    • одежда
    • технические фильтры
    • мешки тканые
    • веревки и двойники
    • ленты
    • ткани строительные
    • Абсорбирующие изделия (подгузники)
    • мебельная промышленность
    • сельское хозяйство

    Благодаря своим превосходным эксплуатационным характеристикам и сравнительно низкой стоимости полипропиленовое волокно находит широкое применение в производстве нетканых материалов и доминирует на многих рынках нетканых материалов.Основные области применения: нетканые материалы, рынки покрытий абсорбирующих продуктов, товары для дома и автомобильные рынки.

    Упакованные тюки из штапельного полипропилена различных ярких цветов.

    Применение полипропиленовых волокон в текстиле

    Текстильные полы были первой и самой большой областью применения полипропиленового волокна: высокая стойкость к истиранию, непоглощение грязи, жидкостей и пятен, простота стирки, устойчивость цвета и отсутствие распространения огня сделали его предпочтительным. даже к натуральным волокнам.

    Это применение полипропилена было распространено на напольные ковры, хорошо устойчивые к излучению и теплу: поля для гольфа и теннисные корты, края бассейнов и салоны автомобилей. В последующие годы был разработан метод производства пряжи тонкой пряжи, позволяющий изготавливать ткань, которая особенно подходила для спортивного трикотажа, где положительным фактором было непоглощение пота и его транспортировка наружу. , оставляя тело сухим.

    Нижнее белье и спортивная одежда из полипропилена демонстрируют отличную теплоизоляцию, высокую стойкость к истиранию, перенос пота от тела на прилегающую впитывающую ткань (например, хлопок) и т. Д.

    Некоторые из основных областей применения полипропиленовых волокон в текстильной промышленности :

    • Одежда
    • Одежда
    • Канаты
    • Пищевые этикетки и упаковка

    Продукты

    Полипропиленовое штапельное волокно

    Полипропиленовое штапельное волокно используется в производстве игольчатых ковров, предметов гигиены и домашнего обихода и т. Д. Некоторые из основных областей применения включают: нетканые материалы, рынки впитывающих продуктов (подгузники), предметы домашнего обихода и автомобильную промышленность.Он также используется для тканых ковров, ковровых покрытий из нетканых материалов, обивки, прядения, фильерных тканей, термосвязанных тканей, изоляционных материалов, войлока, строительных конструкций…

    Полипропиленовое штапельное волокно ярких цветов, готовое к применению в различных текстильных отраслях.

    Пряжа полипропиленовая BCF
    Пряжа

    PP BCF используется в производстве текстильных полов, а также в производстве упаковочных тканей (биг-бегов) и обрезков. Мы производим BCF с широким спектром децитексных и цветовых палитр, без УФ-стабилизатора, в соответствии с требованиями заказчика.

    Пряжа полипропиленовая CF
    Пряжа

    PP CF используется в канатной промышленности и обрезке.

    Непрерывная мультифиламентная пряжа (CF Yarns) имеет среднюю прочность. Они подходят для ткачества, вязания и широкого спектра применений. Некоторые из них включают: обивку матрасов, обивку, оконные жалюзи, спортивную одежду, модный текстиль и различные технические изделия.

    Бетон, армированный полипропиленовым волокном

    Хотя бетон предлагает множество преимуществ, когда речь идет о механических характеристиках и экономических аспектах конструкции, хрупкое поведение материала остается большим препятствием для сейсмических и других применений, где существенно требуется гибкое поведение.Однако разработка полипропиленового фибробетона (PFRC) обеспечила техническую основу для устранения этих недостатков.

    В последнее время использование полипропиленовых волокон в строительстве конструкций значительно расширилось, поскольку добавление волокон в бетон улучшает ударную вязкость, прочность на изгиб, прочность на разрыв и ударную вязкость, а также режим разрушения бетона. Полипропиленовый шпагат дешев, доступен в большом количестве и, как и все искусственные волокна, неизменно высокого качества.(Более подробную техническую информацию можно найти здесь.)

    Часто задаваемые вопросы о PP Fiber

    1. Q: Сколько стоит полипропиленовая ткань?

    A: Поскольку полипропилен является одним из наиболее широко производимых видов пластика, оптом он стоит довольно недорого. Большое количество фабрик конкурируют друг с другом за место на мировом рынке пластмасс, и эта конкуренция снижает цены.

    Однако полипропиленовая ткань может быть относительно дорогой, но это в основном зависит от конечного использования.Например, полипропиленовая ткань, которая предназначена для изготовления одежды, имеет более высокую стоимость, чем полипропиленовая ткань для других целей, которая обычно имеет относительно низкие цены.

    2. В: Полиэстер против полипропилена: основные отличия

    A: И полипропилен (PP), и полиэстер (PES) являются двумя основными волокнами, которые в основном используются в традиционном прядении и ткачестве, производстве нетканых материалов, пряжи и композитах. Оба волокна доступны как первичные, так и бутылочные (из регенерированного материала).Первичное волокно используется для изготовления одежды, а регенерированное волокно используется в нетканых материалах для изготовления ковров, напольных покрытий, одеял и фильтров.

    • PES доступен с более высокими классами прочности на разрыв по сравнению с полипропиленом, который подходит для промышленных тканей с более высокой оговоренной прочностью.
    • Полипропилен обычно не используется для пришивания ниток из-за его низкой температуры плавления.
    • Относительное удлинение у полипропилена намного выше. Это обеспечивает лучшую эластичность материала и улучшенное формование.
    • Плотность полипропилена (0,91 г / см) намного ниже, чем у полиэстера (1,38 г / см). В результате диаметр полипропиленового волокна пропорционально превышает диаметр полиэфирного волокна того же денье. Полипропилен окрашен в массе и доступен в широком диапазоне цветов и оттенков. С другой стороны, окрашенный в массе полиэстер доступен только в ограниченном количестве цветов.
    • Точка плавления полипропилена (165 C) намного ниже, чем у полиэфира (260 C).Поэтому материал из этого волокна не подходит для одежды пожарных и аналогичной одежды с высокими температурами.
    • Стойкость к ультрафиолетовому излучению уступает PP по сравнению с PES, но в процессе производства может быть добавлен УФ-стабилизатор.
    • Полипропилен очень инертен к химическим веществам. подходит для использования в качестве рыболовных сетей и геотекстиля в щелочных и кислых почвах.
    Полипропилен обладает высокой эластичностью, что идеально подходит для прядения и ткачества, производства нетканых материалов, пряжи и других применений.

    3. В: Какие существуют типы полипропиленовой ткани?

    A: Существует множество различных добавок, которые могут быть добавлены к полипропилену в его жидком состоянии для изменения свойств материала. Кроме того, существует два основных типа этого пластика:

    .
    • Гомополимерный полипропилен : Полипропилен считается гомополимером, если он находится в исходном состоянии без каких-либо добавок. Этот тип полипропилена обычно не считается хорошим материалом для ткани.
    • Сополимерный полипропилен : Большинство типов полипропиленовых тканей состоят из сополимеров. Этот тип полипропилена в дальнейшем делится на полипропилен с блок-сополимером и полипропилен со статистическим сополимером. Сомономерные звенья в блочной форме этого пластика расположены в виде правильных квадратов, но сомономерные звенья в произвольной форме расположены относительно произвольно. Для текстильных изделий подходит как блочный, так и случайный полипропилен, но чаще используется блочный полипропилен.

    4. В: Токсичен ли полипропилен для человека?

    A: Полипропилен — один из немногих типов пластика, разрешенных для использования в пищевой и фармацевтической промышленности, поскольку они считаются в основном безвредными для здоровья человека. Во многих исследованиях полипропилен считается одним из самых безопасных типов из всех пластиков . Он прочный и термостойкий, поэтому маловероятен выщелачивание даже при воздействии теплой или горячей воды.

    Почему следует использовать полипропиленовое волокно — основные преимущества и недостатки

    Хотя полипропиленовые волокна имеют некоторые недостатки, в основном низкая температура плавления, которая не позволяет гладить полипропилен, как хлопок, шерсть или нейлон, ограниченная текстурируемость, плохая адгезия к клеям и латексу и т. Д., полипропиленовые волокна обладают множеством преимуществ.

    Благодаря своим специфическим характеристикам, он идеально подходит для некоторых отраслей промышленности (например, производство ковровой пряжи и впитывающих материалов). Волокно термопластичное, эластичное, легкое, устойчивое к плесени и множеству различных химикатов.

    Полипропилен — это легкое волокно, обладающее высокой химической стойкостью, поэтому оно идеально подходит для многих отраслей промышленности.

    Это лишь некоторые из преимуществ, которые вам следует учитывать:

    • ПП — световод: его плотность (.91 г / см³) является самым низким из всех синтетических волокон.
    • Не впитывает влагу. Это означает, что свойства влажного и сухого полипропиленового волокна идентичны. Низкий уровень восстановления влаги не считается недостатком, поскольку он помогает быстро отводить влагу, как это требуется в особых случаях, таких как вечно высыхающие детские подгузники.
    • Обладает отличной химической стойкостью. Волокна PP очень устойчивы к большинству кислот и щелочей.
    • Теплопроводность полипропиленового волокна ниже, чем у других волокон , и его можно использовать для термического износа.

    В заключение: полипропиленовая ткань — это нетканый текстильный материал , что означает, что он изготовлен непосредственно из материала без необходимости прядения ткачества. Основным преимуществом полипропилена как ткани является его способность передавать влагу ; этот текстиль не впитывает влагу, а влага полностью проходит через ткань PP. Этот атрибут позволяет влаге, которая выделяется при ношении одежды из полипропилена, испаряться намного быстрее, чем при использовании одежды, удерживающей влагу.Поэтому эта ткань популярна в текстильных изделиях, которые носят близко к коже.

    Также имейте в виду, что полипропиленовая ткань является одним из самых легких синтетических волокон из существующих, и она невероятно устойчива к большинству кислот и щелочей. Кроме того, теплопроводность этого вещества ниже, чем у большинства синтетических волокон, а значит, оно идеально подходит для ношения в холодную погоду.

    Кроме того, эта ткань очень устойчива к истиранию, а также к насекомым и другим вредителям.Благодаря своим выдающимся термопластическим свойствам, полипропилену легко формовать различные формы и формы, и он может быть преобразован путем плавления.

    Все эти функции делают его идеальным для некоторых конкретных отраслей и сфер применения. Если у вас есть один из таких вопросов или у вас есть какие-либо вопросы или проблемы, пожалуйста, не стесняйтесь обращаться к нам.

    Биаксиально ориентированный полипропилен — обзор

    8.2.1 Литературные исследования процессов обработки поверхности

    В открытой литературе проводились исследования различных процессов обработки, особенно в том, что касается биаксиально ориентированного полипропилена (БОПП).Например, Zenkiewicz 9 изучал влияние уровня энергии обработки коронным разрядом на поверхностную энергию пленки БОПП. В диапазоне энергии обработки коронным разрядом до 1,2 кДж / м 2 наблюдается быстрое увеличение поверхностной энергии с увеличением энергии обработки. Выше этого значения свободная энергия поверхности возрастает относительно медленно. Кроме того, степень окисления поверхностного слоя прямо пропорциональна энергии обработки коронным разрядом.

    В другом исследовании, связанном с обработкой коронным разрядом, Guimond et al. 10 сравнили обработку БОПП воздушным коронным разрядом с атмосферным тлеющим разрядом азота (APGD). В этой работе было показано, что обработка APGD азотом приводит к более высокой поверхностной энергии, чем обработка воздушным коронным разрядом, и приводит к образованию на поверхности полипропилена в основном аминных, амидных и гидроксильных функциональных групп. Кроме того, для обоих типов обработки обнаружено, что повышенная поверхностная энергия спадает аналогичным образом с увеличением времени после обработки.

    Strobel et al. 11 сравнили обработанные коронным разрядом и обработанные пламенем полипропиленовые пленки с целью дать представление о механизме этих двух процессов. Атомно-силовая микроскопия (АСМ) и рентгеновская фотоэлектронная спектроскопия (XPS) были использованы для характеристики обработанной биаксиально ориентированной полипропиленовой пленки. В то время как оба процесса окисляют поверхность полипропилена, обработка коронным разрядом приводит к образованию водорастворимых низкомолекулярных окисленных материалов, тогда как обработка пламенем — нет. Результаты компьютерного моделирования показывают, что отношение кислорода к гидроксилу в коронном разряде намного выше, чем в пламени.Разрыв цепи и образование окисленных материалов с низким молекулярным весом связаны с реакциями с участием атомов O. Более высокие отношения O к OH в короне в большей степени способствуют образованию окисленных продуктов с низким молекулярным весом. Поверхностный окисленный полипропилен демонстрирует значительный термодинамический гистерезис краевого угла, который в первую очередь вызван микроскопической химической неоднородностью.

    Эта статья является примером из открытой литературы, в котором указывается, что существуют различия в поверхностях, которые создаются с помощью различных процессов обработки.В гораздо более ранней статье Podhajny 12 содержалось резюме исследований самого процесса обработки коронным разрядом. Были идентифицированы химические функциональные группы, которые образуются коронным разрядом на пленках, и обсуждено их влияние на смачиваемость и адгезию пленки.

    Аналогичное исследование химических групп, полученных при обработке пламенем, было проведено Sutherland et al. 13 В этом исследовании было обнаружено, что около 30% включенного кислорода на обработанных пламенем поверхностях полипропилена присутствует в виде гидроксильных групп.Также наблюдалась переориентация или миграция поверхностных функциональных групп, которые были включены в процессе обработки пламенем. Кроме того, сканирующая электронная микроскопия (SEM) показала определенные изменения в топографии поверхности, вызванные интенсивной обработкой пламенем.

    Другие субстраты, кроме БОПП, также были изучены при сравнении обработки пламенем и коронным разрядом. Компания NatureWorks LLC опубликовала технический бюллетень 14 о влиянии обоих типов обработки на биаксиально ориентированную полимолочную кислоту (BOPLA).Представленное исследование было выполнено с заявленной целью получения наилучших настроек оборудования для получения максимального увеличения поверхностной энергии. Кроме того, образцы пленок BOPLA хранили и тестировали с течением времени, чтобы определить, как долго пленка сохраняет свой высокий уровень поверхностной энергии.

    В этом исследовании было показано, что соотношение топлива и кислорода 1: 1 при обработке пламенем приводит к наивысшему уровню поверхностной энергии (> 70 дин / см) для пленки BOPLA. С другой стороны, большинство упаковочных пленок, используемых для гибкой упаковки, достигают максимальной поверхностной энергии при обработке 0.5% избыток кислорода в топливной смеси. Когда скорость линии пленки увеличивается, поверхностная энергия падает при использовании фиксированной мощности горелки и зазора горелки. Следовательно, мощность горелки должна увеличиваться по мере увеличения линейной скорости для поддержания высокой поверхностной энергии, а также должен быть увеличен зазор горелки, чтобы предотвратить деформацию пленки из-за тепла пламени.

    В части обработки коронным разрядом этого исследования, как пленка BOPLA, которая была обработана коронным разрядом во время производства, так и пленка BOPLA, которая не подвергалась предыдущей обработке, оценивались на предмет энергии разряда в зависимости от полученной поверхностной энергии и продолжительности времени в днях, в течение которого пленка удерживалась. поверхностная энергия.К обработанной пленке BOPLA необходимо приложить очень небольшую ваттную плотность, чтобы эффективно «выпрямить» поверхностную энергию до уровня 48 дин или выше. В отличие от пленки BOPP, обсуждавшейся ранее, пленка BOPLA, которая не была обработана коронным разрядом во время производства пленки, может быть эффективно обработана позже. Однако необработанная пленка BOPLA действительно требует большей плотности ватт для эффективного увеличения поверхностной энергии по сравнению с обработкой «выпуклостью», но не требует необоснованного уровня плотности ватт, чтобы быть эффективной.

    Как уже упоминалось ранее в этой главе, одной из основных причин обработки полимеров, особенно полиолефинов, является улучшение адгезии с чернилами и другими покрытиями. Следует отметить, что в широкий диапазон термина «покрытие» также входит понятие металлизации пленок. Кроме того, необходимо понимать, что требуемый уровень обработки весьма специфичен для каждого приложения. Что касается процесса печати, проблема еще больше усугубляется тем, что в настоящее время промышленность в целом отходит от чернил на основе растворителей в пользу чернил на водной основе или УФ-отверждаемых чернил.

    Кроме того, степень обработки пленочных подложек имеет тенденцию изменяться со временем. Кроме того, добавки, такие как добавки, снижающие скольжение, имеют тенденцию мигрировать на поверхность пленки по мере старения пленки, оказывая общий эффект маскировки уровня обработки. Помимо добавок, улучшающих скольжение, на степень обработки может влиять физическое обращение с пленкой, а также температура хранения. Все эти факторы необходимо учитывать при принятии решения о том, какой тип лечебной процедуры, а также какой уровень лечения необходим для достижения желаемого результата.

    Полипропилен — обзор | ScienceDirect Topics

    ПП был добавлен в 0, 4, 8 и 16 частей сверхразветвленного полиэфира HyPer h303, экструдированного в грануляторе микроэкструдера, а затем в высокопроизводительную машину электропрядения из расплава для прядения. Было исследовано влияние содержания сверхразветвленного полиэфира на диаметр полипропиленового волокна, пряденного из расплава, как показано на фиг. 3.42A и 3.43. Согласно рис. 3.43 было обнаружено, что диаметр волокон электропрядения из расплава ПП без сверхразветвленного полиэстера не был однородным и составлял 5–20 мкм.При содержании сверхразветвленного полиэфира h303 4 мас.% Диаметр волокна ПП составляет 5–6 мкм; при восьми экземплярах заготовка из ПП волокна диаметром 1–2 мкм; с 16 копиями распределение диаметров волокна не равномерное, в основном менее 4 мкм, но часть диаметра волокна может достигать 200 нм. Это связано с тем, что, когда сверхразветвленный полиэфир h303 проникает в перепутанную линейную цепь полимера ПП, его содержание составляет относительно низкую часть цепи полимера ПП, которая должна быть перепутана. С увеличением содержания h303 все больше и больше цепей полимера PP запутывались, а под действием смазки h303 проскальзывание цепей PP усиливалось, и вязкость расплава полипропилена становилась все ниже и ниже.В высоковольтном электростатическом поле диаметр волокна больше и меньше, поэтому, когда содержание сверхразветвленного полиэфира h303 составляет 8 мас.%, Диаметр волокна PP меньше, чем содержание сверхразветвленного полиэфира 0 частей, четыре копии волокна PP . Однако, когда содержание сверхразветвленного полиэфира h303 составляет 16 мас.%, Распределение диаметров волокон больше не является однородным, диаметр волокна в основном меньше 4 мкм, и образуются сотни нанометровых волокон, а некоторые диаметры волокон могут достигать 200 нм.Это связано с тем, что содержание сверхразветвленного полиэфира в 16 частей вязкости расплава полипропилена очень низкое. При существующей температуре прядения, напряжении прядения и условиях процесса на расстоянии приема большая часть расплава полипропилена слишком поздно попадает в высоковольтное электростатическое поле и полностью растягивается к принимающему устройству, так что диаметр волокна не является однородным явлением. .

    Рисунок 3.43. СЭМ-изображения волокон ПП, содержащих различное содержание h303 в ПП: (A) четыре копии; (B) восемь экземпляров; и (C) 16 копий.

    1.

    Электропрядение из полипропиленового волокна Диаметр одиночного волокна может достигать 5 мкм, добавляя четыре копии сверхразветвленного полиэфира h302, а диаметр одиночного волокна может быть уменьшен до 200 нм.

    2.

    Влияние сверхразветвленного полиэфира с разной молекулярной массой на диаметр полипропиленового волокна существенно различалось. Средний диаметр волокна из полипропилена, модифицированного h303, был примерно на 3 мкм меньше, чем у волокна h302.

    3.

    Волокна для электропрядения из расплава полипропилена без сверхразветвленного полиэстера имеют неравномерное распределение диаметров 5–20 мкм.С увеличением содержания сверхразветвленного полиэфира диаметр электропряденого волокна из расплава ПП уменьшается. При добавлении восьми частей сверхразветвленного полиэфира h303 диаметр волокна может достигать 1-2 мкм, распределение равномерное, содержание сверхразветвленного полиэфира слишком велико, а диаметр волокна становится неравномерным.

    Все, что нужно знать о пластике ПВХ

    Что такое поливинилхлорид (ПВХ) и для чего он используется?

    Поливинилхлорид (ПВХ) — один из наиболее часто используемых термопластичных полимеров во всем мире (рядом с несколькими более широко используемыми пластиками, такими как ПЭТ и П.П.). Это естественно белый и очень хрупкий (до добавок пластификаторов) пластик. ПВХ существует дольше, чем большинство пластмасс, он был впервые синтезирован в 1872 году и коммерчески произведен компанией B.F. Goodrich в 1920-х годах. Для сравнения, многие другие обычные пластмассы были впервые синтезированы и коммерчески жизнеспособны только в 1940-х и 1950-х годах. Чаще всего он используется в строительной отрасли, а также для изготовления вывесок, медицинских изделий и волокон для одежды. ПВХ был случайно обнаружен дважды, один раз в 1832 году французским химиком Анри Виктором Реньо, а затем вновь обнаружен в 1872 году немцем по имени Юджин Бауманн.


    Ознакомьтесь с лучшим в отрасли онлайн-курсом для начинающих изобретателей. Положитесь на руководство ветеранов, которое поможет превратить ваш продукт от первоначальной идеи до прибыльного.


    Основные формы и функции поливинилхлорида (ПВХ) ПВХ

    производится в двух основных формах: жесткий или непластифицированный полимер (RPVC или uPVC), а второй — в виде гибкого пластика. В базовой форме ПВХ отличается жесткой, но хрупкой структурой.В то время как пластифицированная версия имеет различные применения в различных отраслях промышленности, жесткая версия ПВХ также имеет свою долю использования. В таких отраслях, как водопровод, канализация и сельское хозяйство, жесткий ПВХ может использоваться во многих сферах.

    Гибкий, пластифицированный или обычный ПВХ более мягкий и поддается изгибу, чем НПВХ, из-за добавления пластификаторов, таких как фталаты (например, диизононилфталат или ДИНФ). Гибкий ПВХ обычно используется в строительстве в качестве изоляции электрических проводов или полов в домах, больницах, школах и других областях, где стерильная среда является приоритетом.В некоторых случаях ПВХ может выступать эффективной заменой резины. Жесткий ПВХ также используется в строительстве в качестве трубы для водопровода и сайдинга, обычно называемой термином «винил» в Соединенных Штатах. ПВХ-трубу часто называют ее «графиком» (например, Приложением 40 или Приложением 80). Значительные различия между графиками включают такие параметры, как толщина стенок, номинальное давление и цвет.

    Некоторые из наиболее важных характеристик ПВХ-пластика включают его относительно низкую цену, его устойчивость к разрушению окружающей среды (а также к химическим веществам и щелочам), высокую твердость и выдающуюся прочность на разрыв для пластика в случае жесткого ПВХ.ПВХ остается широко доступным, широко используемым и легко перерабатываемым (классифицируется по идентификационному коду смолы «3»).

    Каковы характеристики поливинилхлорида (ПВХ) ?

    Некоторые из наиболее важных свойств поливинилхлорида (ПВХ):

    1. Плотность: ПВХ очень плотный по сравнению с большинством пластмасс (удельный вес около 1,4)
    2. Экономика: ПВХ доступен и дешево.
    3. Твердость: Жесткий ПВХ хорошо оценивается по твердости и долговечности.
    4. Прочность: Жесткий ПВХ обладает отличной прочностью на разрыв.

    Поливинилхлорид — это «термопластичный» (в отличие от «термореактивного») материал, который имеет отношение к тому, как пластик реагирует на тепло. Термопластические материалы становятся жидкими при их температуре плавления (диапазон для ПВХ от очень низких 100 градусов Цельсия до более высоких значений, таких как 260 градусов Цельсия, в зависимости от добавок).Основным полезным признаком термопластов является то, что их можно нагревать до температуры плавления, охлаждать и снова нагревать без значительного разрушения. Вместо сжигания термопластов, таких как сжиженный полипропилен, их можно легко формовать под давлением, а затем перерабатывать. Напротив, термореактивные пластмассы можно нагреть только один раз (обычно в процессе литья под давлением). Первое нагревание вызывает затвердевание термореактивных материалов (аналогично двухкомпонентной эпоксидной смоле), что приводит к химическим изменениям, которые нельзя отменить.Если вы попытаетесь нагреть термореактивный пластик во второй раз до высокой температуры, он будет только гореть. Эта характеристика делает термореактивные материалы плохими кандидатами на переработку.

    Почему поливинилхлорид (ПВХ) используется так часто?

    PVC предлагает широкий спектр применений и преимуществ в различных отраслях промышленности как в жестких, так и в гибких формах. В частности, жесткий ПВХ обладает высокой плотностью по сравнению с пластиком, что делает его чрезвычайно твердым и в целом невероятно прочным.Он также легкодоступен и экономичен, что в сочетании с долговечными характеристиками большинства пластиков делает его легким выбором для многих промышленных применений, таких как строительство.

    ПВХ имеет чрезвычайно прочную природу и легкий, что делает его привлекательным материалом для строительства, сантехники и других промышленных применений. Кроме того, высокое содержание хлора делает материал огнестойким, что является еще одной причиной, по которой он приобрел такую ​​популярность в различных отраслях промышленности.

    Какие бывают типы ПВХ?

    Поливинилхлорид широко доступен в двух широких категориях: жесткий и гибкий. У каждого типа есть свои преимущества и идеальное применение в различных отраслях промышленности. Гибкий ПВХ может действовать как изоляция электрического кабеля и как альтернатива резине. Жесткий ПВХ находит различное применение в строительстве и сантехнике, обеспечивая легкий, экономичный и прочный материал.

    Как производится ПВХ?

    Поливинилхлорид производится одним из трех эмульсионных процессов:

    1. Суспензионная полимеризация
    2. Эмульсионная полимеризация
    3. Массовая полимеризация

    Поливинилхлорид для разработки прототипов станков с ЧПУ, 3D-принтеров и литьевых машин

    Две основные проблемы связаны с работой с PVC, что делает его относительно проблематичным и не рекомендуется для использования непрофессионалами.Первый — это выброс токсичных и едких газов при плавлении материала. В той или иной степени это происходит во время 3D-печати, обработки с ЧПУ и литья под давлением. Мы рекомендуем ознакомиться с паспортами безопасности материалов для различных хлорированных углеводородных газов, таких как хлорбензол, и обсудить производственный процесс с профессиональным производителем. Во-вторых, это коррозионная природа ПВХ. Это проблематично, когда ПВХ постоянно контактирует с металлическими соплами, резаками или пресс-формами, изготовленными из материала, отличного от нержавеющей стали или какого-либо другого аналогичного коррозионно-стойкого металла.

    3D-печать:

    Поливинилхлорид доступен в виде нити в виде пластикового сварочного стержня (материала, используемого для сварки), но в настоящее время он не модернизируется для специального использования в 3D-печати. Несмотря на то, что количество пластиков и заменителей пластика, доступных для 3D-печати, растет, наиболее распространенными остаются АБС и ПЛА. В Creative Mechanisms мы обычно выполняем 3D-печать с использованием АБС-пластика. Список причин, по которым и сравнение двух наиболее распространенных пластиков для 3D-печати (ABS и PLA) для 3D-печати, можно найти здесь.

    Самая большая проблема с ПВХ для 3D-печати — это его коррозионная природа (потенциально ставящая под угрозу функциональность типичных машин, если они использовались в течение более длительного периода). Интересный кикстартер разработал сопло для 3D-печати (головка экструдера), способное к ПВХ, предложенное инженером и предпринимателем Роном Стилом, которое, к сожалению, закрылось без особого интереса в 2014 году. Вы можете посмотреть вводную презентацию (видео) здесь:

    Обработка с ЧПУ:

    Поливинилхлорид можно резать на станке с ЧПУ, но любой машинист, который пробовал, вероятно, испытал ухудшение качества резака в зависимости от материала, из которого он изготовлен.ПВХ является коррозионно-агрессивным и абразивным материалом, поэтому резцы, изготовленные не из нержавеющей стали или сравнительно стойкого к коррозии материала, со временем могут испортиться.

    Литье под давлением:

    Поливинилхлорид можно вводить так же, как и другие пластмассы, но хлор в материале усложняет процесс. Это связано с тем, что расплавленный ПВХ может выделять едкий токсичный газ. Соответственно, магазины нужно оборудовать хорошими системами вентиляции. Те, кто не колеблется, поработают с материалом.Кроме того, для литья под давлением ПВХ-пластика требуются уникальные коррозионно-стойкие материалы, такие как нержавеющая сталь или хромирование. Усадка ПВХ обычно составляет от одного до двух процентов. Он по-прежнему может варьироваться в зависимости от нескольких факторов, включая твердомер (твердость) материала, размер литника, давление выдержки, время выдержки, температуру плавления, толщину стенок формы, температуру формы, а также процентное содержание и тип добавок.

    Токсичен ли ПВХ?

    ПВХ может представлять опасность для здоровья при сжигании, поскольку выделяет пары хлористого водорода (HCl).В приложениях, где вероятность возгорания высока, иногда предпочтительна изоляция электрических проводов, не содержащая ПВХ. Пары также могут выделяться при плавлении материала (например, во время создания прототипов и производственных процессов, таких как 3D-печать, обработка с ЧПУ и литье под давлением). Мы рекомендуем ознакомиться с Паспортами безопасности материалов (MSDS) для различных хлорированных углеводородных газов, таких как хлорбензол, и обсудить производственный процесс с профессиональным производителем.

    Каковы преимущества поливинилхлорида?

    ПВХ обеспечивает промышленным предприятиям ряд важных преимуществ, которые укрепили его место в качестве одного из самых популярных и широко используемых пластиков на рынке.Эти преимущества включают в себя:

    1. Поливинилхлорид легко доступен и относительно недорог.
    2. Поливинилхлорид очень плотный и поэтому очень твердый и очень хорошо сопротивляется ударной деформации по сравнению с другими пластиками.
    3. Поливинилхлорид обладает выдающейся прочностью на разрыв.
    4. Поливинилхлорид очень устойчив к химическим веществам и щелочам.

    Преимущества ПВХ помогли укрепить его позицию в качестве одного из наиболее часто используемых пластиков во всем мире.Однако, несмотря на то, что он широко эффективен и популярен, вы должны учитывать некоторые факторы при его использовании.

    Каковы недостатки поливинилхлорида?

    Хотя ПВХ имеет множество преимуществ, которые делают его желательным материалом для работы, есть несколько причин, по которым следует проявлять осторожность. К недостаткам, которые необходимо учитывать при использовании ПВХ, относятся:

    1. Поливинилхлорид имеет очень плохую термостойкость. По этой причине добавки, которые стабилизируют материал при более высоких температурах, обычно добавляют в материал во время производства.
    2. Поливинилхлорид выделяет токсичные пары при плавлении или пожаре.

    Несмотря на некоторые недостатки, поливинилхлорид в целом является отличным материалом. Он обладает уникальным сочетанием качеств, которые делают его особенно полезным для строительного бизнеса. Принимая во внимание и учитывая недостатки материала, вы можете эффективно ориентироваться и компенсировать, чтобы вы могли эффективно использовать материал в своих будущих проектах.

    Каковы свойства поливинилхлорида?

    Недвижимость

    Значение

    Техническое наименование

    Поливинилхлорид (ПВХ)

    Химическая формула

    (C2h4Cl) n

    Температура расплава

    212 — 500 ° F (100 — 260 ° C) ***

    Температура теплового отклонения (HDT)

    92 ° C (198 ° F) **

    Прочность на разрыв

    Гибкий ПВХ: 6.9-25 МПа (1000-3625 фунтов на квадратный дюйм)

    Жесткий ПВХ: 34 — 62 МПа (4930 — 9000 фунтов на квадратный дюйм) **

    Удельный вес

    1,35 — 1,45

    * В стандартном состоянии (при 25 ° C (77 ° F), 100 кПа)

    ДОМАШНЯЯ КЛИНИКА; КОГДА ОТОПИТЕЛЬНАЯ СИСТЕМА ЗАЗЛАКАЕТ, ТИХИЕ СКОРО МОЖЕТ БЫТЬ ВОССТАНОВЛЕННЫМ

    Устранение шумных труб в системе водяного отопления может быть простым, если трубы легкодоступны. Во время работы системы вы обычно можете видеть или чувствовать трубы, которые вибрируют.Добавление дополнительных опор или затягивание существующих обычно решает проблему. В некоторых случаях, особенно при резком изгибе труб, труба может удариться о потолочную балку или балку пола, когда вода протекает через нее. Если это так, добавление дополнительного деревянного бруска за локтем, а затем обивка его куском толстой резины часто решает проблему.

    Если незакрепленная или вибрирующая труба находится внутри готовой стены, вы можете закрепить ее, закрепив трубу в верхней и нижней части участка, где труба более доступна.В противном случае единственное лекарство — разрезать штукатурку или гипсокартон, закрепить трубу, а затем сделать заплатку, чтобы закрыть отверстие.

    Отвечая на почту

    В. Я только что купил хороший журнальный столик из дуба, и один неосторожный человек позволил сигарете выпасть из пепельницы на столешницу, оставив неприглядный ожог сигареты. Как мне удалить этот след ожога, не оставив явных следов повреждения? — P.B., Valhalla, N.Y.

    A. Вы должны иметь возможность удалить след ожога — или, по крайней мере, большую его часть — хотя я сомневаюсь, что вы сможете полностью скрыть все признаки повреждения.Начните с соскабливания обгоревшего материала небольшим перочинным ножом, держа лезвие почти параллельно поверхности режущей кромкой вниз — как будто вы собираетесь разрезать место ожога. Поскребите взад и вперед осторожными движениями по выжженной области, пока не будет удалена вся почерневшая поверхность.

    Чтобы заполнить и покрасить оставшееся небольшое углубление, вы можете использовать цветную восковую палочку или палочку для ретуши. Они бывают разных цветов тона дерева и используются во многом как цветной карандаш — растирают взад и вперед по области.Кусок жесткого пластика помогает разглаживать материал. Эти палочки продаются в большинстве магазинов красок и хозяйственных товаров, а также в домашних магазинах. Они сделают покрытие матовым, но вы сможете восстановить блеск с помощью воска.

    В. В недавней домашней клинике вы заявили, что пожар может начаться из подключенного к розетке радио или телевизора, даже если он был выключен. Если он выключен, ток к устройству не поступает, так как же это могло вызвать возгорание? -B.C., Левиттаун, Л.I.

    A. Провод, идущий от розетки, все еще потенциально «под напряжением» и подключен к цепи под напряжением. Если дефект в изоляции или проводке внутри устройства — до того, как провода дойдут до переключателя — произойдет «короткое замыкание», которое может вызвать перегрев или искры (предохранитель или автоматический выключатель перегорят, но искры все еще могут развести огонь).

    Кроме того, в более новых телевизорах к телевизору всегда протекает небольшой ток, чтобы трубка «нагрелась», даже когда выключатель выключен.Вот почему эти наборы появляются практически сразу. Следовательно, в некоторых цепях внутри установки, когда выключатель выключен, всегда есть возможность возгорания, даже когда установка выключена.

    Рекомендации для газовой промышленности: Окись углерода

    ОБЛАСТЬ ПРИМЕНЕНИЯ

    В данном руководстве рассматривается как присутствие CO, содержащегося в системе сгорания, так и его присутствие вне системы сгорания, что может быть связано с неправильной установкой или обслуживанием, неисправностью компонентов или внешними факторами, такими как вытяжные вентиляторы или оборудование для обработки воздуха.Наряду с предлагаемыми руководящими принципами действий, он также дает читателю понимание работы соответствующего измерительного оборудования.

    ТЕХНИЧЕСКИЕ ПРОГРАММЫ
    МАЙ 2018

    РУКОВОДСТВО ПО УГЛЕРОДУ


    Версия PDF

    СОДЕРЖАНИЕ

    Этот материал принадлежит компании Technical Safety BC и защищен законом об авторских правах. Его нельзя воспроизводить или распространять без предварительного письменного разрешения Technical Safety BC.

    ОПРЕДЕЛЕНИЯ

    Альдегиды

    Класс газов, образующихся при неполном сгорании углеводородов. Альдегиды могут вызывать резкий металлический привкус во рту и раздражать глаза и слизистые оболочки. Если присутствуют альдегиды, велика вероятность образования окиси углерода.

    Температура самовоспламенения

    Самая низкая температура вещества, при которой оно самовоспламеняется в нормальной атмосфере без внешнего источника воспламенения, такого как пламя или искра.

    Окись углерода

    Бесцветный, очень токсичный газ (CO) без запаха, образующийся в результате неполного сгорания углерода или углеродного соединения.

    Окись углерода безвоздушная

    Показание «без воздуха» рассчитывается, чтобы определить, какой была бы концентрация CO в дымовых газах, если бы весь лишний воздух был удален.

    Показание CO умножается на отношение процентного содержания кислорода в атмосфере (20,9) к процентному содержанию избыточного кислорода в дымовых газах.

    Формула


    Например: если измеренный CO составляет 50 частей на миллион, а измеренный кислород в дымовых газах составляет 10,5%.

    Прибор категории I

    Прибор, работающий при неположительном статическом давлении на выходе и потерях в дымоходе не менее 17%.

    Примечание

    В эту категорию входят приборы с вытяжным колпаком, приборы, помеченные как Категория I, и приборы с вентилятором для вентиляции в вентиляционные отверстия типа B.

    Прибор категории II

    Прибор, работающий при неположительном статическом давлении на выходе и потерях в дымоходе менее 17%.

    Прибор категории III

    Прибор, работающий с положительным статическим давлением на выходе и потерями в дымоходе не менее 17%.

    Прибор категории IV

    Прибор, работающий с положительным статическим давлением на выходе и потерями в дымоходе менее 17%.

    Точка росы

    Температура (изменяется в зависимости от давления и содержания воздуха), ниже которой капли воды начинают конденсироваться в системе вентиляции.

    Попадание пламени

    Попадание пламени горелки на объект, например, на теплообменник.

    Температура теплового отклонения

    Или температура тепловой деформации (HDT, HDTUL или DTUL) — это температура, при которой образец полимера или пластика деформируется под определенной нагрузкой.

    Гемоглобин

    (Hb или Hgb) — это белок красных кровяных телец, переносящий кислород по всему телу.

    Углеводород

    Органическое соединение (например, бензол, метан, парафин), состоящее из двух элементов, углерода и водорода, содержится в угле, сырой нефти, природном газе и растениях.Углеводороды используются в качестве топлива, растворителей и сырья для многих продуктов, таких как красители, пестициды и пластмассы; Нефть представляет собой смесь нескольких углеводородов.

    Нижний предел взрываемости (НПВ)

    Минимальная концентрация горючего газа или пара в воздухе, выраженная в процентах по объему, при которой произойдет возгорание при наличии источника возгорания.

    Светящееся пламя

    Видимое желтое пламя, вызванное задержкой молекул углерода, обнаруживающих кислород и образующих диоксид углерода.Светящееся пламя имеет небольшую зону синего цвета вокруг порта горелки из-за водорода. Водород горит с большей скоростью и более низкой температурой, чем углерод. Оставшаяся ярко-желтая «светящаяся» область — это горящие частицы углерода. Медленно горящие частицы становятся полутвердыми и из-за их более высокой температуры излучают свет лампы накаливания. Частицы углерода завершают свое сгорание, когда достигают внешней поверхности желтого пламени и находят достаточно кислорода.

    Стехиометрическое соотношение

    Точное соотношение между воздухом и горючим газом или паром, при котором происходит полное сгорание.

    Тепловой КПД

    Указывает, в какой степени энергия, добавленная источником тепла (печь, котел и т. Д.), Преобразуется в выходную мощность. Тепловой КПД можно рассчитать на месте при условии, что теплотворная способность топлива известна и произведено точное измерение расхода через теплообменник.

    Верхний предел взрываемости (ВПВ)

    Верхний предел взрываемости пара или газа; самая высокая концентрация вещества в воздухе, которое воспламеняется при наличии источника возгорания (тепла, дуги или пламени).При более высоких концентрациях смесь становится слишком «богатой», чтобы ее можно было сжечь.

    РАЗДЕЛ 1

    Для многих газовых установщиков контакт, связанный с угарным газом (CO), чаще всего происходит после срабатывания сигнализации CO, что обычно приводит к явке либо пожарных / спасательных служб, либо технического специалиста по газоснабжению.

    Клиенты, использующие пропан и не обслуживаемые коммунальными предприятиями, могут напрямую связаться с лицензированным подрядчиком по газу, поскольку они могут быть единственным доступным техническим ресурсом.

    Этот документ предоставляет информацию и инструкции для газовых установщиков и газовых подрядчиков по разработке собственных протоколов для использования при установке, обслуживании или выполнении технического обслуживания газовых приборов.

    Испытания на концентрацию CO в дымовых газах, кондиционированных потоках воздуха и окружающей атмосфере предоставляют монтажнику по газу важную информацию о состоянии системы сгорания прибора; информированный анализ уровней CO и связанных с ними параметров позволит монтажнику определить, безопасно ли работает устройство.Степень термического КПД также можно оценить в рамках анализа дымовых газов.

    В данном руководстве рассматривается как присутствие CO, содержащегося в системе сгорания, так и его присутствие вне системы сгорания, что может быть связано с неправильной установкой или обслуживанием, неисправностью компонентов или внешними факторами, такими как вытяжные вентиляторы или оборудование для обработки воздуха. Наряду с предлагаемыми руководящими принципами действий, он также дает читателю понимание работы соответствующего измерительного оборудования.

    РАЗДЕЛ 2

    Окись углерода образуется в результате неполного сгорания ископаемого топлива и обладает следующими физическими свойствами:

    Свойства окиси углерода

    Бесцветный

    Не видно.

    Безвкусный

    Не может быть обнаружен по вкусу.

    Без запаха

    Не может быть обнаружен по обонянию, однако CO может также сопровождаться альдегидами. Запах альдегидов может несколько напоминать уксус, что можно определить по обонянию, а также может вызывать металлический привкус во рту.

    Не раздражает

    Окись углерода не вызывает раздражения.Однако альдегиды, обычно содержащиеся с более высоким уровнем CO, будут раздражать глаза, нос и слизистые оболочки.

    Удельный вес

    Немного легче воздуха (Sg 0,975). Он может, но не всегда, скапливаться у потолка и свободно смешиваться с воздухом.

    Пределы воспламеняемости (взрываемости)

    CO воспламеняется при концентрации 12.От 5% до 74% при смешивании с воздухом. Его температура воспламенения составляет 609ºC (1128ºF).

    Ядовито

    Может вызвать смерть, если достаточное количество попадает в кровоток.

    Концентрации (* ppm) Наблюдения и влияние на здоровье

    от 1 до 3

    Нормальный.

    25

    Предел профессионального воздействия, усредненный за 8-часовой период.

    от 30 до 60

    Переносимость физической нагрузки снижена.

    100

    Предел кратковременного воздействия 15 минут (STEL).

    от 60 до 150

    Фронтальная головная боль. Одышка при физической нагрузке.

    от 150 до 300

    Пульсирующая головная боль, головокружение, тошнота и нарушение ловкости рук.

    300 до 650

    Сильная головная боль; тошнота и рвота; растерянность и коллапс.

    от 700 до 1000

    Кома и судороги.

    1200

    Немедленно опасно для жизни и здоровья (IDLH).

    от 1000 до 2000

    Сердце и легкие угнетены. Смертельно, если не лечить.

    Свыше 2000

    Быстро со смертельным исходом.

    * 1 ppm = 1 часть газа на миллион частей воздуха по объему

    Проникновение окиси углерода

    Окись углерода вдыхается и всасывается из легких в кровоток. Гемоглобин в крови отвечает за транспортировку кислорода из легких в организм.

    Если есть выбор, гемоглобин будет связываться с оксидом углерода вместо кислорода.CO всасывается в кровоток в 250 раз быстрее, чем кислород, что очень быстро повышает уровень карбоксигемоглобина. Если это произойдет, недостаток кислорода в организме приведет к отравлению угарным газом; CO задыхает жертву. Если уровень кислорода в крови уменьшается в достаточной степени, это может привести к потере сознания, повреждению мозга или смерти.

    СИМПТОМЫ ОТРАВЛЕНИЯ CO
    Нажмите для увеличения
    Факторы, влияющие на абсорбцию окиси углерода

    Некоторые из основных переменных, которые влияют на количество окиси углерода, всасываемой в организм:

    • Концентрация — концентрация окиси углерода в атмосферном воздухе.
    • Воздействие — Продолжительность времени, в течение которого человек подвергается воздействию CO.
    • Физическая активность — Чем выше частота дыхания, тем больше угарного газа вдыхается.
    • Физическое здоровье — Больные люди, особенно страдающие сердечными или респираторными заболеваниями, имеют повышенную восприимчивость. Курильщики также имеют повышенную восприимчивость к CO.
    • Возраст — Младенцы и пожилые люди более восприимчивы к окиси углерода.
    • Пол — Женщины страдают больше, чем мужчины.Если женщина беременна, угарный газ может повлиять на плод.
    • Высота — Чем выше высота, тем сильнее эффект отравления угарным газом.

      СО, всасываемое в кровоток, является кумулятивным. Здоровому человеческому организму трудно удалить окись углерода из кровотока, и ему требуется пять часов, чтобы снизить уровень вдвое. Когда физическое здоровье находится под угрозой до воздействия, время, необходимое для восстановления, резко увеличивается и создает дополнительную нагрузку на способность организма перерабатывать CO.

    Когда монтажник вводит устройство в эксплуатацию, процесс должен включать обсуждение с жильцами того, чего следует ожидать после ввода устройства в эксплуатацию.

    Различия между утечкой природного газа (тухлое яйцо — запах меркаптана) и другими «запахами газа» должны быть объяснены (см. Альдегиды), наряду с запахами, связанными с первоначальным «пригоранием» прибора. Каждый раз, когда слесарь по газу обслуживает газовый прибор, следует опрашивать жителей относительно работы их приборов, а также о любых сообщениях о необычных запахах, отключениях пилотов, коротких циклах и т. Д.нужно исследовать.

    Если пассажир жалуется на «запах газа», необходимо также определить, действительно ли запах связан с несгоревшим природным газом, продуктами сгорания или посторонним источником.

    Другие знаки, которые могут указывать на проникновение CO в жилое помещение, включают:

    • Мертвые или умирающие комнатные растения
    • Конденсат на окнах
    • Изменение цвета вокруг вентиляционных отверстий
    • Изменение цвета или тепловое повреждение вокруг отсека горелки газового прибора, включая тепловое повреждение проводки и внешних компонентов
    • Изменение цвета или тепловое повреждение вокруг вытяжного шкафа вентилируемого прибора
    • Отсутствуют или неправильно установлены дверцы отсека вентилятора на топках с приточным воздухом
    • Забиты или отсутствуют подача воздуха для горения / вентиляции
    • Сигнал CO был или периодически звучит
    • Пламя выкатывается из камер сгорания
    • Сообщения от служб быстрого реагирования или медицинского персонала

    Отравление CO часто принимают за грипп или пищевое отравление.Комментарии жильцов относительно продолжающихся заболеваний, связанных с использованием бытовой техники, являются поводом для дальнейшего расследования. Помните, что CO также может образовываться из неправильно функционирующих масляных печей, дровяных печей или каминов; любое устройство для сжигания топлива может производить CO при правильных условиях.

    Разрешение автомобилю бездействовать или использование силового оборудования в гараже, прикрепленном к жилому помещению, может позволить CO проникнуть в занятое пространство. Генераторы, работающие на пропане, могут производить чрезмерное количество CO без каких-либо внешних признаков, таких как грубый, черный, сажистый выхлоп.

    РАЗДЕЛ 3

    ПРОИЗВОДСТВО ОКСИДА УГЛЕРОДА

    При полном сгорании природного газа или пропана образуется двуокись углерода (CO2), водяной пар (h3O) и тепло. Когда ископаемые виды топлива, такие как природный газ или пропан, сгорают не полностью из-за недостаточной подачи или смешивания кислорода с образованием CO2, образуется CO.

    Полное сгорание природного газа:
    Ch5 + 2O2 = CO2 + 2h3O + Heat

    Неполное сгорание природного газа:
    2Ch5 + 3O2 = 2CO + 4h3O + Heat

    Полное сгорание пропана:
    C3H8 + 5O2 = 3CO2 + 4h3O + Heat

    Неполное сгорание пропана:
    2C3H8 + 9O2 = 4CO2 + 2CO + 8h3O + Heat

    CO может также производиться из источников, использующих углеводороды, кроме природного газа или пропана.К ним относятся:

    • Камины или печи на твердом топливе (дровах, пеллетах или угле)
    • Керосиновые или масляные обогреватели прямого нагрева
    • Масляные печи
    • Угольные мангалы
    • Бензиновые или дизельные генераторы, мойки высокого давления, насосы
    • Автомобили
    Причины неполного сгорания

    Полное сгорание природного газа или пропана приводит к резкому синему пламени с внутренним конусом и внешней оболочкой.Неполное сгорание из-за недостаточной подачи воздуха дает мягкое желтое пламя плохой четкости. Желтое пламя состоит из раскаленных частиц углерода, которые не соединились с молекулами кислорода. При осаждении на твердой поверхности они образуют сажу. Оранжевые пятна, появляющиеся над острым синим пламенем, не следует принимать за неполное сгорание; как правило, это результат того, что частицы пыли поглощаются пламенем.

    Неполное сгорание может быть вызвано:
    • Порыв пламени, который возникает, когда пламя ударяет по объекту, и не может распространяться достаточно далеко, чтобы завершить процесс сгорания.Удар нарушает рисунок пламени, но может не привести к образованию желтого сажистого пламени. Смещенные горелки или огнеупоры, неправильно расположенные дрова или декоративные угли могут вызвать удар.
    • Чрезмерный или недостаточный огонь из-за неправильного давления в коллекторе или размера отверстия.
    • Плохое смешивание газа и воздуха в результате неправильной регулировки, засорения или ограничения заслонок первичного воздуха.
    • Забиты топочные теплообменники, дымовые каналы или змеевики котлов.
    • Отсутствие, несоответствие или закупорка подачи воздуха для горения, либо разгерметизация здания.
    • Дымоход закрыт или заблокирован, либо установка недостаточного размера или неправильной вентиляции.
    • Рециркуляция дымовых газов, содержащих CO2, через пламя может привести к растрескиванию CO2 с образованием CO.
    • Неправильная регулировка некоторых типов промышленных горелок может привести к гашению пламенной головки.
    Вентиляционные системы
    Пламя

    Несмотря на то, что все стандарты для устройств допускают производство ограниченного количества CO, правильно функционирующая система вентиляции будет выводить продукты сгорания наружу.Повреждение или ухудшение вентиляционного отверстия может привести к попаданию продуктов сгорания в занимаемое пространство. Дымовые газы могут попадать в здания, если вентиляция газовых приборов расположена сбоку от прилегающих помещений.

    Вентиляционные системы могут быть повреждены / повреждены:

    • Механическое воздействие или напряжения
    • Коррозия
    • Температуры, превышающие допустимый диапазон сертификации вентиляционного материала

    Механические удары могут привести к повреждению или смещению вентиляционных соединений; участки с вентиляционными отверстиями не должны использоваться для хранения.

    Механическое напряжение, вызванное неправильной опорой вентиляционного отверстия или оседанием конструкции, может привести к разделению вентиляционных секций. Пластиковые (S636) вентиляционные системы могут разделиться, если стыки не были должным образом подготовлены перед приклеиванием, или если использовался неподходящий клей или грунтовка.

    Рассмотрение возможности расширения и сжатия вентиляционного отверстия должно производиться в соответствии с сертифицированными инструкциями производителя. Пластиковый вентиляционный канал, который жестко ограничен, может создавать достаточное усилие, чтобы привести к повреждению вентиляционной системы.

    Конденсат дымовых газов является кислым и коррозионным. Приборы, прикрепленные к металлическим вентиляционным отверстиям (кроме ULC-609 из нержавеющей стали), должны быть спроектированы, установлены и эксплуатироваться таким образом, чтобы ограничивать «влажное время» внутри вентиляционного отверстия. «Время увлажнения» относится к периоду во время работы, когда продукты сгорания охлаждаются до точки росы (приблизительно 125 ° F или 52 ° C), позволяя конденсату образовываться внутри вентиляционного отверстия. Приборы категории III обычно вентилируются с помощью вентиляционных материалов из нержавеющей стали.

    Признаки коррозии включают появление пятен ржавчины на вентиляционном отверстии или вентиляционном соединении прибора, а также отложения белых кристаллов на вентиляционном отверстии; стандартные и среднеэффективные печные теплообменники также могут быть повреждены из-за чрезмерного «влажного времени».

    Типичные причины включают:

    • Превышение мощности отопительного прибора
    • Недожог прибора
    • Неправильная регулировка термостата предвкушения тепла
    • Неправильный рост температуры в приборе
    • Превышение размера системы вентиляции
    • Чрезмерное использование одностенных вентиляционных патрубков

    Правильно подобранный, установленный и обслуживаемый отопительный прибор, подключенный к вентиляционному отверстию B или облицовке дымохода, ограничивает образование конденсата.

    Если приборы категории I являются обычно вентилируемыми, и один прибор удаляется позднее, например, при замене печи средней эффективности на печь высокой эффективности, существующая вентиляция должна быть проверена на предмет соответствия оставшимся приборам. . Монтажник несет ответственность за то, чтобы прибор был установлен и эксплуатировался в соответствии с сертифицированными инструкциями производителя по установке.

    Для печей с принудительной подачей воздуха скорость обжига, давление в коллекторе, внешнее статическое давление (ESP), превышение температуры и значения средства предупреждения нагрева обычно указываются производителем.

    Для котлов спецификации производителя обычно включают в себя интенсивность сжигания, давление в коллекторе, температуру возвратной воды, повышение температуры и требования к очистке воды.

    Устройство или вентиляционная система, показывающие признаки повреждения в результате коррозии, требуют расследования основных причин, которые привели к коррозии. Простая замена поврежденных компонентов и уход безответственны.

    Признаки коррозии

    Высокоэффективные приборы (HEP) категории IV вентилируются пластиковыми трубами с момента их появления.Продукты сгорания HEP обычно выпускаются через пластиковые вентиляционные отверстия, которые были собраны с помощью процесса сварки растворителем и способны выдерживать положительное давление в вентиляционных отверстиях. Полипропиленовые вентиляционные материалы обычно соединяются с помощью механической системы соединения / блокировки.

    CO может попасть в занятое пространство только в случае отказа прибора, вентиляции или если выхлопной шлейф с высоким содержанием CO был направлен или втянут в здание.

    До пересмотра канадского стандарта для газоотводных систем типа BH ULC-S636 в 2008 году и принятия CSA B149 2010 года.1 инструкции по установке производители бытовой техники указали на использование различных типов пластиковых труб для вентиляции своей продукции. К этим типам относятся более старые системы, известные как Plexvent, Selvent или Ultravent, ABS (с твердым и ячеистым сердечником), PVC и CPVC.

    Ячеистая сердцевина АБС никогда не был одобренным / принятым вентиляционным материалом для использования в Британской Колумбии, но несоответствующие установки были задокументированы на протяжении многих лет. Текущие требования стандарта ULC-S636-08 и кода установки CSA B149.1 определяют перечисленные системы, доступные для вентиляционных устройств, в зависимости от температуры дымовых газов.Директива по технической безопасности BC «D-G5 070628 5 Редакция: 05 Пластиковая вентиляция» дополнительно разъясняет требования, а также требования к ранее установленным существующим системам.

    Монтажник или сервисный специалист по газу несет ответственность за то, чтобы система вентиляции соответствовала устройству, к которому она подключена, и чтобы устройство продолжало работать с температурой дымовых газов, не превышающей указанное значение вентиляционного материала.

    Небезопасная вентиляция

    Повышенная температура дымовых газов является результатом снижения теплопередачи между продуктами сгорания и нагретой средой (воздухом или водой).В водонагревателях и бойлерах это может быть результатом заиливания или накипи на водяной стороне теплообменника.

    Высокая температура возвратной воды или скопление грязи на лопастях вентилятора горелки также могут стать причиной повышения температуры дымовых газов.

    Для вентиляционного оборудования грязные или частично забитые фильтры или скопления пыли и грязи на кондиционированной стороне теплообменника также могут привести к повышению температуры.

    В обоих случаях ситуация усугубляется, поскольку прибор продолжает работать в течение более длительных периодов времени при повышенных температурах в попытке удовлетворить потребность в тепле.

    Некоторые приборы теперь оснащены предохранителем по высокой температуре, который определяет температуру дымовых газов на выходе; Обращения в службу поддержки, возникающие в результате срабатывания выключателя, должны включать оценку условий, приводящих к высоким температурам.

    Пластмассовая вентиляционная труба, нагретая до температуры теплового искажения (HDT), может размягчиться и деформироваться. Степень деформации зависит от температуры, продолжительности и степени механической нагрузки. Другие признаки перегрева включают обесцвечивание и отслоение трубопровода от патрубка фитинга.Как и в случае срабатывания высокотемпературного выключателя, монтажник должен выяснить причины, приводящие к повреждению системы вентиляции.

    Тепловое искажение к пластиковому вентиляционному отверстию

    Нагреватели с прямой вентиляцией могут допустить попадание углекислого газа в занятое пространство, если смотровая или смотровая панель (панели) сняты и не установлены правильно. Уплотнительные прокладки, которые вышли из строя или не подходят для применения, также обеспечивают путь для продуктов сгорания, чтобы попасть в пространство.

    Никогда не пытайтесь ремонтировать уплотнительные системы с использованием чего-либо, кроме деталей или продуктов, указанных производителем.

    Необходимо соблюдать инструкции по правильной сборке, затяжке крепежных деталей или отверждению герметиков, чтобы обеспечить отделение продуктов сгорания от жилого помещения.

    ВНИМАНИЕ

    Никогда не пытайтесь ремонтировать уплотнительные системы с использованием чего-либо, кроме деталей или продуктов, указанных производителем
    .
    Инструкции по правильной сборке, затяжке крепежных деталей, отверждению герметиков должны соблюдаться.

    Сброс давления в здании

    На бытовые приборы без прямого сброса давления может повлиять разгерметизация здания, особенно в начале цикла запроса тепла. Если не поступает достаточный объем подпиточного воздуха, механическое вытяжное оборудование (вентиляторы для ванных комнат, кухонные вентиляторы, сушилки, вентиляторы) может вызвать разгерметизацию конструкции до такой степени, что вентиляционные отверстия прибора будут перевернуты, а продукты сгорания попадут внутрь конструкции.

    Системы подачи воздуха для горения не рассчитаны на работу в качестве подпиточного воздуха для других источников сброса давления.

    Если другое устройство для сжигания топлива (топка на жидком топливе, дровяная печь, камин) установлено без достаточной подачи воздуха, оно может реверсировать вентиляционное отверстие для природного газа для получения достаточного количества воздуха для горения.

    Повышение энергоэффективности здания за счет герметизации дверей, замены окон и / или герметизации утечек воздуха без учета наличия достаточного количества подпиточного воздуха и воздуха для горения может привести к тому, что газовые вентиляционные отверстия будут действовать как источники воздуха, а не вентиляционные отверстия.

    Пассажиры могут намеренно перекрыть воздухозаборники для горения из-за сквозняков.Добавление вентиляторов для ванной комнаты или замена вытяжного вентилятора на кухне на модель большей мощности также может привести к недостаточной подаче воздуха.

    Ремонт, в результате которого приборы изолированы в герметичном помещении без достаточного количества воздуха для горения и вентиляции, является частой причиной, приводящей к обратному вытяжке прибора.

    Сброс давления также может происходить в помещении для механического оборудования, если воздуховоды возвратного воздуха плохо сконструированы или герметизированы, или если сервисные панели на стороне отрицательного давления оборудования для обработки воздуха отсутствуют или неправильно закреплены.

    Хотя приборы с естественной тягой оснащены переключателями тяги, которые предназначены для предотвращения попадания нисходящей тяги в камеру сгорания, сильная нисходящая тяга может фактически помешать работе горелки до уровня выделения чрезмерного количества CO.

    В начале цикла нагрева атмосферному прибору будет значительно труднее создать тягу в вентиляционном отверстии, если ему противодействует холодный наружный воздух, втягиваемый в вентиляционное отверстие посредством сброса давления.

    Обычный симптом, о котором сообщают монтажнику, относится к «непрерывно гаснет контрольная лампа на водонагревателе». Во многих случаях исходным предположением является неисправность пилотной системы безопасности водонагревателя, приводящая к замене термопары, пилотной горелки, газового клапана или всего водонагревателя. Во многих из этих случаев неисправность не в водонагревателе, а в сбросе давления, мешающем стабильности контрольной лампы, основной горелки или того и другого. Система безопасности действительно работает правильно; причина была неправильно диагностирована

    Если водонагреватель расположен рядом с печью с принудительной подачей воздуха, и они изолированы в механическом помещении, сброс давления может произойти, если воздуховод возвратного воздуха плохо герметичен и нагнетатель печи работает.Неправильно установленные или отсутствующие панели доступа к фильтрам или крышки фильтровальной рейки также могут привести к тому же результату.

    Помните, что эти условия могут появиться только тогда, когда дверь топочного помещения закрыта; проблема обычно исчезает, когда двери открываются, и система получает возможность балансировать с остальной частью конструкции.

    Техника, доступ к которой осуществляется из гаражей, может подвергаться риску в этих условиях, поскольку строительные власти требуют, чтобы в точке доступа устанавливались прочные плотно закрывающиеся двери с автоматическими доводчиками.Если эти двери не держать закрытыми и не содержать в исправном состоянии, существует также риск того, что выхлопные газы автомобилей в гараже будут втянуты в конструкцию.

    Центральные вакуумные системы, хотя обычно не работают в течение длительного периода времени, обычно имеют блок питания с выходом наружу или расположены в гараже отдельно от жилого помещения.

    Популярность портативных кондиционеров растет; когда они подключены для обеспечения охлаждения, они используют выхлоп, выходящий наружу, что способствует разгерметизации здания.

    Как отмечалось ранее, работа механического вытяжного оборудования может нарушить вентиляцию атмосферных газовых приборов, масляных печей, каминов и дровяных печей.

    Как правило, новое строительство оценивается должностными лицами строительных норм и правил, чтобы гарантировать, что в конструкцию поступает надлежащий воздух для горения и подпитки; Ремонт и модернизация могут привести к нехватке замещающего воздуха, что может повлиять на сгорание и вентиляцию атмосферных приборов.

    Многие дома теперь оборудованы вентиляторами с рекуперацией тепла или энергии (HRV).HRV повышают энергоэффективность и уровень комфорта за счет извлечения теплого влажного воздуха из жилого помещения и пропускания его через теплообменник воздух-воздух перед его выпуском на улицу.

    HRV смягчает поступающий свежий воздух за счет тепла, отводимого от потока выхлопных газов. После установки HRV необходимо сбалансировать в соответствии с инструкциями производителя, чтобы обеспечить соответствие количества заменяемого наружного воздуха объему откачиваемого воздуха. Если система не сбалансирована или установлена ​​дополнительная механическая вытяжка без учета повышенного количества подпиточного воздуха (напр.g., кухонный вытяжной вентилятор большей мощности), может произойти разгерметизация.

    Если воздухозаборная решетка и фильтры не обслуживаются в соответствии с инструкциями производителя и становятся ограниченными или заблокированными, HRV станет дополнительным механическим вытяжным устройством, увеличивая вероятность вытягивания вниз атмосферных приборов.

    Поскольку большинство HRV работают с различными скоростями вращения вентиляторов, важно проверять потоки воздуха в соответствии с инструкциями производителя.

    Слесарь по газу должен знать о факторах, которые могут привести к разгерметизации и ее влиянию на атмосферные устройства. Подача воздуха для горения и вентиляции должна быть проверена на предмет наличия препятствий, будь то преднамеренных, например, «засорение жильцом, чтобы остановить холодную тягу», или из-за отсутствия технического обслуживания; скопление мусора на сетке воздухозаборника, ограничивающего или останавливающего воздушный поток.

    Для проверки адекватной вентиляции атмосферных приборов требуется:

    1. Все двери и окна должны быть закрыты.
    2. Заслонки твердотопливных приборов закрыть.
    3. Аппараты атмосферного газа отключены. Приборы, оснащенные контрольными лампами, можно установить в положение «Пилот».
    Нажмите для увеличения

    ВЕНТИЛЯТОР УДАЛЕНИЯ ТЕПЛА

    1. Запустите все механическое вытяжное оборудование и любое другое устройство (а) с отводом газа.
    2. При выполнении этого теста постоянно контролируйте уровни окружающего воздуха.
    3. Через пять минут по очереди включите все атмосферные приборы.С помощью дымовой трубы, конуса, ароматической палочки или аналогичного устройства проверьте, нет ли утечки наружного воздуха и / или продуктов сгорания на вытяжной колпак и деку горелки.
    4. Наблюдайте за каждым вытяжным колпаком в течение примерно пяти минут, чтобы определить, установлена ​​ли вентиляция.
    5. Выключите механические вытяжные устройства и верните атмосферные приборы в их нормальное состояние.

    Если надлежащая вентиляция не обеспечивается из-за механической вытяжки, необходимо добавить в конструкцию достаточное количество подпиточного воздуха.В зависимости от местных строительных властей, воздух, возможно, придется охлаждать с помощью канального нагревателя или фанкойла. Слесарь по газу должен временно принять меры для обеспечения эффективной вентиляции приборов. Варианты включают отключение или фиксацию автоматических выключателей, управляющих вытяжными вентиляторами или осушителями, или блокирование окон в положениях, обеспечивающих временную подачу воздуха.

    ПРИМЕЧАНИЕ: См. Приложение «C»

    Специалисты отрасли

    HVAC могут быть привлечены для проведения дополнительных испытаний для определения эффективных решений для перманентной подпитки.Компания Natural Resources Canada в партнерстве с Канадским институтом отопления, охлаждения и кондиционирования воздуха создала специалиста по проектированию бытовых систем вентиляции (RASDT) и специалиста по проектированию бытовой гидроники (RHDT)

    .

    Обозначения. Лица, имеющие эти обозначения, были сертифицированы при проектировании и вводе в эксплуатацию систем вентиляции жилых помещений и могут предоставить анализ и рекомендации по влиянию сброса давления на конструкцию. Местные строительные власти также могут предоставить информацию о ресурсах, доступных в пределах их юрисдикции.

    Группа Канадской ассоциации стандартов (CSA) (при участии регулирующих органов), отрасль HVAC и другие заинтересованные стороны разработали новый канадский стандарт: F300-13 Сброс давления в жилых помещениях. В этом стандарте описывается метод определения того, когда разгерметизация жилых помещений может вызвать риск для здоровья, и предлагаются решения для предотвращения или уменьшения накопления продуктов сгорания внутри дома. Стандарт доступен для покупки на веб-сайте CSA: Shop CSA — Standards .

    Устройства без вентиляции

    Варочные панели, плиты и духовки могут выделять чрезмерное количество CO, особенно если оборудование находится в плохом ремонте или используется неправильно. Невентилируемые кухонные приборы НИКОГДА нельзя использовать для обогрева помещений, их следует регулярно обслуживать.

    При работающем приборе следует использовать вытяжные вентиляторы, а вентилятор должен выводиться наружу. Размещение кастрюль или сковородок на конфорках плиты приведет к выделению максимального количества CO, пока кастрюля и ее содержимое нагреваются.При достижении температуры приготовления количество выделяемого CO значительно снижается. На сковородах не должна быть фольга, так как она может закрывать отверстия для вторичного воздуха в горелке и вызывать образование избыточного CO.

    Горелки серии

    никогда не должны эксплуатироваться без правильно установленных опорных решеток; Использование решеток, отличных от указанных производителем, может вызвать чрезмерное воздействие и / или гашение пламени. Медленное, желтое, светящееся пламя указывает на неисправность горелки.

    Возможные причины включают:

    • Установлено неправильное отверстие большего размера
    • Регулируемое сопло установлено для природного газа; прибор работает на пропане
    • Неправильное давление в коллекторе
    • Неправильное давление в системе подачи
    • Если оборудована заслонкой для первичного воздуха, заслонка недостаточно открыта или отверстия заблокированы ворсом или мусором
    • Поврежденные, деформированные или отсутствующие распорные планки на горелках духовки или жаровни
    • Установка запасной горелки, не соответствующей спецификации производителя
    Засоренные или поврежденные теплообменники
    ТЕПЛООБМЕННИК КОТЛА С ЗАКРЫТЫМИ И КОТЛАМИ (Нажмите, чтобы увеличить)

    Теплообменники бытового типа, воздух-воздух или воздух-жидкость, требуют регулярного осмотра и технического обслуживания для безопасной и эффективной работы.В некоторых случаях может потребоваться исправление ошибок при установке или конфигурации устройства, чтобы обеспечить безопасную и надежную работу в будущем.

    Если монтажник обнаружит устройство со значительным засорением теплообменника, требуется дополнительное расследование для определения первопричины (причин), приводящей к засорению. Клиенту следует задать соответствующие вопросы и изучить записи об оборудовании, чтобы предоставить справочную информацию о:

    • Периодичность обслуживания
    • Качество и вид оказанных услуг
    • Посещаемость коммунальных услуг (Fortis и др.) техников
    • Активация тревоги CO (при наличии)
    • Прибытие служб быстрого реагирования
    • Жалобы на болезни с указанием воздействия CO

    Котлы или водонагреватели с атмосферной вентиляцией (HWH), особенно с ребристыми трубами с малой массой, подвержены забиванию на стороне горелки, если системы неправильно спроектированы, установлены, эксплуатируются и обслуживаются. Ограничения на стороне горения приводят к каскадному эффекту, который может привести к образованию значительного количества CO в приборе.

    Накипь или заиление на водяной стороне котла или HWH может привести к жалобам клиентов на высокие счета за газ, нехватку горячей воды, недостаток тепла в помещении или срабатывание пределов безопасности.

    Уменьшение теплопередачи на стороне горения также может вызывать те же жалобы, но с добавлением значительной опасности.

    Закрытые или закупоренные дымоходы приводят к неполному сгоранию и образованию CO. Поскольку устройство не может обеспечить количество тепла, необходимое для удовлетворения спроса, оно продолжает работать, пытаясь удовлетворить вызов

    .

    для тепла.Обычно это приводит к повышенному образованию CO до тех пор, пока дымовые каналы не будут закупорены до точки, в которой размыкается переключатель выхода пламени (при его наличии), или пока управляющая проводка не будет повреждена теплом и пламенем, а газовый клапан не будет отключен. Этот сценарий цитируется во многих случаях со смертельным исходом из-за угарного газа.

    Котлы, обеспечивающие отопление жилых помещений, бассейнов или спа, а также отопление помещений, подвержены этим условиям круглый год, а не только во время отопительного сезона.

    На что следует обратить внимание монтажнику при анализе закупоренного теплообменника на котле или HWH:
    • Соответствует ли температура воды на входе или выходе спецификациям производителя? Температура воды ниже требуемого минимума может привести к конденсации и образованию накипи на стороне возгорания теплообменников.
    • Оборудован ли прибор внутренним байпасом для поддержания необходимого повышения температуры? Если да, то правильно ли он работает? Накипь, шлам или механический отказ могут привести к тому, что они перестанут работать, и в котел попадет чрезмерное количество холодной воды.
    • Был установлен ручной байпас? Если да, отрегулировано ли оно для поддержания приемлемого повышения температуры в котле?
    • Установлено ли устройство в соответствии с сертифицированными инструкциями производителя? Во многих случаях производитель требует использования теплообменников для изоляции котла от чрезмерного количества холодной воды, проходящей через змеевики.
    • Норма стрельбы правильная? Недожиг может привести к продолжительным периодам конденсации, что приведет к образованию накипи на змеевиках.
    • Насколько чистый воздух для горения подается в прибор? Не втягивается ли в камеру сгорания слишком много ворса или шерсти домашних животных? Мусор может не только забивать отверстия для первичного воздуха на атмосферном котле или откладываться в змеевиках, но также может загрязнять нагнетательные вентиляторы на стороне выхода, что еще больше снижает эффективность и влияет на процесс сгорания.
    На что следует обратить внимание при анализе закупоренного или поврежденного теплообменника в печи с принудительной подачей воздуха:
    • Обнаруживает ли визуальный осмотр теплообменника (-ов) отверстия, пятна ржавчины или отдельные швы?
    • Есть ли сажа на поверхностях теплообменника?
    • Не нарушается ли картина пламени атмосферной печи при работе циркуляционного вентилятора?
    • Присутствует ли в циркулирующем воздушном потоке повышенное содержание CO по сравнению с окружающим воздухом, измеренное на выходных отверстиях для горячего воздуха?
    • Есть ли признаки распространения пламени или теплового повреждения в отсеке горелки?
    • Соответствуют ли превышение температуры и статическое давление в теплообменнике спецификациям производителя? ПРИМЕЧАНИЕ: См. Приложение «B».

    РАЗДЕЛ 4

    УРОВНИ УГЛЕРОДА — ОКРУЖАЮЩАЯ СРЕДА И ДЫМОВЫЙ ГАЗ

    Окружающий окись углерода

    Анализ дымовых газов — это диагностический инструмент, который предоставляет монтажнику важную информацию, касающуюся безопасности и эффективности газового прибора.

    Все стандарты для приборов включают максимальное количество CO, которое может выделять прибор; самые актуальные значения включены в Приложение «A» в конце этого документа.

    Хотя существует меньший риск попадания CO в занимаемое пространство из прибора с герметичным сжиганием, требуется провести испытания, чтобы подтвердить, что прибор работает так, как задумано производителем, и что температура выхлопных газов и содержание CO находятся на приемлемых уровнях.

    Необходимо следить за тем, чтобы дымовой газ, содержащий чрезмерное количество CO, не попадал в жилое пространство через открытые окна и двери или оборудование для обработки воздуха.

    Слесарь по газу, отвечающий на звонок клиента по поводу CO, должен сначала убедиться в собственной безопасности, прежде чем войти в рабочее пространство или механическое помещение.

    Как правило, первым на место происшествия выезжает технический специалист по коммунальному обслуживанию или пожарный персонал, который решает неотложные вопросы, связанные с безопасностью жизнедеятельности. В отдаленных или неорганизованных районах слесарь по газу может быть единственным доступным техническим ресурсом и может быть привлечен для управления всеми аспектами аварийной ситуации с CO.

    ВНИМАНИЕ

    Если монтажник подозревает, что их клиент подвергается воздействию угарного газа, посоветуйте им:

    • Позвоните в службу 911 или по номеру службы экстренной помощи, если таковая имеется.
    • Открыть все двери и окна.
    • Немедленно выйдите на свежий воздух.
    • При необходимости обратитесь за медицинской помощью.
    • Выключите все приборы, которые, по их мнению, неисправны.

    Слесарь по газу должен определить безопасность среды, в которую они планируют войти.

    Персональные газоанализаторы доступны в виде одного газоанализатора CO или могут быть приобретены газоанализатор для нескольких газов с CO в качестве одного из выбранных газов. Обычными вариантами являются кислород, CO, сероводород и горючий газ (нижний предел взрываемости).

    Канадская ассоциация стандартов (CSA) C22.2 NO. 152- M1984 (R2016) — Стандарт приборов для обнаружения горючих газов является признанным стандартом для мониторов, используемых в Канаде.

    Детектор CO (Нажмите, чтобы увеличить)

    Анализатор горения также может использоваться для определения качества воздуха в помещении. Также возможны газовые пробоотборные трубки и насосы (ручные или автоматические). Преимущество пробоотборных трубок состоит в том, что они не требуют калибровки или ударных испытаний перед использованием, а также отсутствуют датчики, которые необходимо заменить.

    Независимо от того, какая система используется, монтажник должен выполнять все инструкции производителя в отношении хранения, калибровки, обучения, технического обслуживания и ремонта.

    Любое измерительное или контрольное устройство должно быть обнулено на чистом воздухе перед проведением испытаний внутри конструкции. Несоблюдение этого может привести к серьезным травмам или смерти. Окись углерода обычно называют «тихим убийцей».

    WorkSafeBC (WSBC), через Раздел 5.48 Регламента по охране труда и технике безопасности устанавливает восьмичасовое средневзвешенное значение по времени (TWA) для CO на уровне 25 частей на миллион (PPM). Восьмичасовая TWA определяется как «средневзвешенная по времени (TWA) концентрация вещества в воздухе, которая не может быть превышена в течение обычного восьмичасового рабочего периода». Предел краткосрочного воздействия (STEL) WSBC составляет 100 частей на миллион. STEL определяется как «средневзвешенная по времени (TWA) концентрация вещества в воздухе, которая не может быть превышена в течение любого 15-минутного периода, ограниченная не более чем четырьмя такими периодами за 8-часовую рабочую смену с как минимум одним часом между любые два последовательных 15-минутных экскурсионных периода ».

    ВНИМАНИЕ

    При входе в здание слесарь по газу должен проверить на содержание CO. Если уровень CO в окружающей среде измеряется на уровне более 100 частей на миллион, слесарь по газу должен покинуть зону и уведомить всех затронутых людей, покидая здание. Подачу газа необходимо отключать снаружи дома. Необходимо уведомить местные службы экстренной помощи. Слесарь по газу может попытаться эвакуировать здание, но не должен подвергаться воздействию CO выше 100 частей на миллион, независимо от продолжительности.

    Если показания по всему зданию меньше 10 частей на миллион, а газовые приборы и другие источники, такие как автомобили, дровяные или угольные камины, курение или барбекю, исключены как источник CO, уровни CO можно считать приемлемыми. .

    Если проверка окружающего воздуха в любом месте внутри здания показывает, что уровень CO находится в пределах от 10 до 70 частей на миллион, здание следует вентилировать и откачивать воздух до тех пор, пока источник CO не будет устранен.

    Если уровень CO в окружающем воздухе составляет от 71 до 100 частей на миллион, а предполагаемым источником являются газовые приборы, газовый монтажник должен перекрыть подачу газа к приборам и попытаться проветрить здание.Для оценки необходимости эвакуации могут потребоваться местные аварийные службы. Монтажник должен минимизировать время, затрачиваемое на работу в этих условиях, так как STEL составляет 15 минут для уровня CO 100 ppm.

    Небезопасное устройство (Нажмите, чтобы увеличить)

    Газовое устройство, которое производит уровни CO в окружающем воздухе, должно быть исследовано, чтобы определить, можно ли устранить причину, до того, как газовый монтажник покинет объект. В противном случае необходимо отключить прибор, объяснить причины жильцам и уведомить соответствующую юрисдикцию в соответствии с разделом 54 Постановления о безопасности газа:

    .
    Устройство, не подлежащее ремонту

    54 (1) Лицо, которое обнаружит, что какой-либо прибор или газовое оборудование не подлежит ремонту или находится в небезопасном состоянии, должно

    (a) отключить прибор или газовое оборудование, и

    (b) незамедлительно уведомить сотрудника службы безопасности о его состоянии и местонахождении.

    54 (2) Если первоначальное уведомление в соответствии с подразделом (1) (b) является устным, оно должно быть незамедлительно подтверждено письменным заявлением с изложением фактов.

    Требования к отчетности подробно описаны в Информационном бюллетене: NO: IB-GA 2017-03 «Отчеты об инцидентах и ​​опасностях для службы технической безопасности BC Gas». Этот бюллетень доступен на веб-сайте Technical Safety BC . Лица, у которых наблюдаются признаки воздействия CO, должны быть направлены в службу неотложной медицинской помощи для определения степени воздействия и степени необходимого лечения.

    Исследование причин окиси углерода в окружающей среде

    Перед входом в здание убедитесь, что измерительный прибор завершил калибровку на свежем воздухе. Узнайте больше от клиента о любых обстоятельствах, которые могут привести к подозрению на воздействие CO. Необходимо изучить другие источники CO, например:

    • Камины и печи твердотопливные
    • Барбекю (природный газ, пропан и уголь)
    • Пристроенные гаражи и холостые автомобили
    • Свечи
    • Привычки и частота курения

    Слесарь по газу должен осмотреть каждый газовый прибор по очереди, не внося никаких корректировок или изменений.Приборы, их вентиляционные системы и системы подачи воздуха для горения / подпитки должны быть проверены на наличие проблем и возможных угроз безопасности, которые могут вызвать попадание CO в занимаемое пространство.

    Обратитесь к предыдущим разделам этого руководства для получения информации по вопросам разгерметизации здания и вентиляции.

    Духовки и плиты отводят дымовые газы прямо в жилое пространство. Проба дымовых газов из дымохода может быть взята в печи следующим образом:

    1. Установите температуру на 177ºC (350oF), дайте духовке нагреться до температуры и начните цикл.
    2. Духовка должна работать не менее пяти минут.
    3. Вставьте зонд анализатора как можно глубже в выпускное отверстие и отбирайте газы в течение дополнительных пяти минут или до тех пор, пока не будут записаны стабильные показания.

    Топочные горелки могут отбирать пробы продуктов сгорания с датчиком, расположенным над горелкой в ​​месте, где чрезмерное тепло не повредит датчик.

    Если предполагается, что газовый диапазон производит уровни CO в окружающей среде, превышающие 10 ppm, необходимо дальнейшее расследование.Если образец дымового газа печи превышает 400 частей на миллион после прогрева, подача газа должна быть отключена в соответствии с указанным ранее разделом «Неремонтопригодное устройство».

    Показание менее 400 ppm, но больше 250 ppm указывает на то, что печь нуждается в обслуживании или ремонте, и к ним следует обратиться. Показания менее 250 ppm также указывают на необходимость проведения технического обслуживания для снижения уровня CO. Всем пассажирам следует сообщить, что вытяжной вентилятор (если он выходит на улицу) должен работать при использовании духовки и / или верхних конфорок.Если вытяжной вентилятор рециркуляционного типа или вытяжной вентилятор не установлен, окно в том же помещении, что и прибор, должно быть открыто во время использования духовки или плиты.

    Окись углерода дымовых газов

    Анализ дымовых газов важен, помогая монтажнику определить относительное состояние газового прибора и наличие проблем, приводящих к чрезмерному производству CO.

    Дымовые газы имеют более прямой путь в занимаемое пространство от приборов, которые не имеют прямого выпуска, но это не должно позволять монтажнику-газовщику игнорировать уровни CO, выходящие за пределы, установленные производителем (или стандартом сертификации).

    Избыточное содержание CO в приборе с герметичным сжиганием обычно указывает на проблемы с системой сгорания, которые могут снизить эффективность и / или теплопроизводительность, значительно сократить срок службы прибора и повредить компоненты или вентиляционную систему.

    Забитые или закрытые дымоходы или дымоходы, а также разгерметизация здания могут привести к попаданию дымовых газов в жилые помещения. Вентилируемые приборы должны эффективно выводить все продукты сгорания наружу, независимо от того, содержат они CO или нет.

    Каждый раз, когда производитель предоставляет инструкции по настройке и / или целевые параметры эффективности сгорания, прибор должен быть настроен на эти значения. Производители обычно добавляют коэффициент безопасности к своим значениям, чтобы установить буфер между нормальной работой и потенциально небезопасной или вредной производительностью.

    Попытка «настроить» дополнительную эффективность устройства за счет уменьшения избытка воздуха до стехиометрического отношения может привести к образованию большого количества CO, если смешивание топлива с воздухом ухудшается или количество воздуха для горения, подаваемого в горелку, уменьшается из-за загрязнения скопление на лопастях вентилятора, воздушных коробках или жалюзи.

    Окись углерода воспламеняется при нижнем пределе взрываемости (НПВ) 12,5% и имеет температуру воспламенения 609 ° C (1128 ° F). Дополнительной опасностью является возможное образование свободного газообразного водорода в процессе неполного сгорания.

    Водород имеет НПВ 4% и самовоспламеняется при 495 ° C (923 ° F). Необходимо следить за тем, чтобы для процесса сгорания было достаточно избыточного воздуха. Присутствие кислорода в дымовых газах является важным показателем достаточного количества воздуха для горения.

    Отбор проб дымовых газов должен производиться как можно ближе к камере сгорания и без добавления разбавляющего воздуха из вытяжных колпаков или барометрических заслонок.

    В зависимости от типа пробоотборного зонда, его можно опустить вниз через отверстие отводящего устройства к камере сгорания или вставить через отверстие, просверленное в воротнике дымохода, как можно ближе к камере. Для печей с теплообменниками типа «грейфер» образец может быть взят из верхней части каждого дымохода.

    Для приборов средней эффективности, оснащенных нагнетательными вентиляторами, образец может быть взят из отверстия, просверленного в соединительном патрубке дымохода / вентиляционного отверстия. Многие производители высокоэффективных приборов в настоящее время включают отверстия для отбора проб на выходе из дымохода; некоторые из них также имеют порт на впускном патрубке для воздуха для горения.

    Если производитель включает данные анализа горения в свои инструкции по монтажу / обслуживанию, должна быть предусмотрена доступная точка отбора проб.

    Пластмассовые вентиляционные системы, сертифицированные по стандарту

    S636, имеют «тройники доступа», которые включают в себя ответвление и заглушку FIP ½ дюйма.Также можно использовать стандартный тройник S636 с использованием втулки с резьбой ½ дюйма FIP.

    СПРАВОЧНИК ПО ОКИСЮ УГЛЕРОДА РАЗДЕЛ 4 | УРОВНИ УГЛЕРОДА ПРОДОЛЖ.

    Тройник для конденсата не следует использовать, так как конденсат, выходящий из тройника, может затопить ловушку анализатора, что приведет к нежелательным отключениям и, возможно, к повреждению прибора.

    Если производитель не указывает значения анализа горения, в качестве общего руководства можно использовать следующее:

    АТМОСФЕРНЫЙ АППАРАТ

    ПРИБОР С ТЯГОВОЙ ТЯГКОЙ

    КОНДЕНСАТОР (90% +)

    СИЛОВАЯ ГОРЕЛКА

    O2

    4% — 9%

    7% — 9%

    5% — 7%

    3% — 6%

    CO2

    6.5% — 8%

    6,5% — 8%

    7% — 8,5%

    8,5% — 11%

    ТЕМП.

    163ºC — 260ºC (325ºF — 500ºF)

    163ºC — 204ºC (325ºF — 400ºF)

    <52ºC (125ºF)

    160 ° C — 299 ° C (320 ° F — 570 ° F)

    ПРОЕКТ

    -0.02 ”туалет — -0,04” туалет

    -0,02 ”туалет — -0,04” туалет

    Согласно спецификации производителя

    Согласно спецификации производителя

    CO

    <50 частей на миллион без воздуха

    <50 частей на миллион без воздуха

    <50 частей на миллион без воздуха

    <100 частей на миллион без воздуха

    РАЗДЕЛ 5

    АВАРИЙНАЯ СИГНАЛИЗАЦИЯ УГЛЕРОДА

    ВНИМАНИЕ Сигнализация

    CO может обеспечить дополнительный уровень защиты для людей, находящихся там, где установлены приборы для сжигания топлива.Они не заменяют регулярный осмотр и техническое обслуживание газовых приборов квалифицированными монтажниками, но обеспечивают дополнительный контроль между интервалами обслуживания. Они также не заменяют дымовые извещатели, хотя некоторые производители в настоящее время выпускают модели, которые объединяют обе функции в одном устройстве.

    Тестирование угарного газа

    Строительный кодекс Британской Колумбии требует, чтобы сигнализация CO была установлена ​​в новом строительстве, где установлены устройства сжигания топлива. Город Ванкувер является единственной юрисдикцией в провинции, требующей наличия сигналов тревоги по CO во всех жилых помещениях, в которых есть устройство для сжигания топлива и / или пристроенный гараж.За пределами Ванкувера не требуется устанавливать сигнализацию в домах, построенных до внесения изменений в Строительный кодекс.

    Настоятельно рекомендуется, чтобы все помещения, где установлено газовое оборудование, устанавливали сигнализацию (и) CO в соответствии с действующими техническими требованиями Строительного кодекса Британской Колумбии:

    • Сигнализация CO установлена ​​в каждой спальне или в пределах 5 метров (16 футов) от двери каждой спальни.
    • Если устройство для сжигания топлива, например камин, находится внутри спальни, сигнализация CO должна быть установлена ​​в спальне.
    • Сигнализация CO должна:
      • Соответствует CAN / CSA 6.19, Бытовое устройство сигнализации по угарному газу
      • Оборудован встроенной сигнализацией, удовлетворяющей требованиям к слышимости CAN / CSA 6.19
      • Работать от батареи или иметь проводное соединение и
      • Не иметь разъединителя между устройством максимального тока и сигнализацией CO, если сигнализация CO питается от электрической системы жилого дома, и
      • Механически фиксировать на высоте в соответствии с рекомендациями производителя.
    • Допускаются агрегаты, сочетающие дымовую сигнализацию и сигнализацию CO

    CAN / CSA 6.19 является признанным канадским стандартом для сигнализаторов CO, предназначенных для использования в обычных жилых помещениях

    мест. Сюда входят жилые единицы, транспортные средства для отдыха и мобильные дома, а также участки без кондиционирования. Признанным канадским стандартом для многокритериальных дымовых извещателей (которые объединяют обнаружение дыма и CO в одном устройстве) является CAN / ULC S531. В этих устройствах часть аварийной сигнализации CO должна соответствовать CAN / CSA 6.19. Всегда ищите листинговую информацию на устройстве и его упаковке, найдите и установите его в соответствии с инструкциями производителя.Кроме того, проверьте и обслуживайте устройство в соответствии с инструкциями; у этих устройств есть срок службы, и их необходимо будет заменить не позднее даты, указанной на устройстве.

    Если аварийный сигнал не срабатывает должным образом при нажатии кнопки тестирования, обратитесь к разделу «Устранение неисправностей» в руководстве. Аварийный сигнал, который работает некорректно или отображает сообщение об окончании срока службы, не реагирует на CO и должен быть немедленно заменен.

    Сигнализация

    CO звучит иначе, чем сигнализация дыма при срабатывании.Внедряя в дом новое аварийное устройство, важно, чтобы каждый в доме знал разницу между тревожной дымовой пожарной сигнализацией и тревожной тревогой CO. В соответствии со стандартом сигнализации CO, сигнал тревоги CO состоит из четырех очень коротких звуковых сигналов, за которыми следует пятисекундная пауза, и шаблон повторяется.

    Это контрастирует с сигналом дымовой пожарной сигнализации, определенным стандартом дымовой сигнализации CAN / ULC S531, который состоит из трех звуковых сигналов, за которыми следует пауза в 1,5 секунды, а затем этот шаблон повторяется.

    Жильцы должны знать разницу между фактическим звуковым сигналом и предупреждениями о низком заряде батареи или об окончании срока службы для сигналов тревоги по дыму и CO. Владельцы должны проконсультироваться со своим руководством по эксплуатации, чтобы получить дополнительную информацию о характеристиках звуковых и / или визуальных сигналов для каждого устройства.

    ВНИМАНИЕ Сигнализация

    CO может обеспечить дополнительный уровень защиты для людей, находящихся там, где установлены приборы для сжигания топлива. Они не заменяют регулярный осмотр и техническое обслуживание газовых приборов квалифицированными монтажниками, но обеспечивают дополнительный контроль между интервалами обслуживания.Они также не заменяют дымовые извещатели, хотя некоторые производители в настоящее время выпускают модели, которые объединяют обе функции в одном устройстве.

    РАЗДЕЛ 6

    ПРИЛОЖЕНИЕ «А»

    Избранные канадские стандарты для газовых приборов

    Обратите внимание, что значения, приведенные ниже, являются «максимальными» уровнями; слесарь по газу должен попытаться отрегулировать и настроить каждое устройство для выработки минимального количества CO, при этом сохраняя настройки в соответствии с сертифицированными инструкциями производителя.

    Допустимые уровни CO

    НОМЕР CSA

    ТЕКУЩИЙ КАНАДСКИЙ СТАНДАРТ

    ПРИБОР НЕ ДОЛЖЕН ПРОИЗВОДИТ КОНЦЕНТРАЦИЮ ОКСИДА УГЛЕРОДА

    ПРЕВЫШАТЬ:

    ANSI Z83.25-2017 / CSA 3.19-2017

    Газовые воздухонагреватели прямого действия

    Добавлена ​​максимальная средняя концентрация 5 частей на миллион

    ANSI Z21.13-2017 / CSA 4.9-2017

    Газовые паровые и водогрейные котлы низкого давления

    400 частей на миллион без воздуха

    ANSI Z21.88-2016 / CSA 2.33-2016

    Газовые камины вентилируемые

    200 частей на миллион без воздуха для самотечной вентиляции и 400 частей на миллион без воздуха для устройств с прямой вентиляцией и электровентиляцией

    ANSI Z83.11-2016 / CSA 1.8-2016

    Газовое оборудование для общепита

    800 частей на миллион без воздуха

    ANSI Z21.47-2016 / CSA 2.3-2016

    Газовые центральные печи

    400 частей на миллион без воздуха

    ANSI Z21.60-2017 / CSA 2.26-2017

    Приборы декоративные газовые для установки в твердотопливных каминах

    400 частей на миллион без воздуха

    ANSI Z21.5.1-2016 / CSA 7.1-2016

    Сушилки для одежды газовые, том I, тип 1

    400 частей на миллион без воздуха

    ANSI Z83.8-2016 / CSA 2.6-2016

    Газовые блочные обогреватели, газовые сборные обогреватели, газовые обогреватели и газовые канальные печи

    400 частей на миллион без воздуха

    ANSI Z21.10.3-2015 / CSA 4.3-2015

    Газовые водонагреватели, объем III, накопительные водонагреватели с номинальной мощностью более 75000 БТЕ в час, циркуляционные и проточные

    400 частей на миллион без воздуха

    ANSI Z21.1-2016 / CSA 1.1-2016

    Приборы газовые кухонные газовые

    800 частей на миллион без воздуха

    ANSI Z83.4-2017 / CSA 3.7-2017

    Рециркуляционные газовые приборы отопления и принудительной вентиляции коммерческого и промышленного назначения

    Добавлена ​​максимальная средняя концентрация 5 частей на миллион

    ANSI Z21.58-2015 / CSA 1.6-2015

    Газовая установка для приготовления пищи уличная

    800 частей на миллион без воздуха

    ANSI Z21.97-2014 / CSA 2.41-2014

    Уличные декоративные газовые приборы

    800 частей на миллион без воздуха

    ANSI Z21.86-2016 / CSA 2.32-2016

    Газовые газовые обогреватели помещений

    200 частей на миллион без воздуха

    CAN1-3.1-77 (R2016)

    Промышленные и торговые газовые котлы комплектные

    400 частей на миллион без воздуха

    ANSI Z83.7-2011 / CSA 2.14-2011 (R2016)

    Газовые обогреватели строительные

    200 частей на миллион без воздуха

    ПРИЛОЖЕНИЕ «Б»
    Предлагаемый метод проверки теплообменника бытовой печи
    Первичный и вторичный теплообменники

    Первичный теплообменник в печи может быть изготовлен из катаной стали, состоящей из двух зеркальных частей, соединенных вместе, как раковина моллюска, или с использованием труб.В конденсационных печах для вторичного теплообменника будет использоваться устройство, похожее на автомобильный радиатор.

    перейдет в выключенное положение, когда температура воздуха в камере превысит предел, установленный техником.

    Забитые воздушные фильтры ускоряют выход из строя теплообменника. Если фильтр печи не используется в течение нескольких отопительных сезонов, поток воздуха через теплообменник будет заблокирован. Внутренняя температура печи может превышать расчетную температуру непрерывной работы без достижения верхнего предела.Это может привести к поломке сварных швов и появлению трещин.

    Известно, что значительное количество теплообменников вышли из строя из-за аномальной ржавчины, ускоренной присутствием хлорированных соединений. Хлорированное соединение — это любое соединение, к которому присоединена молекула хлора. Хлорированы многие бытовые товары, например, моющие средства,

    отбеливатель, растворитель и разбавители для красок. Когда эти соединения смешиваются с влагой, образуется соляная кислота, которая втягивается в печь, где она производит ржавчину и солевые отложения.Солевые отложения повторно соединяются с влагой из воздуха, продолжая коррозионный процесс и быстро разрушая теплообменник.

    Ржавчина может возникнуть из-за утечки конденсата на теплообменник из змеевика кондиционера, утечки увлажнителя или просто из-за расположения печи во влажном или влажном месте.

    Этапы проверки теплообменника печи:

    Многие печи выходят из строя из-за трещин в листовом металле, трещин вдоль сварных швов или отверстий из-за ржавчины или коррозии.

    Теплообменники могут выйти из строя из-за перегрева. Теплообменник защищен от перегрева тщательно отрегулированным верхним пределом. Верхний предел заставляет печь до

    1. Обратите внимание на возмущения пламени.

    Запустите печь и наблюдайте за любыми изменениями формы пламени при запуске нагнетателя циркулирующего воздуха. Ищите плавающее пламя, распространение пламени или искажение пламени. Эти условия указывают на возможное расслоение шва, открытую трещину, серьезное повреждение теплообменника или прокладочного материала или физическое разделение соединенных частей.Если возмущение пламени происходит после включения воздуходувки, это хороший признак того, что проблема может существовать в нижней части теплообменника (печь с восходящим потоком). В этом случае переходите к шагу 4.

    ПРИМЕЧАНИЕ: Убедитесь, что нет сквозняков, которые могут вызвать возмущение пламени.

    1. Измерьте уровень CO в воздушном потоке.

    При работающей печи измерьте уровень CO в обратном воздуховоде рядом с печью и запишите значение.Затем измерьте уровень CO в приточном воздуховоде, выходящем из печи. Запишите это значение. Если нет измеримой разницы в уровне CO в обратном и приточном потоках воздуха, вероятно, печь не пропускает CO в воздушный поток. Если CO в воздуховоде приточного воздуха больше, чем CO в возвратном воздухе, вероятно, что печь подает CO через теплообменник. Если такой сценарий встречается, переходите к шагу 4.

    1. Измерьте уровень кислорода в вентиляционном отверстии.

    Печи с принудительной тягой с меньшей вероятностью утечки продуктов сгорания в поток циркулирующего воздуха, чем печи с естественной тягой, из-за отрицательного давления внутри теплообменника, создаваемого нагнетательным вентилятором. Вставьте зонд анализатора дымовых газов в вентиляционное отверстие. Наблюдайте за уровнем кислорода. Если значительное увеличение происходит при включении циркуляционного вентилятора, возможно, что теплообменник поврежден. Переходите к шагу 4.

    1. Осмотрите теплообменник.

    Иногда отверстия, образованные ржавчиной или трещинами, можно увидеть глазом или с помощью зеркала, но часто только 20% общей поверхности теплообменника видны для просмотра, даже с помощью зеркала после установки печи .

    Некоторые отверстия или трещины видны только тогда, когда тепловое расширение вызывает раскрытие трещин, что может быть трудно наблюдать во время работы печи. Если печь не проходит какой-либо из трех предыдущих шагов, особое внимание следует уделить визуальному осмотру.Это может потребовать снятия циркуляционного вентилятора, чтобы увидеть нижнюю часть теплообменника, и прорезания дверцы доступа в приточную камеру, чтобы увидеть верхнюю часть теплообменника. Обратите особое внимание на сварные швы, швы, стыки и обесцвеченные пятна на теплообменнике (ах).

    Обновлено: 15.10.2021 — 09:14

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *