С какой частотой излучает светодиод фотон света – Взгляд изнутри: светодиодные лампочки / Habr

Содержание

Как работает светодиод, его мощность, яркость и цветность

СветодиодыЕсли мы переведем с английского словосочетание light emitting diode (сокращенно LED), то получим красивое и романтичное предложение: «Диод, излучающий свет». Так что же это такое? Это такой полупроводниковый девайс, как сейчас модно говорить, который трансформирует привычный нам электрический ток в то самое излучение светом. Светодиод творит чудеса и, в какой-то мере, получается.

Но так было не всегда. На первых этапах развития, мир светодиодов был ограничен и они использовались как показатель индикации. Но технологии не стоят на месте, и есть прогнозы экспертов, которые говорят что светодиод в ближайшие два десятилетия полностью вытеснит привычные нам лампы накаливания и даже энергосберегающие лампы.

Как и из чего сделан?

Светодиод имеет корпус с выводами для контактов, внутри его есть подложка с кристаллом из полупроводника и оптической специальной системой. Раньше светодиоды были более массивными, когда применялись для обозначения работы приборов при индикации. А теперь же светодиод – миниатюрное устройство, которое радует глаз и даже кошельки потребителей.

Как это работает?

Чтобы понять, как работает светодиод, давайте взглянем на это устройство более внимательно. Перед нами прибор с дырочным электронным р-n переходом, производящий при проходе через него тока оптическое излучение, которое мы и видим. Может быть и немного иной принцип работы светодиода: используется взаимодействие «металл с полупроводником».

Что такое р-n переход и зачем он используется в светодиоде?

Этот переход является «изюминкой» в электронике на основе полупроводников. Это некий сплав двух полупроводников, которые имеют, однако, отличные друг от друга типы проводимости ( так называемый «п-тип», где имеется излишнее количество электронов, а другой «дырчатый» тип – «р- тип», где есть излишнее количество дырок). Фокус заключается в том, что если провести так называемое «прямое смещение», то есть подсоединить к р-n переходу прямой электрический ток (плюсовой контакт к р-части), то через р-n переход побежит желанный нам электрический ток.

Что происходит дальше в корпусе светодиода после того, как после «прямого смещения» через р-n переход побежал ток? Происходит сплавление носителей различных электрических зарядов – в нашем случае речь идет о дырках и электронах. Последние, имеющие отрицательный заряд, «паркуются» в своих противоположностях – заряженных со знаком плюс ионах полупроводника (его кристаллической решетки). Как же получается свет? Вот от этого процесса все и происходит во время работы устройства. А точнее, когда сталкиваются электрон и дырка, то производится определенная энергия: квант света под названием «фотон».

Всегда ли неизменен этот принцип работы прибора? Нет. Дело в том, что р-n переход не обязательно излучает требуемый свет. В работающей области светодиода ширина запрещенной зоны обязана быть близка к энергии квантов света видимого диапазона. Также вероятность излучения при соединении пар электронов и дырочек обязана быть довольно высокой.

Кристалл полупроводниковый в этом случае должен быть бездефектным, или быть, если это невозможно, мало дефектным. Потому что как раз из-за дефектов кристалла не происходит изучение света. Одно, получается, противоречит другому.

Если светодиод нужен рабочий, то работает рационализаторская жилка. Например, приходится производить многослойные полупроводники более чем с одним р-n переходом в кристалле. Речь идет о таком понятии как гетеро структура, которая стала объектом пристального внимания российского физика Жореса Алферова (он — Лауреат ленинской премии, плюс директор Физико — Технического института им. А.Ф. Иоффе). В 2000 м году ему была присуждена Нобелевская премия за работы в области гетеро структур.

Устройство светодиода

Устройство светодиода

Как и всякое высоко-технологичное устройство, светодиод имеет не один тип корпуса, но мы рассмотрим стандартный. Обычно кристалл «прячется» в 5 миллиметровый корпус, где сверху идет линза, а снизу рефлектор. Анод и катод – это два традиционных вывода светодиода. Параболический отражатель – рефлектор из алюминия располагается на катоде. Если присмотреться к рефлектору, то он напоминает чашку, на днище которой и помещают кристалл, излучающий свет.

Рабочий элемент в нашем случае – монокристалл из полупроводника, в светодиоде используется как кубик (чип) с параметрами 0,3х0,3х0.25 мм. Этот монокристалл несет в себе омические контакты и р-n переход или гетеропереход. Кусочек золотой проволоки является тем мостиком , что соединяет кристалл с анодом.

Корпус светодиода прозрачен, сделан из полимера, и он не избегает работы: это еще и фокусирующая линза! Вкупе с рефлектором. Корпус светодиода совместно с рефлектором и детерминируют угол излучения.

Цветность и яркость

Мощные светодиоды, как правило, яркие, сильные в излучении, а для яркости важна степень прозрачности n-области (пленки полупроводников практически прозрачные и очень тонки). Цвет и частота излучения прямо связаны с энергией фотонов и на эти параметры влияют те материалы, из которых сделаны полупроводниковые р-п переходы. К примеру, монкристалл GaAs производит инфракрасный луч. Но если произвести небольшое добавление А1 или Р, то светодиод поменяет в итоге свое излучение на красный цвет. А вот GaP производит свет зеленый. Если мы желаем получить желтое излучение светодиода, то тогда в дело идет р-n переход с композицией А1InGaP.

Насколько энергоэффективен светодиод?

Светодиод не отличается «прожорливостью» в плане потребления электроэнергии. При токе 10-30 мА и напряжении 2-4 В расходуется от 20 до 120 мВт. Принцип экономии здесь соблюдается отлично: традиционная лампа накаливания небольших размеров «кушает» 12 В, и ток ей нужен уже 50-100 Ма.

А какова ваша сила, господин светодиод?

Производство светодиодов расширяется, и производители стараются, чтобы каждый светодиод максимально полно удовлетворял потребности клиента. Например, есть мощные светодиоды и все большая потребность в них. Как это достигается? Три в одном, говоря рекламным языком. Чтобы поднять мощность, в единый корпус устанавливают не один, и не два, а несколько кристаллов одного цвета, чтобы они излучали свет одновременно.

Повышенная мощность светодиодов достигается чаще всего четырьмя такими кристаллами в одном корпусе.

Ультраяркость

Чтобы достичь яркой работы светодиодов, выпускаются так называемые «ультраяркие» экземпляры. Мощность ультраярких светодиодов доходит до 60 мВт (это где-то 1/16 вт) и если для работы их поместить в средний по размерам корпус, то для мощной хорошей подсветки будет необходимо их установить от 15 до 20 штук.

Действительно, «суперяркий» средний светодиод несет в себе мощность в 240мВт (это 1/4 Вт) и чтобы получить нормальную подсветку светодиода (в не самом большом, но и не маленьком) корпусе нам потребуется от 4 до 8 штук светодиодов . Очень мощные светодиоды – это такие, у которых мощность отсчитывается уже от одного Ватта, и это весьма эффективные светодиоды, потому что буквально одним или двумя такими штуками можно спокойно подсветить весь корпус.

Где используют светодиоды

Применение светодиодовВ современном мире светодиод занял важное место. Они красуются там, где нужна локальная подсветка. Интенсивность ее при помощи светодиодов можно регулировать от яркой до своей противоположности — тусклой. Светодиоды хорошо справляются с созданием праздничной атмосферы, особенно это актуально сейчас, в преддверии Рождества и Нового Года. Переливаясь самыми разными оттенками, они радуют взрослых и детвору своими яркими красками. Для работы светодиодных фонарей, бегущей рекламной или информационной строки опять же светодиод – оптимальное решение.

Наконец, светодиод вовсю уже помогает нам упорядочить все нарастающий хаос в автомобильном и пешеходном движении в городах и поселках. Светодиоды «пашут» в еще одной сфере: дорожное регулирование, где используются в работе светофоров.

Основное достоинство светодиодов — это их способность производить свет, потребляя при этом сравнительно малое количество энергии. Именно поэтому светодиоды интенсивно исследуются и совершенствуются, находят все более широкое применение в самых различных сферах. Иными словами, Господин Светодиод уверенно шагает по нашей планете и ему уступают дорогу как важному и полезному гостю.

Михаил Берсенев


Сравнение мощного светодиода с галогенной лампой:

altenergiya.ru

Вредны ли светодиодные лампы?

Содержание статьи:

Наиболее перспективными для применения в различных видах освещения являются светодиодные лампы. Они стремительно завоевывают рынок и ученые пророчат, что в недалеком будущем большинство произведенных ламп будут именно светодиодными. Это легко объяснимо тем, что такие лампы потребляют при равном световом потоке существенно меньше электроэнергии, имеют огромный срок службы.

Главным недостатком этих ламп является высокая цена, но с каждым годом открывается масса производств, рынок наводняется светодиодными источниками света и цена становится все ниже, что на руку потребителям. Подробнее о характеристиках светодиодных ламп читайте тут.

Однако, не все так безоблачно в сфере внедрения светодиодных ламп. Помимо множества их сторонников, находятся и ярые противники, которые говорят о вреде таких источников света. И, надо сказать, что не все их аргументы беспочвенны. Поэтому стоит пристальнее рассмотреть вопрос о вреде светодиодных ламп и выяснить, что является реальностью, а что мифом.

Почему светодиодный свет может быть вреден для зрения?

Ученые выяснили, что вредное воздействие на органы зрения оказывает не все излучение светодиода в целом, а только синяя и фиолетовая составляющая спектра, имеющее наименьшую длину волны и соответственно большую частоту и большую энергию. Испанские ученые, проводившие такие исследования, опубликовали свои отзывы в журнале Seguridad y Medio Ambiente. Основными результатами этой исследовательской работы являются следующие утверждения:

  • Светодиодные источники света могут нанести непоправимый вред здоровью человека и животных, воздействуя на сетчатку глаза.
  • Вред наносит коротковолновый синий и фиолетовый свет.
  • Излучение наносит сетчатке глаза травмы трех типов: фотомеханические (ударная энергия волны световой энергии), фототермические (при облучении происходит нагревание ткани клетчатки) и фотохимические (фотоны света могут вызывать химические изменения в макромолекулах).
  • Зеленый и белый свет имеет гораздо меньшую фототоксичность, а при воздействии на сетчатку красным светом каких-либо негативных изменений не обнаружено.

Результаты исследования говорят о том, что смотреть на яркую светодиодную лампу противопоказано.

Влияние светодиодной лампы на глаза

Но это правило безопасности можно отнести и к другим источникам яркого света: лампам накаливания и люминесцентным лампам. Таким образом, вред энергосберегающих ламп для глаз состоит в негативном воздействии на сетчатку глаза. Однако большинство ведущих производителей снабжают лампы рассеивателями, либо хорошие люстры имеют плафоны, которые дают мягкий рассеянный свет, польза которого намного выше.

Классификация освещения по степени риска

Для оценки безопасности светового излучения видимого спектра был принят международный стандарт EN 62471, который называется «Фотобиологическая безопасность ламп и ламповых систем». В соответствии с этим стандартом, выделяются четыре группы риска, в которых указывается максимальное время воздействия освещения от исследуемого источника света.

  • Нулевая группа риска (отсутствие риска). Воздействие излучения от таких источников света может производиться 10000 секунд и более.
  • Первая группа риска (низкий риск). Максимальное время воздействия может быть от 100 до 10000 секунд.
  • Вторая группа риска (умеренный риск). Максимальное время воздействия светильников этой группы возможно от 0,25 до 100 секунд.
  • Третья группа риска (высокий риск). Время воздействия не должно превышать 0,25 секунды.

Исследование степени рисков освещения светодиодами

Было проведено исследование на основе этого стандарта. Профессор Института здоровья и медицинских исследований Франсин Бехар-Коэн возглавила группу ученых, которые в результате исследований пришли к некоторым важным выводам, сделав свои отзывы о вреде и пользе светодиодных ламп:

  • Светодиод синего свечения мощностью 15 Вт и более можно отнести к третьей группе риска.
  • Синий светодиод мощностью 0,07 Вт относится к первой группе риска.
  • По сравнению с традиционными лампами накаливания, относящихся к нулевой или первой группе риска, светодиодное освещение можно отнести ко второй группе.
  • При равной цветовой температуре, в излучении белых светодиодов на 20% больше опасной синей составляющей спектра.

Светодиодные лампы и подавление секреции мелатонина

Коллективом ученых из Израиля, США и Италии было проведено исследование влияния различных искусственных источников света на выработку важного гормона – мелатонина, который вырабатывается у человека и высших животных в эпифизе. Этот гормон отвечает за периодичность сна, кровяное давление, участвует в работе клеток головного мозга.

Мелатонин является мощным антиоксидантом, он замедляет процесс старения, активизирует иммунную систему.

Учеными за образец был принят свет натриевых ламп высокого давления, имеющих теплый желтый цвет. Было выяснено, что галогенные лампы, имеющие более высокую цветовую температуру, подавляет секрецию мелатонина в три раза. При исследовании замечено, что угнетение секреции происходит в пять раз сильнее, при одинаковой мощности натриевых и светодиодных ламп.

Конструкция светодиодной лампы

Оказалось, что такое пагубное воздействие больше всего оказывает именно яркий свет синего спектра. Итальянский физик Фабио Фалчи утверждает, что воздействие любого мощного источника света в вечернее время, когда организм должен готовиться ко сну, противопоказано и особенно люминесцентных и светодиодных ламп, в спектре которых есть синяя и фиолетовая составляющая спектра.

Учеными был дан ряд рекомендаций:

  • Для освещения спален лучше применять лампы накаливания.
  • Не смотреть на любые яркие источники света за 2-3 часа перед сном.
  • При работе за компьютером в темное время суток применять специальные очки, которые блокируют синий спектр ламп.
  • В качестве ночной подсветки лучше применять освещение красного цвета.
  • Использовать только качественные светодиодные лампы известных производителей, имеющие цветовую температуру «теплого» белого цвета и высокий индекс цветопередачи.
  • Использовать люстры и светильники, специально предназначенные для светодиодных ламп. Об этом подробнее в этой статье.

Мерцание ламп и его влияние на зрение

Известно, что лампы накаливания, работающие в наших сетях переменного тока 220 В, 50 Гц мерцают с частотой 100 Гц. Энергосберегающие лампы, оснащенные обычными балластами, также мерцают с такой же частотой, а у ламп, имеющих электронные балласты – ЭПРА, мерцание может происходить с меньшей частотой. Инертность человеческого глаза не позволяет увидеть пульсацию в свечении ламп, но как показали исследования, мозг человека воспринимает пульсации вплоть до частоты в 300 Гц. Эти колебания энергосберегающих ламп наносят вред психике человека, изменяют гормональный фон, снижают работоспособность, повышают утомляемость, меняют естественные суточные ритмы.

Излучение светодиода происходит при протекании через него постоянного тока, а переменное сетевое напряжение преобразует в постоянное специальная схема – драйвер, которым оснащены все лампы. Правда большинство драйверов преобразует переменное сетевое напряжение не в постоянный ток, а в серию импульсов постоянного тока. Так, во-первых, проще реализовать схему, а, во-вторых, делает возможным диммирование ламп, то есть изменение яркости путем изменения скважности импульсов. Как выбрать диммер, читайте тут. В качественных лампах известных производителей частота следования импульсов более 300 Гц, что практически сводит к нулю пульсацию освещения такими лампами.

Спектр излучения светодиодных ламп

Светодиод создает излучение при рекомбинации в полупроводниках дырок и электронов, благодаря чему излучается фотон света. Частоту излучения определяет химический состав полупроводников. Излучение может быть как в невидимом диапазоне (инфракрасном или ультрафиолетовом), так и в видимом (красном, оранжевом, желтом, зеленом, синем, фиолетовом, белом).

Излучение светодиода происходит в очень узком диапазоне, поэтому спектр такого излучения линейчатый, что негативно влияет на параметры цветопередачи.

Еще одним недостатком светодиодного освещения является то, что генерируемое излучение когерентно, то есть одинаковой частоты и фиксированного сдвига фаз. Нерассеянный свет светодиода обладает определенной «жесткостью», но производители находят выход, применяя рассеиватели на лампах или плафоны в люстрах. Эти меры существенно снижают «жесткость» его излучения.

Спектр излучения светодиодов

Следует отметить, что на настоящее время не существует такого кристалла полупроводника, который бы излучал белый свет, хотя белые светодиоды существуют. Белый цвет можно получить двумя способами:

  • Первый способ — это сочетание свечения трех светодиодов: красного, зеленого и синего. Такие светодиоды существуют, но спектр их излучения очень линейчатый, что сказывается на индексе цветопередачи. Они нашли применение больше в светодиодных дисплеях, где интенсивностью свечения определенного цвета можно регулировать цвет пикселя дисплея. В освещении такие комбинированные светодиоды используются мало.
  • Второй способ – это использовать эффект фотолюминесценции. При облучении специальных веществ – люминофоров, они переизлучают свет, только уже в другом диапазоне. Этот эффект давно используют в люминесцентных лампах, когда ультрафиолетовое свечение газового разряда преобразуют люминофоры, нанесенные на внутреннюю поверхность колбы лампы. И от качества люминофора зависит спектр. В белых светодиодах используются излучатели синего, фиолетового или ультрафиолетового диапазона и люминофор, отвечающий за свет в нужном диапазоне, нужной цветовой температуры и нужным индексом цветопередачи.

Именно от качества и количества люминофора в белых светодиодах зависит спектральный состав, цветовая температура и индекс цветопередачи. Используется комбинирование люминофоров, чем они качественнее и чем больше их, тем богаче спектр, но и тем дороже лампа. И развитие светодиодного освещения происходит параллельно с развитием применения разных люминофоров. Естественно, в излучении белых светодиодов присутствует или синяя, или фиолетовая, или ультрафиолетовая составляющая спектра, несущая в себе определенный вред, поэтому надо соблюдать определенные методы предосторожности, описанные ранее.

Тепловое излучение светодиодных ламп

Любые источники искусственного света имеют тепловое излучение, в том числе и светодиодные лампы. Но если в лампах накаливания свечение спирали происходит за счет высокой температуры спирали, то у светодиодов происходит практически прямое преобразование электрического тока в световую энергию. Естественно, что ток вызывает нагрев кристалла полупроводника, но необходимость его охлаждения больше вызвана в потребности сохранить его свойства и продлить срок службы, так как уже при температурах 60—80°C происходит ускоренная деградация полупроводника.

Белые яркие светодиоды обязательно снабжают радиаторами для охлаждения, но само тепловое излучение от таких ламп очень мало по сравнению с лампами накаливания.

Любое нагретое тело, как известно из курса физики, излучает инфракрасные лучи, но в случае со светодиодными лампами оно пренебрежимо мало по сравнению с лампами накаливания. Именно поэтому светодиодное освещения сейчас заменяет освещение телевизионных студий и сценических площадок, где ранее использовались галогенные и металлгалогенные лампы.

Электромагнитное излучение светодиодных ламп

Драйвера светодиодных ламп представляют собой электронную схему, генерирующей импульсы высокой частоты, поэтому при работе этих устройств создаются электромагнитные помехи, способные нарушить работу некоторых электронных приборов: FM-приемников, телевизоров и других устройств. Поэтому минимальная дистанция от лампы до другого прибора должна составлять не менее 40 сантиметров.

Сравнение разных типов светодиодных ламп

Какие светодиодные лампы можно покупать для дома

Исходя из всего вышеизложенного, можно сделать определенные выводы про уместность применения светодиодных ламп.

  • Светодиодные лампы по показателям энергосбережения, световой отдачи являются самыми эффективными источниками света, имеющими перспективы повсеместного внедрения.
  • Все искусственные источники света большой мощности могут оказать негативное влияние на здоровье человека, прежде всего своим воздействием на сетчатку глаза. При соблюдении простых мер безопасности светодиодные лампы не оказывают пагубного влияния.
  • При покупке светодиодных ламп следует доверять только известным мировым брендам, а покупка должна быть сделана только у добросовестных продавцов.
  • Для дома лучше применять лампы со световой температурой 2700—3200 K (теплый белый). Индекс цветопередачи должен быть не менее 80 CRI.
  • Применение более прогрессивных люминофоров при производстве белых светодиодов будет только повышать характеристики светодиодных ламп, в том числе и их безопасность.

Вконтакте

Facebook

Twitter

Google+

Одноклассники

Мой мир

Поделиться ссылкой:

indeolight.com

Светодиод

1. Что такое светодиод? Светодиод — это полупроводниковый прибор, преобразующий электрический ток непосредственно в световое излучение. Кстати, по-английски светодиод называется light emitting diode, или LED. 2. Из чего состоит светодиод? Из полупроводникового кристалла на подложке, корпуса с контактными выводами и оптической системы. Современные светодиоды мало похожи на первые корпусные светодиоды, применявшиеся для индикации. Конструкция мощного светодиода серии Luxeon, выпускаемой компанией Lumileds, схематически изображена на рисунке.

3. Как работает светодиод? Свечение возникает при рекомбинации электронов и дырок в области p-n-перехода. Значит, прежде всего нужен p-n-переход, то есть контакт двух полупроводников с разными типами проводимости. Для этого приконтактные слои полупроводникового кристалла легируют разными примесями: по одну сторону акцепторными, по другую — донорскими. Но не всякий p-n-переход излучает свет. Почему? Во-первых, ширина запрещенной зоны в активной области светодиода должна быть близка к энергии квантов света видимого диапазона. Во-вторых, вероятность излучения при рекомбинации электронно-дырочных пар должна быть высокой, для чего полупроводниковый кристалл должен содержать мало дефектов, из-за которых рекомбинация происходит без излучения. Эти условия в той или иной степени противоречат друг другу. Реально, чтобы соблюсти оба условия, одного р-п-перехода в кристалле оказывается недостаточно, и приходится изготавливать многослойные полупроводниковые структуры, так называемые гетероструктуры, за изучение которых российский физик академик Жорес Алферов получил Нобелевскую премию 2000 года.

4. Означает ли это, что чем больший ток проходит через светодиод, тем он светит ярче? Разумеется, да. Ведь чем больше ток, тем больше электронов и дырок поступают в зону рекомбинации в единицу времени. Но ток нельзя увеличивать до бесконечности. Из-за внутреннего сопротивления полупроводника и p-n-перехода диод перегреется и выйдет из строя.

5. Чем хорош светодиод? В светодиоде, в отличие от лампы накаливания или люминесцентной лампы, электрический ток преобразуется непосредственно в световое излучение, и теоретически это можно сделать почти без потерь. Действительно, светодиод (при должном теплоотводе) мало нагревается, что делает его незаменимым для некоторых приложений. Далее, светодиод излучает в узкой части спектра, его цвет чист, что особенно ценят дизайнеры, а УФ- и ИК-излучения, как правило, отсутствуют. Светодиод механически прочен и исключительно надежен, его срок службы может достигать 100 тысяч часов, что почти в 100 раз больше, чем у лампочки накаливания, и в 5 — 10 раз больше, чем у люминесцентной лампы. Наконец, светодиод — низковольтный электроприбор, а стало быть, безопасный.

6. Чем плох светодиод? Только одним — ценой. Пока что цена одного люмена, излученного светодиодом, в 100 раз выше, чем галогенной лампой. Но специалисты утверждают, что в ближайшие 2 — 3 года этот показатель будет снижен в 10 раз.

7. Когда светодиоды начали применяться для освещения? Первоначально светодиоды применялись исключительно для индикации. Чтобы сделать их пригодными для освещения, необходимо было прежде всего научиться изготавливать белые светодиоды, а также увеличить их яркость, а точнее светоотдачу, то есть отношение светового потока к потребляемой энергии. В 60-х и 70-х годах были созданы светодиоды на основе фосфида и арсенида галлия, излучающие в желто-зеленой, желтой и красной областях спектра. Их применяли в световых индикаторах, табло, приборных панелях автомобилей и самолетов, рекламных экранах, различных системах визуализации информации. По светоотдаче светодиоды обогнали обычные лампы накаливания. По долговечности, надежности, безопасности они тоже их превзошли. Одно было плохо — не существовало светодиодов синего, сине-зеленого и белого цвета. К концу 80-х годов в СССР выпускалось более 100 млн светодиодов в год, а мировое производство составляло несколько десятков миллиардов.

8. От чего зависит цвет светодиода? Исключительно от ширины запрещенной зоны, в которой рекомбинируют электроны и дырки, то есть от материала полупроводника, и от легирующих примесей. Чем «синее» светодиод, тем выше энергия квантов, а значит, тем больше должна быть ширина запрещенной зоны.

10. Что такое квантовый выход светодиода? Квантовый выход — это число излученных квантов света на одну рекомбинировавшую электронно-дырочную пару. Различают внутренний и внешний квантовый выход. Внутренний — в самом p-n-переходе, внешний — для прибора в целом (ведь свет может теряться «по дороге» — поглощаться, рассеиваться). Внутренний квантовый выход для хороших кристаллов с хорошим тепло-отводом достигает почти 100%, рекорд внешнего квантового выхода для красных светодиодов составляет 55%, а ддя синих — 35%. Внешний квантовый выход — одна из основных характеристик эффективности светодиода.

11. Как получить белый свет с использованием светодиодов? Существует три способа получения белого света от светодиодов. Первый — смешивание цветов по технологии RGB. На одной матрице плотно размещаются красные, голубые и зеленые светодиоды, излучение которых смешивается при помощи оптической системы, например линзы. В результате получается белый свет. Второй способ заключается в том, что на поверхность светодиода, излучающего в ультрафиолетовом диапазоне (есть и такие), наносится три люминофора, излучающих, соответственно, голубой, зеленый и красный свет. Это похоже на то, как светит люминесцентная лампа. И наконец в третьем способе желто-зеленый или зеленый плюс красный люминофор наносятся на голубой свето-диод, так что два или три излучения смешиваются, образуя белый или близкий к белому свет.

12. Какой из трех способов лучше? У каждого способа есть свои достоинства и недостатки. Технология RGB в принципе позволяет не только получить белый цвет, но и перемещаться по цветовой диаграмме при изменении тока через разные светодиоды. Этим процессом можно управлять вручную или посредством программы, можно также получать различные цветовые температуры. Поэтому RGB-матрицы широко используются в светодинамических системах. Кроме того, большое количество светодиодов в матрице обеспечивает высокий суммарный световой поток и большую осевую силу света. Но световое пятно из-за аберраций оптической системы имеет неодинаковый цвет в центре и по краям, а главное, из-за неравномерного отвода тепла с краев матрицы и из ее середины светодиоды нагреваются по-разному, и, соответственно, по-разному изменяется их цвет в процессе старения — суммарные цветовая температура и цвет «плывут» за время эксплуатации. Это неприятное явление достаточно сложно и дорого скомпенсировать. Белые светодиоды с люминофорами существенно дешевле, чем светодиодные RGB-матрицы (в пересчете на единицу светового потока), и позволяют получить хороший белый цвет. И для них в принципе не проблема попасть в точку с координатами (0.33, 0.33) на цветовой диаграмме МКО. Недостатки же таковы: во-первых, у них меньше, чем у RGB-матриц, светоотдача из-за преобразования света в слое люминофора; во-вторых, достаточно трудно точно проконтролировать равномерность нанесения люминофора в технологическом процессе и, следовательно, цветовую температуру; и наконец в-третьих — люминофор тоже стареет, причем быстрее, чем сам светодиод. Промышленность выпускает как светодиоды с люминофором, так и RGB-матрицы — у них разные области применения.

13. Каковы электрические и оптические характеристики светодиодов? Светодиод — низковольтный прибор. Обычный светодиод, применяемый для индикации, потребляет от 2 до 4 В постоянного напряжения при токе до 50 мА. Светодиод, который используется для освещения, потребляет такое же напряжение, но ток выше — от нескольких сотен мА до 1 А в проекте. В светодиодном модуле отдельные светодиоды могут быть включены последовательно и суммарное напряжение оказывается более высоким (обычно 12 или 24 В). При подключении светодиода необходимо соблюдать полярность, иначе прибор может выйти из строя. Напряжение пробоя указывается изготовителем и обычно составляет более 5 В для одного светодиода. Яркость светодиода характеризуется световым потоком и осевой силой света, а также диаграммой направленности. Существующие светодиоды разных конструкций излучают в телесном угле от 4 до 140 градусов. Цвет, как обычно, определяется координатами цветности и цветовой температурой, а также длиной волны излучения. Для сравнения эффективности светодиодов между собой и с другими источниками света используется светоотдача: величина светового потока на один ватт электрической мощности. Также интересной маркетинговой характеристикой оказывается цена одного люмена.

14. Как реагирует светодиод на повышение температуры? Говоря о температуре светодиода, необходимо различать температуру на поверхности кристалла и в области p-n-перехода. От первой зависит срок службы, от второй — световой выход. В целом с повышением температуры p-n-перехода яркость светодиода падает, потому что уменьшается внутренний квантовый выход из-за влияния колебаний кристаллической решетки. Поэтому так важен хороший теплоотвод. Падение яркости с повышением температуры не одинаково у светодиодов разных цветов. Оно больше у AlGalnP- и AeGaAs-светодиодов, то есть у красных и желтых, и меньше у InGaN, то есть у зеленых, синих и белых.

15. Почему нужно стабилизировать ток через светодиод? Как видно из рисунка, в рабочих режимах ток экспоненциально зависит от напряжения и незначительные изменения напряжения приводят к большим изменениям тока. Поскольку световой выход прямо пропорционален току, то и яркость светодиода оказывается нестабильной. Поэтому ток необходимо стабилизировать. Кроме того, если ток превысит допустимый предел, то перегрев светодиода может привести к его ускоренному старению.

типичная вольт-амперная характеристика светодиода

16. Для чего светодиоду требуется конвертор? Конвертор (в англоязычной терминологии driver) для светодиода — то же, что балласт для лампы. Он стабилизирует ток, протекающий через светодиод.

17. Можно ли регулировать яркость светодиода? Яркость светодиодов очень хорошо поддается регулированию, но не за счет снижения напряжения питания — этого-то как раз делать нельзя, — а так называемым методом широтно-импульсной модуляции (ШИМ), для чего необходим специальный управляющий блок (реально он может быть совмещен с блоком питания и конвертором, а также с контроллером управления цветом RGB-матрицы). Метод ШИМ заключается в том, что на светодиод подается не постоянный, а импульсно-модулированный ток, причем частота сигнала должна составлять сотни или тысячи герц, а ширина импульсов и пауз между ними может изменяться. Средняя яркость светодиода становится управляемой, в то же время светодиод не гаснет. Небольшое изменение цветовой температуры светодиода при диммировании несравнимо с аналогичным смещением для ламп накаливания.

18. Чем определяется срок службы светодиода? Считается, что светодиоды исключительно долговечны. Но это не совсем так. Чем больший ток пропускается через светодиод в процессе его службы, тем выше его температура и тем быстрее наступает старение. Поэтому срок службы у мощных светодиодов короче, чем у маломощных сигнальных, и составляет в настоящее время 20 — 50 тысяч часов. Старение выражается в первую очередь в уменьшении яркости. Когда яркость снижается на 30% или наполовину, светодиод надо менять.

19. «Портится» ли цвет светодиода с течением времени? Старение светодиода связано не только со снижением его яркости, но и с изменением цвета. В настоящее время нет стандартов, которые позволили бы выразить количественно изменение цвета светодиодов в процессе старения и сравнить с другими источниками.

20. Не вреден ли светодиод для человеческого глаза? Спектр излучения светодиода близок к монохроматическому, в чем его кардинальное отличие от спектра солнца или лампы накаливания. Хорошо это или плохо — доподлинно не известно, потому что, насколько я знаю, серьезных исследований в этой области нигде не проводилось. Какие-либо данные о вредном воздействии светодиодов на человеческий глаз отсутствуют. Есть надежда, что вскоре влияние светодиодов на зрение будет изучено досконально. Проблемой заинтересовался академик Михаил Аркадьевич Островский — крупный специалист в области цветного зрения. Тема, за решение которой он взялся, называется так: «Психофизическое восприятие светодиодного освещения системой зрения человека».

Физика процесса электролюминесценции

Зеленая электролюминесценция на кристалле, наблюдаемая в экспериментах H. J. Round’s в 1907.

Вольт-амперная (V-I) характеристика светоизлучающего диода СИД.

Зонная диаграмма поясняющая принцип работы светоизлучающего диода СИД.

Светоизлучающий диод СИД, как и обычный диод, состоит из кристалла полупроводникового материала легированного различными примесями для создания P/N перехода. Как и в обычном диоде, в светоизлучающем диоде ток протекает через переход между полупроводником P-типа, или анодом и полупроводником N-типа — катодом, но не в обратном, а в прямом направлении.

Одним из параметров P/N перехода является ширина запрещённой зоны (ширина энергетического зазора между валентной зоной и зоной проводимости). В случае рекомбинации электрона и дырки, электрон попадает с более высокого энергетического уровня на более низкий, при этом электрон отдаёт часть своей энергии, которая излучается в виде фотона. Длина волны света испускаемого от светодиодных (СИД) излучателей определяется физическими параметрами P/N перехода используемых полупроводниковых материалов.

Коэффициент полезного действия (КПД) светодиода

Коэффициент полезного действия (КПД) — это отношение полезной работы к

затраченной энергии. КПД является безразмерной величиной и часто

измеряется в процентах.

Применительно к источникам света КПД характеризует, какая часть

затраченной электрической энергии преобразуется в видимый свет.

Существует мнение, что КПД светодиода близок к 100%, то есть, вся

приложенная к светодиоду энергия преобразуется в свет. Скорее всего, это

относится к КПД по КВАНТОВОМУ ВЫХОДУ, то есть, каждый элементарный

носитель заряда, электрон, введенный извне в светодиод, вызывает

излучение фотона (кванта световой энергии). Другими словами, 1 электрон

в идеальном случае вызывает излучение 1 фотона. Есть сообщения, что

ученые уже разработали белый светодиод с КПД по квантовому выходу почти

100%.

Что же касается ЭНЕРГЕТИЧЕСКОГО КПД, или соотношения Ватта полученной

световой энергии к Ватту затраченной электроэнергии, то это соотношение

весьма далеко от 100%. Потому что прежде чем электрон инициирует

излучение фотона, он успевает затратить часть своей энергии (а

следовательно и знергии источника питания) на нагрев среды, в которой он

перемещается.

Поэтому светодиоды тоже греются, то есть, часть энергии тратится

попусту, на нагрев окружающей среды: нам нужен свет, а мы получаем и

свет и тепло.

Квантовый выход — это число излученных квантов света на одну рекомбинировавшую электронно-дырочную пару. Различают внутренний и внешний квантовый выход.Внутренний — в самом p-n-переходе, внешний — для прибора в целом (ведь свет может теряться «по дороге» — поглощаться, рассеиваться). Внутренний квантовый выход для хороших кристаллов с хорошим тепло-отводом достигает почти 100%, рекорд внешнего квантового выхода для красных светодиодов составляет 55%, а для синих — 35%. Внешний квантовый выход — одна из основных характеристик эффективности светодиода.

studfile.net

Инфракрасный светодиод-сфера применения ИК диодов

Инфракрасный светодиод (ИК-светодиод) представляет собой специальный светодиод, излучающий инфракрасные лучи длиной от 700 до 1 мм. Различные ИК-светодиоды могут создавать инфракрасный свет с разными длинами волн, так же как разные светодиоды производят свет разных цветов. ИК-светодиоды обычно изготавливают из арсенида галлия или арсенида галлия алюминия. В дополнение к ИК-приемникам они обычно используются в качестве датчиков.

Внешний вид ИК-светодиода аналогичен общему светодиоду. Поскольку человеческий глаз не может видеть инфракрасное излучение, человеку невозможно определить, работает ли ИК-светодиод. Эта проблема устранена камерой на сотовой телефоне. ИК-лучи от ИК-светодиода в цепи показаны в камере.

Пин-схема инфракрасный светодиод

Инфракрасный светодиод представляет собой диод или простой полупроводник. Электрический ток пропускается только в одном направлении в диодах. По мере протекания тока электроны падают с одной части диода в отверстия на другой части. Чтобы попасть в эти дыры, электроны должны пролить энергию в виде фотонов, которые производят свет.

Необходимо модулировать излучение от Инфракрасного светодиода, чтобы использовать его в электронном приложении для предотвращения ложного срабатывания. Модуляция делает сигнал от Инфракрасного светодиода выше шума. Инфракрасные диоды имеют рассеиватель, который непрозрачен для видимого света, но прозрачен для инфракрасного излучения. Массовое использование Инфракрасных светодиодов в пульте дистанционного управления и системах охранной сигнализации резко сократило цены на Инфракрасные светодиоды на рынке.

ИК-датчик инфракрасный светодиод

ИК-датчик — это устройство, которое обнаруживает, что на него падает ИК-излучение. Датчики приближения (используются в телефонах с сенсорным экраном и исключая роботы), контрастные датчики (используемые в линейных следящих роботах) и счетчики / датчики препятствий (используемые для подсчета товаров и в охранной сигнализации) — это некоторые приложения, в которых используются ИК-датчики.

Принцип работы

ИК-датчик состоит из двух частей: схемы эмиттера и схемы приемника. Это коллективно известно как фотосоединитель или оптрон.

Эмиттер — это инфракрасный светодиод, а детектор — ИК-фотодиод. ИК-фотодиод чувствителен к ИК-лучу, излучаемому ИК-светодиодом. Сопротивление фотодиода и выходное напряжение изменяются пропорционально полученному ИК-лучу. Это основной принцип работы ИК-датчика.

Тип заболеваемости может быть прямой или косвенной. При прямом падении инфракрасный светодиод помещается перед фотодиодом без препятствия между ними. При косвенном падении оба диода располагаются рядом с непрозрачным предметом перед датчиком. Свет от ИК-светодиода попадает на непрозрачную поверхность и возвращается обратно к фотодиоду.

ИК-датчики находят широкое применение в различных областях. Давайте посмотрим на некоторые из них.

Датчики приближения

Датчики приближения используют рефлексивный принцип косвенного падения. Фотодиод получает излучение, излучаемое ИК-светодиодом, когда оно отражено обратно объектом. Чем ближе объект, тем выше будет интенсивность падающего излучения на фотодиоде. Эта интенсивность преобразуется в напряжение для определения расстояния. Датчики приближения находят применение в телефонах с сенсорным экраном, среди других устройств. Дисплей отключен во время вызовов, так что, даже если щека контактирует с сенсорным экраном, эффекта нет.

Роботы-последователи

В линейке следующих роботов ИК-датчики определяют цвет поверхности под ним и посылают сигнал микроконтроллеру или основной цепи, который затем принимает решения в соответствии с алгоритмом, установленным создателем бота. Линейные последователи используют рефлексивные или не отражающие косвенные случаи. ИК отражается обратно к модулю с белой поверхности вокруг черной линии. Но ИК-излучение полностью поглощается черным цветом. Нет никакого отражения инфракрасного излучения, возвращающегося к сенсорному модулю черного цвета.

Счетчик предметов

Счетчик элементов реализован на основе прямого падения излучения на фотодиод. Всякий раз, когда предмет препятствует невидимой линии ИК-излучения, значение хранимой переменной в компьютере / микроконтроллере увеличивается. Это показывают светодиоды, семисегментные дисплеи и ЖК-дисплеи. Системы мониторинга крупных заводов используют эти счетчики для подсчета продукции на конвейерных лентах.

Охранная сигнализация

Прямая частота излучения на фотодиоде применима в схеме охранной сигнализации. ИК-светодиод установлен на одной стороне дверной коробки, а фотодиод — на другой. ИК-излучение, излучаемое инфракрасным светодиодом, попадает на фотодиод непосредственно в обычных условиях. Как только человек препятствует ИК-тракту, будильник гаснет. Этот механизм широко используется в системах безопасности и реплицируется в меньших масштабах для небольших объектов, таких как экспонаты на выставке.

Какие светодиоды стоят?

Как проверить светодиод?

Лучшие светодиоды

lightru.pro

Безопасность светодиодных ламп | Te4h

Светодиодные лампы и светодиодное освещение в целом используется в нашей жизни все чаще и чаще. Оно применяется для освещения производственных и бытовых помещений, жилых домов, улиц, а также применяется в экранах компьютеров, телевизорах и других гаджетах. И это оправданно. При своих очень маленьких энергозатратах, мы можем получить мощный световой поток и долгий срок службы. Но сегодня нас интересует не это. Нас интересует безопасность светодиодных ламп, их воздействие на здоровье и физиологию человека, вред светодиодного освещения.

 

Содержание статьи:

Безопасность светодиодных ламп

Без сомнения, самыми безопасными являются лампы накаливания, они не содержат никаких сложных компонентов и тяжелых металлов, не излучают ультрафиолетового излучения, не мерцают и издают свет наиболее похожий на природное освещение. С появлением ламп дневного света начали задумываться про их безопасность. Они содержат пары ртути, что вызовет очень негативные последствия, когда лампа будет разбита, постоянно мерцают и это отрицательно влияет на глаза, а также излучают электромагнитное излучение из-за использования электромагнитных катушек.

Безопасность светодиодных ламп

Когда появились светодиодные лампы, это казалось панацеей, они потребляют минимум энергии, не содержат вредных веществ и почти не мерцают. Но все ли так хорошо как кажется? В этой статье мы попытаемся разобраться. Несомненно, безопасность светодиодных ламп выше чем дневного света, но у них есть своя темная сторона.

Безопасность света

Ученные из Испании, работающие в Мадридском университете выявили, что долгий взгляд на светодиодную лампу может повредить зрение. В большинстве светодиодных ламп для получения белого света используется сочетание синего и желтого светодиодов. Желтый диод не опасен, но синий может вызвать проблемы. Он излучает синий и фиолетовый цвет очень короткой длины волны с большой энергией и мощностью. Продолжительный и неотрывный взгляд на такой источник света может повредить сетчатку вашего глаза. Светодиодные лампы наносят нашим глазам три вида травм: фотомеханические (ударная энергия световой волны), фототермические (нагрев ткани от облучения) и фотохимические (фотоны света могут вызывать химические изменения в молекулах).

безопасность света

Но с этим недостатком легко справиться. Просто не смотрите по долго на яркую светодиодную лампу. Это же правило касается люминесцентных ламп, они в этом плане намного вреднее, поскольку излучают прямой ультрафиолетовый свет, который по вреду для глаз несопоставим с излучением светодиодных ламп. Упомянуть о вреде света светодиодных ламп было необходимо, чтобы вы не думали, что они в этом плане безопасны.

 

Светодиодные лампы и физиология

физиология и вред света

Израильские ученые провели исследование влияния освещения на выделение гормона мелатонина. Он вырабатывается эпифизом и влияет на режим сна, кровяное давление и работу головного мозга. Но больше всего этот гормон контролирует сон, чем больше гормона в крови, тем сильнее человек хочет спать.

Ученые выяснили, что белый и синий цвета снижают выделение мелатонина. Наибольшее воздействие на выделение этого гормона выполняет голубой, яркий цвет. Так происходит потому, что за века наш организм привык к тому что при синем свете, в день нужно бодрствовать, а при желтом свете, когда заходит солнце — пора спать. Этот вред светодиодных ламп касается любых ярких искусственных источников света. Для спален рекомендуется использовать лампы накаливания или светодиодные лампы с низкой цветовой температурой — 1000-1500 Кельвин. Также рекомендуется не смотреть прямо на яркий источник света за два-три часа перед сном.

 

Вред мерцания ламп

вред мерцания ламп

Казалось бы, светодиодные лампы не мерцают но не все так просто. На самом деле мерцают все лампы, просто мы не можем этого увидеть. Даже лампы накаливания, работающие от сети переменного тока мерцают с частотой 100 Гц. Некачественные светодиодные лампы могут мерцать еще с более низкой частотой. Для работы светодиодов нужен постоянный ток, а в сети есть переменный, самый простой способ получить постоянный ток, это отсеять часть импульсов, что даст неравномерный поток электричества и как следствие — мерцание. Наше сознание не в состоянии заметить мерцание ламп из-за своей инертности, но мозг может фиксировать его до частоты 300 Гц. Колебания низкокачественных светодиодных ламп могут нанести некоторый вред организму, они изменяют гормональный фон, снижают работоспособность, повышают утомляемость.

В качественных светодиодных лампах известных производителей частота мерцания до выше 300 Гц и ее не может зафиксировать наш мозг, следовательно она не влияет. Это сводит к нулю мерцание лампы. Вы можете сами проверить мерцает ли ваша лампа, для этого достаточно посмотреть на нее через камеру вашего телефона. Если частота мерцания ниже 100 Гц, скорее всего, вы увидите мерцание. Смотрите подробнее:

 

Электромагнитное излучение

безопасность электромагнитного излучения

Каждая светодиодная лампа содержит в себе электрическую схему. Как я уже говорил, для питания светодиодов необходимо постоянное напряжение. Поэтому для преобразования переменного напряжения в постоянное используется специальная электрическая схема, генерирующая импульсы высокой частоты (чтобы не было мерцания). Вокруг лампочки создаются электромагнитные помехи, которые могут нарушить работу бытовых приборов. Не рекомендуется размещать близко к лампе такие устройства, как радиоприемники, телевизоры или другую чувствительную аппаратуру.

Тяжелые металлы и опасные вещества

вред тяжелых металов

В отличие от люминесцентных ламп, светодиодные лампы не содержат никаких опасных элементов. Все что здесь есть — это полностью безопасный полупроводник, из которого изготовлен светодиод, линза и пластик корпуса. Люминесцентные лампы содержат пары ртути, пока лампа герметичная, она полностью безопасна, но когда целостность корпуса будет нарушена, и ртуть распространится по помещению, то она может вызвать поражение дыхательной системы. Но, к счастью такой недостаток не присущ для светодиодных ламп.

Безопасность к пожарам

безопасность к пожарам

В этом аспекте безопасность светодиодного освещения тоже на высоком уровне. Как вы знаете, обычные лампы накаливания очень сильно нагреваются, и если не работающей лампочке притронуться, то можно обжечься. Но светодиодная лампа будет еле теплая даже после нескольких часов работы. Она не нагревает воздух вокруг себя и не приведет к возгоранию даже если будет контактировать с легко воспламеняющимися веществами.

Опасность прямого света

вред прямого света

Смотреть на яркие источники света не рекомендуется. Это может нанести серьезный вред вашим глазам и вызвать ожоги сетчатки. Если вы задержите на несколько секунд взгляд на лампе накаливания или большинстве светодиодных ламп с рассеивателем, то, скорее всего, не возникнет никаких проблем. Но прямое попадание яркого, не рассеянного светового луча может повредить сетчатку глаза. Это мало относиться к бытовым светодиодным лампам, но подходит к другим устройствам, например, фонарикам.

Выводы

Светодиодные лампы не настолько опасны, как лампы дневного света. Они не содержат никаких вредных веществ, которые могут попасть в атмосферу если вы разобьете лампу, не имеют очень вредного низкочастотного мерцания, которое влияет на глаза, но все же у них есть минусы, которые нужно научится обходить. Теперь вы знаете что нужно учитывать при покупке светодиодной лампы. Вред светодиодных ламп можно минимизировать выбирая качественный продукт. Нужно брать в первую очередь качественный продукт, который не будет нести вред вашему здоровью и прослужит вам очень долго.

https://youtu.be/r-hfAOksElE

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Оцените статью:

опасность прямого света Загрузка…
Об авторе
admin

Администратор te4h.ru, интересуюсь новыми технологиями, криптовалютой, искусственным интеллектом, свободным программным обеспечением и Linux.

te4h.ru

Физика работы светодиода

Новиков М.Г.
14.04.2007

Содержание

Введение

Ранее я уже затрагивал тему светодиодов, где описывал способы правильного их подключения к различным источникам тока. Это был чисто практический материал. Теперь я опишу процессы, происходящие в светодиоде на атомном уровне, которые заставляют его излучать свет.

При изучении первой главы данного материала мы постараемся обойтись без квантовой механики, чрезмерно абстрактной для лёгкого её понимания. Мы будем оперировать старыми упрощёнными понятиями. Во второй главе мы вскользь коснёмся некоторых понятий квантовой физики. В заключительной третьей главе, касающейся современных светодиодов, нам придётся уже существенно погрузиться в квантовую механику, без которой невозможно понимание работы современного светодиода. Впрочем, при всём при этом мы обойдёмся без формул.

Итак, вначале нам нужно будет знать всего лишь несколько простых вещей:

  1. Материя состоит из атомов. Во многих твёрдых телах атомы находятся упорядоченном симметричном состоянии. Такое состояние называют кристаллической решёткой, а само вещество — кристаллом.
  2. Атом — это ядро с вращающимися вокруг него на определённых орбитах электронами. Чем выше энергия электрона, тем на более высокой орбите он вращается. Не испытывая внешнего воздействия электроны стремятся выбросить часть энергии чтобы занять более устойчивые нижние орбиты.
  3. Электрон — физическая частица, входящая в состав атома, и имеющая отрицательный заряд и некоторый уровень энергии. Заряд электрона всегда постоянен. Энергия электрона, находящегося в составе атома, может принимать только определённые фиксированные значения. Движение электронов вне атома в веществе в одном направлении называют «электричеством», или электрическим током, поскольку электронами перемещаются заряды, формирующие электрический ток.
  4. Атомы разных элементов (водорода, гелия и т.п.) различаются количеством протонов в своём ядре. Протоны имеет положительный заряд, который по величине равен заряду электрона. Если отнять электрон у атома, атом станет положительно заряженным. Если добавить лишний электрон к атому, атом станет отрицательно заряженным.
  5. Электромагнитная волна — излучение, порождаемое выбросом излишка энергии электрона, переходящего с более высокого энергетического состояния на более низкое, например, при его переходе из свободного состояния на орбиту в атом. Чем больше разница в энергиях свободного состояния и орбиты, тем больше излишек энергии и, как следствие, выше частота излучённой волны. Видимый диапазон частот электромагнитных волн мы называем светом, цвет которого напрямую зависит от частоты волны.

[Вернуться в начало]

Глава 1. Простое объяснение

Принцип излучения света светодиодом достаточно прост. Внутри светодиода прижаты друг к другу два разных материала. Каждый из материалов подключен к своему выводу (ножке светодиода). Свойства одного материала обуславливают наличие в нём некоторых атомов с лишними электронами, находящимися на высоких орбитах, готовых оторваться, а свойства другого — наличие в нём атомов с недостатком электронов на низких орбитах.

Подключив материал с избытком электронов к минусу батарейки а другой — к плюсу, мы создадим разность потенциалов, в результате которой все плохо закрепленные в атомах электроны, вращающиеся на высоких орбитах, начнут отталкиваться от отрицательного полюса и притягиваться к положительному. Они двинуться в сторону второго материала, заполняя пустые места в его атомах, находящиеся на более низких орбитах.

Поскольку раньше электроны находились на более высоких орбитах, то они имеют большую энергию, чем им нужно в новых атомах. Поэтому переходя на более низкую орбиту они выбрасывает лишнюю энергию в виде электромагнитной волны, то есть рождают свет.

Длина излучённой электромагнитной волны зависит от величины выделившейся из электрона энергии — чем больше энергия, тем сильнее сжата волна, выше её плотность, а значит, меньше её длина, и, как следствие, «синее» излучаемый свет.

При заполнения электронами ближнего слоя атомов второго материала, приложенная разность потенциалов заставит эти электроны не изменяя более своих энергий перескакивать по атомам дальше. Таким образом электроны пройдут через весь второй материал до положительного полюса батареи. А пока они будут идти, первый слой снова заполнится пришедшими из первого материала электронами, которые снова излучат свет при снижении своих орбит и всё повторится.

[Вернуться в начало]

Глава 2. То же самое более подробно

По ходу прочтения предыдущего крайне простого объяснения у вас наверняка возникли вопросы, на которые я постараюсь ответить в этой более подробной главе. Сначала мы познакомимся с некоторыми новыми понятиями, такими как полупроводники, электронная и дырочная проводимости и т.п., а потом перейдём непосредственно к работе светодиода.

Замечу, что процессы, происходящие на атомном уровне, представлены здесь в виде общепринятых, но не совсем точных моделей. Эти модели призваны дать приблизительное понятие о том, что на самом деле происходит, и их нельзя использовать в качестве основы для построения более глубоких умозаключений. В микромире заканчивается привычная нам физика твёрдых частиц и появляется всё больше абстракций, которые на современном этапе всё труднее объяснить на пальцах в привычных чекловеку понятиях. А с помощью приближённых моделей мы имеем возможность хоть ещё немного продолжить привычную нам физику.

[Вернуться в начало]

Энергетическая структура атома

Внутри атома электрон может располагаться только на определённых, фиксированных орбитах, зависящих от его энергии. В нашей модели орбита электрона фиксируется благодаря его волновым свойствам — когда она вмещает по своей длине целое число его внутренних волн таким образом, что при каждом новом витке последующие возмущённые им волны поглощают предыдущие, то его общая энергия сохраняется и он остаётся на орбите. При гипотетических попытках отклонения энергии, электрон переходит на соответствующую новой энергии орбиту, где волны могут перестать поглащать друг друга и даже начнут интерферировать (складываться). Поскольку взаимного поглощения не происходит, они беспрепятственно излучаются наружу из атома, снижая общую энергию электрона, а значит и его орбиту, до ближайшей нижележащей орбиты, где его волны опять начнут поглащать друг друга. Утечка энергии прекратится и орбита вновь зафиксируется.

Уровни орбит (энергетические уровни) можно условно объединить в более крупные зоны. Электронам каждой зоны свойственно своё поведение.

Рассмотрим зонную структуру атомов рассматриваемых нами материалов, начиная с уровней наименьших энергий:

  1. Зона основных энергетических уровней. Электроны этой зоны расположены ближе других к ядру. Они имеют наименьшую энергию и в рассматриваемых нами процессах не участвуют.
  2. Валентная зона. Электроны именно этой зоны участвуют в электрических и химических процессах (валентные электроны). Расположены на верхних орбитах атомов.
  3. Запрещенная зона. Зона энергий, которой не обладают электроны данного вещества. Запрещенной зоны нет лишь в металлах. В диэлектриках она наибольшая. В качестве материалов для изготовления диодов (в том числе и светодиодов) применяют полупроводники. Полупроводники — это вещества с размером запрещённой зоны меньшим, чем у диэлектриков. Дальнейшее повествование будет касаться в основном полупроводников.
  4. Зона проводимости. Электроны, имеющие энергетические уровни этой зоны, не находятся на орбитах своих атомов, а беспорядочно передвигаются от атома к атому. Именно они обеспечивают высокую электропроводность металлов. Материалы, не имеющие электронов в зоне проводимости, являются диэлектриками.

[Вернуться в начало]

Ковалентная связь между атомами полупроводника

Атомы полупроводника (например, германия) связаны друг с другом валентными электронами. Связь происходит следующим образом. У германия 4 валентных электрона. Вокруг каждой пары атомов германия движутся 2 валентных электрона — по одному от каждого атома. Атомы выстраиваются так, чтобы у каждого было столько соседних атомов, сколько валентных электронов он имеет. Таким образом все валентные электроны у всех атомов получаются задействованными. Такая связь называется ковалентной.

На рисунке вы видите развернутую в плоскость модель фрагмента кристаллической решётки германия, на которой демонстрируется ковалентная связь.

Силой ковалентной связи можно объяснить существование запрещенной зоны в полупроводниках и диэлектриках. Чем больше энергии надо затратить, чтобы оторвать валентные электроны, участвующие в ковалентной связи, и отправить их в зону проводимости, тем шире запрещенная зона. Это логично. В металлах ковалентной связи нет, нет и запрещённой зоны.

[Вернуться в начало]

Электронная и дырочная проводимость

В полупроводниках при повышении температуры выше абсолютного нуля некоторые электроны валентной зоны получают дополнительную энергию, которой становится достаточно для преодоления небольшой запрещённой зоны и перехода на уровень проводимости. В итоге, при комнатной температуре в зоне проводимости постоянно присутствует некоторое количество электронов, а в валентной зоне атомов образуется дефицит электронов (дырки).

В итоге полупроводник начинает обладать и электронной и дырочной проводимостью — электронную проводимость осуществляют электроны, свободно перемещающиеся в зоне проводимости, а дырочную — электроны в зоне валентности, способные перескакивать в дырку с соседних атомов. При этом электронная проводимость доминирует над дырочной, так как электроны зоны проводимости перемещаются свободнее, но общая электропроводность полупроводника естественно складывается из этих двух проводимостей.

[Вернуться в начало]

Примесная проводимость

Замещая у полупроводника некоторые атомы на атомы других веществ с той или иной валентностью, можно увеличить либо количество электронов в зоне проводимости, либо количество дырок в валентной зоне. Происходит это следующим образом:

  1. Электронная проводимость (проводимость n-типа). Некоторые атомы четырехвалентного германия заменяем на атомы пятивалентной сурьмы. При ковалентной связи у атомов сурьмы оказывается незадействованным пятый валентный электрон, который начинает вращаться вокруг атома сурьмы и объединённых с ним ковалентной связью атомов германия. Атом сурьмы и связанные с ним ковалентной связью атомы германия образуют для этого электрона некое ядро, и вся конструкция издалека начинает напоминать атом водорода с одним электроном. Электрон занимает энергетический уровень, который накладывается на уровень запрещенной зоны атомов германия. Уровень находится у верхнего края запрещённой зоны германия, почти у его зоны проводимости. Поэтому при комнатной температуре электроны с этого энергетического уровня легко уходят в зону проводимости. В зоне проводимости оказывается очень много электронов, и полупроводник получает хорошую электронную проводимость.
  2. Дырочная проводимость (проводимость p-типа). Некоторые атомы четырёхвалентного германия заменяем на атомы трёхвалентного индия. При ковалентной связи атому индия не хватает одного электрона, чтобы связаться с четвертым атомом германия. В результате у атома индия образуется дефицит электрона для полноценной ковалентной связи, которая ему очень важна. Чтобы занять место этого электрона в атоме индия, валентному электрону соседнего атома германия нужно совсем немного энергии. Получив её в результате теплового воздействия, он немного увеличивает свой энергетический уровень и занимает это место в ковалентной связи. Теперь его энергетический уровень в атоме индия накладывается на уровень запрещенной зоны атомов германия. Но в отличие от случая с электронной проводимостью, этот энергетический уровень находится в запрещённой зоне не у зоны проводимости, а ниже, у зоны валентности атомов германия. В результате в атомах германия в зоне валентности образуются дополнительные дырки, в которые смогут перескакивать электроны с соседних атомов. Дырок получается много, поэтому создаются условия для хорошей дырочной проводимости.

[Вернуться в начало]

Работа электронно-дырочного перехода

Теперь сложим два разных полупроводника вместе, и подключим прямое напряжение — минус к полупроводнику с электронной проводимостью, а плюс — к полупроводнику с дырочной проводимостью. Из-за разности потенциалов электроны из зоны проводимости первого полупроводника, проскакивая между атомами, устремятся в сторону второго. Достигнув его, они будут перескакивать на ждущие их атомы второго полупроводника с отсутствующими валентными электронами, и далее пойдут по цепочке этих атомов, перескакивая от одного к другому, пока не выйдут через плюсовой вывод.

В момент, когда электроны опускаются из зоны проводимости через запрещённую зону на валентные энергетические уровни атомов второго полупроводника, из электронов выделяется лишняя энергия, пропорциональная ширине запрещённой зоны. Процесс занятия электроном зоны проводимости пустого энергетического уровня в атоме называется рекомбинацией.

Как уже упоминалось выше при рассмотрении энергетической структуры атома, энергия при рекомбинации электрона выделяется из него за счёт пересечения им орбит с длиной, в которой не укладывается целое число его собственных волн (ведь электрон имеет также и собственную волновую функцию). Поэтому его собственная волна при каждом новом витке не поглощает саму себя, как это происходит на всех фиксированных орбитах, а накладывается друг на друга (интерферирует), и излучается.

[Вернуться в начало]

Работа светодиода

В случае с германием выделение электронами энергии при пересечении небольшой запрещённой зоны незначительно, и расходуется лишь на тепловое раскачивание атомов. Для того, чтобы энергия выделялась в виде электромагнитных волн (фотонов) светового диапазона, применяют полупроводники с большим размером запрещённой зоны. В этом случае при рекомбинации электрона выделяется фотон (квант электромагнитной волны) с большой энергией. Энергия фотона пропорциональна частоте электромагнитной волны. Подбирая полупроводники с разным размером запрещённой зоны можно менять цвет излучения.

[Вернуться в начало]

Глава 3. Физика работы современных светодиодов

В современных светодиодах для повышения эффективности их работы используют сложную структуру полупроводников. Вместо обычного электронно-дырочного перехода (на основе одного полупроводника с примесями разной валентности) применяют несколько последовательных гетеропереходов (переходов между полупроводниками разных составов). В простейшем случае между двумя полупроводниками разного типа проводимости помещают тонкий слой (плёнку) полупроводника без примесей (с невыраженным типом проводимости) и с относительно меньшим размером запрещённой зоны в его атомах.

Ссылка по теме:
Свет из гетеропереходов.
http://vivovoco.astronet.ru/VV/JOURNAL/NATURE/06_01/LIGHT.HTM

 Из-за различной ширины запрещённых зон этих полупроводников, тонкий центральный слой образует в себе т.н. квантовую яму для электронов.

Электроны попадают в этот полупроводник и принимают наименьший энергетический уровень его зоны проводимости, ближе к дну ямы, после чего не могут свободно проскочить дальше по зоне проводимости, ибо их энергия уже ниже энергии проводимости следующего материала. В результате они оказываются запертыми и вынуждены рекомбинировать в этой тонкой области.

Ссылка по теме:
Квантовые ямы, нити, точки. Что это такое?
http://www.pereplet.ru/obrazovanie/stsoros/326.html
или http://phys.unn.ru/docs/9705_080.pdf.pdf

Рекомбинация в тонком полупроводниковом слое, не имеющем примесей, даёт несколько преимуществ:

  1. За счёт уменьшения объёма, в котором происходит рекомбинация, увеличивается концентрация рекомбинирующих электронов, что уменьшает вероятность расхода энергии на тепловые колебания атомов.
  2. В результате отсутствия примесей в центральном слое, вероятность безизлучательной рекомбинации тоже уменьшается, поскольку эти самые примеси и другие дефекты атомной структуры полупроводника как раз и являются её источником.
  3. Возможность регулировать цвет толщиной слоя.

Объясню последний пункт подробнее. При толщине центрального слоя всего в несколько слоёв атомов появляется дополнительная возможность регулировать этой толщиной энергию испускаемых рекомбинирующими электронами фотонов (цвет излучения) как за счёт эффекта размерного квантования, так и за счет упругой деформации слоя. И то и другое влияет на величину расщепления энергетических уровней, о чём будет сказано ниже.

Ссылка по теме:
Полупроводниковые гетероструктуры: от классических к низкоразмерным,
или «конструктор» от Нобелевского лауреата.
http://www.scientific.ru/journal/onisch/onisch.html

Регулировка размерным квантованием заключается в следующем:

  • Если электроны заперты в ограниченном объёме (например, в атоме вещества, находясь на его орбите) то они занимают энергетические уровни таким образом, чтобы не мешать друг другу. Это значит, что на одном энергетическом уровне может находится максимум только два электрона, и то в том случае, если они имеют противоположный спин (противоположный собственный импульс). Более того, энергетические уровни могут иметь только определённые фиксированные значения.

    Внутри атома так и происходит. Но если из всех атомов вещества выйдет хотя бы по одному электрону, которые попытаются занять один и тот-же энергетический уровень в зоне проводимости, то этот уровень начнет расщепляться на несколько подуровней по числу атомов вещества. В сравнительно больших объёмах вещества энергетические уровни свободных электронов сливаются в одну большую зону, и о каком-либо квантовании энергий в зоне проводимости не может идти и речи.

    Но если же мы физически ограничим размеры вещества, то электронов с одинаковыми энергетическими уровнями будет меньше, следовательно меньше будет и расщепление. При дальнейшем уменьшении размера вещества мы будем наблюдать, как из «размазанного» энергетического спектра рождаются конкретные энергетические уровни, то есть мы видим, что энергия электронов квантуется — имеет конечную дискретность. Эффект квантования энергий при уменьшении размеров вещества называется квантово-размерным эффектом или эффектом размерного квантования.

    При толщине центрального слоя, сравнимой с длинами волн электрона, количество энергетических уровней в зоне проводимости становится небольшим. Это происходит из за того, что количество электронов одних и тех же энергетических уровней в веществе сокращается, и эти уровни перестают так сильно расщепляться. В итоге «размазанная» по всей квантовой яме энергетическая структура стягивается в ограниченные зоны, и приближаются к единичным уровням, как это происходит в отдельном атоме.

    В итоге, нижний расщеплённый уровень отдаляется от запрещённой зоны, и подтягивается к центру расщепления — энергетическому уровню единичного атома. Таким образом, разница между энергией электронов зоны проводимости и энергий свободного уровня целевого атома увеличивается. Теперь для рекомбинации потребуется больший выброс энергии электроном, а значит изменится и цвет свечения.

Регулировка упругой деформацией заключается в следующем:

  • При уменьшении толщины центрального слоя его свойства всё в большей степени начинают зависеть от влияния на его атомы атомов соседних полупроводников, сил поверхностного натяжения кристалла и т.п.. В центральном слое возникают определенные упругие деформации, в результате которых меняется расстояние между атомами, а значит, меняется ширина расщепленных энергетических уровней электронов (при сближении атомов начинает проявляться эффект, связанный с невозможностью взаимодействующих электронов находиться на одних и тех же энергетических уровнях, и они вынуждены расщепляться на ширину, пропорциональную расстоянию между атомами). Расширение расщеплённых энергетических уровней уменьшает разницу между энергией электронов зоны проводимости и энергий свободного уровня целевого атома, а это уменьшает выделяющуюся энергию что и изменяет цвет свечения.

[Вернуться в начало]

Материалы активной зоны светодиодов разных спектров свечения
 

ЦветДлина волны (нм)Материал активного слоя
Инфракрасные≈ 760…1450GaAs, GaAlAs(P), GaInAs(Sb | P)
Красные≈ 670InGaAlP, GaP, GaAsP, GaAlAs
Красно-оранжевые≈ 635InGaAlP, GaP
Оранжевые≈ 620InGaAlP, GaP
Янтарные≈ 600InGaAlP, GaP
Жёлтые≈ 585InGaAlP, GaP
Салатовые≈ 565InGaN, GaP
Зелёные≈ 540InGaN, GaP
Зелёно-синие≈ 510InGaN
Зелёно-синие (бирюзовые)≈ 490InGaN
Голубые≈ 470InGaN
Синие≈ 450InGaN
Фиолетовые≈ 420InGaN
Ультрафиолетовые≈ 210…400GaAlN, AlN

[Вернуться в начало]

novikov.gq

Светодиодные лампы без вредного ультрафиолета.

Светодиодное освещение

Вредны ли светодиодные лампы для здоровья или, наоборот, оказывают положительное влияние на человека? Такой вопрос широко обсуждается среди потенциальных потребителей, в научных кругах, в СМИ.
По мнению противников светодиодных ламп, негативное влияние на здоровье может оказать отсутствие в спектральном составе излучения светодиодных ламп ультрафиолетового спектра.
Как известно, в спектрально составе солнечного света ультрафиолет присутствует. Длина волн ультрафиолетового излучения от 10 до 400 нМ.
Светодиодные лампы без вредного ультрафиолета.
Светодиоды белого света с цветовой температурой 4000 (нейтральный) и 5000-6500 (холодный белый) лишены ультрафиолетового спектра. Длина излучаемых ими волн распространяется в видимом глазу диапазоне от 400 до 700-750 нМ.
Светодиодные лампы без вредного ультрафиолета.
Отсутствие вредного ультрафиолетового излучения всегда выдвигалось как преимущество светодиодов как источника света. Однако, противники применения светодиодов считают, что идеальный для человека источник света должен быть приближен по спектру излучения к солнечному свету, т.е. включать в себя в том числе и вредный ультрафиолет.
При необходимости, используя светодиоды, можно добиться самых разнообразных спектров излучения. Например, использование красных и синих светодиодов в сочетании позволяет создать спектр излучения, способствующий ускоренному росту растений. Такие светодиодные светильники используются в теплицах. Понятно, что такой свет для нас с вами ничего хорошего не обещает.
Попытки производителей светодиодных ламп и светильников искусственно добавить в свои осветительные приборы источники ультрафиолетового излучения привели к тому, что к кристаллам белого цвета стали добавлять кристаллы синего и красного цветов. Такое сочетание позволяет создать излучение в длинах волн схожих с солнечным светом. Однако, на мой взгляд такие попытки являются полным абсурдом. Судите сами – человечество стремится всячески защитить себя от вредных воздействий ультрафиолетового излучения. Крема и косметические средства, солнцезащитные очки с UV-фильтрами, даже стекла в автомобилях обязательно имеют UV-защиту. Что уж говорить о современных источниках света! Галогенные и металлогалогеные лампы обязательно имеют защиту от ультрафиолета! Что же получается? В светодиодные лампы без ультрафиолетового спектра мы сначала добавим ультрафиолет, а затем придумаем на них фильтр, защищающий от его вредного воздействия? ..
С.Исполатов
СТК Системы освещения

www.svetstk.ru

Обновлено: 19.12.2019 — 10:59

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *