Газген – Автомобили – Коммерсантъ
Мы достоверно не знаем, как будет выглядеть транспорт будущего. Гарантированно известно лишь то, что запасы нефти рано или поздно будут исчерпаны – и, как следствие, бензиновые и дизельные двигатели станут достоянием истории. Так что человечеству, желает оно того или нет, придется сделать выбор в пользу возобновляемых видов топлива.
Текст: Иван Картамцев
Но почему-то сегодня электричество рассматривается в качестве едва ли не единственной альтернативы бензину и солярке. И совершенно списан со счетов газогенераторный двигатель, который впервые начал массово эксплуатироваться более ста лет тому назад. В некоторых уголках мира и сейчас можно встретить этот нехитрый, а значит, бюджетный агрегат, пришедший на помощь тем, у кого нет средств на дорогостоящий электрический транспорт, зато в лесу растет полно дармовых дров, а под ногами дымит торф и весело похрустывает валежник.
Наша страна, с ее изобилием лесов, могла бы стать передовиком в этом направлении и показать пример остальным.
Одно из главных преимуществ газогенераторных установок заключается, прежде всего, в том, что они могут быть использованы практически повсеместно. На твердое топливо могут быть переведены легковые автомобили, грузовики, автобусы и даже моторные лодки. Не говоря уже о том, что газогенераторы прекрасно подходят для промышленного использования.
Уже тогда в одном лишь Советском Союзе насчитывалось около трехсот моделей газогенераторных установок. Тем не менее принцип их работы и внешний вид отличались друг от друга несущественно. Сердцем газгена является массивный бункер, в котором осуществляется сжигание твердого топлива. В зависимости от конструкции это могут быть древесные чурки, щепа, торф, уголь и даже отходы сельскохозяйственного производства, к примеру лузга. В результате сгорания материала образуется газообразная горючая смесь, в основе которой – окись углерода и водород с примесью балластных газов, таких как азот и углекислый газ. После прохождения процедуры очистки и охлаждения получившийся газ соединяется с воздухом и отправляется в карбюраторный двигатель внутреннего сгорания, который при этом сохраняет способность работать на привычном жидком топливе. И все бы хорошо, но следует помнить о прогрессии – чем больше объем двигателя, тем массивнее потребуется газогенераторное оборудование. Благо разместить его можно практически где угодно, в том числе в багажнике и даже на прицепе. И пусть вас не смущает, что в таком виде газогенераторная установка больше напоминает передвижной мангал.
В период войны в Германии, помимо прочего, был налажен выпуск нескольких легковых газогенераторных автомобилей, предназначенных для гражданского населения.
Среди них – народный KDF, буржуазный Mercedes-Benz 230 и даже роскошный лимузин Adler Diplomat L4, чей карбюраторный мотор объемом 2,9 литра «приспособился» употреблять деревянные чурки.В зависимости от вида твердого топлива газогенераторный автомобиль в среднем теряет от 20 до 60 процентов прежней мощности мотора, а полной заправки хватает лишь на сотню километров. И если на березовых и сосновых дровах коэффициент полезного действия остается довольно высоким, то на жмыхе и лузге далеко не уедешь. Хозяйке на заметку: мощность современных газогенераторных установок по-прежнему напрямую зависит от сортов топлива. Так что тем смельчакам, кто всерьез вознамерился дать бой постоянному росту цен на бензин, придется принять как данность, что помимо набора гаечных ключей и домкрата их надежными спутниками станут пила да топор.
Лес рубят – щепки летят
Идею использования газа, получаемого в результате сгорания твердого топлива, с целью приведения в движение различных транспортных средств придумали и впервые реализовали во Франции.
Последующие годы ознаменовались рядом практических экспериментов, наибольшую заинтересованность в которых продемонстрировала Франция, испытывавшая на тот момент значительный дефицит энергоресурсов. В середине нулевых первые газогенераторные трактора и грузовые автомобили прошли ряд испытаний в Марокко, а в 1914 году во Франции был запущен рейсовый автобус Berliet, курсировавший по маршруту Париж – Руан. Тогда же был выявлен ряд проблем существующих газогенераторных двигателей. Помимо относительно низкого коэффициента полезного действия, они оказались довольно чувствительны к качеству твердого топлива.
Альтернатива бензину
В начале двадцатых годов прошлого века многие страны, истощенные войной, наладили массовый выпуск газогенераторов. Среди них были Австрия, Швеция, Германия и, конечно же, Франция, которая к этому моменту достигла немалых успехов, одной из первых внедрив систему, разработанную изобретателем Георгом Имбертом. Принцип ее работы заключался в частично замещенном пиролизе, при котором уголь и древесина сжигаются в котле, а не в цилиндрах, как это осуществлялось ранее. При этом предполагались различные варианты компоновки оборудования как в вертикальной, так и в горизонтальной плоскости, что несколько расширяло возможности применения.
Накануне Второй мировой войны по дорогам Европы колесили около десятка тысяч газогенераторных автомобилей, построенных на базе серийных моделей. И это было лишь начало. После того как континент охватили боевые действия, в тылу дрова стали едва ли не единственной доступной альтернативой бензину, который отправляли прямиком на фронт.
А у нас в квартире ГАЗ
Главным идеологом газогенераторных двигателей в Стране Советов по праву считается профессор В.С. Наумов, также ставший создателем первой отечественной газогенераторной установки. В журнале «За рулем» за август 1928 года был опубликован материал, в котором Наумов ссылался на результаты французского опыта:
«Все эти конкурсы и пробеги показали, что переход грузовиков и тракторов с бензина и керосина на твердое топливо – на древесный уголь, антрацит и дрова – практически вполне возможен и сравнительно просто осуществим, причем при переходе с бензина на древесный уголь 1,3 килограмма последнего заменяет 1 литр бензина.
И правительство Советского Союза обратило внимание на газогенераторные автомобили. С 1936 года был налажен серийный выпуск грузовиков ГАЗ-42, ЗИС-13 и ЗИС-21. Всего за время производства было выпущено около 50 тысяч единиц газогенераторной техники, поступившей в эксплуатацию в различных уголках страны.
Тем не менее в ходе использования был выявлен целый ряд нюансов, существенно осложнявших повседневную эксплуатацию. Помимо того что для успешного запуска газогенераторного двигателя требовалось приблизительно 20 минут, водителю приходилось соблюдать целый ряд обязательных правил. А их игнорирование приводило к простоям и ремонту.
Перевести свой старый автомобиль на «дрова» может практически любой желающий. Но все-таки лучше доверить это дело профессионалам.
К примеру, немецкая компания Rinkemuhle в 1983 году улучшила экологические показатели знакомой всем Волги ГАЗ-24, правда, при этом слегка пострадал внешний вид «гордости советского автопрома». Как видно на фотографии, из отверстия в багажнике торчит массивный котел, а сзади на прицепе едет дополнительный запас топлива. Впрочем, газогенератор не всегда вносит коррективы во внешний вид. В самом начале войны тем же немцам удалось без видимых последствий спрятать бункер под капотом легкого армейского внедорожника Kubelwagen.К примеру, советский инженер Г.Г. Токарев писал: «Пуск в ход исправного газогенераторного автомобиля включает в себя заправку или догрузку бункера газогенератора топливом, розжиг газогенератора и запуск двигателя на газе. В газогенераторных установках, работающих с подачей водяного пара или имеющих барботажные очистители, при утреннем пуске необходимо заправить водой соответствующие емкости.
При работе на смолистых сортах твердого топлива (древесные чурки, торф, бурый уголь) перед загрузкой топлива в бункер порожнего газогенератора необходимо заполнить камеру газификации древесным углем или коксом газифицируемого топлива (на 50–100 мм выше фурменного пояса)».
При этом эксплуатация газогенераторного автомобиля существенно осложнялась в межсезонье. И не только потому, что дрова могли запросто отсыреть в дождливую погоду, но и потому, что тяжелые и маломощные грузовики то и дело вязли в осенней грязи. Это привело к тому, что большинство хозяйств без особого восторга принимали газогенераторные автомобили. После Второй мировой войны их количество неуклонно уменьшалось. А к 1954 году и вовсе практически сошло на нет.
Подкинь дровишек
Основная причина, по которой газогенераторы стали сдавать свои позиции во всем мире, кроется не столько в их недостатках, сколько в том, что бензин стал гораздо доступнее и дешевле, чем раньше. Но это не препятствует тому, что и по сей день находятся желающие переоборудовать свой автомобиль под эксплуатацию на дровяной тяге. Подобные маргиналы встречаются везде, в том числе и в России, но большинство их проживает в Скандинавских странах. Донорами выступают подержанные «Вольво» и «Саабы» – ведь главное преимущество газогенераторной установки как раз и заключается в том, что ею может быть оборудован практически любой автомобиль. В Америке под газген переделывают пикапы Dodge Ram…
Кстати, в 1989 году Федеральным агентством США по чрезвычайным ситуациям была выпущена брошюра, которая разъясняла гражданам, как быстро и эффективно перевести свой автомобиль на газогенераторную тягу в случае глобального дефицита нефти. Быть может, подобный «гайд» пригодился бы и нам. Тем более что современные газогенераторные системы избавились от множества недостатков своих предшественников, а умельцев, как и природных ресурсов, у нас всегда было хоть отбавляй.
Газогенератор — Энциклопедия журнала «За рулем»
Газогенератор
Газогенератор – это установка для получения горючего газа из твердого топлива. В качестве твердого топлива, как правило, применяются местные ресурсы: уголь, торф, древесина, солома, а так же отходы деревообрабатывающих производств. Превращение твердого топлива в газообразное называется «газификацией» и заключается в сжигании топлива с поступлением количества кислорода воздуха или водяного пара, недостаточном для полного сгорания.
Сегодня газогенераторные установки используют для получения пара, или горячего воздуха для различных технологических процессов, а так же в составе отопительных систем. Однако в 30-е – 40–е годы прошлого века газогенераторы с успехом применяли на транспорте: массовая эксплуатация автомобилей на древесных чурках обещала сберечь жидкое топливо для более важных нужд — тонны сэкономленного бензина можно было направить в вооруженные силы или авиацию.
В 1923 году профессором Наумовым была разработана газогенераторная установка для 3-тонного грузовика, способная работать на древесном угле или на антраците. Установка была испытана в стационарных условиях совместно с 4-цилиндровым бензиновым двигателем Berliet L 14 мощностью 35 л.с. В 1928 году FIAT-15Ter с газогенератором Наумова совершил пробег по маршруту Ленинград – Москва – Ленинград. Первая половина 30-х годов отмечена многочисленными исследованиями, направленными на выявление оптимальной конструкции газогенераторной установки. Статьи об испытательных автопробегах и новых разработках постоянно появлялись в прессе, в том числе и в журнале «За Рулем».
В подавляющем большинстве это были установки для грузового транспорта, что не удивительно – ведь основной транспортной единицей народного хозяйства в период индустриализации являлся грузовик, а не легковой автомобиль. Тем не менее, следует упомянуть созданный в 1935 году ГАЗ-А с газогенераторной установкой Автодор – III, а также ГАЗ-М1 с газогенератором НАТИ-Г12, на котором в сентябре 1938 года был установлен рекорд скорости для газогенераторного автомобиля 60,96 км/ч. Первым серийным газогенераторным автомобилем являлся ЗИС-13, но подлинно массовыми «газгенами» стали ГАЗ-42, ЗИС-21 и УралЗИС-352.
Горение углерода топлива можно описать следующим образом:
С + О2 = СО2 — это полное сгорание топлива, которое сопровождается выделением углекислого газа СО2;
и С + (1/2)О2 = СО — это неполное сгорание, в результате которого образуется горючий газ – оксид углерода СО.
Оба этих процесса происходят в так называемой «зоне горения» газогенератора.
Оксид углерода СО образуется также при прохождении углекислого газа СО2 сквозь слой раскаленного топлива:
С + СО2 = 2СО
В процессе участвует часть влаги топлива (или влага, подведенная извне) с образованием углекислого газа СО2, водорода Н2, и горючего оксида углерода СО.
С + Н2О = СО + Н2
СО + Н2О = СО2 + Н2
Зону, в которой протекают три описанных выше реакции называют «зоной восстановления» газогенератора. Обе зоны – горения и восстановления – несут общее название «активная зона газификации».
Примерный состав газа, полученного в газогенераторе обращенного процесса газификации при работе на древесных чурках абсолютной влажностью 20%, следующий (в % от объема):
— водород Н2 16,1%;
— углекислый газ СО2 9,2%;
— оксид углерода СО 20,9%;
— метан СН4 2,3%;
— непредельные углеводороды СnHm (без смол) 0,2%;
— кислород О2 1,6%;
— азот N2 49,7%
Итак, генераторный газ состоит из горючих компонентов (СО, Н2, СН4, СnHm) и балласта (СО2, О2, N2, Н2О)
Топливо для газогенераторов
В качестве твердого топлива в газогенераторных установках могут быть использованы древесные чурки, древесный уголь, торф, бурый уголь, каменный уголь.
На территории СССР наиболее распространенным и доступным твердым топливом была древесина, по этому большую часть газогенераторного транспорта составляли автомобили с установками, работающими на древесных чурках.
Главные критериями качества топлива являлись порода древесины, абсолютная влажность и размеры чурок. Приоритет был отдан древесине твердых пород: березе, буку, грабу, ясеню, клену, вязу, лиственнице. Древесину мягких пород допускалось использовать лишь совместно с твердыми в соотношении 50/50. Сосновые чурки использовались без добавления древесины мягких пород.
Для газификации в автомобильных газогенераторах древесину распиливали на чурки длиной от 4 до 7 см, и шириной и высотой от 3 до 6 см. Абсолютная влажность готового твердого топлива не более 22%.
Менее распространены были древесно-угольные газогенераторные установки. Для их эксплуатации рекомендовалось использовать угли древесины твердых пород. Угли древесины мягких пород, склонные к крошению, допускалось применять с добавлением не менее 50% углей древесины твердых пород. Размер кусков древесного угля для газогенераторов поперечного процесса — от 6 до 20 мм, для других типов генераторов – от 20 до 40 мм.
В зависимости от содержания смол и золы твердые сорта топлив для газогенераторов разделяли на смолистые (битуминозные) малозольные (золы до 4%) и многозольные (золы более 4%), а также на безсмольные, или тощие (небитуминозные) малозольные (золы до 4%) и многозольные (золы более 4%). Для разных видов топлива были разработаны газогенераторы соответствующих типов:
— газогенераторы прямого процесса газификации;
— газогенераторы обращенного (обратного, или «опрокинутого») процесса газификации;
— газогенераторы поперечного (горизонтального) процесса газификации.
Типы газогенераторов
Газогенераторы прямого процесса газификации
Основным преимуществом газогенераторов прямого процесса являлась возможность газифицировать небитуминозные многозольные сорта твердого топлива – полукокс и антрацит.
В газогенераторах прямого процесса подача воздуха обычно осуществлялась через колосниковую решетку снизу, а газ отбирался сверху. Непосредственно над решеткой располагалась зона горения. За счет выделяемого при горении тепла температура в зоне достигала 1300 – 1700 С.
Над зоной горения, занимавшей лишь 30 – 50 мм высоты слоя топлива, находилась зона восстановления. Так как восстановительные реакции протекают с поглощением тепла, то температура в зоне восстановления снижалась до 700 – 900 С.
Выше активное зоны находились зона сухой перегонки и зона подсушки топлива. Эти зоны обогревались теплом, выделяемым в активной зоне, а также теплом проходящих газов в том случае, если газоотборный патрубок располагался в верхней части генератора. Обычно газоотборный патрубок располагали на высоте, позволяющей отвести газ непосредственно на его выходе из активной зоны. Температура в зоне сухой перегонки составляла 150 – 450 С, а в зоне подсушки 100 – 150 С.
В газогенераторах прямого процесса влага топлива не попадала в зону горения, поэтому воду в эту зону подводили специально, путем предварительного испарения и смешивания с поступающим в газогенератор воздухом. Водяные пары, реагируя с углеродом топлива, обогащали генераторный газ образующимся водородом, что повышало мощность двигателя.
Подача водяного пара в газогенератор должна производиться пропорционально количеству сжигаемого в газогенераторе топлива. Существовало несколько способов регулировки подачи пара в камеру газификации:
— механический способ, когда вода подавалась в испаритель газогенератора с помощью насоса, приводимого в действие от двигателя и имевшего перепускной кран, который был связан с дроссельной заслонкой. Таким образом, количество воды, подаваемой в газогенератор, изменялось в зависимости от числа оборотов и нагрузки двигателя;
— термический способ, когда в испарителе, расположенном вблизи зоны горения, поддерживался с помощью поплавкового устройства необходимый уровень воды, а количество образующегося пара изменялось в зависимости от нагрева испарителя, то есть в зависимости от температуры в зоне горения;
— гидравлический способ, когда расход воды регулировался иглой, перекрывавшей сечение жиклера, и связанной с мембраной, на которую действовала разность давлений до и после диафрагмы, установленной в газопроводе, соединявшим газогенераторную установку с двигателем;
— пневматический способ, при котором вода подавалась в испаритель газогенератора вместе с воздухом, засасываемым через обычный карбюратор.
В конструкции газогенератора ЦНИИАТ-АГ-2 был использован принцип центрального подвода воздуха и центрального отбора газа. Газогенератор состоял из корпуса, конической камеры газификации и зольника. Верхняя часть корпуса служила бункером для топлива и имела цилиндрический бак для воды. Трубка для подачи воды располагалась внутри газогенератора, бак подогревался теплом сгорающего топлива. Это обеспечивало надежную работу установки в зимнее время. Камера газификации представляла собой горловину конической формы, которая снизу была окружена рубашкой, заполненной водой для образования водяного пара. Необходимый уровень воды в рубашке поддерживался при помощи поплавкового устройства. Количество образовавшегося пара изменялось в зависимости от теплового режима газогенератора.
Воздух, засасываемый в газогенератор через подогреватель, смешивался с паром и поступал в камеру газификации через щель, образованную рубашкой и поворотной плитой. При вращении плиты рукояткой, расположенной снаружи под днищем газогенератора, ребра, имеющиеся на плите, срезали шлак и сбрасывали его в зольник.
Установки прямого процесса газификации не получили распространения, так как, во-первых, были непригодны для газификации самого распространенного твердого топлива — древесины, а во-вторых, потому что приспособления, необходимые для хранения, дозировки и испарения воды существенно усложняли конструкцию газогенератора.
Газогенераторы обращенного (опрокинутого) процесса газификации.
Газогенераторы обращенного процесса были предназначены для газификации битуминозных (смолистых) сортов твердого топлива – древесных чурок и древесного угля.
В генераторах этого типа воздух подавался в среднюю по их высоте часть, в которой и происходил процесс горения. Отбор образовавшихся газов осуществлялся ниже подвода воздуха. Активная зона занимала часть газогенератора от места подвода воздуха до колосниковой решетки, ниже которой был расположен зольник с газоотборным патрубком.
Зоны сухой перегонки и подсушки располагались выше активной зоны, поэтому влага топлива и смолы не могли выйти из газогенератора, минуя активную зону. Проходя через зону с высокой температурой, продукты сухой перегонки подвергались разложению, в результате чего количество смол в выходящем из генератора газе было незначительным. Как правило, в газогенераторах обращенного процесса газификации горячий генераторный газ использовался для подогрева топлива в бункере. Благодаря этому улучшалась осадка топлива, так как устранялось прилипание покрытых смолой чурок к стенкам бункера и тем самым повышалась устойчивость работы генератора.
Газогенератор ГАЗ-42 состоял из цилиндрического корпуса 1, изготовленного из 2-миллиметровой листовой стали, загрузочного люка 2 и внутреннего бункера 3, к нижней части которого была приварена стальная цельнолитая камера газификации 8 с периферийным подводом воздуха (через фурмы). Нижняя часть газогенератора служила зольником, который периодически очищался через зольниковый люк 7.
Воздух под действием разрежения, создаваемого двигателем, открывал обратный клапан 5 и через клапанную коробку 4, футорку 6, воздушный пояс и фурмы поступал в камеру газификации 8. Образующийся газ выходил из-под юбки камеры 8, поднимался вверх, проходил через кольцевое пространство между корпусом и внутренним бункером и отсасывался через газоотборный патрубок 10, расположенный в верхней части газогенератора. Равномерный отбор газа по всей окружной поверхности газогенератора обеспечивался отражателем 9, приваренным к внутренней стенке корпуса 1 со стороны газоотборного патрубка 10.
Для более полного разложения смол, особенно при малых нагрузках газогенератора, в камере газификации было предусмотрено сужение – горловина. Помимо уменьшения смолы в газе, применение горловины одновременно приводило к обеднению газа горючими компонентами сухой перегонки. На величину получаемой мощности влияла согласованность таких параметров конструкции газогенератора, как диаметр камеры газификации по фурменному поясу, проходное сечение фурм, диаметр горловины и высота активной зоны.
Газогенераторы обращенного процесса применяли и для газификации древесного угля. Вследствие большого количества углерода в древесном угле процесс протекал при высокой температуре, которая разрушительно действовала на детали камеры газификации. Для повышения долговечности камер газогенераторов, работающих на древесном угле, применяли центральный подвод воздуха, снижавший воздействие высокой температуры на стенки камеры газификации.
Камера газогенератора НАТИ-Г-15), изготовленная из 12-миллиметровой листовой стали, имела вид усеченного конуса. В средней части газогенератора была смонтирована воздухоподводящая фурма. Она представляла собой чугунную отливку грушевидной формы. Внутри отливки – лабиринт для подвода воздуха в газогенератор. В нижней части камеры газификации располагалась колосниковая решетка, которую вынимали через зольниковый люк при чистке и разгрузке газогенератора. Образовавшийся в камере газификации газ проходил сквозь колосниковую решетку, поднимался вверх между корпусом газогенератора и камерой и отсасывался через газоотборный патрубок. Газогенератор был предназначен для работы на крупном древесном угле, с размером кусков 20 мм – 40 мм.
Газогенераторные установки обращенного процесса газификации, работавшие на древесных чурках, получили наибольшее распространение.
Газогенераторы поперечного (горизонтального) процесса газификации.
В газогенераторах поперечного процесса воздух с высокой скоростью дутья подводился через фурму, расположенную сбоку в нижней части. Отбор газа осуществлялся через газоотборную решетку, расположенную напротив фурмы, со стороны газоотборного патрубка. Активная зона была сосредоточена на небольшом пространстве между концом формы и газоотборной решеткой. Над ней располагалась зона сухой перегонки и выше – зона подсушки топлива.
Отличительной особенностью газогенератора этого типа являлась локализация очага горения в небольшом объеме и ведение процесса газификации при высокой температуре. Это обеспечивало газогенератору поперечного процесса хорошую приспособляемость к изменению режимов и снижает время пуска.
Газогенератор представлял собой цилиндрический бункер, нижняя часть которого, выполненная из листовой стали толщиной 6 – 8 мм, образовывала камеру газификации. В верхней части бункера был расположен люк для загрузки топлива.
Скорость дутья определялась проходным сечением воздухоподводящей фурмы. Фурма служила наиболее ответственной и сложной деталью газогенератора. Она была глубоко погружена в слой топлива и находилась в зоне высокой температуры – непосредственно около носка фурмы температура достигает 1200 – 1300 С. Высокие температурные нагрузки требовали применять водяное охлаждение фурмы. Конструктивно охлаждение фурмы являлось частью системы водяного охлаждения двигателя, или представляло собой самостоятельную систему, питаемую от отдельного бачка.
Воздухоподводящая фурма газогенератора НАТИ-Г-21 состояла из бронзового корпуса 1 и медных трубок 2 и 3 диаметром 20 и 40 мм, образующих водяную рубашку. Тыльная часть наружной трубки 3 была приварена к корпусу 1 фурмы, а носовая часть обварена медью и соединялась с внутренней трубкой 2, свободный конец которой при нагревании фурмы мог перемещаться в сальнике 4. Затяжкой накидной гайки 5 обеспечивалась герметичность водяной рубашки. Вода подавалась через нижний штуцер корпуса фурмы и после прохождения водяной рубашки отводилась через верхний штуцер. Для того чтобы поток воды достиг носка фурмы, к наружной поверхности внутренней трубки параллельно ее оси были приварены две перегородки, направлявшие поток воды к носу фурмы.
Другой важной деталью газогенераторов поперечного процесса газификации служила газоотборная решетка. Газоотборную решетку изготавливали из простой углеродистой или легированной стали толщиной 8 – 12 мм. Ее штамповали в виде изогнутого листа с отбортованными краями или изготавливали в виде плоской пластины. В последнем случае для монтажа решетки в газогенераторе предусматривали специальное гнездо. Отверстия в решетке для прохода газа делали круглыми, диаметром 10 – 12 мм, с раззенковкой со стороны выхода газа. Иногда отверстия делали овальными; в этом случае большая ось овала располагалась горизонтально, что позволяло увеличить проходное сечение без опасности проскакивания за решетку кусков угля (при наклонном расположении решетки).
Этот газогенератор, так же как и газогенератор прямого процесса, был непригоден для газификации топлив с большим содержанием смол. Эти установки применяли для древесного угля, древесноугольных брикетов, торфяного кокса.
Принцип работы автомобильной газогенераторной установки
Автомобильная газогенераторная установка состояла из газогенератора, грубых очистителей, тонкого очистителя, вентилятора розжига и смесителя. Воздух из окружающей среды засасывался в газогенератор тягой работающего двигателя. Этой же тягой выработанный горючий газ «выкачивался» из газогенератора и попадал сначала в грубые очистители охладители, затем – в фильтр тонкой очистки. Перемешавшись в смесителе с воздухом, газо-воздушная засасывалась в цилиндры двигателя.
Охлаждение и грубая очистка газа
На выходе из газогенератора газ имел высокую температуру и был загрязнен примесями. Чтобы улучшить наполнение цилиндров «зарядом» топлива, газ требовалось охладить. Для этого газ пропускался через длинный трубопровод, соединявший газогенератор с фильтром тонкой очистки, или через охладитель радиаторного типа, который устанавливался перед водяным радиатором автомобиля.
Охладитель радиаторного типа газогенераторной установки УралЗИС-2Г имел 16 трубок, расположенных вертикально в один ряд. Для слива воды при промывке охладителя служили пробки в нижнем резервуаре. Конденсат вытекал наружу через отверстия в пробках. Два кронштейна, приваренные к нижнему резервуару, служили для крепления охладителя на поперечине рамы автомобиля.
В качестве простейшего очистителя использовался циклон. Газ поступал в очиститель через патрубок 1, распологавшийся касательно к корпусу циклона. Вследствие этого газ получал вращательное движение и наиболее тяжелые частицы, содержащиеся в нем, отбрасывались центробежной силой к стенкам корпуса 3. Ударившись о стенки, частицы падали в пылесборник 6. Отражатель 4 препятствовал возвращению частиц в газовый поток. Очищенный газ выходил из циклона через газоотборный патрубок 2. Удаление осадка осуществлялось через люк 5.
Чаще всего в автомобильных газогенераторных установках применяли комбинированную систему инерционной очистки и охлаждения газа в грубых очистителях – охладителях. Осаждение крупных и средних частиц в таких очистителях осуществлялось путем изменения направления и скорости движения газа. При этом одновременно происходило охлаждение газа вследствие передачи тепла стенкам очистителя. Грубый очиститель-охладитель состоял из металлического кожуха 1, снабженного съемной крышкой 2. Внутри кожуха были установлены пластины 3 с большим количеством мелких отверстий, расположенных в шахматном порядке. Газ, проходя через отверстия пластин, менял скорость и направление, а частицы, ударяясь о стенки, оседали на них или падали вниз.
Грубые охладители-очистители последовательно соединяли в батареи из нескольких секций, причем каждая последующая секция имела большее количество пластин. Диаметр отверстий в пластинах от секции к секции уменьшался (РИСУНОК 5Г).
Фильтры тонкой очистки
Для тонкой очистки газа чаще всего применяли очистители с кольцами. Очистители этого типа представляли собой цилиндрический резервуар, корпус 3 которого был разделен на три части двумя горизонтальными металлическими сетками 5, на которых ровным слоем лежали кольца 4, изготовленные из листовой стали. Процесс охлаждения газа, начавшись в грубых очистителях – охладителях, продолжался и в фильтре тонкой очистки. Влага конденсировалась на поверхности колец и способствовала осаживанию на кольцах мелких частиц. Газ входил в очиститель через нижнюю трубу 6, и пройдя два слоя колец, отсасывался через газоотборную трубу 1, соединенную со смесителем двигателя. Для загрузки, выгрузки и промывки колец использовали люки на боковой поверхности корпуса. Применялись конструкции, в которых в качестве фильтрующего материала использовалась вода или масло. Принцип работы водяных (барботажных) очистителей заключался в том, что газ в виде маленьких пузырьков проходил через слой воды и таким образом избавлялся от мелких частиц.
Высота барботажного слоя воды в очистителе установки ЦНИИАТ-УГ-1 повышалась от нуля до максимума (100 мм – 120 мм) по мере увеличения отбора газов. Благодаря этому обеспечивалась устойчивая работа двигателя на холостых оборотах и хорошая очистка газа на больших нагрузках. Предварительно охлажденный газ поступал расположенную по центру очистителя газораздаточную коробку. Боковые стенки коробки имели два ряда отверстий диаметром 3 мм. Отверстия были расположены наклонно от уровня воды до нижнего края стенок, погруженных в воду на 70 мм. Четыре отверстия, расположенные выше уровня воды, служили для обеспечения подачи газа на холостом ходу. С ростом числа оборотов эти отверстия перекрывались водой. В пространстве над газораздаточной коробкой при увеличении нагрузки создавалось разряжение, и уровень воды снаружи коробки повышался, а внутри, соответственно – понижался. При этом газ, поступая внутрь коробки, попадал в отверстия, расположенные над уровнем воды, и уже в виде пузырьков поднимался вверх, сквозь наружный водяной столб. Очистившись в воде, газ проходил через кольца, насыпанные на сетки по обе стороны газораздаточной решетки, и направлялся во вторую секцию очистителя, где вторично пропускался через погруженную в воду гребенку окончательно очищался в слое колец.
Вентилятор розжига
В автомобильных установках розжиг газогенератора осуществлялся центробежным вентилятором с электрическим приводом. При работе вентилятор розжига просасывал газ из газогенератора через всю систему очистки и охлаждения, поэтому вентилятор старались разместить ближе к смесителю двигателя, чтобы процессе розжига заполнить горючим газом весь газопровод.
Вентилятор розжига газогенераторной установки автомобиля УралЗИС-352 состоял из кожуха 6, в котором вращалась соединенная с валом электродвигателя крыльчатка 5. Кожух, отштампованный из листовой стали, одной из половин крепился к фланцу электродвигателя. К торцу другой половины был подведен газоотсасывающий патрубок газогенератора 4. Газоотводящий патрубок 1. Для направления газа при розжиге в атмосферу и при работе подогревателя – в подогреватель к газоотводящему патрубку был приварен тройник 3 с двумя заслонками 2.
Смеситель
Образование горючей смеси из генераторного газа и воздуха происходило в смесителе. Простейший двухструйный смеситель а представлял собой тройник с пересекающимися потоками газа и воздуха. Количество засасываемой в двигатель смеси регулировалось дроссельной заслонкой 1, а качество смеси – воздушной заслонкой 2, которая изменяла количество поступающего в смеситель воздуха.
Эжекционные смесители б и в различались по принципу подвода воздуха и газа. В первом случае газ в корпус смесителя 3 подводился через сопло 4, а воздух засасывался через кольцевой зазор вокруг сопла. Во втором случае в центр смесителя подавался воздух, а по периферии – газ.
Воздушная заслонка обычно была связана с рычагом, установленном на рулевой колонке автомобиля и регулировалась водителем вручную. Дроссельной заслонкой водитель управлял с помощью педали.
Методы уменьшения потерь мощности двигателей газогенераторных автомобилей
Бензиновые двигатели, переведенные на генераторный газ без каких-либо переделок, теряли 40-50% мощности. Причинами падения мощности являлись, во-первых, низкая теплотворность и медленная скорость горения газовоздушной смеси по сравнению с бензовоздушной, а во-вторых, ухудшение наполнения цилиндров как за счет повышенной температуры газа, так и за счет сопротивления в трубопроводах, охладителе и фильтре газогенераторной установки.
Для уменьшения влияния указанных причин в конструкцию двигателей были внесены изменения. В связи с тем что газовоздушная смесь обладает высокой детонационной стойкостью, была увеличена степень сжатия. Сечение впускного трубопровода было увеличено. Для устранения подогрева газовоздушной смеси и уменьшения потерь давления впускной трубопровод устанавливали отдельно от выпускного. Эти меры позволяли сократить потери мощности до 20-30%.
Эксплуатация автомобилей с газогенераторными установками
Эксплуатация автомобилей с газогенераторными установками имела свои особенности. В силу повышенной степени сжатия работа двигателя на бензине под нагрузкой допускалась лишь в крайних случаях и кратковременно: например, для маневрирования в гаражных условиях.
Инструкция категорически запрещала перевозить на газегенераторных автомобилях огнеопасные и легковоспламеняющиеся вещества, и тем более въезжать на территории, где не допускалось пользоваться открытым огнем – например, топливные склады. Разжигать газогенератор разрешалось только на открытой площадке.
Розжиг газогенератора осуществлялся факелом, тягу в при этом создавал электрический вентилятор. Газ, прокачиваемый вентилятором в процессе розжига, через патрубок выходил в атмосферу. Момент готовности газогенератора к работе определяли, поджигая газ у отверстия выходного патрубка – пламя должно было гореть устойчиво. По окончании розжига вентилятор выключали и пускали двигатель.
При неисправности вентилятора газогенератор можно было разжечь самотягой. Для этого зольниковый и загрузочный люки газогенератора открывали, а под колосниковую решетку подкладывали «растопку» — стружку, щепу, ветошь. Под действием естественной тяги пламя распространялось по всей камере. После розжига люки закрывали и пускали двигатель.
Розжиг газогенератора при помощи работающего на бензине двигателя допускался инструкцией лишь в аварийных случаях, так как при этом возникала опасность засмоления двигателя.
При движении автомобиля водитель вынужден был принимать во внимание инерцию газогенераторного процесса. Чтобы обеспечить запас мощности, необходимо было поддерживать отбор газа, близкий к максимальному. Для преодоления трудных участков рекомендовалось заранее переходить на понижающие передачи и поднимать обороты двигателя, а так же обогащать газо-воздушную смесь, прикрывая воздушную заслонку смесителя.
В отличие от бензиновых, газогенераторные автомобили требовали более частого пополнения топливом. Догрузку топлива в бункер производили в течение дня во время погрузочно-разгрузочных работ или стоянок.
Обслуживание газогенераторной установки было трудоемким. Чистка зольника газогенератора автомобиля УралЗИС-352 предусматривалась через каждые 250 – 300 км. Через 5000 – 6000 км газогенератор требовал полной чистки и разборки. Трубы охладителя рекомендовалось прочищать раз в 1000 км специальным скребком, входившим в комплект инструмента для обслуживания газогенераторной установки. Нижний слой колец фильтра тонкой очистки необходимо было промывать, выгрузив из фильтра на поддон, через 2500 – 3000 км пробега автомобиля. Верхний слой колец допускалось промывать каждые 10 000 км струей воды через люк в корпусе фильтра.
Оксид углерода СО опасен для человеческой жизни, по этому перед проведением работ по обслуживанию требовалось открыто все люки проветрить газогенераторную установку в течение 5 – 10 минут.
Дополнительные материалы:
За Рулем 1931 № 20 Автомобили на дровах
За Рулем 1933 № 16 Автомобили на дровах
За Рулем 1934 № 17 Газогенератор профессора Карпова
За Рулем 1935 № 1 Пробег газогенераторных автомашин
За Рулем 1935 № 2 Новый четырехосный газогенераторный автобус
За Рулем 1935 № 3 Первый автодоровский газогенератор
За Рулем 1935 № 14 Новый газогенератор для автомобиля ГАЗ-АА
Газогенераторные установки. Переработка отходов в полезную энергию. — Портал-Энерго.ru
На фото газогенераторная устновка AZSD
Газогенераторы — не новое явление в технике. Во время Великой Отечественной Войны топливо поставлялось в основном для фронта. Поэтому грузовые и, даже, легковые машины ездили на дровах. В газогенераторную колонку загружались чурки или деревянные обрезки, газогенератор вырабатывал газ, на котором работал двигатель внутреннего сгорания. Хорошую мощность на таком топливе развить было невозможно, но машины ездили относительно надежно. В настоящее время, в Северной Корее, наши ЗИЛы тоже ездят на дровах.
Сама газификация топлива получила распространение в конце 19 века. В основе газогенерации лежит сжигание твердого топлива в обедненной кислородом среде. Подача воздуха обеспечивается на уровне 30-35% от теоретически необходимого для горения уровня. Поэтому можно говорить скорее об управляемом тлении, чем о горении.
Древесный газогенератор. Принцип работы.
Температура горения 900-1200 градусов. Малое поступление воздуха в топку обеспечивается заслонками и конструктивно, благодаря чему в процессе низкотемпературного пиролиза образуются горючие газы, которые могут отводиться, очищаться и сжигаться в других устройствах. Например, в газопоршневых двигателях, бытовых газовых горелках, удаленных топочных устройствах. Конструктивно печь устроена так, что обеспечивается отделение горючих газов СО, СН4, Н2 от баластных негорючих газов, входящих в состав воздуха. Так же предусматривается подогрев подаваемого в печь воздуха теплом отводимых газов. Применение этих мер обеспечивает КПД газоненераторной установки около 85%. Объем генерируемого горючего газа составляет примерно 2,2 м3 на 1 кг сожженного топлива.
В качестве топлива в газогенераторах используется щепа с размером до 50 мм и, примерно, 20% опилок. Имеются установки с использованием в топливной смеси торфяной крошки, зерновых отходов, пищевой упаковки. Влажность подаваемой смеси до 20%. В то же время, имеются конструкции, предусматривающие влажность топлива до 60% и досушивание смеси в процессе подачи в топку: подача топливной крошки происходит постепенно и просохнуть она успевает до попадания в зону горения. В промышленных газогенераторах подача топлива производится шнеком, вращение которого обеспечивается от электродвигателя с регулируемой частотой вращения. В небольших установках — подача топлива из бункера в зону горения.
Топка конструктивно исполняется в виде футерованной жаростойким кирпичом шахты объемом до от 0,5 до 4,5 кубометров. Установка с тепловой мощностью 50 кВт имеет объем топки 0,65 м3 и вес 320 кг, расход топлива 22 кг в час. Установка с мощностью 1 МВт, имеет топку объемом 4,4 м3 и вес 5 тонн, расход топлива 430 кг в час.
Особенностью газогенераторных установок является отсутствие дымления, поскольку при медленном горении углерод не выносится с отходящими газами, преобразуясь в газовую смесь. Теплотворная способность газовой смеси несколько ниже природного газа, но вполне достаточна для использования такого газа в быту и для привода двигателей внутреннего сгорания.
Газогенераторные установки: экономика эксплуатации
Для средних и малых энергетических предприятий, деревообрабатывающих производств применение газогенераторных установок очень выгодно. Если нет необходимости отделения газовой смеси, газогенераторные установки работают как весьма эффективные теплогенераторы, обеспечивая нужды в тепловой энергии для технологических нужд и в отоплении. Очень эффективно применение газогенераторных установовок на деревобрабытывающих предприятиях для сушки древесины.
При работе газогенератора в составе твердотопливного котла можно сжигать отходы практически любой длины. Одновременно решаются экологические проблемы и проблемы утилизации отходов, снижается себестоимость выпускаемой продукции. Анализ затрат на отопление сушильных камер и промышленных зданий и сооружений, применяющих газогенераторные установки показывает, что затраты на топливо от 3 до 25 раз меньше, чем при традиционном его сжигании в котлах или отоплении электронагревательными установками. При использовании в качестве топлива отходов деревообработки собственного производства экономический эффект возрастает. Опыт эксплуатации отопительного оборудования с использованием газогенераторов в составе сушильных камер показал, что срок их окупаемости находится в пределах от 2-х месяцев до 1 года.
Применение газогенераторных установок для выработки электроэнергии показывает, что экономически они более эффективны, чем остальные объекты малой энергетики. Причиной тому невысокая стоимость оборудования и возможность использования отходов производства, мусора, сорной древесины. В Якутии был произведен подсчет выгоды применения газогенераторных установок взамен дизельных генераторов. Экономия по топливу составила 14 раз, срок окупаемости установок от 1 года до 3 лет. При этом был решен ряд экологических проблем с необходимостью утилизации больного леса и лесных завалов.
Топливо для гезогенераторных установок
Некоторую проблему составляет заготовка топлива и его подготовка для сжигания. Но технически эта проблема легко разрешима. На рынке существует широкое предложение разного рода дробилок и измельчителей, как мобильных, так и стационарных. Если исполнять все требования к вырубкам, то после них на лесосеке не должно оставаться древесных отходов. Мобильные измельчители древесины вполне обеспечивают поставку сырья для газогенераторных установок необходимой кондиции.
Некоторые промышленные предприятия, имеющие газонегераторные установки, не закупают опилки и щепу, а получают деньги за их утилизацию. Учитывая стоимость вывоза мусора на свалку и возможные штрафные санкции, предприятиям выгоднее сдать древесный мусор за небольшие деньги на сжигание. Владелец же газогенераторной установки получает при этом тепло для своих нужд не за деньги, а с доплатой.
Автор: Коваль Сергей Петрович
Автомобиль на дровах или газогенераторные автомобили, можно ли сделать своими руками
История создания и развития, примеры авто на дровах
Несмотря на медленное продвижение темы газогенераторных машин, история таких разработок весьма богатая. Так, еще в 1823 году российский изобретатель Овцын И.И. разработал аппарат для перегонки древесины. В его основу легла самая обычная «термолампа».
Главной особенностью установки стало применение в ней главных продуктов пиролиза — светильного газа, уксусной кислоты и дегтя, а также древесного угля.
Почти через сорок лет (в 1860 году) свой вклад в науку сделал Этьен Ленуар — бельгийский официант с инженерными «наклонностями». Именно он первым приобрел патент на ДВС, функционирующий на светильном газе.
Но он занимался не только этими разработками.
Еще через два года установка новоиспеченного гения появилась на 8-местном открытом омнибусе.
Но в 1878 году, когда публике был представлен более мощный 4-тактный двигатель на газе Николаса Отто, разработка Этьена Ленуара быстро забылась. При этом у нового устройства был более высокий КПД: 16% у Отто против 5% у Ленуара.
Еще через два десятка лет, в 1883 году (от 1860 года), появилась новая концепция сочетания обычного ДВС и газогенератора.
Английскому ученому Э. Даусону удалось объединить два устройства в одной коробке.
Получившийся аппарат можно было смело устанавливать на любую технику и спокойно эксплуатировать. Со временем разработка Э. Даусона получила название «газа Даусона».
В 1891 году отличился Яковлев Евгений (лейтенант Российского флота). Ему удалось выстроить целый завод по производству керосиновых и газовых моторов. Местом для строительства стал Санкт-Петербург.
Со временем завод прекратил существований из-за невозможности устоять в конкуренции с бензиновыми и дизельными моторами.
1900-й можно смело назвать годом выпуска первого газогенераторного автомобиля, использующего древесный уголь и дерево в виде топлива.
Аппарат был разработан во Франции Фредериком Уинслоу Тейлором, а патент удалось получить немного позже (в 1901 году).
В последующем появлялись все новые и более интересные разработки в данной сфере. Так, в 1919 году Георг Имберт (инженер французского происхождения) разработал газогенератор обращенного типа.
Уже в 1921 году появились первые автомобили с моторами, работающими на данном принципе. Именно тогда возникли предположения о вероятной конкуренции газогенераторного авто с дизельными или бензиновыми моторами.
Со временем отличилась и Германия, где в период войны получили распространение не только дровяные газогенераторы, но и устройства, способные работать на специальных брикетах, состоящих из буроугольной пыли и крошки.
Первые грузовые авто с газогенераторами были весьма медлительными — им едва ли удавалось достичь скорости в 20 километров в час.
Несмотря на это, к 1938 году популярность газогенераторных авто была настолько большой, что общее число таких машин насчитывалось около девяти тысяч.
Еще через три года (к 1941 году) их число возросло еще в пятьдесят раз. К примеру, в той же Германии количество машин «на дровах» выросло до 300 тысяч экземпляров.
Старался не отставать и Советский Союз. Здесь первые испытания газогенераторных авто прошло в 1928 году. В машине был задействован мотор Наумова и шасси Фиат-15.
Еще через шесть лет был организован первый большой пробег машин с газогенераторными моторами от Москвы до Ленинграда и обратно.
В «забеге» принимали участие автомобили ЗИС-5 и ГАЗ-АА. Успех мероприятия послужил принятию в 1936 году специального постановления СНК СССР о разработке газогенераторных тракторов и машин.
ГАЗ – АА.
ЗИС – 5.
Первая партия новых газогенераторных машин появилась на дорогах СССР в 1936 году.
Производство осуществлялось на двух заводах — Горьковском (ГАЗ-42) и на ЗИС (заводе имени Сталина).
Спустя пять лет был налажен выпуск газогенераторных моторов для тракторов и машин ЗИС.
К недостаткам силовых узлов можно было отнести множественные заводские дефекты, высокую скорость износа металла, минимальную мощность и так далее.
С другой стороны, газогенераторные установки очень помогли в войну и активно применялись в тылу.
Основные особенности
Газогенераторный двигатель имеет несколько неоспоримых положительных особенностей. Во-первых, топливо для устройства очень дешевое. Во-вторых, во время эксплуатации прибора появляется зола, которую можно использовать в качестве удобрения, к примеру. В-третьих, автомобилю не потребуется установка мощных химических аккумуляторов.
Газогенераторные двигатели доказали свое право на существование уже очень давно. На сегодняшний день их показатели, конечно же, сильно уступают новым моделям, работающим на бензине. Однако для большинства рядовых автолюбителей вполне могут подойти. Газогенераторная установка позволит развить скорость до 100 км/ч, приблизительный максимальный пробег составит около 100 км. Чтобы повысить этот параметр, придется возить на заднем сиденье дополнительные мешки с дровами и периодически вручную добавлять «топливо» в бак.
Как работает устройство
Принцип работы газогенератора — синтез газа. Это процесс, в ходе которого, горючий газ будет образовываться при сгорании органического материала. Для того чтобы запустить такой процесс, необходимо достичь нужной температуры. Синтез газа начинается при достижении показателя в 1400 градусов по Цельсию. В качестве топлива для газогенераторного двигателя могут использоваться торф, брикеты с углем и некоторые другие материалы. Однако, как показала практика, наиболее распространенным и удобным материалом в качестве топлива выступает древесина. Хотя здесь стоит отметить, что дрова обладают одним недостатком — уменьшение заряда рабочей смеси. Вследствие этого несколько понижается и мощность установки.
Можно добавить, что двигатель на дровах такого типа обычно используется с уже установленным ДВС.
Как создавались газогенераторные установки?
Француз Филипп Лебон выделил светильный газ в конце 18 века. В 1801 году он получил патент на газовый двигатель, но построить его не смог по причине насильственной смерти. Совершенствованием конструкции генератора и двигателя занимались многие европейские инженеры в течение 19 века. Первым во Франции построил газогенераторный автомобиль инженер Тейлор в 1900 году.
Впоследствии газогенераторные автомобили прошли два этапа повышенного спроса, приведшего к тому, что наличие таких автомобилей в мире стало исчисляться сотнями тысяч. Активная работа по совершенствованию газогенераторных установок, и созданию автомобилей с их применением, велась в СССР различными заводами и институтами. Результатом этой работы стало появление наиболее совершенных, по меркам того времени, установок.
Правительственное задание предписывало Горьковскому автозаводу в 39-м году выпустить 10 тысяч грузовиков с газогенераторной установкой модели НАТИ Г-14, которая могла работать на древесном топливе. Московскому ЗИС нужно было выпустить 8 тысяч газогенераторных ЗИС-5 с установкой ЗИС-21. Нехватка бензина вынудила строить газовые машины, названные народом «газгены».
В газогенераторе одновременно образуются горючие газы, к которым относятся окись углерода, водород и метан, не горючие — кислород и азот, а так же водяные пары. Такой состав снижает концентрацию горючих ингредиентов в смеси и её калорийность. Для повышения концентрации горючих газов требуется охлаждение смеси газов и отделение воды, что производится в соответствующих отделах установки и делает её громоздкой.
Конструкция установки
Чтобы успешно эксплуатировать авто на дровах или сжигать полученное топливо в котле, одного газогенератора недостаточно. Дело в том, что помимо балластных газов, самодельное горючее содержит летучие примеси и смолы, проще говоря, — дым и сажу. Ни автомобильный мотор, ни горелочное устройство котла не рассчитано на такое топливо и быстро выйдет из строя. Поэтому была придумана система фильтрования, входящая в состав газогенераторной установки и включающая 3 дополнительных агрегата:
- фильтр грубой очистки – циклон;
- радиатор – охладитель;
- фильтр тонкой очистки.
Очередность размещения этих элементов показана на технологической схеме:
Циклон для газогенератора представляет собой вертикальный цилиндр с двумя патрубками и конусом на конце, как показано на чертеже. Загрязненная газовая смесь, попадая внутрь него, движется по кругу на высокой скорости, за счет чего крупные и средние частицы золы отбрасываются на стенки центробежной силой и выводятся через отверстие в конусе.
Схема работы циклона, который очищает силовой газ от примесей
Чем выше температура газа, тем меньше его плотность. Это значит, что горючее на выходе из газгена нельзя использовать в ДВС без предварительного охлаждения, иначе оно просто не воспламенится в цилиндрах. Поэтому в промышленных газогенераторных установках сразу после циклона ставится воздушный либо водяной теплообменник, а следом – компрессор, нагнетающий охлажденную газовую смесь в распределительную емкость.
В конце технологической цепочки стоит фильтр тонкой очистки, удаляющий из полученного топлива мелкие частицы сажи и золы. Пример такого агрегата – так называемый скруббер, в котором газы очищаются за счет продувания через воду. Теперь, когда мы разобрались с технологией производства горючего, можно сделать собственную недорогую установку, способную обеспечить работу двигателя внутреннего сгорания на дровах.
Самодельный газген, изготовленный заграничными коллегами
Технические показатели
Если стоит выбор, к примеру, между покупкой автомобиля с традиционным двигателем или с газогенератором, то нужно подробно остановиться на рассмотрении технических данных второго варианта.
Масса двигателя на дровах достаточно большая, из-за чего теряется некоторая часть маневренности. Этот недостаток становится опасным, если развивать большую скорость. По этой причине доводить автомобиль даже до 100 км/ч не слишком разумное решение — придется ездить медленнее. Есть еще несколько важных технических данных такого оборудования.
Газовый двигатель, работающий на дровах, обладает большей степенью сжатия, чем грузовые бензиновые двигатели. Что касается мощности, то газогенератор, естественно, проигрывает бензиновому мотору.
Последнее отличие не в пользу газовой модели — это грузоподъемность, в которой он также проигрывает автомобилю с бензиновым двигателем.
Здесь еще важно отметить, что древесный газ характеризуется низкой энергетической ценностью, если сравнивать его с природным. Авто на дровах будет неизбежно терять в динамических свойствах, что также следует учитывать водителю такого транспортного средства.
Некоторые предпочитают установку объемного газогенератора осуществлять на прицеп, а не на сам автомобиль. В таком случае и быстро разогнаться не получится, и маневрировать особо не выйдет. Прицеп будет являться своеобразным ограничителем.
Изготовление газгена для автомобиля
Перед тем как сделать работоспособный газогенератор для автомобиля, предлагаем ознакомиться с некоторыми рекомендациями:
- Организовать подачу силового газа в современном авто с инжектором – задача непростая. Придется менять настройки контроллера (прошивку), иначе мотор на древесном топливе работать не будет. Нужна машина со старой системой топливоподачи – карбюратором.
- Чем больше мощность и рабочий объем двигателя, тем выше производительность должна быть у газогенератора. Соответственно, он вырастет в размерах.
- Чтобы уместить установку в багажник легкового авто, потребуется вырезать часть днища. Если вы не хотите затрагивать кузов, то сразу планируйте ставить дровяной генератор с фильтрами и охладителем на прицеп.
- Для изготовления камеры газификации, где температура превышает 1000 °С, применяйте низкоуглеродистую толстую сталь (4—5 мм).
- Чтобы уменьшить содержание смол в газовой смеси, делайте камеру с горловиной, как это показано на чертеже.
Важный момент. Не стоит увеличивать диаметр камеры газификации (на чертеже он равен 340 мм) с целью добиться большей производительности. Прирост получится мизерный, а качество переработки древесины ухудшится. А вот высоту 183 см выдерживать не обязательно, разве что вы поставите агрегат на прицеп или на раму грузовика. Топливный бункер и зольник можно укоротить.
Для сборки внутренней части автомобильного газогенератора (бункера) сгодится старый пропановый баллон, ресивер от грузовика КаМАЗ или толстостенная труба. Учитывая, что диаметр стального сосуда равен 300 мм, остальные размеры нужно пропорционально уменьшить. Исключение – камера газификации, ее минимальный диаметр составляет 140 мм. На кожух и крышку генератора пойдет металл толщиной 1.5 мм. Последняя уплотняется графитно-асбестовым шнуром.
Варианты охладителей горючей смеси из автомобильного радиатора и батареи отопления
Сопутствующие агрегаты – фильтры и охладители – делаются так:
- Циклон сварите из отработавшего огнетушителя или отрезка трубы диаметром 10 см, как это изображено на чертеже. Входной патрубок приделайте сбоку, выпускной – сверху.
- Охладитель силового газа лучше сделать из стальных труб в виде змеевика. Есть и другие варианты: использование старых конвекторов, батарей отопления и радиаторов.
- Фильтр тонкой очистки изготовьте из любой цилиндрической емкости (например, бочки), наполненной базальтовым волокном.
Более детальную информацию о сборке газогенератора своими силами вы получите, посмотрев видео:
Для розжига и запуска газгена вам потребуется вентилятор в виде улитки, устанавливаемый в моторном отсеке (для испытаний сойдет и бытовой пылесос). К нему требование простое: детали, соприкасающиеся с газовой смесью, должны быть металлическими. Топливная магистраль, ведущая к карбюратору, прокладывается под днищем авто и выполняется из стальной трубы.
Для справки. Если вместо дров использовать древесный уголь, то примесей на выходе газогенератора будет значительно меньше, что хорошо для двигателя. Такое топливо выжигается из дерева по простой технологии – в закрытой бочке или яме.
Бункер для древесного угля помещается в багажник «Жигулей»
Типы газогенераторов
Для разных видов топлива были разработаны газогенераторы соответствующих типов:
— газогенераторы прямого процесса газификации;
— газогенераторы обращенного (обратного, или «опрокинутого») процесса газификации;
— газогенераторы поперечного (горизонтального) процесса газификации.
Газогенераторы прямого процесса газификации
Основным преимуществом газогенераторов прямого процесса являлась возможность газифицировать небитуминозные многозольные сорта твердого топлива – полукокс и антрацит.
В газогенераторах прямого процесса подача воздуха обычно осуществлялась через колосниковую решетку снизу, а газ отбирался сверху. Непосредственно над решеткой располагалась зона горения. За счет выделяемого при горении тепла температура в зоне достигала 1300 – 1700 С.
Над зоной горения, занимавшей лишь 30 – 50 мм высоты слоя топлива, находилась зона восстановления. Так как восстановительные реакции протекают с поглощением тепла, то температура в зоне восстановления снижалась до 700 – 900 С.
Выше активное зоны находились зона сухой перегонки и зона подсушки топлива. Эти зоны обогревались теплом, выделяемым в активной зоне, а также теплом проходящих газов в том случае, если газоотборный патрубок располагался в верхней части генератора. Обычно газоотборный патрубок располагали на высоте, позволяющей отвести газ непосредственно на его выходе из активной зоны. Температура в зоне сухой перегонки составляла 150 – 450 С, а в зоне подсушки 100 – 150 С.
В газогенераторах прямого процесса влага топлива не попадала в зону горения, поэтому воду в эту зону подводили специально, путем предварительного испарения и смешивания с поступающим в газогенератор воздухом. Водяные пары, реагируя с углеродом топлива, обогащали генераторный газ образующимся водородом, что повышало мощность двигателя.
Газогенераторы обращенного (опрокинутого) процесса газификации.
Газогенераторы обращенного процесса были предназначены для газификации битуминозных (смолистых) сортов твердого топлива – древесных чурок и древесного угля.
В генераторах этого типа воздух подавался в среднюю по их высоте часть, в которой и происходил процесс горения. Отбор образовавшихся газов осуществлялся ниже подвода воздуха. Активная зона занимала часть газогенератора от места подвода воздуха до колосниковой решетки, ниже которой был расположен зольник с газоотборным патрубком.
Зоны сухой перегонки и подсушки располагались выше активной зоны, поэтому влага топлива и смолы не могли выйти из газогенератора, минуя активную зону. Проходя через зону с высокой температурой, продукты сухой перегонки подвергались разложению, в результате чего количество смол в выходящем из генератора газе было незначительным. Как правило, в газогенераторах обращенного процесса газификации горячий генераторный газ использовался для подогрева топлива в бункере. Благодаря этому улучшалась осадка топлива, так как устранялось прилипание покрытых смолой чурок к стенкам бункера и тем самым повышалась устойчивость работы генератора.
Газогенераторы поперечного (горизонтального) процесса газификации.
В газогенераторах поперечного процесса воздух с высокой скоростью дутья подводился через фурму, расположенную сбоку в нижней части. Отбор газа осуществлялся через газоотборную решетку, расположенную напротив фурмы, со стороны газоотборного патрубка. Активная зона была сосредоточена на небольшом пространстве между концом формы и газоотборной решеткой. Над ней располагалась зона сухой перегонки и выше – зона подсушки топлива.
Отличительной особенностью газогенератора этого типа являлась локализация очага горения в небольшом объеме и ведение процесса газификации при высокой температуре. Это обеспечивало газогенератору поперечного процесса хорошую приспособляемость к изменению режимов и снижает время пуска.
Этот газогенератор, так же как и газогенератор прямого процесса, был непригоден для газификации топлив с большим содержанием смол. Эти установки применяли для древесного угля, древесноугольных брикетов, торфяного кокса.
Наибольшее распространение получили газогенераторные установки обращенного процесса газификации, работавшие на древесных чурках.
Примером такого газогененератора может служить газогенератор устанавливавшийся на ГАЗ-42
Газогенератор ГАЗ-42 состоял из цилиндрического корпуса 1, изготовленного из 2-миллиметровой листовой стали, загрузочного люка 2 и внутреннего бункера 3, к нижней части которого была приварена стальная цельнолитая камера газификации 8 с периферийным подводом воздуха (через фурмы).
Нижняя часть газогенератора служила зольником, который периодически очищался через зольниковый люк 7.
Воздух под действием разрежения, создаваемого двигателем, открывал обратный клапан 5 и через клапанную коробку 4, футорку 6, воздушный пояс и фурмы поступал в камеру газификации 8. Образующийся газ выходил из-под юбки камеры 8, поднимался вверх, проходил через кольцевое пространство между корпусом и внутренним бункером и отсасывался через газоотборный патрубок 10, расположенный в верхней части газогенератора.
Равномерный отбор газа по всей окружной поверхности газогенератора обеспечивался отражателем 9, приваренным к внутренней стенке корпуса 1 со стороны газоотборного патрубка 10.
Для более полного разложения смол, особенно при малых нагрузках газогенератора, в камере газификации было предусмотрено сужение – горловина. Помимо уменьшения смолы в газе, применение горловины одновременно приводило к обеднению газа горючими компонентами сухой перегонки.
На величину получаемой мощности влияла согласованность таких параметров конструкции газогенератора, как диаметр камеры газификации по фурменному поясу, проходное сечение фурм, диаметр горловины и высота активной зоны.
Газогенераторы обращенного процесса применяли и для газификации древесного угля. Вследствие большого количества углерода в древесном угле процесс протекал при высокой температуре, которая разрушительно действовала на детали камеры газификации.
Для повышения долговечности камер газогенераторов, работающих на древесном угле, применяли центральный подвод воздуха, снижавший воздействие высокой температуры на стенки камеры газификации.
Функциональные зоны газогенератора
Все внутреннее пространство агрегата можно условно поделить на четыре отдела:
- Зона просушки. Своего рода камера подготовки топлива, в которой те же дрова обретают оптимальную температуру без излишков влаги. Обычно температурный режим на этом участке составляет 150-200 °С.
- Зона сухой перегонки. Еще один этап подготовки твердотельного топлива, но в условиях более высокого температурного режима до 500 °С. На этой стадии газогенераторная установка обугливает дрова с целью выведения из них смол, кислот и других нежелательных веществ.
- Зона горения. Этот отдел размещается на уровне подключения воздушных каналов, по которым направляется воздух для поддержания стабильности горения. Конструкционно это обычная камера сжигания, которая присутствует во всех твердотопливных котлах. Средняя температура в ней варьируется от 1100 до 1300 °С.
- Зона восстановления. Участок между колосниковой решеткой и камерой сгорания. По аналогии с современными пиролизными котлами можно представить этот отдел как место повторного сгорания. Сюда из зоны сжигания попадает раскаленный уголь, который может выниматься или тут же утилизироваться.
Принцип работы автомобильной газогенераторной установки
Автомобильная газогенераторная установка состояла из газогенератора, грубых очистителей, тонкого очистителя, вентилятора розжига и смесителя. Воздух из окружающей среды засасывался в газогенератор тягой работающего двигателя. Этой же тягой выработанный горючий газ «выкачивался» из газогенератора и попадал сначала в грубые очистители охладители, затем – в фильтр тонкой очистки. Перемешавшись в смесителе с воздухом, газо-воздушная засасывалась в цилиндры двигателя.
Охлаждение и грубая очистка газа
На выходе из газогенератора газ имел высокую температуру и был загрязнен примесями. Чтобы улучшить наполнение цилиндров «зарядом» топлива, газ требовалось охладить. Для этого газ пропускался через длинный трубопровод, соединявший газогенератор с фильтром тонкой очистки, или через охладитель радиаторного типа, который устанавливался перед водяным радиатором автомобиля.
Охладитель радиаторного типа газогенераторной установки УралЗИС-2Г имел 16 трубок, расположенных вертикально в один ряд. Для слива воды при промывке охладителя служили пробки в нижнем резервуаре. Конденсат вытекал наружу через отверстия в пробках. Два кронштейна, приваренные к нижнему резервуару, служили для крепления охладителя на поперечине рамы автомобиля.
В качестве простейшего очистителя использовался циклон. Газ поступал в очиститель через патрубок 1, распологавшийся касательно к корпусу циклона. Вследствие этого газ получал вращательное движение и наиболее тяжелые частицы, содержащиеся в нем, отбрасывались центробежной силой к стенкам корпуса 3. Ударившись о стенки, частицы падали в пылесборник 6. Отражатель 4 препятствовал возвращению частиц в газовый поток. Очищенный газ выходил из циклона через газоотборный патрубок 2. Удаление осадка осуществлялось через люк 5.
Чаще всего в автомобильных газогенераторных установках применяли комбинированную систему инерционной очистки и охлаждения газа в грубых очистителях – охладителях. Осаждение крупных и средних частиц в таких очистителях осуществлялось путем изменения направления и скорости движения газа. При этом одновременно происходило охлаждение газа вследствие передачи тепла стенкам очистителя. Грубый очиститель-охладитель состоял из металлического кожуха 1, снабженного съемной крышкой 2. Внутри кожуха были установлены пластины 3 с большим количеством мелких отверстий, расположенных в шахматном порядке. Газ, проходя через отверстия пластин, менял скорость и направление, а частицы, ударяясь о стенки, оседали на них или падали вниз.
Грубые охладители-очистители последовательно соединяли в батареи из нескольких секций, причем каждая последующая секция имела большее количество пластин. Диаметр отверстий в пластинах от секции к секции уменьшался (РИСУНОК 5Г).
Вентилятор розжига
В автомобильных установках розжиг газогенератора осуществлялся центробежным вентилятором с электрическим приводом. При работе вентилятор розжига просасывал газ из газогенератора через всю систему очистки и охлаждения, поэтому вентилятор старались разместить ближе к смесителю двигателя, чтобы процессе розжига заполнить горючим газом весь газопровод.
Вентилятор розжига газогенераторной установки автомобиля УралЗИС-352 состоял из кожуха 6, в котором вращалась соединенная с валом электродвигателя крыльчатка 5. Кожух, отштампованный из листовой стали, одной из половин крепился к фланцу электродвигателя. К торцу другой половины был подведен газоотсасывающий патрубок газогенератора 4. Газоотводящий патрубок 1. Для направления газа при розжиге в атмосферу и при работе подогревателя – в подогреватель к газоотводящему патрубку был приварен тройник 3 с двумя заслонками 2.
Фильтры тонкой очистки
Для тонкой очистки газа чаще всего применяли очистители с кольцами. Очистители этого типа представляли собой цилиндрический резервуар, корпус 3 которого был разделен на три части двумя горизонтальными металлическими сетками 5, на которых ровным слоем лежали кольца 4, изготовленные из листовой стали. Процесс охлаждения газа, начавшись в грубых очистителях – охладителях, продолжался и в фильтре тонкой очистки. Влага конденсировалась на поверхности колец и способствовала осаживанию на кольцах мелких частиц. Газ входил в очиститель через нижнюю трубу 6, и пройдя два слоя колец, отсасывался через газоотборную трубу 1, соединенную со смесителем двигателя. Для загрузки, выгрузки и промывки колец использовали люки на боковой поверхности корпуса. Применялись конструкции, в которых в качестве фильтрующего материала использовалась вода или масло. Принцип работы водяных (барботажных) очистителей заключался в том, что газ в виде маленьких пузырьков проходил через слой воды и таким образом избавлялся от мелких частиц.
Высота барботажного слоя воды в очистителе установки ЦНИИАТ-УГ-1 повышалась от нуля до максимума (100 мм – 120 мм) по мере увеличения отбора газов. Благодаря этому обеспечивалась устойчивая работа двигателя на холостых оборотах и хорошая очистка газа на больших нагрузках. Предварительно охлажденный газ поступал расположенную по центру очистителя газораздаточную коробку. Боковые стенки коробки имели два ряда отверстий диаметром 3 мм. Отверстия были расположены наклонно от уровня воды до нижнего края стенок, погруженных в воду на 70 мм. Четыре отверстия, расположенные выше уровня воды, служили для обеспечения подачи газа на холостом ходу. С ростом числа оборотов эти отверстия перекрывались водой. В пространстве над газораздаточной коробкой при увеличении нагрузки создавалось разряжение, и уровень воды снаружи коробки повышался, а внутри, соответственно – понижался. При этом газ, поступая внутрь коробки, попадал в отверстия, расположенные над уровнем воды, и уже в виде пузырьков поднимался вверх, сквозь наружный водяной столб. Очистившись в воде, газ проходил через кольца, насыпанные на сетки по обе стороны газораздаточной решетки, и направлялся во вторую секцию очистителя, где вторично пропускался через погруженную в воду гребенку окончательно очищался в слое колец.
Методы уменьшения потерь мощности двигателей газогенераторных автомобилей
Бензиновые двигатели, переведенные на генераторный газ без каких-либо переделок, теряли 40-50% мощности. Причинами падения мощности являлись, во-первых, низкая теплотворность и медленная скорость горения газовоздушной смеси по сравнению с бензовоздушной, а во-вторых, ухудшение наполнения цилиндров как за счет повышенной температуры газа, так и за счет сопротивления в трубопроводах, охладителе и фильтре газогенераторной установки.
Для уменьшения влияния указанных причин в конструкцию двигателей были внесены изменения. В связи с тем что газовоздушная смесь обладает высокой детонационной стойкостью, была увеличена степень сжатия. Сечение впускного трубопровода было увеличено. Для устранения подогрева газовоздушной смеси и уменьшения потерь давления впускной трубопровод устанавливали отдельно от выпускного. Эти меры позволяли сократить потери мощности до 20-30%.
Смеситель
Образование горючей смеси из генераторного газа и воздуха происходило в смесителе. Простейший двухструйный смеситель а представлял собой тройник с пересекающимися потоками газа и воздуха. Количество засасываемой в двигатель смеси регулировалось дроссельной заслонкой 1, а качество смеси – воздушной заслонкой 2, которая изменяла количество поступающего в смеситель воздуха. Эжекционные смесители б и в различались по принципу подвода воздуха и газа. В первом случае газ в корпус смесителя 3 подводился через сопло 4, а воздух засасывался через кольцевой зазор вокруг сопла. Во втором случае в центр смесителя подавался воздух, а по периферии – газ.
Воздушная заслонка обычно была связана с рычагом, установленном на рулевой колонке автомобиля и регулировалась водителем вручную. Дроссельной заслонкой водитель управлял с помощью педали.
Подключение и запуск ДВС
Поскольку теплотворная способность генерируемого из дров топлива гораздо ниже, чем у бензина, то для нормальной работы мотора соотношение воздух/горючее нужно изменить. Для этого придется смастерить смеситель и поставить его на впускном тракте. Простейший вид смесителя – воздушная заслонка, управляемая тягой из салона.
Завести холодный мотор на дровах – та еще задачка. Поэтому не стоит полностью отказываться от бензина, а подавать его только во время запуска, а потом переходить на горючее, вырабатываемое газгеном. Чтобы реализовать переключение на разные виды топлива, изготовьте смеситель по схеме, предложенной в книге И. С. Мезина «Транспортные газогенераторы»:
Примечание. В этой же книге вы найдете массу полезной информации касательно получения газообразного топлива из различных видов древесины и угля.
Теперь про особенности пуска и работы ДВС на древесине и угле:
- размер дров, загружаемых в бункер, не должен превышать 6 см;
- сырую древесину применять нельзя, поскольку вся выделяемая теплота уйдет на испарение воды и процесс пиролиза будет крайне вялым;
- розжиг производится через специальное отверстие с обратным клапаном при включенном вентиляторе не позже чем за 20 минут до поездки;
- мощность мотора снижается примерно на 50% по сравнению с ездой на бензине;
- из предыдущего пункта вытекает, что ресурс работы двигателя на самодельном горючем тоже уменьшается.
Примечательно, что после кратковременных стоянок машина спокойно заводится от газгена, без перехода на бензин. После длительного простоя потребуется 5—10 минут на повторный розжиг установки.
Газогенераторы в транспортной технике
Практика доработки автомобилей под установку газовых генераторов началась еще в довоенные годы. На многие машины в рамках такой модернизации устанавливался генератор электрооборудования с высокой отдачей, так как нужно было обеспечивать достаточно мощный поток кислородного наддува. Для этого применялся электровентилятор. К наиболее заметным разработкам такого типа можно отнести «полуторки» ГАЗ-АА и «трехтонки» типа ЗИС-5, газогенераторные установки которых обеспечивали пробег на одной заправке до 80-90 км. Это немного, но в условиях дефицита жидкостного топлива на лесных хозяйствах данное решение полностью себя оправдывало экономически. Что касается сегодняшнего дня, то преобразование обычных авто с ДВС также мотивируется в основном интересами энергосбережения. Есть успешные примеры переделки легковых автомобилей ГАЗ-24 и АЗЛК-2141, которые на одной заправке проезжают до 120 км, поддерживая скоростной режим в диапазоне 80-90 км/ч.
Применение газогенераторных технологий в промышленности
Впервые газогенераторные технологии стали применяться в стекольной и металлургической промышленности в Европе, а в СССР нашли свое место в народном хозяйстве. К примеру, в середине 20 века по стране были распространены газогенераторные станции, вырабатывающие до 3 МВт из растительной биомассы и торфа. Современное оборудование заметно прибавило в технологическом развитии. Сегодня это целые комплексы, обеспеченные средствами автоматического и даже роботизированного управления под контролем ЭВМ. Мощность газогенераторных установок для выработки электроэнергии в промышленной сфере в среднем составляет 300-350 кВт. В некоторых случаях это целые химические заводы, предъявляющие жесткие требования к топливным материалам. Такие установки применяются на крупных производственных комплексах для обслуживания сразу нескольких систем потребления – силовых узлов (станков, линий сборки, динамомашин, компрессоров), осветительных приборов, вентиляционной инфраструктуры и т. д.
Эксплуатация автомобилей с газогенераторными установками
Эксплуатация автомобилей с газогенераторными установками имела свои особенности. В силу повышенной степени сжатия работа двигателя на бензине под нагрузкой допускалась лишь в крайних случаях и кратковременно: например, для маневрирования в гаражных условиях.
Инструкция категорически запрещала перевозить на газегенераторных автомобилях огнеопасные и легковоспламеняющиеся вещества, и тем более въезжать на территории, где не допускалось пользоваться открытым огнем – например, топливные склады. Разжигать газогенератор разрешалось только на открытой площадке.
Розжиг газогенератора осуществлялся факелом, тягу в при этом создавал электрический вентилятор. Газ, прокачиваемый вентилятором в процессе розжига, через патрубок выходил в атмосферу. Момент готовности газогенератора к работе определяли, поджигая газ у отверстия выходного патрубка – пламя должно было гореть устойчиво. По окончании розжига вентилятор выключали и пускали двигатель.
При неисправности вентилятора газогенератор можно было разжечь самотягой. Для этого зольниковый и загрузочный люки газогенератора открывали, а под колосниковую решетку подкладывали «растопку» — стружку, щепу, ветошь. Под действием естественной тяги пламя распространялось по всей камере. После розжига люки закрывали и пускали двигатель. Розжиг газогенератора при помощи работающего на бензине двигателя допускался инструкцией лишь в аварийных случаях, так как при этом возникала опасность засмоления двигателя. При движении автомобиля водитель вынужден был принимать во внимание инерцию газогенераторного процесса. Чтобы обеспечить запас мощности, необходимо было поддерживать отбор газа, близкий к максимальному. Для преодоления трудных участков рекомендовалось заранее переходить на понижающие передачи и поднимать обороты двигателя, а так же обогащать газо-воздушную смесь, прикрывая воздушную заслонку смесителя.
В отличие от бензиновых, газогенераторные автомобили требовали более частого пополнения топливом. Догрузку топлива в бункер производили в течение дня во время погрузочно-разгрузочных работ или стоянок.
Обслуживание газогенераторной установки было трудоемким. Чистка зольника газогенератора автомобиля УралЗИС-352 предусматривалась через каждые 250 – 300 км. Через 5000 – 6000 км газогенератор требовал полной чистки и разборки. Трубы охладителя рекомендовалось прочищать раз в 1000 км специальным скребком, входившим в комплект инструмента для обслуживания газогенераторной установки. Нижний слой колец фильтра тонкой очистки необходимо было промывать, выгрузив из фильтра на поддон, через 2500 – 3000 км пробега автомобиля. Верхний слой колец допускалось промывать каждые 10 000 км струей воды через люк в корпусе фильтра.
Оксид углерода СО опасен для человеческой жизни, по этому перед проведением работ по обслуживанию требовалось открыто все люки проветрить газогенераторную установку в течение 5 – 10 минут.
Бытовые газогенераторы
Домашнее котельное оборудование также улучшается, дополняясь новым функционалом и эксплуатационными возможностями. Для этой сферы предлагаются газогенераторные установки до 150 кВт на СУГ (сжижено углеродистый газ) в комплектации с системой жидкостного охлаждения, блоком зарядки аккумулятора и защитными приспособлениями. Это полноценный резервный генератор, который можно использовать в случае отключения основного энергоснабжения.
Расчет газогенераторного оборудования по мощности
Независимо от назначения энергетического агрегата, его технико-эксплуатационные показатели должны быть рассчитаны до покупки. Ниже приведен типовой пример расчета газогенераторной установки для домашней системы отопления.
Мощность агрегата усредненно следует соотносить с площадью целевого помещения эксплуатации, имея в виду следующую взаимосвязь: на 10 м2 приходится 1 кВт мощностного потенциала от генерируемой газовой смеси. Так, для площадки на 50 м2 потребуется установка не менее чем на 5 кВт, а если площадь производственного объекта составляет 1000 м2, то нужна будет система обогрева минимум на 100 кВт. Но и это не все. Для каждого проема в стене делается добавка примерно в 1 кВт, не считая поправки на климатические условия. В итоге объект общей площадью 1000 м2 с 10 окнами и 5 дверными проемами потребует использования установки с мощностью 1015 кВт как минимум.
Будущее развития газогенераторных технологий
В пользу продолжения развития газогенераторных агрегатов говорит их органичное сочетание с биотопливными элементами, которые являются безоговорочно одним из самых перспективных источников горючего сырья. В направлении оптимизации конструкций под пеллеты и брикеты с большей вероятностью будет осуществляться движение данной концепции. Что касается газогенераторных установок для автомобилей, то на промышленном уровне их разработка тоже может себя оправдать экономически. К слову, порядка 2 кг дешевых топливных материалов вырабатывают столько же энергии для машины, сколько 1 л бензина. Однако процессу развития в данном направлении все же препятствует необходимость усложнения конструкции автомобилей и появление все новых конкурентных генераторов, которые также приходят на смену обычным ДВС.
Работа автомобиля на газогенераторе
При эксплуатации такого газового двигателя не получится достичь скорости и ускорения, возможных при использовании бензинового аналога. Проблема заключается в составе древесного газа. Он на 50 % состоит из азота, на 20 % из окиси углерода; оставшиеся 18 % — водород, 8 % — двуокись углерода, 4 % — метан. Азот, который занимает половину удельной массы газа, вовсе не способен поддерживать горение, а соединения на основе углерода снижают эффективность горения. Большое количества азота уменьшает общую мощность такого генератора примерно на 30-50 процентов. Углерод снижает скорость горения газа, из-за чего не удается достичь высоких оборотов. Как следствие этого, понижаются динамические показатели автомобиля.
Генераторная установка для ЗИС-21
Как уже говорилось, основной принцип работы генератора — превращение твердого топлива в газ, поступающего в цилиндры. Газогенераторный ЗИС-21 в основном работал на таком топливе, как дуб и береза. Иногда использовался бурый вид угля, так как он был наименее гигроскопичным и давал больше всего газа на выходе.
Что касается конструкции типового генератора газа для ЗИС-21, то состоял он из следующих элементов: непосредственно самого газогенератора, охладителя-очистителя, тонкого очистителя, смесителя и электрического вентилятора.
Работа установки на ЗИС
В верхней части генератора располагался бункер, в который загружалось твердое топливо. Непосредственно под самим бункером располагался топливник. Здесь осуществлялось сжигание древесины. По мере того как сгорало старое топливо, осуществлялась «автоматическая подача» новой древесины. На деле же она просто падала из бункера в топливник под собственным весом, когда освобождалось место. Сама газогенерирующая установка располагалась с левого борта автомобиля.
В этом же топливнике происходило и образование окиси углерода из-за протягивания воздуха сквозь горящее топливо. Просасывание кислорода происходило либо за счет разрежения в цилиндрах, либо за счет работы электрического вентилятора. Эти методы являлись принудительными, но были установки и с естественной тягой воздуха. Однако в таком случае на подготовку к запуску могло уйти до часа времени.
Под топливником располагался зольник, как в любой обычной печи. Здесь скапливались продукты сгорания. Каждые 80-100 км было необходимо очищать его от золы. Однако здесь справедливо будет отметить, что этот факт доставлял проблемы лишь водителю транспортного средства.
Путь газа в установке и очистка
Весь полученный в процессе сгорания дров газ поступал в рубашку, которая окружала бункер. Таким образом достигался подогрев этого отсека. Это было необходимо, чтобы предварительно просушить всю древесину, подготовленную для сжигания. Далее стоит отметить, что после выхода из генератора газ имел температуру примерно 110-140 градусов. Поэтому он должен был проходить через секции радиатора. Там он не только понижал свою температуру, но и попутно очищался от тяжелых химических примесей.
Что касается очистки, то она происходила таким образом. Секции очистителя-теплообменника представляли собой внутренние перфорированные трубы. Эта конструкция была схожа с нынешними выхлопными системами. Горячий газ сильно расширялся, из-за чего терял скорость течения. Проходя через лабиринты труб, он еще сильнее замедлялся. Примеси отсеивались от него и оставались на внутренних стенках наружных труб обменников тепла. После этого следовал тонкий очиститель.
Мифы о газогенераторных установках
На просторах интернета часто встречается множество необоснованных утверждений о работе подобных агрегатов и дается противоречивая информация об использовании газогенераторов. Попытаемся все эти мифы развеять.
Миф первый звучит так: КПД газогенераторной установки достигает 95%, что несоизмеримо больше, нежели у твердотопливных котлов с эффективностью 60—70%. Поэтому отапливать дом с ее помощью куда выгоднее. Информация некорректна изначально, нельзя сравнивать бытовой газогенератор для дома и твердотопливный котел, эти агрегаты выполняют разные функции. Задача первого – вырабатывать горючий газ, второго – нагревать воду.
Когда говорят о генерирующем оборудовании, то его КПД – это отношение количества полученного продукта к объему газа, что возможно выделить из древесины теоретически, помноженное на 100%. Эффективность котла – это отношение вырабатываемой тепловой энергии дров к теоретической теплоте сгорания, также умноженное на 100%. Кроме того, извлечь из органики 95% горючего топлива может далеко не каждая биогазовая установка, не то что газогенератор.
Вывод. Суть мифа в том, что массу либо объем пытаются через КПД сопоставить с единицами энергии, а это недопустимо.
Обогревать дом проще и эффективнее обычным пиролизным котлом, что таким же способом выделяет горючие газы из древесины и тут же их сжигает, используя подачу вторичного воздуха в дополнительную камеру сгорания.
Миф второй – в бункер можно закладывать топливо любой влажности. Загружать-то его можно, да только количество выделяемого газа падает на 10—25%, а то и более. В этом отношении идеальный вариант — газогенератор, работающий на древесном угле, что почти не содержит влаги. А так тепловая энергия пиролиза уходит на испарение воды, температура в топке падает, процесс замедляется.
Миф третий – затраты на обогрев здания снижаются. Это нетрудно проверить, достаточно сравнить стоимость газогенератора на дровах и обычного твердотопливного котла, тоже сделанного своими руками. Плюс нужно водогрейное устройство, сжигающее древесные газы, например, конвектор. Наконец, эксплуатация всей этой системы отнимет немало времени и сил.
Вывод. Самодельный газогенератор на дровах, сделанный своими руками, лучше всего использовать совместно с двигателем внутреннего сгорания. Именно поэтому домашние умельцы приспосабливают его для генерации электроэнергии в домашних условиях, а то и прилаживают установку на автомобиль.
Почему это выгодно
Построив древесный газогенератор своими руками, вы сможете рассчитывать на следующие выгоды:
Газогенераторные автомобили
- Уменьшенный расход топлива. Ведь КПД котла с газогенератором равно 90-95 процентам, а у твердотопливного котла – всего 50-60 процентов. То есть, на обогрев одного и того же помещения газогенератор потратит не более 60 процентов топлива, расходуемого обычным твердотопливным котлом.
- Продолжительный процесс горения. Пиролиз дров происходит за 20-25 часов, а процесс термического разложения древесного угля заканчивается за 5-8 суток. Следовательно, загрузку дров в котел можно проводить всего раз в сутки. А если вы пользуетесь древесным углем, то «зарядка» котла осуществляется раз в неделю!
- Возможность использовать в качестве топлива любой источник целлюлозы – от жмыха и соломы, до живой древесины с влажностью около 50 процентов. То есть о «сухости» дров можно уже не заботиться. Причем в топку некоторых моделей газогенераторных котлов можно отгружать даже метровые поленья, без предварительного измельчения (колки).
- Отсутствие потребности в чистке и дымохода, и поддувала. Пиролиз утилизирует топливо практически без остатка, а продукт окисления олефинов – это обычный водяной пар.
Кроме того, необходимо отметить и возможность полностью автоматизировать процесс работы котла.
К отрицательной стороне практики использования газогенераторов на дровах относятся следующие факты:
- Такой котел стоит очень дорого. Цена самого дешевого варианта «пиролизного» котла в два раза выше стоимости твердотопливного аналога. Поэтому самые рачительные хозяева предпочитают строить газогенератор на дровах своими руками.
- Такой котел работает на электричестве, расходуемом на энергообеспечение систем надува воздуха в камеры сгорания. То есть, если нет электричества – нет и тепла. А обычная печь будет «работать» где угодно.
- Котел генерирует стабильно высокую мощность. Причем снижение интенсивности нагрева спровоцирует сбой в работе всей системы – вместо горючих олефинов во вторичную камеру пойдет обычный деготь.
Но все недостатки «окупаются» обилием положительных характеристик и экономичной работой нагревательного прибора. Поэтому приобретение газогенератора, а тем более самостоятельное строительство такого «отопительного прибора» – это очень выгодное дело. И ниже по тексту мы опишем процесс создания дровяного газогенератора.
Применение
Как сделать газогенератор для дома или автомобиля: устройство и принцип работы
- Раньше газгены применялись в автомобилестроении, во время Великой Отечественной войны такие генераторы устанавливались на многие легковые автомобили-полуторки и грузовики марки ЗИС. Двигатели внутреннего сгорания, работающие на природном газе, были незаменимы и удобны из-за несложного устройства и дешевизны.
- Сегодня газогенераторные установки применяются для отопления домов и жилищ.
- Для выработки электроэнергии с помощью различных турбинных установок или электрогазогенераторов.
- До сих пор некоторые люди устанавливают на свои жигули подобные агрегаты. Машина при этом совершенно исправна и не требуют больших затрат. Также из-за низкого загрязнения воздуха по сравнению с нефтяным топливом, многие люди все больше переходят на автомобильные газогенераторы для ДВС.
- В промышленности применяются газогенераторы, работающие на каменном угле, который может давать большее количество энергии.
Плюсы технологии
Газогенераторы отлично справляются с базовыми задачами выработки энергии. Так, если обычные твердотопливные агрегаты имеют КПД на уровне 60%, то газовые аналоги – более 80%. Отмечаются и положительные нюансы обслуживания. Поскольку в камере происходит полное сгорание с выводом углекислотной смеси, в дальнейшем не требуется специальная очистка стен оборудования. Безусловно, есть и преимущества экономического характера. Простейшая газогенераторная установка на дровах позволяет сэкономить до 30-40% по сравнению с электрическими обогревателями и котлами, обеспечивающими аналогичный тепловой эффект.
Минусы технологии
Достоинства газогенераторов могли бы их сделать основным средством выработки электрической и тепловой энергии, если бы не слабые места. К ним в первую очередь относится многокомпонентность функциональных частей. Несмотря на простой принцип работы, газогенераторная установка содержит множество взаимозависимых элементов, что усложняет сборку и управление системой. Также стоит подчеркнуть необходимость постоянного поддержания горения путем загрузки топливного сырья. В условиях работающего производства это необходимо делать регулярно, поэтому без контролирующей автоматики обойтись не удастся.
Что же представляет собой данный агрегат
То, что оборудование этого класса привлекает все большее количество потребителей объясняется в первую очередь наиболее низкой ценой на топливо, если сравнивать с бензином и дизелем. Кроме того, работающие на газе генераторы являются одними из наиболее экологически чистых, что вполне соответствует требованиям современного покупателя.
Есть отличия у этого агрегата и в конструктивном плане.
Он состоит из следующих блоков:
- Двигателя;
- Альтернатора;
- Технологической обвязки.
Наличие последнего узла, включающего в себя устройства управления и обслуживания, позволило добиться стабильной работы оборудования в соответствии с запросами потребителя. Многие модели имеют стабилизаторы выходного тока и микропроцессорные узлы, что гарантирует не только высокое качество вырабатываемой электроэнергии, но и возможность мониторинга работы двигателя. На сегодняшний день некоторые из газовых генераторов способны одновременно производить энергию и тепло. Именно они более всего интересуют современного потребителя.
Прочие параметры
При выборе газогенераторов немаловажную роль играют такие параметры, как тип охлаждения, уровень шума и способ запуска агрегата.
Установки бывают двух типов:
- С воздушным охлаждением;
- С водяным охлаждением.
Первая разновидность обладает компактными габаритами и низкой ценой. Однако такие генераторы не способны осуществлять подогрев мотора. В связи с этим данное оборудование нельзя эксплуатировать при низких температурах окружающей среды. Вторая категория агрегатов прекрасно подойдёт для использования в зимних условиях на протяжении длительного времени. Данные устройства полностью автоматизированы, имеют сложную конструкцию, а также обладают большой мощностью и высоким уровнем надёжности.
При выборе газового генератора необходимо помнить, что уровень шума, издаваемого установкой во время работы, находится на довольно низком уровне, и в среднем составляет 65-70 Дб. Если конструкцией аппарата предусмотрено наличие шумозащитного кожуха, то интенсивность распространения звуковых волн будет сведена к минимуму. Однако стоит помнить, что такое устройство способствует перегреванию силовой установки. Поэтому для охлаждения агрегата необходимо регулярно устраивать перерывы в его работе.
Запуск электрогенератора может осуществляться тремя способами:
- При помощи шнура;
- С использованием стартера;
- Посредством автоматической системы.
Первый метод основан на резком вытягивании шнура и требует некоторых физических усилий. Второй способ базируется на простом нажатии кнопки либо повороте ключа. Наиболее прогрессивным является третий вариант. Для включения устройства не требуется вмешательство пользователя. начинает осуществлять свою деятельность именно в тот момент, когда происходит обесточивание внутренней сети.
Заключение
Невзирая на всю привлекательность идеи сжигания дров вместо бензина в современных условиях она практически нежизнеспособна. Долгий розжиг, езда на средних и высоких оборотах, влияющая на ресурс ДВС, отсутствие комфорта, — все это делает действующие установки обычными диковинками, не находящими широкого применения. А вот сделать газогенератор для домашней электростанции – совсем другой вопрос. Стационарный агрегат совместно с переделанным дизельным ДВС может оказаться отличным вариантом электроснабжения дома.
Источники
- https://AutoTopik.ru/vse-pro-avtomobili/908-na-drovah-ili-gazogeneratornye.html
- https://FB.ru/article/455064/gazogeneratornyie-dvigateli-printsip-rabotyi-tehnicheskie-harakteristiki-toplivo
- https://zen.yandex.ru/media/id/5a9ec3b3dcaf8ead78534917/avtomobili-sssr-gazogeneratornyi-gaz42-5e46ca246e1cd54e7a5c8afb
- https://otivent. com/kak-sdelat-gazogenerator-dlya-avtomobilya-svoimi-rukami
- http://www.uazbuka.ru/engine/fuel/GazGen/index.html
- https://principraboty.ru/princip-raboty-gazogeneratora/
- http://wiki.zr.ru/%D0%93%D0%B0%D0%B7%D0%BE%D0%B3%D0%B5%D0%BD%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80
- https://cotlix.com/kak-sdelat-gazogenerator-dlya-doma-ili-avtomobilya
[свернуть]
Авто на дровах — Энергознание на портале Энерговектор
Идея газогенераторного автомобиля, двигатель которого работает на газе, получаемом из твёрдого топлива, не нова, она возникла ещё в конце XIX — начале XX веков. Первые опыты по газификации дерева проводились ещё в 1870-х, когда полученный газ использовался для освещения улиц и приготовления пищи. Первый классический газогенераторный автомобиль, работающий на дровах и древесном угле, был сконструирован в 1900 г. во Франции. Вскоре патент на такой автомобиль был зарегистрирован и в России.
Принцип прост
Газификация дерева и других материалов — это процесс, в котором исходное сырьё превращается в горючие газы после нагрева. В транспортное средство устанавливается специальный котёл-газогенератор, по виду напоминающий водонагреватель. Он почти доверху набивается древесиной, которая сжигается при ограниченном доступе воздуха. В котле создаётся очень высокая температура (до 1400 °C), под действием которой твёрдое топливо разлагается с выделением газов — горючих (этилен, метан, угарный газ, водород) и негорючих (азот, углекислый газ). Таким образом, автомобильный газогенератор — это простой, по сути, агрегат, притом громоздкий и конструктивно осложнённый дополнительными системами.
Ford Model A выпуска 1929 г.
Помимо собственно производства газа мобильная газогенераторная установка охлаждает его, очищает и смешивает с воздухом. Поэтому классическая схема включает сам газогенератор, фильтры грубой и тонкой очистки, охладители, электровентилятор для ускорения розжига и трубопроводы. Получаемая смесь газов и подаётся в ДВС в качестве топлива.
Газогенераторный автомобиль (ГГА), быть может, не так элегантно выглядит, как его бензиновые и дизельные собратья, однако экономически эффективнее и экологичнее их. Пробег ГГА от одной заправки примерно такой же, как у электромобилей, но, в отличие от последних, проблем с перезаправкой, по крайней мере, на большей части территории России, нет никаких. После повышения цен на бензин интерес к этой почти забытой технологии возрождается: умельцы переводят свои машины на дровяное топливо.
Немного истории
В 1920-х немецкий инженер Георг Имберт разработал удачный серийный газогенератор. Полученные в нем газы охлаждались, очищались и осушались, после чего подавались в слегка доработанный ДВС транспортного средства. Генератор Имберта массово производился с 1931 г. В конце 1930-х эксплуатировалось около 9 тыс. ГГА, почти исключительно в Европе.
Эта технология стала общеупотребительной в европейских странах и Советском Союзе во время Второй мировой войны, когда потребление нефтепродуктов нормировалось. В одной лишь Германии к концу войны использовалось почти полмиллиона ГГА. Была построена сеть из примерно 3 тыс. «заправочных станций», где водители могли пополнить запас дров. Газификаторами дров оборудовались не только легковые автомобили, но и грузовики, автобусы, тракторы, мотоциклы, суда и железнодорожные локомотивы. На древесном газе ездили даже танки.
ГАЗ-42
В 1942 г., когда эта технология ещё не достигла пика популярности, было около 73 тыс. ГГА — в Швеции, 65 тыс. — во Франции, 10 тыс. — в Дании, 9 тыс. — в Австрии и Норвегии и почти 8 тыс. — в Швейцарии. В Финляндии в 1944 г. эксплуатировались 43 тыс. «дровяных транспортных средств», в том числе 30 тыс. автобусов и грузовиков, 7 тыс. легковых автомобилей, 4 тыс. тракторов и 600 легкомоторных судов. ГГА использовались в США, Азии и Австралии, где их было 72 тыс. В общей сложности во время Второй мировой по миру использовалось более миллиона ГГА.
В СССР с 1935 г. и до самого начала Великой Отечественной войны на предприятиях Министерства лесной промышленности и ГУЛАГа «полуторки» ГАЗ-АА и «трёхтонки» ЗИС-5, а также автобусы на их базе переделывались для работы на дровах. Также отдельными партиями газогенераторные версии грузовиков производились самими автозаводами. Например, советские автоисторики приводят число 33840 — столько было выпущено газогенераторных «полуторок» ГАЗ-42. Газогенераторных ЗИСов моделей ЗИС-13 и ЗИС-21 в Москве было произведено более 16 тыс.
За довоенное время советские инженеры создали более 300 различных вариантов газогенераторных установок, из которых 10 дошли до серийного производства. Во время войны конструкторы серийных заводов подготовили чертежи упрощённых установок, которые могли изготавливаться на местах в автомастерских без применения сложного оборудования. По воспоминаниям жителей северных и северо-восточных регионов СССР, грузовики на дровах можно было встретить в глубинке вплоть до 1970-х.
После войны, когда ограничения на отпуск бензина были сняты, газогенераторные машины начали быстро исчезать. В начале 1950-х в ФРГ осталось всего 20 тыс. ГГА. Единственная на сегодня страна, где массово используются автомобили на дровах, — это Северная Корея. В условиях изоляции от мировой экономики там ощущается дефицит жидкого топлива.
В 1957 г. шведское правительство инициировало исследовательскую программу подготовки к быстрому переходу на ГГА в случае внезапного дефицита нефтепродуктов. У Швеции нет запасов нефти, зато много лесов. Цель исследования — разработать усовершенствованный стандартизованный газогенератор, который можно было бы устанавливать на транспортные средства любых типов.
Это исследование, оплаченное компанией Volvo, позволило получить большой объём теоретических сведений и практического опыта эксплуатации различных видов газогенераторных автомобилей и тракторов, общий пробег которых превысил 100 тыс. км. Результаты были обобщены в документе, датированном 1986 г., в котором также обсуждаются некоторые эксперименты в других странах. Шведские и особенно финские инженеры-любители использовали эти данные для дальнейшего развития технологии.
Чем топить?
В основном используются древесина в различных видах (дрова, отходы лесозаготовки и мебельной промышленности, пеллеты и т. п.) или древесный уголь, но список этим не ограничивается. Пластик, резина, полиэтилен, тряпичная ветошь, различный мусор, птичий помёт и многие другие виды отходов могут служить топливом для газогенераторного котла (конечно, расход топлива и состав газа меняются в зависимости от сырья). Подсчитывая стоимость дров и древесного угля, нельзя забывать о различных бесплатных отходах, которые могут быть использованы, — лузга семечек, скорлупа орехов, стержни кукурузы, отработанный кофе после кофемашин, сено, торф. Любители ГГА утверждают, что их автомобили очищают придорожную полосу от мусора.
Реальная экономия
Для автомобиля, расходующего 10 л бензина на 100 км, потребление дров после установки современного газогенератора составляет в среднем около 20 кг. При этом мощность двигателя снижается всего на 4%, показатели максимальной и крейсерской скорости почти не меняются.
Таким образом, килограмм дров заменяет пол-литра бензина. Стоимость килограмма дров примерно втрое меньше стоимости литра бензина, так что экономия очевидна.
ЗИС-13
Один из самых серьёзных недостатков ГГА — большое время выхода газогенератора на режим. При работе на древесном угле двигатель можно запустить уже через 10-30 с после розжига котла, на дровах (и мусоре) — через 5-15 мин.
Октановое число газа, получаемого таким способом, доходит до 110-120, так что газ снижает детонацию и в целом щадит двигатель. В отличие от бензина, газ не смывает масляную плёнку со стенок цилиндров, в результате двигатель работает тише и ровнее. Однако при неправильной фильтрации топлива (изначально в 1 м3 газа содержится около 3 г золы и пыли) твёрдые частицы, попадая в двигатель, будут приводить к его преждевременному износу. Поэтому важнейшие элементы газогенератора — это продуманные системы фильтрации и охлаждения (по результатам экспериментов известно, что при увеличении температуры газа с 20 до 70 °C мощность ДВС падает на 25%).
Вопросы экологии
При сжигании веществ органического происхождения вредных выбросов будет немного — в процессе работы двигателя будут получаться в основном углекислый газ и зола, из которой можно делать удобрения. По результатам исследований, проводимых в Европе, автомобили на дровах намного экологичнее традиционных транспортных средств.
Многих также беспокоит вопрос вырубки лесов. Хочется заметить, что для обеспечения ГГА топливом не обязательно вырубать лес. Приверженцы этой технологии пользуются ветками и дровами от сухих деревьев, которых много в лесополосах вдоль дорог. Кстати, производство нефтепродуктов тоже наносит большой вред окружающей среде.
Кому подходит ГГА?
В первую очередь жителям глубинки, где моторное топливо сложно найти или оно стоит слишком дорого. Однако в последнее время горожане, озабоченные проблемами экологии, нередко переоборудуют свои авто в ГГА.
Например, житель Англии Колин Дэвисон с друзьями проехал по всей стране (2575 км), заправляя свой автомобиль отходами кофемашин. Маршрут был проложен между 37 кофейнями, в которых группа брала отработанный кофе, в результате чего её путешествие было занесено в Книгу рекордов Гиннесса. Максимальная скорость составила 105 км/ч. Швед Йохан Линель за 20 дней проехал всю Швецию (5420 км) на дровах. Расход древесины составил 7 м3. При этом скорость доходила до 150 км/ч.
Украинец Андрей Лагунов пошёл еще дальше — он разработал обучающий курс «Авто на дровах своими руками», а также собрал много информации о газогенераторах и их владельцах. Любой желающий, по словам Андрея, может сделать газогенератор своими руками за несколько дней, потратив менее 50 долл.
Источник: Энерговектор
Авто на дровах работает при помощи газогенератора, производящего газ из дров.
Еще в 30-е годы прошлого века ученые СССР изобрели машины, работающие на дровах, которые назывались газогенераторными. Единственное их отличие заключалось в наличии особой конструкции в виде короба позади машины. В те времени такое устройство было необходимо, ведь в стране был недостаток бензина. Хотя преимуществ у таких машин было немного, их производство было массовым. Тяжелые автомобили на дровах широко использовались во времена Великой Отечественной войны, но только для невоенной техники – бензин уходил на поля боя.
В послевоенный период топлива производилось все больше, и газогенераторный автомобиль постепенно уходил в историю. Тем не менее и сегодня можно встретить людей, которые создают автомобиль на дровах – «машину из прошлого» – самостоятельно либо из-за своего интереса, либо в целях экономии.
Однако нужно ли на самом деле устанавливать газогенератор? Как он работает? Есть ли польза для автомобиля? Постараемся разобраться в этом вопросе.
Принцип работы агрегата
Газогенератор можно сравнить с колонной, имеющей цилиндрическую форму с сужением книзу. От агрегата отходят патрубки для подачи воздуха и выхода горючей смеси. Основным агрегатом, из числа представленных на схеме, является, конечно, газогенератор. Еще имеется люк для доступа в зольник и отверстие, для того чтобы можно было загружать топливо. Дымоход отсутствует.
Для начала следует понять принцип работы газогенератора. Эта информация необходима тем, кто намерен узнать принцип работы газогенератора или «пиролизного газогенератора» – таково его полное название.
Данная установка нужна для выделения смеси газов путем разложения дров, торфа, угля. Затем следует рассмотреть принцип действия газогенератора на дровах. Благодаря пиролизу дерева, выделяются газы, способные гореть. Таким образом, сюда можно включить угарный газ, водород, метан и прочие непредельные углеводороды.
Из чего состоит пиролизный газ?
Порода древесины не влияет на состав смеси при пиролизе. Соответственно, береза, сосна и ель выделяют практически одинаковое количество всех вышеперечисленных газов. После пиролиза 1 куб. м дерева можно получить около 90 м3 неконденсирующегося газа.
Полезная теплота при сгорании 1 м3 неконденсирующегося газа, кДж/м3, вычисляется по формуле.
Для примера возьмем березу и сделаем расчёт калорийности газа:
Qнр=127,5*28,4%+108,1*3,0%+358,8*18,2+604,4*1,4=11 321,62 кДж/м3= 11,3 МДж/м3
Затем делим полученное число на 4,187. Таким образом, Qнр будет равен 2704 кКал/м3. Для сравнения калорийность природного газа составляет 8000 кКал/м3.
Технологический процесс
Один лишь полученный газ непригоден для ДВС, поэтому необходимо соблюдать определенный процесс, который поделен на этапы:
- Дрова не должны сжигаться, а разлагаться термическим образом, ввиду низкой подачи кислорода.
- Следующий этап обуславливается удалением взвешенных частиц при помощи фильтра.
- Затем с помощью воздушного или жидкостного теплообменника смесь охлаждается.
- После этого смесь очищается при помощи тонкой очистки.
- На последнем этапе горючее подходит в смеситель и затем попадет в двигатель.
Мифы о газогенераторных установках
Газогенераторная установка для современного человека является пережитком прошлого, поэтому существуют различные мифы. Но действительно ли им можно верить?
- Миф №1. Утверждается, что установка имеет крайне высокий коэффициент полезного действия. В действительности, вследствие пиролиза КПД не может превышать 70–80%.
- Миф №2. Утверждается, что установка может проработать и на влажном топливе. Можно сказать, что частично это является правдой. Но влажное топливо уменьшает количество производимой смеси. Иногда падение достигает 25%, так как при испарении пара от воды расходуется больше энергии, чем при выделении газа. Поэтому дрова всё-таки стоит сушить.
- Миф №3. Утверждается, что установка поможет сэкономить расходы по отоплению дома, в сравнении с традиционными устройствами. Однако здесь следует просчитать целесообразность двух установок по их цене и занимаемой площади. Таким образом, это миф.
Как сделать газогенератор самому?
Для того чтобы создать газогенераторную установку, потребуется много сил, так как она не должна занимать много места или быть тяжелой, но при этом быть высокопроизводительной. Нержавеющая сталь будет идеальным материалом для производства корпуса, фильтрующего и охлаждающего устройства. Однако цена такого материала довольно высока, по сравнению со стандартной сталью.
Для наружной емкости можно использовать железную бочку или металлический прокат (толщина не должна быть менее 1 мм), а внутренняя может быть сделана из газового баллона или ресивера от грузовых автомобилей. Стоит предусмотреть отверстия для зольника, чтобы была возможность производить чистку. В камере сгорания должна располагаться горловина (в нижней части) для смольных отложений. Колосниковая решетка отлично получается из арматуры. Патрубки можно купить, благо в продаже они бывают разных размеров и по невысокой стоимости. Крышку можно сделать из металлического листа. Фильтрами могут быть отслужившие огнетушители, а охладителем – «гармошка», применяемая в системе отопления. Кроме того, понадобятся смеситель и вентилятор с реле.
Дровяные машины сегодня
Автомобиль, работающий на дровах, это экологичное средство передвижения. Такое топливо не вредит атмосфере так сильно, как солярка и бензин. Имея ретротранспорт, вопрос наличия заправок становится неактуальным. Но такие автомобили безвозвратно утратили свою популярность. Сегодня газогенераторы интересны только энтузиастам или тем, кто хочет сэкономить на топливе. Не так давно экспериментально, в штучном экземпляре выпускались Москвич-2141, РАФ-2203, работающие на дровах. Конструкторы говорили, что при скорости 85 км/ч можно проехать 120 км, не заправляясь заново.
На данный момент авто на дровах повсеместно используются в Северной Корее, в связи с изоляцией и, как результат, нехваткой топлива.
Итог
Идея использования дров в качестве топлива может быть привлекательной. Однако стоит понимать, что газогенератор на дровах является неконкурентной альтернативой жидкому топливу. Двигатель на газовой смеси не способен раскрыть свой потенциал, так как разогнать автомобиль до 80 км/ч будет недостижимой целью.
‘; blockSettingArray[0][«setting_type»] = 6; blockSettingArray[0][«elementPlace»] = 2; blockSettingArray[1] = []; blockSettingArray[1][«minSymbols»] = 0; blockSettingArray[1][«minHeaders»] = 0; blockSettingArray[1][«text»] = ‘
‘; blockSettingArray[1][«setting_type»] = 6; blockSettingArray[1][«elementPlace»] = 0; blockSettingArray[3] = []; blockSettingArray[3][«minSymbols»] = 1000; blockSettingArray[3][«minHeaders»] = 0; blockSettingArray[3][«text»] = ‘
отечественные автомобили на альтернативном топливе
Один из первых отечественных паромобилей, построенный в 1902 году в Санкт-Петербурге.
Вспомнив отечественные электромобили (ЗР, 2016, № 3), поговорим о машинах с двигателями на иных альтернативных видах топлива.
С легким паром!
На рубеже ХIХ-ХХ столетий преимущества бензина не были неоспоримы. Ведь и первый cамодвижущийся экипаж, построенный французом Кюньо еще в конце ХVIII века, в движение приводила паровая машина. Многим и через сто лет казалось, что паровики имеют будущее. Тем более что нефть надо было добывать или покупать, перерабатывать, а это недешевое удовольствие.
Естественно, среди машин, предлагавшихся в начале прошлого века немногочисленным платежеспособным покупателям Российской империи, были и паромобили: американские, марки Locomobile, их британские аналоги Stanley и французские Gardner-Serpollet. Логично, что отечественные производители не оставили их без внимания.
Образцово‑показательный газогенераторный ЗИС‑13 на ВСХВ (она же ВДНХ, она же ВВЦ).
В 1902 году на петербургской выставке московский завод Дукс показал свой паромобиль. Реклама писала даже о двух моделях, мощностью 6 и 12 л.с. В том же 1902‑м паромобиль, скопированный с французского Gardner-Serpollet, сделали в ремесленном училище при приюте принца Ольденбургского. Выбор прототипа явно не случаен. Паровики Gardner-Serpollet были у великого князя Дмитрия Романова и близкого к правящему дому барона Фредерикса, а Ольденбургские состояли в родстве с Романовыми. Паромобиль из ремесленного училища остался в единственном экземпляре, а машин, копирующих Locomobile, в России продали едва ли десяток. Казалось, о водяном паре забыли навсегда…
Но ведь в США и Западной Европе паромобили делали, хотя и в небольших количествах. Британский грузовик Sentinel, закупленный в 1938‑м для изучения специалистами НАТИ, подвиг наших инженеров сделать нечто подобное. В 1939 году разработали модель МП‑28 на шасси грузовика ЯГ‑6. Паровая машина должна была развивать 120–140 л.с. До воплощения дело дошло только после войны. Работы курировало МВД, ведь машину планировали использовать на лесозаготовках в дальних районах страны, где бензина было мало, лéса для топки паровой машины — завались, а работали на лесозаготовках преимущественно заключенные.
Бескапотный НАМИ‑012 с кабиной, объединенной с отсеком для паровой машины в единое целое, работал на швыркé — коротких (длиной до полуметра) дровах. Паровая машина развивала 100 л.с. при 1250 об/мин.
Прототип газобаллонного автомобиля, созданного специалистами НАТИ на базе ЗИС‑5.
Максимальная скорость автомобиля грузоподъемностью 6000 кг составляла всего 42 км/ч. В кабине вместо рычага переключения передач стояла ручка регулировки отсечки парораспределения. В 1949‑м построили еще два прототипа — второй бортовой грузовик и лесовоз. Провели полный цикл испытаний. Запас хода безрельсового паровоза составлял 75–100 км, а расход дров — примерно 400 (!) кг/100 км. У машины с очень тяжелым передком оказалась посредственная проходимость, поэтому сделали и полноприводный вариант НАМИ‑018.
Конечно, дрова были дешевле бензина и даже дизтоплива. Если не считать трудозатрат на их распилку, колку, заливку в котел 200 литров воды и времени на раскочегаривание машины. А кто считал? Рабочей силы, подведомственной МВД, было в избытке. Но по большинству параметров паровой грузовик заметно проигрывал бензиновому ЗИС‑150, тем более дизельному МАЗ‑200. В общем, паровики окончательно ушли в историю. Куда дольше прожили иные автомобили, топливом для которых тоже служили дрова.
Газовая атака
В 1930–1940 годы многие фирмы увлекались машинами с газогенератором. Особенно они расплодились во время Второй мировой войны, когда европейские страны испытывали острый дефицит бензина. А в СССР с его необъятными лесами этой темой занялись в середине 1930‑х. Общий принцип работы газогенераторной установки прост: топливо (древесные чурки или уголь), сгорая при недостатке кислорода, выделяет газ, который идет в камеру сгорания двигателя. Правда, для бесперебойной работы мотора степень сжатия должна быть больше, чем у серийного.
ЗИС‑5 с газогенератором совершил в 1938 году пробег по маршруту Москва — Омск — Ленинград — Киев — Минск — Москва. Участники пробега — железные люди!
Первый газогенераторный НАТИ-А Автодор собрали на базе легковушки ГАЗ-А в 1935 году. Автомобиль, созданный А. И. Пельтцером, имел довольно компактную газогенераторную установку, притороченную сзади, на месте несуществующего багажника. Степень сжатия двигателя подняли с 4,2 до 6,29. В пробеге Москва — Киев — Москва в октябре 1935 года машина показала максималку 60–70 км/ч. Полного бункера, вмещавшего 60 кг топлива, хватало на 150 км. Следующий вариант, уже на базе ГАЗ-М1, появился в 1938 году. На его создание конструкторов во главе с Пельтцером вдохновил газогенераторный французский седан Panhard-Levassor. «Эмка» в пробеге протяженностью 5000 км заочно победила «француза».
ГАЗ-ГМ‑1 Пельтцера с 37‑сильным двигателем (вместо стандартного 50‑сильного) показал среднюю скорость 60,98 км/ч, что было близко к максимальной — 67 км/ч (у стандартной «эмки» — 105 км/ч). ГАЗ-ГМ‑1 вроде бы даже побил мировой рекорд для газогенераторных автомобилей, что, правда, не было зафиксировано международными организациями и не поспособствовало началу серийного производства. В НАТИ сделали еще один опытный образец — разработанный инженером И. С. Мезиным, несколько прототипов газогенераторных «эмок» собрали в Горьком. Тамошний вариант по характеристикам недалеко уехал от первого. Как и НАТИ-ГЛ2, созданный в НАТИ уже в 1943‑м. Его мотор развивал 35 л.с., максималка достигала 75 км/ч, а расход древесных чурок составлял 38–50 кг/100 км.
Куда полезнее газогенераторные установки оказались для грузовиков, особенно работающих на лесозаготовках. Такие конструкции в НАТИ упорно совершенствовали и даже довели их до серийного производства. С 1936 года в Москве выпускали 45‑сильный ЗИС‑13, а с 1939‑го — модернизированный ЗИС‑21А. Оба имели дровяную газовую установку и были произведены тиражом около 17 тысяч экземпляров. Угольных ЗИС‑31 сделали 45 штук. Еще примерно 33 тысячи дровяных грузовиков с 30‑сильным двигателем построил ГАЗ. Несмотря на низкую скорость и чудовищно трудоемкое обслуживание (инструкция предписывала, к примеру, спускать конденсат каждые 150 км и чистить охладитель через 200 км пробега), в условиях дефицита бензина (особенно во время войны и в первые послевоенные годы) газогенераторные ЗИСы на уральском заводе делали аж до 1958 года.
На газогенераторной «эмке» ГАЗ-ГМ‑1 сотрудники НАТИ Пельтцер, Понизовкин и Титов проехали 5000 км со средней скоростью около 61 км/ч.
В 1930‑х начали работать и над машинами, использующими сжатый или сжиженный газ. Их конструкция менее замысловата, нежели у моделей на дровах. Нужен был дозатор, питающий двигатель, и, конечно, баллон с газом.
Прототип под именем ГАЗ-СГ44 на базе «эмки» создали в 1938‑м. В отличие от газогенераторных машин, мощность двигателя не снижалась, да и запас хода, составляющий около 200 км, по тем временам не стыдный. Однако для серийных автомобилей надо было производить баллоны высокого давления, где-то их регулярно заправлять и при этом… соблюдать предельную осторожность. Газовая «эмка» стала первой советской машиной, к которой прилагался штатный огнетушитель. До войны ГАЗ, формально развернувший-таки серийное производство грузовиков ГАЗ‑44 (на сжатом газе) и ГАЗ‑45 (на сжиженном газе), построил всего-то 130 экземпляров. Только послевоенные грузовые ЗИСы и ГАЗы всех моделей имели уже действительно серийные газовые модификации, просуществовавшие практически до полного ухода бензиновых грузовиков в отставку. Разумеется, работали такие машины в местах, где поблизости были соответствующие заправки.
Интерес к газовым легковым автомобилям у частников возникал периодически, чаще всего в связи с очередным подорожанием бензина. Но наша промышленность подобных серийных модификаций не предлагала. Лишь ГАЗ выпускал небольшое количество газовых Волг для такси. Говорят, инструкция предписывала выезжать из парка и заезжать в него только на бензине. Может, и врут. Но загробный юмор приятеля, работавшего некогда на ГАЗ‑24–17, и надсадный запах газа в салоне этих машин я запомнил хорошо. В 1990‑е годы, когда интерес к газовым автомобилям у нас был очень велик, такую модификацию, помнится, анонсировал ВАЗ, — но серийной версии нет до сих пор. Впрочем, сегодня АВТОВАЗ готовит новые модели.
Вчерашнее завтра
Проект советского парового грузовика: кабина и паровая машина скомпонованы в одном модуле.
Существовали ли в СССР гибридные автомобили? Знатоки вспомнят автобус ЗИС‑154 и БелАЗ — и будут правы. Правда, на современные гибриды они похожи не очень. У послевоенного дизельного автобуса ЗИС‑154 была электрическая трансмиссия. А на 75‑тонный БелАЗ‑549 1968 года вместо гидромеханической передачи, применявшейся на предыдущих моделях, поставили генератор постоянного тока, питающий электродвигатели задних ведущих колес. Всё это хозяйство работало от 850‑сильного дизеля; с 1973 года на БелАЗ‑549А установили более мощный — 1050‑сильный.
За год до появления этой версии, в 1972‑м, на выставке «Электро‑72» показали изящный и даже авангардный по дизайну минивэн ЭТ‑800 Электра. Машину соорудили в мастерских Эстонского республиканского союза потребительских обществ, где за пять лет до этого построили небольшую партию компактных переднеприводных грузовичков с мотором от Запорожца. ЭТ‑800 тоже имел бензиновый двигатель, подзаряжающий аккумуляторы через генератор постоянного тока. Сообщали, что семиместная машина может развить 80 км/ч. Но подробной информации о ней и по сей день мало.
Газотурбинный НАМИ‑053 в кузове ЗИЛ‑127 разгонялся до 160 км/ч.
Свой вариант гибрида сделали и в Риге: на РАФ‑977 установили 30‑сильный двигатель МеМЗ‑966В, генератор, батареи и тяговый электродвигатель. Конечно, об этих машинах писала пресса. Но специалисты и тем более руководители промышленности воспринимали их все же как игру инженерного ума. Впрочем, и потребность в таких сложных машинах была (или есть? Да простят меня создатели гибридов!) сомнительной.
В начале 1950‑х годов многим казалось, что серийными вот-вот станут автомобили с турбиной. Увлекались идеей использования авиационных двигателей и в Великобритании, и в США. Английский экспериментальный Rover Jet 1 появился еще в 1951‑м, тремя годами позже турбину водрузили на Plymouth. А в 1963–1964 годах выпустили даже небольшую партию газотурбинных двухдверных седанов Chrysler. Мощность крайслеровской турбины была довольно скромной — 130 л.с., зато предельный крутящий момент впечатляет: 575 Н·м турбина выдавала с «нулевых» оборотов. Правда, от расхода топлива (около 24 литров на сотню) даже американцы были не в восторге. А от экологических показателей Крайслера нынешние «зеленые» потеряли бы дар речи.
В СССР автомобиль с турбиной НАМИ‑053 построили еще в 1959‑м. Это был автобус ЗИЛ‑127, в котором осталось всего десять сидений, а всё остальное пространство занимало оборудование и измерительная аппаратура. Благодаря турбинемощностью 360 л.с. 13‑тонная машина развивала 160 км/ч. Преклоняюсь перед водителем, которой разогнал сумасшедший автобус до такой скорости!
Через четыре десятилетия после того, как увлечение автомобильными турбинами прошло (правда, на танках они прижились-таки), мир увлекся машинами на топливных элементах — водородомобилями. Сделать экспериментальные образцы и даже партии чудо-автомобилей своим долгом посчитала почти каждая солидная фирма.
Не остался в стороне и Волжский автомобильный завод. Свой АНТЭЛ (автомобиль на топливных элементах) тольяттинцы представили в 2001 году в кузове ВАЗ‑2131. Выбор «длинной» Нивы был неслучаен — всё необходимое удалось упаковать лишь в самый большой ВАЗ. Спереди — двигатель мощностью 25 кВт, сзади — электрохимический генератор и баллоны с водородом под давлением 250 атм. Переднеприводная машина, чей багажник был полностью забит тем, без чего она не поехала бы, могла преодолеть без дозаправки лишь 200 км; максимальная скорость составляла всего 80 км/ч, а снаряженная масса — 1570 кг. Через два года появился АНТЭЛ‑2 в кузове универсала ВАЗ‑2111, уже больше похожий на нормальный автомобиль. Баллоны с водородом под давлением 400 атм удалось пристроить под багажник, объем которого составлял 350 л. Машина, в отличие от предшественницы, довольствовалась атмосферным кислородом. Правда, понадобилось устройство очистки от углекислого газа. При массе 1280 кг максимальная скорость составляла 100 км/ч, запас хода — 350 км.
Планировали совершенствовать водородомобили и дальше. Но мода на подобные экипажи как-то спала, ведь к ним по сей день слишком много вопросов — начиная с отсутствия инфраструктуры для заправки и заканчивая уровнем пассивной безопасности в случае аварии. Да и ездовые повадки таких машин оставляют желать лучшего. Знаю это по впечатлениям от тест-драйва водородной Мазды, случившегося лет десять назад.
В общем, двигатель внутреннего сгорания пока непобедим. Пар из трубы и копоть от сгорания дров в газогенераторах давно рассеялись, водородомобили по-прежнему недалеко уехали от экспериментальных лабораторий. Разве чтоэлектромобили… Но и они не способны всерьез потеснить главный двигатель ХХ века. По крайней мере, пока
4.1 Описание электростанции на древесном газе
4.1 Описание электростанции на древесном газе4.1.1 Подача топлива
4.1.2 Газификатор древесины
4.1.3 Установки охлаждения и промывки древесного газа
4.1.4 Фильтр древесного газа
4.1.5 Двигатель и электрические генератор
На Рисунке 4.1 представлена блок-схема процесса производства электроэнергии. Более подробная блок-схема системы газификатора показана на рисунке 4.2
В таблице 4.1 приведены технические данные установки.
Таблица 4. 1 Технические характеристики газификатора древесины с пониженной тягой на лесопильном заводе Sapire
Мощность электрогенератора | 40 кВт |
Мощность двигателя | 90 л.с. |
Количество часов работы электрогенератора в сутки | 14 |
Суточная потребляемая мощность пилорамы | 463 кВтч |
Расход древесных отходов на кВтч | 4. 1 кг |
Максимальная влажность древесных отходов | 37% (сухая) |
Лесопилка расположена в лесном массиве, где много древесины. Дороги в этом районе немощеные, поэтому лесопилка хранит запасы на складе для хранения сырья в дождливые периоды.
Подача древесины в газификатор полностью перекрыта, так как она поступает из отходов лесопиления. В среднем эти отходы составляют 35% от входящего количества бревен, что превышает потребности газификатора древесины (около 570 т / год).Таким образом, нет необходимости экономить на топливе, и фактически используется как можно больше, чтобы уменьшить площадь, необходимую для хранения.
В таблице 4.2 показаны породы древесины, используемые в качестве топлива для газификатора, и насыпная плотность соответствующей древесной щепы.
Рисунок 4.1. Блок-схема системы газификации электростанции на лесопильном заводе Sapire.
Таблица 4.2 Древесная щепа, используемая для производства газа
Название дерева | ||
Общее название | Ботаническое название | Насыпная плотность (кг / м) |
Пало Роса | Aspidosperma peroba | 861 |
Петерибы | Кордия меллеа | 543 |
Лапачо | Tecoma ipe | 993 |
кедр | Cedrella fissilis | 554 |
Гуака | Ocotea puberula | 448 |
Гуатамбу | Aspidosperma Austr. | 883 |
Максимальные размеры древесного топлива составляют 40 x 40 x 5 см, т. Е. Самые большие, которые можно подавать в загрузочный лоток газогенератора, а также куски меньшего размера, вплоть до размера спичечного коробки. все принято. Теоретически можно включить около десяти процентов стружки и опилок, но на практике это дало плохие результаты, потому что лесопильный завод имеет земляной пол и пыль имеет тенденцию уноситься вместе с древесными отходами.
Максимальное зарегистрированное содержание влаги составило 37 процентов, уменьшаясь с размером и продолжительностью хранения журналов до преобразования.Таким образом, содержание влаги зависит от лесопильного производства и времени года.
Колебания влажности древесины ниже максимального значения не влияют на качество топливного газа, поскольку сырье высыхает в бункерной секции газогенератора до того, как достигнет зоны пиролиза.
Генератор древесного газа состоит из блока со стенками из листового железа толщиной 6 мм, облицованными изнутри кирпичами с содержанием глинозема 50 процентов (AL 2 O 3 ). Его общая высота составляет 3600 мм, а внешний диаметр — 1400 мм.Загрузочный желоб для топлива (дров) имеет диаметр 400 мм. В реакторе установлены чугунные решетки в 300 мм от дна. Эти решетки расположены на расстоянии 20 мм друг от друга и оснащены системой перемещения рычага для удаления золы. Под решетками, в 150 мм от основания, находится система водяного охлаждения с тройной функцией:
1. Гидравлическое перекрытие зоны выпадения золы для предотвращения утечки горючего газа.
2. Охлаждение решетки и зоны рычага.
3. Смыть золу водой.
Рисунок 4.2. Эскиз газогенератора древесины на лесопильном заводе Sapire
Газификатор имеет восемь входных отверстий для воздуха диаметром два дюйма. Четыре из них отделены от дна равными интервалами 1800 мм. Остальные четыре разделены таким же образом, но на расстоянии 1320 мм от дна (см. Рисунок 4.2).
Газификатор, будучи умеренно большим, может принимать куски древесины различного размера и содержания влаги. Древесная загрузка образует столб, в котором карбонизация происходит внизу, а конвекционное тепло сушит куски вверху.Одной загрузки топлива хватает примерно на четырнадцать часов, и ее можно пополнить во время работы, поскольку крышка желоба всегда остается наполовину открытой.
Содержание влаги в топливе должно быть низким, предпочтительно ниже 25 процентов, чтобы в зоне окисления могло происходить эффективное окисление различных продуктов пиролиза. В результате получается топливный газ хорошего качества.
Зольность составляет от 0,7 до 0,9 процента от веса сухой древесины. Во время газификации большая часть золы попадает на решетку, где она попадает в слой воды, вытекающей из охлаждающего устройства, и сбрасывается в канализацию.Небольшая часть летучей золы остается в газе и удаляется путем охлаждения.
Из сосуда из листового железа диаметром 600 мм и высотой 1300 мм полудюймовая водяная трубка с прикрепленным к концу диском, имеющим отверстия, как в обычном душе, распыляет воду, как дождь, на горячие газы. Затем вода сливается в другую емкость, где она распыляется вентилятором с электрическим приводом, вращающимся со скоростью 1500 об / мин. Эта же вода затем самотеком сбрасывается в нижнюю часть газогенератора, где, проходя через ряд кирпичей, она создает гидравлическое уплотнение, предотвращающее утечку горючих газов.Наконец, вода циркулирует, вытягивая пепел в канализацию. Конечная температура охлаждающей воды колеблется от 75 ° до 85 ° C.
Газификатор имеет цилиндрический фильтр высотой 2650 мм и диаметром 800 мм. Цилиндр заполнен кусками мягкой древесины размером 35 x 8 x 7 см, доходящими до верхней части отверстия для выхода газа в двигатель (см. Рисунок 4.3). Большой объем и большая площадь поверхности фильтра обеспечивают эффективную систему охлаждения газа, который подается в двигатель при температуре около 45 ° C.
Рисунок 4.3 Газовый фильтр. (Фильтрующий материал: куски мягкой древесины)
Фильтр прост и практичен и обеспечивает длительный срок службы, фильтрующий материал меняют каждые два года эксплуатации.
Генераторно-двигательная группа состоит из бывшего в употреблении оборудования, которое было полностью отремонтировано. Двигатель — одноцилиндровый «Deutz» мощностью 90 л.с. при 150 об / мин. Из-за медленного действия и чрезвычайной прочности расчетный срок службы составляет 40 лет.Генератор производства AEG мощностью 40 кВт при частоте вращения 1500 об / мин.
Управляйте грузовиком на дровах!
Древесный газ, или газификация древесины, — это технология возобновляемых источников энергии, созданная несколько десятилетий назад, которая преобразует куски дров, древесной щепы или другой целлюлозной биомассы в древесный уголь, летучие и горючие газы, а иногда и горючие жидкости.
Процесс, который называется пиролизом, осуществляется путем варки древесины (в условиях низкого содержания кислорода) в генераторе древесного газа и сбора паров, которые затем направляются в автомобиль (в идеале грузовик или внедорожник с местом для перевозки газогенератор) сжигать карбюратор вместо бензина.
Основным «отходом» этого процесса является древесный уголь, который в настоящее время изучается как ценная добавка для некоторых почв. (Чтобы узнать больше, прочтите Сделать Biochar — эта древняя техника улучшит вашу почву.)
Этот процесс использовался для бензовозов в Англии во время Второй мировой войны. Поскольку современное общество по-прежнему чрезвычайно зависит от бензина в качестве основного топлива для транспорта, древесный газ привлек внимание исследователей Федерального агентства по чрезвычайным ситуациям (FEMA).Отчет, подготовленный Национальной лабораторией Ок-Ридж, работающей на Министерство энергетики, содержит подробные инструкции по строительству, установке и эксплуатации древесно-газового генератора. Загрузите отчет (ПРИМЕЧАНИЕ: это файл размером более 25 МБ, поэтому его невозможно загрузить через медленное Интернет-соединение) по следующей ссылке: «Строительство упрощенного генератора древесного газа для заправки двигателей внутреннего сгорания в нефтяной аварийной ситуации».
Целью отчета является разработка подробных иллюстрированных инструкций по изготовлению, установке и эксплуатации газогенератора биомассы (то есть генератора «генераторного газа», также называемого генератором «древесного газа»), который может обеспечения аварийным топливом для транспортных средств, таких как тракторы и грузовики, в случае, если нормальные источники нефти были серьезно нарушены в течение длительного периода времени.Эти инструкции подготовлены в формате руководства для использования любым механиком, имеющим достаточный опыт в изготовлении металла или ремонте двигателей.
В этом отчете делается попытка сохранить знания о газификации древесины, применявшиеся на практике во время Второй мировой войны. Подробные, пошаговые процедуры изготовления представлены для упрощенной версии времен Второй мировой войны, генератора древесного газа Imbert. Этот простой многослойный газификатор с нисходящим потоком может быть сконструирован для материалов, которые будут широко доступны в США в условиях длительного нефтяного кризиса.Например, корпус агрегата состоит из металлического оцинкованного мусорного бака, установленного на небольшой металлический барабан; используется обычная сантехника; В качестве решетки используется большая чаша для смешивания из нержавеющей стали. Вся компактная установка была установлена на переднюю часть сельскохозяйственного трактора и успешно прошла полевые испытания с использованием древесной щепы в качестве единственного топлива. Прилагается фотодокументация фактической сборки устройства, а также его работы ».
В начале 1980-х сотрудники MOTHER EARTH NEWS экспериментировали с концепцией древесного газа для привода грузовика.В конечном итоге они создали систему газификации древесины, изготовленную из переработанных водонагревателей, которая оказалась достаточно успешной, чтобы предложить план по генерации древесного газа в журнале.
Совсем недавно Роберт Бим из Уильямспорта, штат Пенсильвания, переделал свой Isuzu Trooper 1988 года для работы на дровах (см. Фото). Внедорожник способен проехать 20 миль на 25 фунтах щепы. Вы можете узнать больше о грузовике Бима и найти список статей в MOTHER EARTH NEWS на эту тему в статье Этот грузовик едет на щепе! И посетите веб-сайт Beaver Energy, чтобы узнать больше о Trooper.
Еще один источник совета из первых рук — дискуссионная группа по древесному газу.
Если вы любите возиться с двигателями и хотите более экологичное и автономное топливо для вашего грузовика, подумайте о создании генератора древесного газа для вашего автомобиля. Если да, поделитесь своими успехами и неудачами с другими, разместив комментарий ниже.
Фотографии: Роберт «Чип» Бим демонстрирует древесную щепу, которая питает его двигатель Isuzu Trooper на дровах; Бим ездит на своем на Гран-при Грин в Уоткинс-Глен, штат Нью-Йорк.Y.
Фото Дэвида Дюпри / AP Wide World
Дровяной газовый транспорт: дрова в топливном баке
————————————————- ————————————————— ——————————————-
————————————————- ————————————————— ——————————————-
Газификация древесины — это процесс, при котором органический материал превращается в горючий газ под воздействием тепла — процесс достигает температуры 1400 ° C (2550 ° F). Первое использование газификации древесины относится к 1870-м годам, когда она использовалась в качестве предшественника природного газа для уличного освещения и приготовления пищи.
В 1920-х годах немецкий инженер Жорж Имбер разработал генератор древесного газа для мобильного использования. Газы очищались и осушались, а затем подавались в двигатель внутреннего сгорания автомобиля, который практически не требует адаптации. Генератор Имберта производился серийно с 1931 года. В конце 1930-х годов эксплуатировалось около 9000 автомобилей, работающих на древесном газе, почти исключительно в Европе.
Вторая мировая война
Эта технология стала обычным явлением во многих европейских странах во время Второй мировой войны в результате нормирования ископаемых видов топлива. Только в Германии к концу войны в эксплуатации находилось около 500 000 автомобилей, работающих на газе.
Создана сеть из примерно 3 000 «автозаправочных станций», где водители могли запасаться дровами. Не только частные автомобили, но и грузовики, автобусы, тракторы, мотоциклы, корабли и поезда были оснащены установкой газификации древесины.Некоторые танки также работали на древесном газе, но для использования в военных целях немцы предпочитали производство жидкого синтетического топлива (из дерева или угля).
В 1942 году (когда технология еще не достигла пика своей популярности) в Швеции было около 73 000 автомобилей, работающих на газе, 65 000 во Франции, 10 000 в Дании, 9 000 в Австрии и Норвегии и почти 8 000 в Швейцария. В 1944 году в Финляндии было 43 000 «лесомобилей», из которых 30 000 были автобусами и грузовиками, 7 000 частных автомобилей, 4 000 тракторов и 600 лодок.(источник).
Woodmobiles также появились в США, Азии и, в частности, в Австралии, где 72 000 автомобилей работали на древесном газе (источник). В общей сложности во время Второй мировой войны было использовано более одного миллиона автомобилей для производства газа.
После войны, когда снова появился бензин, технология почти мгновенно ушла в небытие. В начале 1950-х годов в тогдашней Западной Германии оставалось всего около 20 000 лесовозов.
Программа исследований в Швеции
Рост цен на топливо и глобальное потепление привели к возобновлению интереса к дровам как прямому топливу. Десятки инженеров-любителей по всему миру переоборудовали стандартные серийные автомобили в автомобили, работающие на газовом топливе, при этом большинство из этих современных лесомобилей производится в Скандинавии.
В 1957 году правительство Швеции разработало исследовательскую программу для подготовки к быстрому переходу на автомобили, работающие на древесном газе, в случае внезапной нехватки нефти. В Швеции нет запасов нефти, но есть обширные лесные массивы, которые можно использовать в качестве топлива. Целью этого исследования было разработать улучшенную стандартизированную установку, которую можно было бы адаптировать для использования на всех типах транспортных средств.
Это расследование, проведенное при поддержке производителя автомобилей Volvo, привело к обширным теоретическим знаниям и практическому опыту работы с несколькими дорожными транспортными средствами (один из них показан выше) и тракторами на общем расстоянии более 100 000 километров (62 000 миль). Результаты суммированы в документе ФАО 1986 года, в котором также обсуждаются некоторые эксперименты в других странах.Шведские (обзор) и особенно финские инженеры-любители использовали эти данные для дальнейшего развития технологии (обзор, ниже автомобиль Юха Сипиля).
Дровяной газогенератор, который выглядит как большой водонагреватель, можно разместить на прицепе (хотя это затрудняет парковку автомобиля), в багажнике (багажнике) автомобиля (хотя на это расходуется почти все багажное отделение), либо на платформе в передней или задней части автомобиля (самый популярный вариант в Европе). В случае американского пикапа генератор размещается в кузове грузовика. Во время Второй мировой войны некоторые автомобили были оснащены встроенным генератором, полностью скрытым от глаз.
Топливо
Топливо для автомобиля, работающего на древесном газе, состоит из древесины или щепы (см. Рисунок слева). Можно также использовать древесный уголь, но это приводит к потере 50% доступной энергии, содержащейся в исходной биомассе. С другой стороны, древесный уголь содержит больше энергии, так что запас хода автомобиля может быть расширен.В принципе, можно использовать любой органический материал. Во время Второй мировой войны также использовались уголь и торф, но основным топливом была древесина.
Один из самых успешных автомобилей на древесном газе был построен в прошлом году голландцем Джоном. В то время как многие из последних газовых автомобилей производителей, кажется, вышли прямо из Безумного Макса, Volvo 240 голландца оснащен очень современной системой из нержавеющей стали (см. Первое изображение и два изображения ниже, а затем сравните с этим Volvo, этот БМВ, эта Ауди или эта Юго).
«Добывать древесный газ не так уж и сложно», — говорит Джон. «Производство чистого древесного газа — это другое дело. У меня есть возражения против некоторых лесомобилей. Часто получаемый газ такой же чистый, как и внешний вид конструкции».
Датч Джон твердо верит в генераторы древесного газа, в основном для стационарного использования, такого как отопление, выработка электроэнергии или даже производство пластмасс. Volvo призван продемонстрировать возможности технологии.«Припаркуйте итальянский спортивный автомобиль рядом с автомобилем, работающим на древесном топливе, и толпа соберется вокруг него. Тем не менее, автомобили на древесном газе предназначены только для идеалистов и во время кризиса».
Диапазон
Volvo развивает максимальную скорость 120 км / ч (75 миль / ч) и может поддерживать крейсерскую скорость 110 км / ч (68 миль / ч). «Топливный бак» может содержать 30 килограммов (66 фунтов) древесины, что соответствует дальности 100 километров (62 мили), что сопоставимо с запасом хода электромобиля.
Если заднее сиденье загружено деревянными мешками, дальность действия увеличивается до 400 километров (250 миль).Опять же, это сопоставимо с запасом хода электромобиля, если пассажирское пространство приносится в жертву большей батарее, как в случае с Tesla Roadster или электрическим Mini Cooper. Разница, конечно, в том, что Джону приходится регулярно останавливаться, чтобы схватить деревянный мешок с заднего сиденья и наполнить бак.
Прицеп
Как и в случае с другими автомобилями, запас хода автомобиля на древесном газе также зависит от самого автомобиля. Об этом свидетельствуют разные автомобили, которые переоборудовал Веса Микконен.Плавник помещает все свои генераторы на трейлер. Его последняя переоборудованная машина — Lincoln Continental Mark V 1979 года выпуска, большое тяжелое американское купе. Он потребляет 50 килограммов (110 фунтов) древесины на каждые 100 километров (62 мили) и поэтому значительно менее эффективен, чем Volvo Джона. Микконен также переделал Toyota Camry, гораздо более экономичный автомобиль. Этот автомобиль потребляет всего 20 кг древесины на такое же расстояние. Однако прицеп почти такого же размера, как и сама машина.
Ассортимент электромобилей можно значительно расширить, сделав их меньше и легче.Однако это не вариант для их собратьев, работающих на древесном газе, из-за веса и объема оборудования. Меньшие автомобили времен Второй мировой войны имели запас хода только от 20 до 50 километров (от 12 до 31 мили), несмотря на их гораздо меньшую скорость и ускорение.
Свобода
Увеличение «топливного бака» — единственный вариант дальнейшего увеличения дальности (кроме, конечно, снижения скорости, но это уже другая история). Американец Дэйв Николс (человек, который показывает лес на одной из картинок выше) может загрузить 180 кг (400 фунтов) древесины в кузов своего пикапа Ford 1989 года выпуска. Это займет у него 965 километров (600 миль), что сопоставимо с пробегом автомобиля, работающего на ископаемом топливе. Достоинства этого, конечно, обсуждаются, поскольку для этого Николс должен регулярно останавливаться, чтобы заправлять бак: если он заправит заднюю часть своего пикапа бензином, то сможет ехать еще дальше.
По словам Николса, одного фунта древесины (полкилограмма) достаточно, чтобы проехать 1 милю (1,6 км), что соответствует 30 килограммам древесины Volvo на 100 км. Американец основал компанию (21st Century Motor Works) и планирует продавать свою технологию в более крупных масштабах.По прибытии домой он использует свой грузовик, чтобы обогреть свой дом и вырабатывать электричество. Его история прижилась в США, и причина может быть обозначена его номерным знаком: «Свобода».
«Ты можешь обойти мир с пилой и топором», как выразился Джон Датч. Его соотечественник Йост Конейн воспользовался этой возможностью, чтобы совершить двухмесячное путешествие по Европе, не беспокоясь о близости ближайших заправочных станций (которые не всегда легко найти в такой стране, как Румыния).
Местные жители дали ему дрова для продолжения пути — припасы хранились на трейлере. Компания Conijn использовала древесину не только в качестве топлива, но и в качестве строительного материала для самого автомобиля (изображение выше — видео здесь). О другом путешествии на машине на дровах см. «По Швеции с дровами в баке».
Есть ли будущее у лесомобиля?
В 1990-е годы водород рассматривался как альтернативное топливо будущего. Затем биотопливо и сжатый воздух взяли на себя роль мантии, а сегодня все внимание сосредоточено на электромобилях.Если и эта технология не сработает (а мы несколько раз выражали свои сомнения по этому поводу), можем ли мы вернуться к автомобилю на древесном газе?
Несмотря на свой промышленный вид, автомобиль, работающий на древесном газе, имеет довольно высокие экологические показатели по сравнению с другими альтернативными видами топлива. Газификация древесины немного более эффективна, чем сжигание древесины, поскольку теряется только 25 процентов энергии, содержащейся в топливе. Энергопотребление лесомобиля примерно в 1,5 раза выше, чем потребление энергии аналогичным автомобилем, работающим на бензине (включая потерю энергии во время предварительного нагрева системы и дополнительный вес оборудования).Однако если принять во внимание энергию, необходимую для добычи, транспортировки и переработки нефти, то древесный газ по меньшей мере так же эффективен, как бензин. И, конечно же, древесина — возобновляемое топливо. Бензина нет.
Преимущества вагонов на древесном газе
Самым большим преимуществом автомобилей с газогенератором является то, что доступное и возобновляемое топливо можно использовать напрямую, без какой-либо предварительной обработки. Преобразование биомассы в жидкое топливо, такое как этанол или биодизель, может потреблять больше энергии (и CO2), чем доставляет топливо.В случае автомобиля, работающего на древесном газе, никакая дополнительная энергия не используется для производства или переработки топлива, за исключением рубки и распиловки древесины. Это означает, что лесовоз практически не имеет выбросов углерода, особенно когда валка и распиловка выполняется вручную.
Кроме того, автомобиль на древесном газе не требует химической батареи, и это важное преимущество перед электромобилем. Слишком часто забывают воплощенную энергию огромной батареи последнего.Фактически, в случае транспортного средства с газовым двигателем древесина ведет себя как естественный аккумулятор. Нет необходимости в высокотехнологичной переработке: оставшуюся золу можно использовать в качестве удобрения.
Правильно работающий генератор древесного газа также производит меньше загрязнения воздуха, чем автомобиль с бензиновым или дизельным двигателем. Газификация древесины значительно чище, чем сжигание древесины: выбросы сопоставимы с выбросами при сжигании природного газа. Электромобиль может стать лучше, но тогда энергия, которую он использует, должна вырабатываться из возобновляемых источников, что нереально.
Недостатки дровяных газовых вагонов
Несмотря на все эти преимущества, достаточно одного взгляда на лесовоз, чтобы понять, что это далеко не идеальное решение. Мобильный газовый завод занимает много места и легко может весить несколько сотен килограммов — пустой. Размер оборудования обусловлен тем, что древесный газ имеет низкую энергоемкость. Энергетическая ценность древесного газа составляет около 5,7 МДж / кг по сравнению с 44 МДж / кг для бензина и 56 МДж / кг для природного газа (источник).
Кроме того, использование древесного газа ограничивает мощность двигателя внутреннего сгорания, что означает снижение скорости и ускорения переоборудованного автомобиля. Древесный газ состоит примерно из 50 процентов азота, 20 процентов окиси углерода, 18 процентов водорода, 8 процентов диоксида углерода и 4 процентов метана. Азот не способствует горению, а окись угля — медленно горящий газ. Из-за этого высокого содержания азота двигатель получает меньше топлива, что приводит к снижению выходной мощности на 35-50%.Поскольку газ горит медленно, большое количество оборотов невозможно. Автомобиль с газовым двигателем — это не спортивный автомобиль.
Несмотря на то, что некоторые автомобили меньшего размера были оборудованы генераторами древесного газа (см., Например, этот Opel Kadett), эта технология лучше подходит для более крупных и тяжелых автомобилей с мощным двигателем. В противном случае мощности двигателя и диапазона может быть недостаточно. Несмотря на то, что установка может быть уменьшена для меньшего транспортного средства, ее размер и вес не уменьшаются пропорционально уменьшению размера и веса автомобиля.Некоторые из них построили мотоциклы, работающие на древесном газе, но их диапазон ограничен (хотя мотоцикл с коляской лучше). Конечно, вес и размер мобильного газового завода не так важны для автобусов, грузовиков, поездов или кораблей.
Удобство использования
Другая проблема машин, работающих на древесном газе, заключается в том, что они не особенно удобны в использовании, хотя это улучшилось по сравнению с технологиями, использовавшимися во время Второй мировой войны. Во второй части этого pdf-документа (стр. 17 и далее) вы найдете описание того, как тогда было водить машину, работающую на древесном газе:
«…. опыт работы с органом Wurlitzer может быть явным преимуществом «.
Тем не менее, несмотря на улучшения, даже современному лесомобилю требуется до 10 минут, чтобы прогреться до рабочей температуры, поэтому вы не можете запрыгнуть в машину и сразу уехать. Кроме того, перед каждой заправкой необходимо выкинуть золу от последней газификации. Образование смолы в установке менее проблематично, чем это было 70 лет назад, но фильтры по-прежнему необходимо регулярно чистить.Кроме того, есть ограниченный диапазон автомобиля. В общем, это далеко от привычной простоты использования бензинового автомобиля.
Большое количество (смертельно опасного) окиси углерода требует некоторых мер предосторожности, поскольку утечка в трубопроводе возможна. Если техника размещается в багажнике, установка CO-детектора в салоне отнюдь не является роскошью. Кроме того, автомобиль, работающий на древесном газе, нельзя ставить в замкнутое пространство, если только газ не сжигается первым (рисунок выше).
Серийные лесомобили
Конечно, все описанные выше автомобили построены инженерами-любителями. Если мы будем строить автомобили, специально предназначенные для работы на древесине, и производить их на заводах, есть вероятность, что недостатки станут несколько менее значительными, а преимущества станут еще больше. Такие лесомобили тоже смотрелись бы наряднее.
В Volkswagen Beetles, сошедшие с конвейера во время Второй мировой войны, был встроенный механизм газификации древесины (источники: 1/2/3). Снаружи генератор древесного газа и остальная часть установки были незаметны. Заправка производилась через отверстие в капоте (капоте).
То же самое и для этого Mercedes-Benz, у которого установка полностью скрыта в багажнике (источник).
Вырубка леса
К сожалению, древесный газ имеет один важный недостаток по сравнению с другими видами биотоплива.Массовое производство лесомобилей этого не решит. На самом деле, как раз наоборот: если бы мы перевели все машины или даже значительную их часть на древесный газ, все деревья в мире исчезли бы, и мы умерли бы от голода, потому что все сельскохозяйственные земли были бы принесены в жертву ради энергии. посевы. Действительно, лесомобиль вызвал серьезную вырубку леса во Франции во время Второй мировой войны (источник). Как и в случае со многими другими видами биотоплива, технология не масштабируется.
Тем не менее, хотя автомобиль, работающий на биотопливе, столь же удобен в использовании, как и его конкурент, бензин, древесный газ должен быть наиболее неблагоприятным для потребителя альтернативным топливом.Это может быть преимуществом: переход на автомобили, работающие на древесном газе, может означать только то, что мы будем меньше ездить, и это, конечно, было бы хорошо с экологической точки зрения. Если вам нужно предварительно прогреть автомобиль в течение 10 минут, скорее всего, вы решите не использовать его, чтобы проехать несколько миль, чтобы купить продукты. Велосипед справился бы быстрее. Если бы вам пришлось три часа рубить дрова, чтобы съездить на пляж, вы, вероятно, решили бы сесть на поезд.
В любом случае, лесомобиль демонстрирует (снова), что современный автомобиль — продукт ископаемого топлива.В какое бы альтернативное топливо вы ни верите, ни одно из них не сравнится по удобству с бензином или дизельным топливом. Если однажды доступность (дешевой) нефти прекратится, вездесущность автомобиля станет историей. Но индивидуальный автомобиль никогда не умрет.
© Крис Де Декер (Спасибо, Р.О.)
Low-tech Magazine делает прыжок с Интернета на бумагу. Первый результат — это 710-страничная мягкая обложка с идеальным переплетом, которая печатается по запросу и содержит 37 самых последних статей с веб-сайта (с 2012 по 2018 год).Второй том, в котором собраны статьи, опубликованные в период с 2007 по 2011 год, выйдет в конце этого года.
Подробнее: Журнал Low-tech: Печатный веб-сайт .
Генератор древесного газа | Tractor & Construction Plant Wiki
Газификатор древесины на грузовике Ford, преобразованный в трактор
Генератор древесного газа — это установка газификации, которая превращает древесину или древесный уголь в древесный газ, синтез-газ, состоящий из атмосферного азота, окиси углерода, водорода, следы метана и других газов, которые после охлаждения и фильтрации могут быть затем использованы для питания двигателя внутреннего сгорания или для других целей. Исторически генераторы древесного газа часто устанавливались на транспортных средствах, но современные исследования и разработки сосредоточены в основном на стационарных установках.
Истоки [править | править источник]
Газификация была важной и распространенной технологией, которая широко использовалась для производства городского газа из угля, главным образом для освещения в 19 и начале 20 века. Когда в 1870-х годах появились первые стационарные двигатели внутреннего сгорания, основанные на цикле Отто, они начали вытеснять паровые двигатели в качестве первичных двигателей во многих работах, требующих стационарной движущей силы.Внедрение ускорилось после того, как в 1886 году истек срок действия патента на двигатель Отто. Возможности и практическая применимость газификации к двигателям внутреннего сгорания были хорошо поняты с первых дней их разработки.
В 1873 году Таддеус С. С. Лоу разработал и запатентовал процесс водяного газа, с помощью которого можно было генерировать большие количества газообразного водорода для бытового и коммерческого использования в отоплении и освещении. В отличие от обычного угольного или коксового газа, который использовался в коммунальном хозяйстве, этот газ служил более эффективным топливом для отопления.
В конце 19-го века двигатели внутреннего сгорания иногда работали на городском газе, а в начале 20-го века многие стационарные двигатели перешли на использование генераторного газа, созданного из кокса, который был значительно дешевле городского газа, основанного на дистилляции (пиролизе). более дорогого угля.
Примерно в 1920 году французский изобретатель Жорж Имбер создал генератор нисходящего потока «Имбер».
Во время Второй мировой войны бензин был нормирован и в дефиците в Великобритании, США и Германии было построено или даже импровизировано большое количество таких генераторов для преобразования древесины и угля в топливо для транспортных средств.Коммерческие генераторы производились до и после войны для использования в особых обстоятельствах или в странах с тяжелой экономикой.
после Второй мировой войны [править | править источник]
Saab 99 работает на древесном газе в Финляндии. Газогенератор находится на прицепе.
Федеральное агентство США по чрезвычайным ситуациям (FEMA) опубликовало в марте 1989 года книгу, в которой описывается, как построить газогенератор в чрезвычайной ситуации, когда не было нефти.
Проект об энергетическом будущем Европы был начат в 2005 году в Гюссинге, Австрия, при содействии исследований Европейского Союза.Проект состоял из электростанции с генератором древесного газа и газовым двигателем для преобразования древесного газа в 2 МВт электроэнергии и 4,5 МВт тепла. На электростанции, работающей на древесном газе, также есть два контейнера для экспериментов с древесным газом. В одном контейнере находится эксперимент по превращению древесного газа с использованием процесса Фишера-Тропша в дизельное топливо. К октябрю 2005 года 5 кг древесины можно было превратить в 1 литр топлива.
Существует обширная литература по газовым заводам, городскому газу, производству газа, древесному газу и производственному газу, которая теперь стала общественным достоянием из-за своего возраста. [1]
Наиболее успешные генераторы древесного газа, используемые в Европе и США, представляют собой некоторые вариации более ранней конструкции Имберта. В генераторах древесного газа часто используется древесина, однако древесный уголь также может использоваться в качестве топлива, он более плотный и производит более чистый газ без смолистых летучих веществ и чрезмерного содержания воды в древесине.
Установка FEMA 1989 года имеет явные преимущества по сравнению с более ранними европейскими установками, такие как более легкая дозаправка и конструкция, но менее популярна, чем более ранняя конструкция Имберта, из-за серьезных новых проблем, которые включают отсутствие фиксированной зоны окисления и допускают зону окисления. расползаться на большую площадь, вызывая понижение температуры; более низкая рабочая температура приводит к образованию гудрона, и в нем отсутствует зона истинного восстановления, что еще больше увеличивает склонность данной конструкции к образованию гудрона. Смола в потоке древесного газа считается грязным газом, и смола быстро склеивает двигатель, что может привести к заклиниванию клапанов и колец.
Новая конструкция, известная как газификатор Кейта, улучшает установку FEMA, обеспечивая значительную рекуперацию тепла и устраняя проблему смол. Тестирование в Обернском университете показало, что он на 37% эффективнее бензинового. [2] Эта система установила мировой рекорд скорости для транспортных средств, работающих на биомассе [3] и совершила несколько поездок по пересеченной местности. [4] [5]
Организация Объединенных Наций подготовила документ FOA 72 с подробной информацией о конструкции и конструкции их генератора древесного газа, а также технический документ Всемирного банка 296. [6] [7]
Преимущества [править | править источник]
Генераторы древесного газа имеют ряд преимуществ перед использованием нефтяного топлива:
- Их можно использовать для работы двигателей внутреннего сгорания (или даже газовых турбин для максимальной эффективности), использующих древесину, возобновляемый ресурс, и в отсутствие нефти или природного газа, например, во время нехватки топлива.
- Они имеют замкнутый углеродный цикл, меньше способствуют глобальному потеплению и являются экологически устойчивыми по своей природе.
- Их относительно легко изготовить в условиях кризиса из подручных материалов.
- Они горят намного чище, чем, скажем, дровяной камин или даже бензиновый двигатель (без контроля за выбросами), при этом почти не образуется сажи.
- При использовании в стационарной конструкции они реализуют свой истинный потенциал, поскольку их можно использовать в небольших сценариях комбинированного производства тепла и электроэнергии (с рекуперацией тепла от производителя древесного газа и, возможно, двигателя / генератора, например, для нагрева воды для водяного отопления), даже в промышленно развитых странах, даже в хорошие экономические времена, при условии, что имеется достаточный запас древесины.Установки большего размера могут повысить эффективность и полезны также для централизованного теплоснабжения.
Недостатки [править | править источник]
Недостатками древесных газогенераторов являются:
- большой размер
- относительно низкая стартовая скорость; время, чтобы нагреть первоначально холодную партию древесины до необходимого уровня температуры, может занять несколько минут, а на более крупных предприятиях даже часы, пока не будет достигнута проектная мощность.
- периодическое сжигание, которое есть в некоторых конструкциях и которое регулярно прерывает процесс производства газа.
- операция останова из-за высокого уровня нагрузки затруднена (например, остановка двигателя с использованием газа): остаточное тепло все еще производит газ, который на определенное время покидает газогенератор либо без контроля, либо должен использоваться в горелка
- основным горючим топливным газом, образующимся во время газификации, является монооксид углерода: это преднамеренный топливный продукт, который впоследствии сжигается для обеспечения безопасности диоксида углерода в двигателе (или другом применении) вместе с другими топливными газами; однако постоянное воздействие окиси углерода может быть фатальным для человека даже в малых и средних концентрациях.
- влажность древесины (обычно от 15 до 20%) и водяной пар, создаваемый атомами O и H самой сухой древесины (около 0,4 литра воды, содержащей органические вещества на кг сухой древесины), конденсируется во время процесс охлаждения и фильтрации газа и дает жидкость (см. также древесную смолу), которая требует специальной очистки сточных вод. Для такой обработки требуется от 25 до 35% энергии производимого древесного газа.
Соображения безопасности [править | править источник]
При неправильной разработке и использовании существует значительная вероятность травм или смерти из-за древесного газа, содержащего большой процент ядовитого газообразного оксида углерода (CO).Газификаторы древесины проверенной конструкции и тщательно протестированной конструкции считаются безопасными для использования на открытом воздухе или в частично замкнутом пространстве, например, под навесом, открытым для воздуха с двух сторон; их также можно считать относительно безопасными для использования в очень хорошо вентилируемых (например, с отрицательным давлением) помещениях, не связанных с какими-либо внутренними помещениями, используемыми для сна, оборудованных резервными (более 1), полностью независимыми, работающими от батарей, регулярно проверяемыми угольными -детекторы монооксида. Тем не менее, благоразумие должно диктовать, что любая экспериментальная конструкция газогенератора для древесины или новая конструкция должны быть тщательно проверены на открытом воздухе и только на открытом воздухе, всегда с «приятелем» и с постоянной бдительностью в отношении любых признаков головной боли, сонливости или тошноты, поскольку это первые симптомы отравления угарным газом.
Кроме того, следует избегать смешения чрезмерных количеств воздуха и газа, поскольку это может привести к горению (взрыву) рассматриваемого газа, если присутствует источник горения. Не следует предпринимать попыток длительного хранения древесного газа, за исключением использования водовытесняющего устройства газгольдерного типа, из-за присутствующих в газе летучих элементов, которые, если дать им возможность чрезмерно осаждаться, будут конденсироваться в газе. емкость для хранения. Ни при каких обстоятельствах древесный газ не должен сжиматься до более чем 15 фунтов на квадратный дюйм (1.0 бар) выше температуры окружающей среды, так как это может вызвать конденсацию летучих веществ, а также привести к вероятности серьезной травмы или смерти из-за угарного газа или дефлаграции в случае протечки или поломки сосуда. [ требуется ссылка ]
В 2008 году пример проектирования и постройки работающего грузовика, работающего на древесном газе, был показан на канале National Geographic Channel Planet Mechanics в восьмом эпизоде «Автомобиль на дереве». [8]
В 2009 году еще один пример проектирования и изготовления двигателя генератора, работающего на древесном газе, был в сериале « Колония » во втором эпизоде первого сезона «Борьба за власть».Также используется в десятом эпизоде «Исход» для приведения в действие машины для побега.
В 2009 году 21stCenturyMotorworks сообщалось в средствах массовой информации. [ цитата необходима ] разработала технологию газификации в прототипе пикапа, который мог использовать любые материалы биомассы в качестве топлива. Автомобиль был показан на нескольких мероприятиях, включая Boston Greenfest 2009. Завод 21stcenturymotorworks с тех пор участвует в разработке технологии кругового двигателя для повышения эффективности энергетических систем, работающих на биомассе.Новое дочернее предприятие, Eden Energy Solutions of Ct, способствует развитию бытовых энергетических установок с использованием комбинации этих двух технологий.
В статье «Новости Матери-Земли» за 2010 год обсуждались и показывались фотографии двигателя, работающего на древесном газе, установленного в пикапе. [9]
В рамках научного сериала BBC «Bang Goes The Theory» Volkswagen Scirocco был преобразован Мартином Бэконом в конструкцию, предназначенную для работы на использованной кофейной гуще, а после сборки в 2010 году он ездил исключительно на кофе. из Лондона в Манчестер успешно.Часть команды сейчас работает над более продвинутым дизайном, ориентированным на максимальную скорость, а не на дальность.
14 сентября 2011 года на соляных равнинах Бонневиль грузовик, модифицированный двигателем, работающим на древесном газе, установил новый мировой рекорд скорости для транспортных средств, работающих на древесном газе, со скоростью 73 миль в час. [10]
В популярной американской радиопрограмме Car Talk абонент в эпизоде 1201 (который вышел в эфир 7 января 2012 г. и впоследствии был назван «20 миль на древесную щепу») описал машину, на которой он ездил на древесном газе. в детстве во время Второй мировой войны в Германии.Хозяева не были знакомы с технологией, вероятно, потому, что она никогда не была широко распространена в США.
В апреле 2012 года в журнале «Новости Матери Земли» появилась статья о газогенераторе Кита, демонстрирующая изображения и беседа с изобретателем Уэйном Китом. [11]
- ↑ Литературу об истории и производстве древесных и угольных газовых генераторов можно найти с помощью проектов по оцифровке онлайн-книг, таких как Google Книги, и у них часто есть такие материалы, которые можно загрузить полностью, поскольку они стали общественным достоянием благодаря своим возраст.Например, поиск по запросу «Производящий газ», «Производство и производство газа» или «Газогенераторы» на http://books.google.com приведет к появлению множества полных книг по этой теме, которые могут удовлетворить аппетит того, кто интересуется истории техники или служат экспериментатору-любителю хорошо, даже если они датированы.
- ↑ Д-р Дэвид Брансби (10 июля 2010 г.). «Результаты теста Обернского университета». Диск по дереву. Проверено 12 апреля 2012.
- ↑ Д-р Дэвид Брансби (28 декабря 2011 г.). «Уэйн Кейт устанавливает новый мировой рекорд скорости древесного газа».Biofuels Digest. Проверено 12 апреля 2012.
- ↑ Д-р Дэвид Брансби (сентябрь 2008 г.). «Био-грузовик: от побережья до побережья и обратно». Обернский университет. Проверено 12 апреля 2012.
- ↑ Майкл Болтон (15 сентября 2011 г.). «Изобретатель из Спрингвилля, штат Алабама, побил рекорд в своем дровяном пикапе». Бирмингемские новости. Проверено 12 апреля 2012.
- ↑ документ ООН FOA 72
- ↑ Технический документ Всемирного банка 296
- ↑ [1] поиск в Google
- ↑ Рик Бейтс (февраль / март 2010 г.).«Используйте генератор древесного газа для питания вашего грузовика». Новости Матери-Земли. Проверено 11 мая 2010.
- ↑ Джон Рокхолд. «73 миль в час на древесном газе устанавливает новый рекорд». Новости Матери-Земли. Проверено 9.10.2011.
- ↑ Ричард Фройденбергер (апрель / май 2012 г.). «Мастер древесного газа». Новости Матери-Земли. Проверено 12 апреля 2012.
Газификация древесины древесными гранулами: наша технология
Древесный газ (синтез-газ) — забытое топливо, вновь открытое с помощью генератора древесного газа Burkhardt
Древесные газификаторы лучше всего известны с послевоенных лет, когда из-за нехватки топлива нам приходилось проявлять изобретательность, чтобы поддерживать работу.В газификаторе древесины происходят реакции пиролиза, в которых при смешивании с воздухом при высокой температуре древесное топливо превращается не только в кокс или древесный уголь, но и в горючий древесный газ, который можно извлекать, очищать и использовать в дальнейшем. Однако газификация древесины страдает одним серьезным недостатком: в процессе пиролиза также образуются сажа и смола. Старые двигатели могли с этим справиться. Сегодняшние высокопроизводительные двигатели, которые используются в современных когенерационных установках, не могут принимать такие побочные продукты.
Процесс перевернут
Мы полностью переосмыслили и переосмыслили традиционный принцип газификации древесины. Таким образом, наша концепция отличается от известных древесных газификаторов типом управления технологическим процессом и самим топливом. Системе удалось добиться успеха благодаря техническому трюку наших специалистов:
Процесс перевернулся. В этом процессе древесные гранулы загружаются в реактор снизу. Здесь происходит газификация с восходящим потоком прямотока с образованием стационарного псевдоожиженного слоя.Это создается воздушным потоком через компрессор с боковым каналом. Материал слоя здесь не нужен, поскольку топливо стабилизируется само. Подъем означает, что стадии газификации (сушка, пиролиз, окисление и восстановление) проходят снизу вверх. Цель состоит в том, чтобы передать горючему синтез-газу максимально возможную долю энергии, присущей твердому топливу. С помощью нашего запатентованного процесса мы обеспечиваем постоянную газификацию и в результате оптимизируем последовательные операции с почти полным переходом на используемый древесный газ.Только неразложимые минералы биомассы остаются в виде золы.
Вещества, содержащие смолу, почти полностью разлагаются из-за однородных условий реакции и длительного времени выдержки при высоких температурах, что способствует сгоранию в двигателе.
Таким образом, мы можем достичь срока службы более 7500 часов в год при стабильной производительности.
Мы предлагаем два класса производительности:
«машин, которые бегают по деревьям» Джона Гудмана (журнал Works That Work)
по Джона Гудман (3044 слова)
Машины, работающие на дровах, могут показаться фантастикой в стиле стимпанк или одержимостью на заднем дворе какого-то сумасшедшего мастерицы, но в какой-то момент они были обычным явлением во многих частях Европы, и технология, которая их использует, все еще находит практическое применение сегодня.
Фотография на обложке: Иоганн Линелл на Volvo, который он и двое друзей установили газогенератором. За 20 дней 2007 года они проехали 5420 километров по Швеции на энергии, вырабатываемой семью кубометрами древесины. (Фотография любезно предоставлена Иоганном Линеллом.)
В глубине лесов континентальной Швеции Йохан Линелл останавливается, его двигатель не работает. Он и двое друзей выходят из машины и идут веером через деревья, возвращаясь с руками, полными еловых шишек и мертвого дерева. В задней части машины Линелл снимает с петель верх высокого стального ящика, который возвышается над отверстием в багажнике.Дым поднимается вверх, и пламя следует за ним, когда он сбрасывает вырубленную древесину внутрь. Из нижней части заляпанной смолой стопки толстые сварные трубы карабкаются по кузову автомобиля и змеятся к переднему бамперу, где они входят в двигатель, как трубки для кормления пациента. В считанные минуты машина оживает, плавно движется по массивной древесине.
На короткое время, 70 лет назад почти все гражданские автомобили в Европе работали таким образом. По мере того, как Вторая мировая война затягивалась, а бензина становилось все меньше, древесина стала основным альтернативным топливом для транспортных средств.К 1945 году около миллиона европейских автомобилей работали на газификации древесины с использованием модификаций, аналогичных модификациям Volvo Линелла. Принцип работы удивительно прост: сжигая бочку из дерева или угля до тех пор, пока она не достигнет внутренней температуры от 900 ° до 1200 ° C (от 1650 ° до 2200 ° F), а затем ограничивая подачу воздуха в огонь, газификаторы производят горючий углерод. монооксид, который можно охлаждать, фильтровать и направлять непосредственно в двигатель обычного автомобиля.
Автомобиль с приводом от дерева был изобретен в 1905 году английской автомобильной компанией Thornycroft, но прошло еще 20 лет до того, как французский химик Жорж Имбер сделал практическую возможность путешествовать на древесном газе.Благодаря переработанной камере сгорания, в которой использовалось всасывание от двигателя для втягивания газа вниз через горячую сердцевину горящих поленьев, его модель могла создавать намного больше оксида углерода, чем предыдущие версии. Это также обеспечивало устойчивое горение, поскольку сила тяжести и вибрация транспортного средства вытряхивали пепел из кучи, оседая на месте новое топливо. К 1930-м годам четыре европейских правительства активно исследовали газификаторы Имберта с целью их использования в общественном транспорте: политически нейтральные Швеция и Финляндия стремились достичь топливной автономии в нестабильном регионе; Италия Муссолини, находящаяся под торговым эмбарго Лиги Наций после вторжения в Эфиопию, искала источник топлива, альтернативный нефти; а нацистская Германия готовилась к войне.
Даже автомобили, работающие на древесном газе, нуждаются в инфраструктуре снабжения: в 1945 году в Финляндии было 70 деревообрабатывающих заводов, а в Германии — тысячи складов древесины, предназначенных специально для автомобильного топлива. Из 17 мест, где Линелл и его друзья останавливались за дровами во время поездки, только в четырех были готовые к употреблению, предварительно нарубленные дрова.
Падение Германии в пропасть сюрреалистично задокументировано в сохранившихся экземплярах спонсируемого государством автомобильного журнала Motor Schau . И пронацистское пропагандистское, и банальное автомобильное издание, в его выпусках 1939 года представлены автогонщики с символикой СС, мотоциклы, тестирующие Вермахт, и украшенные свастикой митинги, посвященные автомобилю Kraft durch Freude или Volkswagen Beetle.В 1940 году, когда каждый ежемесячный выпуск объявляет о падении еще одной европейской столицы, начинают появляться статьи о транспортных средствах на древесном газе, рекламируя технологию как топливо национальной гордости, которое освободит Германию от зависимости от иностранных поставщиков. В период с 1941 по 1942 год, когда потребности вооруженных сил привели к сокращению поставок нефти для гражданского населения Германии более чем на 50%, страницы Motor Schau заполнены многократно увеличивающейся рекламой газификаторов, а также крепких алкогольных напитков.
«Древесный газ дешев, экономичен и избавляет вас от зависимости от бензина, сырой нефти и нефти.Так читает рекламу Motor Schau , автомобильного журнала нацистской эпохи. Транспорт, работающий на древесном газе, особенно привлекает тоталитарных режимов, стремящихся к независимости от мировой торговли, и до сих пор используется в Северной Корее. (Из журнала Motor Schau , 1941 г.)
К 1943 году характерные высокие цилиндрические печи были обязательными на большинстве транспортных средств в странах, оккупированных нацистами, поскольку ресурсы жидкого топлива направлялись прямо в вооруженные силы, особенно в Люфтваффе.В 2013 году греческий механик Александрос Топалоглоу сказал исследователю Алексии Папазафейропулу, что, несмотря на ограничения военного времени, греки поддерживают активный рынок бензина на черном рынке, обманывая чиновников, зажигая газификаторы на своих автомобилях непосредственно перед приближением к немецким контрольно-пропускным пунктам. Когда в 1944 году Германия начала терять территорию, по крайней мере пятьдесят танков Tiger были оснащены агрегатами для сжигания древесины и газа, и наказания за вождение на бензине без письменного разрешения регионального генерала — даже для военных — стали жесткими.
Адольф Гитлер осматривает автомобиль на древесном газе. Изначально опубликованное в выпуске 1941 года в журнале Motor Schau за 1941 год, изображение располагалось над цитатой из нацистского лидера: «Эти автомобили по-прежнему будут иметь особое значение после войны, потому что рост автомобилизации будет означать, что у нас никогда не будет достаточно масла, что оставляет нас. зависит от импорта. Это родное топливо полезно для экономики страны ». (Из журнала Motor Schau , 1941)
Личные взгляды Гитлера на автомобили, работающие на древесном газе, можно прочитать в выпуске за 1941 год Motor Schau , рядом с веселыми фотографиями Дер Фюрера на демонстрации газификаторов Mercedes-Benz.«Это автомобили, которые будут иметь особое значение после войны», — сказал он. «Нефть поступает из-за границы, но это топливо нашей родины». Четыре катастрофических года спустя автомобили с газификатором в Берлине действительно приобрели мрачный символизм. В суровую зиму 1946 года они бесполезно ржавели на улицах, когда берлинцы крушили мебель и вырывали деревья с корнем, отчаянно ища дрова в развалинах немецкой столицы.
Кажется, вам нравятся хорошие истории
Подпишитесь на нашу нечастую рассылку, чтобы получать больше историй прямо на свой почтовый ящик.В начале 2000-х, когда Линелл решил сделать свой собственный автомобиль на древесном газе, он видел только один раз. Транспортные средства на древесном газе в Европе являются исключительной прерогативой любителей, и его единственным источником запчастей и информации было местное радио-шоу под названием Serk I Fin , или «Найди и найди». В эфире Линелл изложил свой план, и его сравнили с Инге Найман, пожилой слушательницей, которая пережила Вторую мировую войну и все еще имела элементы газогенератора, оставшиеся с того периода. Это был прорыв, поскольку, как это ни удивительно, в наличии было немного другого, хотя в 1945 году в Швеции было более 60 000 транспортных средств на дровах, включая лодки, автобусы, тракторы и четверть мотоциклов страны.
(Фото любезно предоставлено Иоганном Линеллом)
Сегодня любители делятся советами в Интернете, а современные технологии позволяют «дровосекам» во всем мире извлекать выгоду из опыта таких авторитетов, как финский Веса Микконен и голландский псевдоним «Голландец Джон». Однако создаваемые ими газификаторы по-прежнему имеют много общего со своими предшественниками времен Второй мировой войны и отличаются особой привередливостью, требующей глубокого знания своей конструкции, причуд и темперамента.По словам Датча Джона, «единственный человек, который может водить машину, работающую на древесном газе, — это человек, который ее сделал».
Даже серийно выпускаемые версии 1940-х годов, такие как немецкий 3TO Opel Blitz Lastwagen 1943 года, поставлялись с толстыми иллюстрированными руководствами по эксплуатации, в которых подробно описывается, как каждую неделю Lastwagen необходимо очищать и тщательно промывать, а также каждый месяц его свободный пробковый газовый фильтр. должен быть удален, очищен и переустановлен. Запуск двигателя, хотя и занимает 20 минут, в основном включает в себя поднесение спички к дровам, но контроль потоков газа и воздуха вокруг двигателя имеет решающее значение для таких задач, как движение в гору, пересечение долины или остановка более чем на три часа. , требует освоения сочетаний четырех рычагов и ручки.В результате газификации образуется значительное количество азота, инертного газа, который разбавляет топливную смесь, в результате чего автомобили, работающие на древесном газе, имеют малую мощность, и извлечение из них наилучшего — путем разумной регулировки клапанов и вентиляционных отверстий — такое же искусство как наука.
«Когда вы едете медленно, вы видите больше», — говорит Линелл. «Это похоже на то, как будто страна преображается в зависимости от вашей машины. Я почувствовал то же самое годом ранее, когда проехал 500 км (311 миль) на мопеде, который я переоборудовал для работы на этаноле.Вы видите совершенно новый мир ».
Однако нет причин, по которым технология газификации застряла в прошлом веке. Именно поэтому финский энтузиаст работы с древесным газом Юха Сипиля построил самый совершенный в мире автомобиль, работающий на древесном газе, El Kamina, модифицированный грузовик с полностью автоматизированным двигателем. система газификации, управляемая компьютером, встроенным в ее приборную панель. Хотя это всего лишь прототип, это автомобиль на древесном газе, которым может управлять кто угодно. Сипиля — больше, чем просто любитель; он твердо верит в возобновляемые источники энергии и в то, что люди могут жить «вне сети».Он также является основателем Volter Oy, энергетической компании, занимающейся исследованиями газификации древесины, а также создателем десятиэтажного экологического поселка Кемпеле, а с мая 2015 года — премьер-министром Финляндии.
В 2010 году финское общество провело бурную общественную дискуссию о возможном возвращении к заменителям топлива военного времени, особенно к газификации древесины. В 1945 году 80% автомобилей в Финляндии — 46 000 — работали на газогенераторах, и только в 1944 году было потреблено более 2 000 000 м 3 (70 630 000 футов 3) древесины.Полный переход к системе транспортировки древесины произошел всего за два года. Теперь такие инновации, как El Kamina, показывают, что многие недостатки процесса можно преодолеть с помощью новых технологий. Что самое убедительное, Финляндия — одна из немногих стран в мире, где деревья могут быть действительно устойчивым источником топлива, с 23 миллионами гектаров (88 800 квадратных метров) бореальных круглых лесов и населением всего 5,5 миллиона человек.
Йохан Линелл чистит охладитель своего Вольво, работающего на древесном газе, который он сделал из старого стального дизельного бака.Охлаждение газа делает его более плотным и конденсирует воду из топливной смеси, так что на двигатель передается больше мощности. После использования Йохан обнаружил, что внутренняя часть кулера будет покрыта загадочным кремообразным веществом. «Это напомнило мне вазелин». (Фото любезно предоставлено Иоганном Линеллом)
Ярно Хаапакоски, генеральный директор Volter Oy с 2011 года, объясняет, что семье из шести человек, живущей в образцовой деревне Кемпеле, которая питается и обогревается от большой установки газификации древесины, требуется всего 20 м³ (706 футов³) древесины в год. .По данным Metla, Финского института лесных исследований, в финских лесах ежегодно производится 104,5 миллиона м3 (3 690,4 фута) новой древесины, что почти достаточно для удовлетворения энергетических потребностей всех жителей Финляндии. Более того, сжигание деревьев — это «замкнутый углеродный цикл»: углекислый газ, выделяемый деревьями при сжигании, примерно равен углекислому газу, который они вытягивают из воздуха по мере роста.
Есть и обратная сторона. Древесный газ — это в первую очередь окись углерода, а окись углерода не имеет запаха, легче воздуха и исключительно ядовита.При атмосферной концентрации всего 0,5% он может убить, а всего 0,03% достаточно, чтобы вызвать потерю сознания. В одном из инцидентов в Хельсинки во время войны были замечены пассажиры, садившиеся в ожидающее такси холодным днем. Через десять минут такси не двинулось с места, прохожие открыли двери и обнаружили пассажиров без сознания, отравленных утечкой газа в закрытый отсек автомобиля. Треть из примерно 25 000 жертв отравления угарным газом в военное время в Финляндии пострадали во время вождения своих автомобилей, что часто приводило к плачевным результатам, а подходы к обнаружению угарного газа во время войны зачастую были грубыми.Дания, например, установила мышей или канареек в клетках возле газогенераторов для проверки на наличие смертельных газов. Но сегодня Хаапакоски не беспокоится. По его словам, детекторы намного сложнее, и горелки могут быть построены с системами аварийной защиты и сигнализации.
И это не первое возрождение древесного газа. В период между возрождением в Финляндии 21-го века и расцветом в Европе военного времени интерес к технологиям резко вырос в 1970-х годах после глобального нефтяного кризиса. Некоторые интересы были оборонными, например, Швеция, разработавшая три типа аварийных газогенераторов, готовых к серийному производству во время кризиса.Но большая часть интереса возникла в развивающихся странах с наиболее острой потребностью: в сельских районах Азии, Африки и Латинской Америки.
Потенциал оказался огромным. Любые углеродосодержащие отходы могут быть газифицированы, будь то рисовая шелуха, пшеничная мякина, скорлупа грецких орехов, семена фруктов, опилки, солома, торф или кукурузные початки. Фильтры могут быть изготовлены из масла, угля, пробки, воды, ткани, фарфоровой крошки или сизаля. А при наличии необходимого опыта можно построить эффективные газификаторы для автомобилей или электрогенераторов из нефтяных бочек и ржавых труб.Крупные газифицирующие электростанции были эффективны в определенных местах, таких как лесопилки в Сапире, Парагвае и Восточном мысе Южной Африки, сушилка для кокосовых орехов в Шри-Ланке, работающая на газифицированной кокосовой скорлупе, или несколько сотен небольших станций газификации рисовой шелухи. заводы в Китае. Аварийные установки, такие как Power Pallet, генератор газификатора, разработанный в Калифорнии, недавно показали себя многообещающими в качестве средства оказания помощи при бедствиях в Либерии. Но в наши дни производство метана из сточных вод оказалось гораздо более успешным в качестве автономного альтернативного источника энергии.В бедных странах горючие твердые вещества, такие как скорлупа орехов и солома, все еще могут быть товаром, даже если они дешевы, в то время как метан создается из отходов.
Йохан Линелл и его друзья Микаэль Андерберг и Мартин Йоханссон приступили к созданию своего Volvo, работающего на древесном газе, в начале 2007 года. К июлю он был готов, и они отправились в путешествие на дровах протяженностью 5 420 км (3368 миль) по Швеция. Поездка заняла 20 дней, несмотря на то, что максимальная скорость автомобиля составляла 90 км / ч (56 миль / ч), потому что остановки каждые 50 км (31 миль) для дозаправки их оригинального бака газификатора 1942 года замедляли прогресс.
Отчасти их маршрут был продиктован необходимостью найти лес. Собирать еловые шишки и поваленные ветром деревья можно только в экстренных случаях. Для эффективной газификации древесина должна состоять менее чем на 20% из воды, а это означает, что древесину необходимо тщательно высушить, прежде чем ее можно будет использовать. Влажная древесина не только снижает мощность двигателя за счет добавления пара в смесь и использования тепла для испарения; он также может вызвать «зависание древесины» из-за того, что горение будет настолько медленным, что древесина не сможет попасть в горелку. «Это похоже на мост и не упадет туда, где огонь», — объясняет Линелл.«В центре становится холодно, процесс образования газа останавливается». Он также может распространять сильное тепло в неправильные части системы. «Если вам не повезло, — говорит Линелл, — это их плавит». А если вы вынуждены собирать корм, вы не можете просто использовать что-либо. «Если вы найдете немного засохшее мертвое дерево, вы можете использовать его, но это не может быть сосна, — говорит он, — это должна быть ель. Большая мертвая рождественская елка. Не то, что у тебя дома. Большой ». Газификаторы также не могут сжигать топливо всех форм и размеров.Куски дерева одинакового размера обеспечивают постоянную скорость горения, необходимую для предотвращения «падения давления», внезапной потери мощности. Во время путешествия по Швеции Линелл и его друзья буксировали трейлер с импровизированной машиной для рубки древесины, состоящей из бензопилы, поршня и двигателя старого автомобиля.
(Фото любезно предоставлено Иоганном Линеллом)
Поездка оставила Линелла с вопросами: «Я подумал:« Могу ли я что-нибудь сделать с этими знаниями? Могу ли я получить прибыль? Начать бизнес? » Я мог видеть, что газификация не для автомобилей.Он функционирует, но требует больших затрат. В современном образе жизни слишком много работы, слишком много времени и слишком грязно. Даже если бы у вас была инфраструктура, я не думаю, что люди будут ею пользоваться ». Однако сельскохозяйственные приложения выглядели многообещающими, главным образом потому, что« вы более стационарны — у вас может быть своя куча дров ». Линелл применил свои навыки, чтобы 68-летний трактор и переделали его для работы по деревьям, поваленным ветром. Он решил провести весь 2008 год, проживая самодостаточную, углеродно-нейтральную жизнь на своей семейной ферме в Даларне, Швеция, выращивая картофель, морковь, свеклу, репу и салат на своей новой машине.В конце концов, бизнес-плана не было, и он не получил прибыли. «Я просто взял старый трактор и немного дров из леса и принялся за работу».
Дизельный генератор — Energy Education
Дизельный генератор, принадлежащий и управляемый Yukon Energy в Уайтхорсе Юкон, Канада [1]Дизель-генераторы — очень полезные машины, вырабатывающие электричество путем сжигания дизельного топлива. Эти машины используют комбинацию электрического генератора и дизельного двигателя для выработки электроэнергии.Дизель-генераторы преобразуют часть химической энергии, содержащейся в дизельном топливе, в механическую энергию посредством сгорания. Эта механическая энергия затем вращает кривошип, чтобы произвести электричество. Электрические заряды индуцируются в проводе, перемещая его через магнитное поле. В электрическом генераторе два поляризованных магнита обычно создают магнитное поле. Затем вокруг коленчатого вала дизельного генератора много раз наматывается провод, который помещается между магнитами и в магнитном поле.Когда дизельный двигатель вращает коленчатый вал, провода перемещаются в магнитном поле, что может вызвать электрические заряды в цепи. Общее практическое правило заключается в том, что дизельный генератор будет использовать 0,4 л дизельного топлива на 1 кВт · ч произведенного. Используемый дизельный двигатель по сути является двигателем внутреннего сгорания. В отличие от бензинового двигателя, дизельный двигатель использует теплоту сжатия для воспламенения и сжигания топлива, впрыснутого в камеру впрыска. В целом, дизельные двигатели имеют самый высокий тепловой КПД среди двигателей внутреннего сгорания, что позволяет достичь приблизительного процента КПД Карно.Дизельные двигатели могут работать на многих производных сырой нефти. Топливо, которое дизельный двигатель может использовать для сгорания, включает природный газ, спирты, бензин, древесный газ и дизельное топливо. [2]
Универсальность
Дизель-генераторы используются во многих универсальных приложениях по всему миру. Обычно они устанавливаются в сельской местности, где они подключены к электросети и могут использоваться как основной источник энергии или как резервная система. Дизель-генераторы также могут использоваться для компенсации пиковой потребности в мощности в сети, потому что их можно быстро включать и выключать, не вызывая задержки.Генераторы, используемые в жилых помещениях, могут иметь диапазон от 8 до 30 кВт, а генераторы, используемые для коммерческих установок, могут варьироваться от 8 кВт до 2000 кВт. Большие корабли также используют дизельные генераторы для вспомогательных целей, которые могут варьироваться от фонарей, вентиляторов и переключателей до дополнительной мощности для двигательной установки.
Выбросы
При сжигании дизельного или другого топлива образуются выхлопные газы.