факторы, влияющие на теплопроводность сплавов
Теплопроводность представляет собой физическую величину, которая определяет способность материалов проводить тепло. Иными словами, теплопроводность представляет собой способность субстанций передавать кинетическую энергию атомов и молекул другим субстанциям, находящиеся в непосредственном контакте с ними. В СИ эта величина измеряется во Вт/(К*м) (Ватт на Кельвин-метр), что эквивалентно Дж/(с*м*К) (Джоуль на секунду-Кельвин-метр).
Понятие теплопроводности
Она является интенсивной физической величиной, то есть величиной, которая описывает свойство материи, не зависящей от количества последней. Интенсивными величинами также являются температура, давление, электропроводность, то есть эти характеристики одинаковы в любой точке одного и того же вещества. Другой группой физических величин являются экстенсивные, которые определяются количеством вещества, например, масса, объем, энергия и другие.
Противоположной величиной для теплопроводности является теплосопротивляемость, которая отражает способность материала препятствовать переносу проходящего через него тепла. Для изотропного материала, то есть материала, свойства которого одинаковы во всех пространственных направлениях, теплопроводность является скалярной величиной и определяется, как отношение потока тепла через единичную площадь за единицу времени к градиенту температуры. Так, теплопроводность, равная одному ватту на метр-Кельвин, означает, что тепловая энергия в один Джоуль переносится через материал:
- за одну секунду;
- через площадь один метр квадратный;
- на расстояние один метр;
- когда разница температур на поверхностях, находящихся на расстоянии один метр друг от друга в материале, равна один Кельвин.
Понятно, что чем больше значение теплопроводности, тем лучше материал проводит тепло, и наоборот. Например, значение этой величины для меди равно 380 Вт/(м*К), и этот металл в 10 000 раз лучше переносит тепло, чем полиуретан, теплопроводность которого составляет 0,035 Вт/(м*К).
Перенос тепла на молекулярном уровне
Когда материя нагревается, увеличивается средняя кинетическая энергия составляющих ее частиц, то есть увеличивается уровень беспорядка, атомы и молекулы начинают более интенсивно и с большей амплитудой колебаться около своих равновесных положений в материале. Перенос тепла, который на макроскопическом уровне можно описать законом Фурье, на молекулярном уровне представляет собой обмен кинетической энергией между частицами (атомами и молекулами) вещества, без переноса последнего.
Это объяснение механизма теплопроводности на молекулярном уровне отличает его от механизма термической конвекции, при котором имеет место перенос тепла за счет переноса вещества. Все твердые тела обладают способностью к теплопроводности, в то время как тепловая конвекция возможна только в жидкостях и газах. Действительно, твердые вещества переносят тепло в основном за счет теплопроводности, а жидкости и газы, если есть температурные градиенты в них, переносят тепло в основном за счет процессов конвекции.
Теплопроводность материалов
Если материал является неоднородным, например, железобетон, тогда вводят понятие полезного коэффициента теплопроводности, который измеряется согласно коэффициентам однородных веществ, составляющих этот материал.
В таблице ниже приведены коэффициенты теплопроводности некоторых металлов и сплавов во Вт/(м*К) для температуры 300 К (27 °C):
- сталь 47—58;
- алюминий 237;
- медь 372,1—385,2;
- бронза 116—186;
- цинк 106—140;
- титан 21,9;
- олово 64,0;
- свинец 35,0;
- железо 80,2;
- латунь 81—116;
- золото 308,2;
- серебро 406,1—418,7.
В следующей таблице приведены данные для неметаллических твердых веществ:
- стекловолокно 0,03—0,07;
- стекло 0,6—1,0;
- асбест 0,04;
- дерево 0,13;
- парафин 0,21;
- кирпич 0,80;
- алмаз 2300.
Из рассматриваемых данных видно, что теплопроводность металлов намного превышает таковую для неметаллов. Исключение составляет алмаз, который обладает коэффициентом теплопередачи в пять раз больше, чем медь. Это свойство алмаза связано с сильными ковалентными связями между атомами углерода, которые образуют его кристаллическую решетку. Именно благодаря этому свойству человек чувствует холод при прикосновении к алмазу губами. Свойство алмаза хорошо переносить тепловую энергию используется в микроэлектронике для отвода тепла из микросхем. А также это свойство используется в специальных приборах, позволяющих отличить настоящий алмаз от подделки.
В некоторых индустриальных процессах стараются увеличить способность передачи тепла, чего достигают либо за счет хороших проводников, либо за счет увеличения площади контакта между составляющими конструкции. Примерами таких конструкций являются теплообменники и рассеиватели тепла. В других же случаях, наоборот, стараются уменьшить теплопроводность, чего достигают за счет использования теплоизоляторов, пустот в конструкциях и снижения площади контакта элементов.
Коэффициенты теплопередачи сталей
Способность передавать тепло для сталей зависит от двух главных факторов: состава и температуры.
Простые углеродные стали при увеличении содержания углерода снижают свой удельный вес, в соответствии с которым также уменьшается и их способность переносить тепло от 54 до 36 Вт/(м*К) при изменении процента углерода в стали от 0,5 до 1,5%.
Нержавеющие стали содержат в своем составе хром (10% и больше), которые вместе с углеродом образует сложные карбиды, препятствующие окислению материала, а также повышает электродный потенциал металла. Теплопроводность нержавейки невелика в сравнении с другими сталями и колеблется от 15 до 30 Вт/(м*К) в зависимости от ее состава. Жаропрочные хромоникелевые стали обладают еще более низкими значениями этого коэффициента (11—19 Вт/(м*К).
Другим классом являются оцинкованные стали с удельным весом 7 850 кг/м3, которые получают путем нанесения покрытий на сталь, состоящих из железа и цинка. Так как цинк легче проводит тепло, чем железо, то и теплопроводность оцинкованной стали будет относительно высокой в сравнении с другими классами стали. Она колеблется от 47 до 58 Вт/(м*К).
Теплопроводность стали при различных температурах, как правило, не изменяется сильно. Например, коэффициент теплопроводности стали 20 при увеличении температуры от комнатной до 1200 °C снижается от 86 до 30 Вт/(м*К), а для марки стали 08Х13 увеличение температуры от 100 до 900 °C не изменяет ее коэффициент теплопроводности (27—28 Вт/(м*К).
Факторы, влияющие на физическую величину
Способность проводить тепло зависит от ряда факторов, включая температуру, структуру и электрические свойства вещества.
Температура материала
С другой стороны, передача тепла в неметаллах главным образом связана с колебаниями решетки и обмене решеточными фононами. За исключением кристаллов высокого качества и низких температур, путь пробега фононов в решетке значительно не уменьшается при высоких температурах, поэтому и теплопроводность остается постоянной величиной во всем температурном диапазоне, то есть является незначительной. При температурах ниже температуры Дебая способность неметаллов проводить тепло, наряду с их теплоемкостью, значительно уменьшается.
Фазовые переходы и структура
Когда материал испытывает фазовый переход первого рода, например, из твердого состояния в жидкое или из жидкого в газ, то его теплопроводность может измениться. Ярким примером такого изменения является разница этой физической величины для льда (2,18 Вт/(м*К) и воды (0,90 Вт/(м*К).
Изменения кристаллической структуры материалов также влияют на теплопроводность, что объясняется анизотропными свойствами различных аллотропных модификаций вещества одного и того же состава. Анизотропия влияет на различную интенсивность рассеивания решеточных фононов, основных переносчиков тепла в неметаллах, и в различных направлениях в кристалле. Здесь ярким примером является сапфир, проводимость которого изменяется от 32 до 35 Вт/(м*К) в зависимости от направления.
Электрическая проводимость
Теплопроводность в металлах изменяется вместе с электропроводностью согласно закону Видемана—Франца. Это связано с тем, что валентные электроны, свободно перемещаясь по кристаллической решетке металла, переносят не только электрическую, но и тепловую энергию. Для других материалов корреляция между этими типами проводимости не является ярко выраженной, ввиду незначительного вклада электронной составляющей в теплопроводность (в неметаллах основную роль в механизме передачи тепла играют решеточные фононы).
Процесс конвекции
Воздух и другие газы являются, как правило, хорошими теплоизоляторами при отсутствии процесса конвекции. На этом принципе основана работа многих теплоизолирующих материалов, содержащих большое количество небольших пустот и пор. Такая структура не позволяет конвекции распространяться на большие расстояния. Примерами таких материалов, полученных человеком, являются полистирен и силицидный аэрогель. В природе на том же принципе работают такие теплоизоляторы, как шкура животных и оперение птиц.
Легкие газы, например, водород и гель, имеют высокие значения теплопроводности, а тяжелые газы, например, аргон, ксенон и радон, являются плохими проводниками тепла. Например, аргон, инертный газ, который тяжелее воздуха, часто используется в качестве теплоизолирующего газового наполнителя в двойных окнах и в электрических лампочках. Исключением является гексафторид серы (элегаз), который является тяжелым газом и обладает относительно высокой теплопроводностью, ввиду его большой теплоемкости.
obrabotkametalla.info
Коэффициент теплопроводности материалов
Последние годы при строительстве дома или его ремонте большое внимание уделяется энергоэффективности. При уже существующих ценах на топливо это очень актуально. Причем похоже что дальше экономия будет приобретать все большую важность. Чтобы правильно подобрать состав и толщин материалов в пироге ограждающих конструкций (стены, пол, потолок, кровля) необходимо знать теплопроводность строительных материалов. Эта характеристика указывается на упаковках с материалами, а необходима она еще на стадии проектирования. Ведь надо решить из какого материала строить стены, чем их утеплять, какой толщины должен быть каждый слой.
Что такое теплопроводность и термическое сопротивление
При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.
Диаграмма, которая иллюстрирует разницу в теплопроводности материалов
Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).
Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени
Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.
Таблица теплопроводности теплоизоляционных материалов
Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.
Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций
При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.
Наименование материала | Коэффициент теплопроводности Вт/(м·°C) | ||
---|---|---|---|
В сухом состоянии | При нормальной влажности | При повышенной влажности | |
Войлок шерстяной | 0,036-0,041 | 0,038-0,044 | 0,044-0,050 |
Каменная минеральная вата 25-50 кг/м3 | 0,036 | 0,042 | 0,,045 |
Каменная минеральная вата 40-60 кг/м3 | 0,035 | 0,041 | 0,044 |
Каменная минеральная вата 80-125 кг/м3 | 0,036 | 0,042 | 0,045 |
Каменная минеральная вата 140-175 кг/м3 | 0,037 | 0,043 | 0,0456 |
Каменная минеральная вата 180 кг/м3 | 0,038 | 0,045 | 0,048 |
Стекловата 15 кг/м3 | 0,046 | 0,049 | 0,055 |
Стекловата 17 кг/м3 | 0,044 | 0,047 | 0,053 |
Стекловата 20 кг/м3 | 0,04 | 0,043 | 0,048 |
Стекловата 30 кг/м3 | 0,04 | 0,042 | 0,046 |
Стекловата 35 кг/м3 | 0,039 | 0,041 | 0,046 |
Стекловата 45 кг/м3 | 0,039 | 0,041 | 0,045 |
Стекловата 60 кг/м3 | 0,038 | 0,040 | 0,045 |
Стекловата 75 кг/м3 | 0,04 | 0,042 | 0,047 |
Стекловата 85 кг/м3 | 0,044 | 0,046 | 0,050 |
Пенополистирол (пенопласт, ППС) | 0,036-0,041 | 0,038-0,044 | 0,044-0,050 |
Экструдированный пенополистирол (ЭППС, XPS) | 0,029 | 0,030 | 0,031 |
Пенобетон, газобетон на цементном растворе, 600 кг/м3 | 0,14 | 0,22 | 0,26 |
Пенобетон, газобетон на цементном растворе, 400 кг/м3 | 0,11 | 0,14 | 0,15 |
Пенобетон, газобетон на известковом растворе, 600 кг/м3 | 0,15 | 0,28 | 0,34 |
Пенобетон, газобетон на известковом растворе, 400 кг/м3 | 0,13 | 0,22 | 0,28 |
Пеностекло, крошка, 100 — 150 кг/м3 | 0,043-0,06 | ||
Пеностекло, крошка, 151 — 200 кг/м3 | 0,06-0,063 | ||
Пеностекло, крошка, 201 — 250 кг/м3 | 0,066-0,073 | ||
Пеностекло, крошка, 251 — 400 кг/м3 | 0,085-0,1 | ||
Пеноблок 100 — 120 кг/м3 | 0,043-0,045 | ||
Пеноблок 121- 170 кг/м3 | 0,05-0,062 | ||
Пеноблок 171 — 220 кг/м3 | 0,057-0,063 | ||
Пеноблок 221 — 270 кг/м3 | 0,073 | ||
Эковата | 0,037-0,042 | ||
Пенополиуретан (ППУ) 40 кг/м3 | 0,029 | 0,031 | 0,05 |
Пенополиуретан (ППУ) 60 кг/м3 | 0,035 | 0,036 | 0,041 |
Пенополиуретан (ППУ) 80 кг/м3 | 0,041 | 0,042 | 0,04 |
Пенополиэтилен сшитый | 0,031-0,038 | ||
Вакуум | 0 | ||
Воздух +27°C. 1 атм | 0,026 | ||
Ксенон | 0,0057 | ||
Аргон | 0,0177 | ||
Аэрогель (Aspen aerogels) | 0,014-0,021 | ||
Шлаковата | 0,05 | ||
Вермикулит | 0,064-0,074 | ||
Вспененный каучук | 0,033 | ||
Пробка листы 220 кг/м3 | 0,035 | ||
Пробка листы 260 кг/м3 | 0,05 | ||
Базальтовые маты, холсты | 0,03-0,04 | ||
Пакля | 0,05 | ||
Перлит, 200 кг/м3 | 0,05 | ||
Перлит вспученный, 100 кг/м3 | 0,06 | ||
Плиты льняные изоляционные, 250 кг/м3 | 0,054 | ||
Полистиролбетон, 150-500 кг/м3 | 0,052-0,145 | ||
Пробка гранулированная, 45 кг/м3 | 0,038 | ||
Пробка минеральная на битумной основе, 270-350 кг/м3 | 0,076-0,096 | ||
Пробковое покрытие для пола, 540 кг/м3 | 0,078 | ||
Пробка техническая, 50 кг/м3 | 0,037 |
Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2019, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.
Таблица теплопроводности строительных материалов
Стены, перекрытия, пол, делать можно из разных материалов, но так повелось, что теплопроводность строительных материалов обычно сравнивают с кирпичной кладкой. Этот материал знаю все, с ним проще проводить ассоциации. Наиболее популярны диаграммы, на которых наглядно продемонстрирована разница между различными материалами. Одна такая картинка есть в предыдущем пункте, вторая — сравнение кирпичной стены и стены из бревен — приведена ниже. Именно потому для стен из кирпича и другого материала с высокой теплопроводностью выбирают теплоизоляционные материалы. Чтобы было проще подбирать, теплопроводность основных строительных материалов сведена в таблицу.
Сравнивают самые разные материалы
Название материала, плотность | Коэффициент теплопроводности | ||
---|---|---|---|
в сухом состоянии | при нормальной влажности | при повышенной влажности | |
ЦПР (цементно-песчаный раствор) | 0,58 | 0,76 | 0,93 |
Известково-песчаный раствор | 0,47 | 0,7 | 0,81 |
Гипсовая штукатурка | 0,25 | ||
Пенобетон, газобетон на цементе, 600 кг/м3 | 0,14 | 0,22 | 0,26 |
Пенобетон, газобетон на цементе, 800 кг/м3 | 0,21 | 0,33 | 0,37 |
Пенобетон, газобетон на цементе, 1000 кг/м3 | 0,29 | 0,38 | 0,43 |
Пенобетон, газобетон на извести, 600 кг/м3 | 0,15 | 0,28 | 0,34 |
Пенобетон, газобетон на извести, 800 кг/м3 | 0,23 | 0,39 | 0,45 |
Пенобетон, газобетон на извести, 1000 кг/м3 | 0,31 | 0,48 | 0,55 |
Оконное стекло | 0,76 | ||
Арболит | 0,07-0,17 | ||
Бетон с природным щебнем, 2400 кг/м3 | 1,51 | ||
Легкий бетон с природной пемзой, 500-1200 кг/м3 | 0,15-0,44 | ||
Бетон на гранулированных шлаках, 1200-1800 кг/м3 | 0,35-0,58 | ||
Бетон на котельном шлаке, 1400 кг/м3 | 0,56 | ||
Бетон на каменном щебне, 2200-2500 кг/м3 | 0,9-1,5 | ||
Бетон на топливном шлаке, 1000-1800 кг/м3 | 0,3-0,7 | ||
Керамическийй блок поризованный | 0,2 | ||
Вермикулитобетон, 300-800 кг/м3 | 0,08-0,21 | ||
Керамзитобетон, 500 кг/м3 | 0,14 | ||
Керамзитобетон, 600 кг/м3 | 0,16 | ||
Керамзитобетон, 800 кг/м3 | 0,21 | ||
Керамзитобетон, 1000 кг/м3 | 0,27 | ||
Керамзитобетон, 1200 кг/м3 | 0,36 | ||
Керамзитобетон, 1400 кг/м3 | 0,47 | ||
Керамзитобетон, 1600 кг/м3 | 0,58 | ||
Керамзитобетон, 1800 кг/м3 | 0,66 | ||
ладка из керамического полнотелого кирпича на ЦПР | 0,56 | 0,7 | 0,81 |
Кладка из пустотелого керамического кирпича на ЦПР, 1000 кг/м3) | 0,35 | 0,47 | 0,52 |
Кладка из пустотелого керамического кирпича на ЦПР, 1300 кг/м3) | 0,41 | 0,52 | 0,58 |
Кладка из пустотелого керамического кирпича на ЦПР, 1400 кг/м3) | 0,47 | 0,58 | 0,64 |
Кладка из полнотелого силикатного кирпича на ЦПР, 1000 кг/м3) | 0,7 | 0,76 | 0,87 |
Кладка из пустотелого силикатного кирпича на ЦПР, 11 пустот | 0,64 | 0,7 | 0,81 |
Кладка из пустотелого силикатного кирпича на ЦПР, 14 пустот | 0,52 | 0,64 | 0,76 |
Известняк 1400 кг/м3 | 0,49 | 0,56 | 0,58 |
Известняк 1+600 кг/м3 | 0,58 | 0,73 | 0,81 |
Известняк 1800 кг/м3 | 0,7 | 0,93 | 1,05 |
Известняк 2000 кг/м3 | 0,93 | 1,16 | 1,28 |
Песок строительный, 1600 кг/м3 | 0,35 | ||
Гранит | 3,49 | ||
Мрамор | 2,91 | ||
Керамзит, гравий, 250 кг/м3 | 0,1 | 0,11 | 0,12 |
Керамзит, гравий, 300 кг/м3 | 0,108 | 0,12 | 0,13 |
Керамзит, гравий, 350 кг/м3 | 0,115-0,12 | 0,125 | 0,14 |
Керамзит, гравий, 400 кг/м3 | 0,12 | 0,13 | 0,145 |
Керамзит, гравий, 450 кг/м3 | 0,13 | 0,14 | 0,155 |
Керамзит, гравий, 500 кг/м3 | 0,14 | 0,15 | 0,165 |
Керамзит, гравий, 600 кг/м3 | 0,14 | 0,17 | 0,19 |
Керамзит, гравий, 800 кг/м3 | 0,18 | ||
Гипсовые плиты, 1100 кг/м3 | 0,35 | 0,50 | 0,56 |
Гипсовые плиты, 1350 кг/м3 | 0,23 | 0,35 | 0,41 |
Глина, 1600-2900 кг/м3 | 0,7-0,9 | ||
Глина огнеупорная, 1800 кг/м3 | 1,4 | ||
Керамзит, 200-800 кг/м3 | 0,1-0,18 | ||
Керамзитобетон на кварцевом песке с поризацией, 800-1200 кг/м3 | 0,23-0,41 | ||
Керамзитобетон, 500-1800 кг/м3 | 0,16-0,66 | ||
Керамзитобетон на перлитовом песке, 800-1000 кг/м3 | 0,22-0,28 | ||
Кирпич клинкерный, 1800 — 2000 кг/м3 | 0,8-0,16 | ||
Кирпич облицовочный керамический, 1800 кг/м3 | 0,93 | ||
Бутовая кладка средней плотности, 2000 кг/м3 | 1,35 | ||
Листы гипсокартона, 800 кг/м3 | 0,15 | 0,19 | 0,21 |
Листы гипсокартона, 1050 кг/м3 | 0,15 | 0,34 | 0,36 |
Фанера клеенная | 0,12 | 0,15 | 0,18 |
ДВП, ДСП, 200 кг/м3 | 0,06 | 0,07 | 0,08 |
ДВП, ДСП, 400 кг/м3 | 0,08 | 0,11 | 0,13 |
ДВП, ДСП, 600 кг/м3 | 0,11 | 0,13 | 0,16 |
ДВП, ДСП, 800 кг/м3 | 0,13 | 0,19 | 0,23 |
ДВП, ДСП, 1000 кг/м3 | 0,15 | 0,23 | 0,29 |
Линолеум ПВХ на теплоизолирующей основе, 1600 кг/м3 | 0,33 | ||
Линолеум ПВХ на теплоизолирующей основе, 1800 кг/м3 | 0,38 | ||
Линолеум ПВХ на тканевой основе, 1400 кг/м3 | 0,2 | 0,29 | 0,29 |
Линолеум ПВХ на тканевой основе, 1600 кг/м3 | 0,29 | 0,35 | 0,35 |
Линолеум ПВХ на тканевой основе, 1800 кг/м3 | 0,35 | ||
Листы асбоцементные плоские, 1600-1800 кг/м3 | 0,23-0,35 | ||
Ковровое покрытие, 630 кг/м3 | 0,2 | ||
Поликарбонат (листы), 1200 кг/м3 | 0,16 | ||
Полистиролбетон, 200-500 кг/м3 | 0,075-0,085 | ||
Ракушечник, 1000-1800 кг/м3 | 0,27-0,63 | ||
Стеклопластик, 1800 кг/м3 | 0,23 | ||
Черепица бетонная, 2100 кг/м3 | 1,1 | ||
Черепица керамическая, 1900 кг/м3 | 0,85 | ||
Черепица ПВХ, 2000 кг/м3 | 0,85 | ||
Известковая штукатурка, 1600 кг/м3 | 0,7 | ||
Штукатурка цементно-песчаная, 1800 кг/м3 | 1,2 |
Древесина — один из строительных материалов с относительно невысокой теплопроводностью. В таблице даны ориентировочные данные по разным породам. При покупке обязательно смотрите плотность и коэффициент теплопроводности. Далеко не у всех они такие, как прописаны в нормативных документах.
Наименование | Коэффициент теплопроводности | ||
---|---|---|---|
В сухом состоянии | При нормальной влажности | При повышенной влажности | |
Сосна, ель поперек волокон | 0,09 | 0,14 | 0,18 |
Сосна, ель вдоль волокон | 0,18 | 0,29 | 0,35 |
Дуб вдоль волокон | 0,23 | 0,35 | 0,41 |
Дуб поперек волокон | 0,10 | 0,18 | 0,23 |
Пробковое дерево | 0,035 | ||
Береза | 0,15 | ||
Кедр | 0,095 | ||
Каучук натуральный | 0,18 | ||
Клен | 0,19 | ||
Липа (15% влажности) | 0,15 | ||
Лиственница | 0,13 | ||
Опилки | 0,07-0,093 | ||
Пакля | 0,05 | ||
Паркет дубовый | 0,42 | ||
Паркет штучный | 0,23 | ||
Паркет щитовой | 0,17 | ||
Пихта | 0,1-0,26 | ||
Тополь | 0,17 |
Металлы очень хорошо проводят тепло. Именно они часто являются мостиком холода в конструкции. И это тоже надо учитывать, исключать прямой контакт используя теплоизолирующие прослойки и прокладки, которые называются термическим разрывом. Теплопроводность металлов сведена в другую таблицу.
Название | Коэффициент теплопроводности | Название | Коэффициент теплопроводности | |
---|---|---|---|---|
Бронза | 22-105 | Алюминий | 202-236 | |
Медь | 282-390 | Латунь | 97-111 | |
Серебро | 429 | Железо | 92 | |
Олово | 67 | Сталь | 47 | |
Золото | 318 |
Как рассчитать толщину стен
Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.
Термическое сопротивление ограждающих
конструкций для регионов России
Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.
Расчет толщины стены, толщины утеплителя, отделочных слоев
Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:
Формула расчета теплового сопротивления
R — термическое сопротивление;
p — толщина слоя в метрах;
k — коэффициент теплопроводности.
Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.
Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.
Пример расчета толщины утеплителя
Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.
- Для начала просчитаем тепловое сопротивление стены из кирпича. Полтора кирпича это 38 см или 0,38 метра, коэффициент теплопроводности кладки из кирпича 0,56. Считаем по приведенной выше формуле: 0,38/0,56 = 0,68. Такое тепловое сопротивление имеет стена в 1,5 кирпича.
- Эту величину отнимаем от общего теплового сопротивления для региона: 3,5-0,68 = 2,82. Эту величину необходимо «добрать» теплоизоляцией и отделочными материалами.
Рассчитывать придется все ограждающие конструкции
- Считаем толщину минеральной ваты. Ее коэффициент теплопроводности 0,045. Толщина слоя будет: 2,82*0,045 = 0,1269 м или 12,7 см. То есть, чтобы обеспечить требуемый уровень утепления, толщина слоя минеральной ваты должна быть не меньше 13 см.
Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными. Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание.
dekormyhome.ru
что это такое + таблица значений
Строительное дело предусматривает использование любых подходящих материалов. Главные критерии – безопасность для жизни и здоровья, тепловая проводимость, надёжность. Далее следуют, цена, свойства эстетичности, универсальность применения и т.д.
Рассмотрим одну из важнейших характеристик стройматериалов – коэффициент теплопроводности, так как именно от этого свойства во многом зависит, к примеру, уровень комфорта в доме.
Содержание статьи:
Что такое КТП строительного материала?
Теоретически, да и практически тоже, строительными материалами, как правило, создаются две поверхности – наружная и внутренняя. С точки зрения физики, теплая область всегда стремится к холодной области.
Применительно к стройматериалу, тепло будет стремиться от одной поверхности (более теплой) к другой поверхности (менее теплой). Вот, собственно, способность материала относительно такого перехода и называется – коэффициентом теплопроводности или в аббревиатуре – КТП.


Схема, поясняющая эффект теплопроводности: 1 – тепловая энергия; 2 – коэффициент теплопроводности; 3 – температура первой поверхности; 4 – температура второй поверхности; 5 – толщина стройматериала
Характеристика КТП обычно строится на основе испытаний, когда берётся экспериментальный экземпляр размерами 100х100 см и к нему применяется тепловое воздействие с учётом разницы температур двух поверхностей в 1 градус. Время воздействия 1 час.
Соответственно, измеряется теплопроводность в Ваттах на метр на градус (Вт/м°C). Коэффициент обозначается греческим символом λ.
По умолчанию, теплопроводность различных материалов для строительства со значением меньше 0,175 Вт/м°C, приравнивает эти материалы к разряду изоляционных.
Современным производством освоены технологии изготовления стройматериалов, уровень КТП которых составляет меньше 0,05 Вт/м°C. Благодаря таким изделиям, удается достичь выраженного экономического эффекта в плане потребления энергетических ресурсов.
Влияние факторов на уровень теплопроводности
Каждый отдельно взятый стройматериал имеет определенное строение и обладает своеобразным физическим состоянием.
Основой этого являются:
- размерность кристаллов структуры;
- фазовое состояние вещества;
- степень кристаллизации;
- анизотропия теплопроводности кристаллов;
- объем пористости и структуры;
- направление теплового потока.
Все это – факторы влияния. Определенное влияние на уровень КТП также оказывает химический состав и примеси. Количество примесей, как показала практика, оказывает особенно выразительное влияние на уровень теплопроводности кристаллических компонентов.


Изоляционные стройматериалы – класс продуктов под строительство, созданных с учётом свойств КТП, приближенных к оптимальным свойствам. Однако достичь идеальной теплопроводности при сохранении других качеств, крайне сложно
В свою очередь влияние на КТП оказывают условия эксплуатации стройматериала – температура, давление, уровень влажности и др.
Стройматериалы с минимальным КТП
Согласно исследованиям, минимальным значением теплопроводности (около 0,023 Вт/м°C) обладает сухой воздух.
С точки зрения применения сухого воздуха в структуре строительного материала, необходима конструкция, где сухой воздух пребывает внутри замкнутых многочисленных пространств небольшого объёма. Конструктивно такая конфигурация представлена в образе многочисленных пор внутри структуры.
Отсюда логичный вывод: малым уровнем КТП должен обладать стройматериал, внутренняя структура которого представляет собой пористое образование.
Причём, в зависимости от максимально допустимой пористости материала, значение теплопроводности приближается к значению КТП сухого воздуха.


Созданию строительного материала с минимальной теплопроводностью способствует пористая структура. Чем больше содержится пор разного объема в структуре материала, тем лучший КТП допустимо получить
В современном производстве применяются несколько технологий для получения пористости строительного материала.
В частности, используются технологии:
- пенообразования;
- газообразования;
- водозатворения;
- вспучивания;
- внедрения добавок;
- создания волоконных каркасов.
Следует отметить: коэффициент теплопроводности напрямую связан с такими свойствами, как плотность, теплоемкость, температурная проводимость.
Значение теплопроводности может быть рассчитано по формуле:
λ = Q / S *(T1-T2)*t,
Где:
- Q – количество тепла;
- S – толщина материала;
- T1, T2 – температура с двух сторон материала;
- t – время.
Средняя величина плотности и теплопроводности обратно пропорциональна величине пористости. Поэтому, исходя из плотности структуры стройматериала, зависимость от нее теплопроводности можно рассчитать так:
λ = 1,16 √ 0,0196+0,22d2 – 0,16,
Где: d – значение плотности. Это формула В.П. Некрасова, демонстрирующая влияние плотности конкретного материала на значение его КТП.
Влияние влаги на теплопроводность стройматериала
Опять же судя по примерам использования стройматериалов на практике, выясняется негативное влияние влаги на КТП стройматериала. Замечено – чем большему увлажнению подвергается стройматериал, тем более высоким становится значение КТП.


Различными способами стремятся защитить от воздействия влаги материал, используемый в строительстве. Эта мера вполне оправдана, учитывая повышение коэффициента для мокрого стройматериала
Обосновать такой момент несложно. Воздействие влаги на структуру строительного материала сопровождается увлажнением воздуха в порах и частичным замещением воздушной среды.
Учитывая, что параметр коэффициента теплопроводности для воды составляет 0,58 Вт/м°C, становится понятным существенное повышение КТП материала.
Следует также отметить более негативный эффект, когда вода, попадающая в пористую структуру, дополнительно замораживается – превращается в лёд.
Соответственно, несложно просчитать ещё большее увеличение теплопроводности, принимая во внимание параметры КТП льда, равного значению 2,3 Вт/м°C. Прирост примерно в четыре раза к параметру теплопроводности воды.


Одной из причин отказа от зимнего строительства в пользу стройки летом следует считать именно фактор возможного подмораживания некоторых видов стройматериалов и как следствие – повышения теплопроводности
Отсюда становятся очевидными строительные требования относительно защиты изоляционных стройматериалов от попадания влаги. Ведь уровень теплопроводности растёт в прямой пропорциональности от количественной влажности.
Не менее значимым видится и другой момент – обратный, когда структура строительного материала подвергается существенному нагреву. Чрезмерно высокая температура также провоцирует рост теплопроводности.
Происходит такое по причине повышения кинематической энергии молекул, составляющих структурную основу стройматериала.
Правда, существует класс материалов, структура которых, напротив, приобретает лучшие свойства теплопроводности в режиме сильного нагрева. Одним из таких материалов является металл.


Если под сильным нагревом большая часть широко распространенных стройматериалов изменяет теплопроводность в сторону увеличения, сильный нагрев металла приводит к обратному эффекту – КТП металла понижается
Методы определения коэффициента
Используются разные методики в этом направлении, но по факту все технологии измерения объединены двумя группами методов:
- Режим стационарных измерений.
- Режим нестационарных измерений.
Стационарная методика подразумевает работу с параметрами, неизменными с течением времени или изменяющимися в незначительной степени. Эта технология, судя по практическим применениям, позволяет рассчитывать на более точные результаты КТП.
Действия, направленные на измерения теплопроводности, стационарный способ допускает проводить в широком температурном диапазоне – 20 – 700 °C. Но вместе с тем, стационарная технология считается трудоёмкой и сложной методикой, требующей большого количества времени на исполнение.


Пример аппарата, предназначенного под выполнение измерений коэффициента теплопроводности. Это одна из современных цифровых конструкций, обеспечивающая получение быстрого и точного результата
Другая технология измерений – нестационарная, видится более упрощенной, требующей для исполнения работ от 10 до 30 минут. Однако в этом случае существенно ограничен диапазон температур. Тем не менее, методика нашла широкое применение в условиях производственного сектора.
Таблица теплопроводности стройматериалов
Подвергать измерениям многие существующие и широко используемые стройматериалы не имеет смысла.
Все эти продукты, как правило, испытаны неоднократно, на основании чего составлена таблица теплопроводности строительных материалов, куда входят практически все нужные на стройке материалы.
Один из вариантов такой таблицы представлен ниже, где КТП – коэффициент теплопроводности:
Материал (стройматериал) | Плотность, м3 | КТП сухая, Вт/мºC | % влажн._1 | % влажн._2 | КТП при влажн._1, Вт/мºC | КТП при влажн._2, Вт/мºC | |||
Битум кровельный | 1400 | 0,27 | 0 | 0 | 0,27 | 0,27 | |||
Битум кровельный | 1000 | 0,17 | 0 | 0 | 0,17 | 0,17 | |||
Шифер кровельный | 1800 | 0,35 | 2 | 3 | 0,47 | 0,52 | |||
Шифер кровельный | 1600 | 0,23 | 2 | 3 | 0,35 | 0,41 | |||
Битум кровельный | 1200 | 0,22 | 0 | 0 | 0,22 | 0,22 | |||
Лист асбоцементный | 1800 | 0,35 | 2 | 3 | 0,47 | 0,52 | |||
Лист асбестоцементный | 1600 | 0,23 | 2 | 3 | 0,35 | 0,41 | |||
Асфальтобетон | 2100 | 1,05 | 0 | 0 | 1,05 | 1,05 | |||
Толь строительная | 600 | 0,17 | 0 | 0 | 0,17 | 0,17 | |||
Бетон (на гравийной подушке) | 1600 | 0,46 | 4 | 6 | 0,46 | 0,55 | |||
Бетон (на шлаковой подушке) | 1800 | 0,46 | 4 | 6 | 0,56 | 0,67 | |||
Бетон (на щебенке) | 2400 | 1,51 | 2 | 3 | 1,74 | 1,86 | |||
Бетон (на песчаной подушке) | 1000 | 0,28 | 9 | 13 | 0,35 | 0,41 | |||
Бетон (пористая структура) | 1000 | 0,29 | 10 | 15 | 0,41 | 0,47 | |||
Бетон (сплошная структура) | 2500 | 1,89 | 2 | 3 | 1,92 | 2,04 | |||
Пемзобетон | 1600 | 0,52 | 4 | 6 | 0,62 | 0,68 | |||
Битум строительный | 1400 | 0,27 | 0 | 0 | 0,27 | 0,27 | |||
Битум строительный | 1200 | 0,22 | 0 | 0 | 0,22 | 0,22 | |||
Минеральная вата облегченная | 50 | 0,048 | 2 | 5 | 0,052 | 0,06 | |||
Минеральная вата тяжелая | 125 | 0,056 | 2 | 5 | 0,064 | 0,07 | |||
Минеральная вата | 75 | 0,052 | 2 | 5 | 0,06 | 0,064 | |||
Лист вермикулитовый | 200 | 0,065 | 1 | 3 | 0,08 | 0,095 | |||
Лист вермикулитовый | 150 | 0,060 | 1 | 3 | 0,074 | 0,098 | |||
Газо-пено-золо бетон | 800 | 0,17 | 15 | 22 | 0,35 | 0,41 | |||
Газо-пено-золо бетон | 1000 | 0,23 | 15 | 22 | 0,44 | 0,50 | |||
Газо-пено-золо бетон | 1200 | 0,29 | 15 | 22 | 0,52 | 0,58 | |||
Газо-пено-бетон (пенно-силикат) | 300 | 0,08 | 8 | 12 | 0,11 | 0,13 | |||
Газо-пено-бетон (пенно-силикат) | 400 | 0,11 | 8 | 12 | 0,14 | 0,15 | |||
Газо-пено-бетон (пенно-силикат) | 600 | 0,14 | 8 | 12 | 0,22 | 0,26 | |||
Газо-пено-бетон (пенно-силикат) | 800 | 0,21 | 10 | 15 | 0,33 | 0,37 | |||
Газо-пено-бетон (пенно-силикат) | 1000 | 0,29 | 10 | 15 | 0,41 | 0,47 | |||
Строительный гипс плита | 1200 | 0,35 | 4 | 6 | 0,41 | 0,46 | |||
Гравий керамзитовый | 600 | 2,14 | 2 | 3 | 0,21 | 0,23 | |||
Гравий керамзитовый | 800 | 0,18 | 2 | 3 | 0,21 | 0,23 | |||
Гранит (базальт) | 2800 | 3,49 | 0 | 0 | 3,49 | 3,49 | |||
Гравий керамзитовый | 400 | 0,12 | 2 | 3 | 0,13 | 0,14 | |||
Гравий керамзитовый | 300 | 0,108 | 2 | 3 | 0,12 | 0,13 | |||
Гравий керамзитовый | 200 | 0,099 | 2 | 3 | 0,11 | 0,12 | |||
Гравий шунгизитовый | 800 | 0,16 | 2 | 4 | 0,20 | 0,23 | |||
Гравий шунгизитовый | 600 | 0,13 | 2 | 4 | 0,16 | 0,20 | |||
Гравий шунгизитовый | 400 | 0,11 | 2 | 4 | 0,13 | 0,14 | |||
Дерево сосна поперечные волокна | 500 | 0,09 | 15 | 20 | 0,14 | 0,18 | |||
Фанера клееная | 600 | 0,12 | 10 | 13 | 0,15 | 0,18 | |||
Дерево сосна вдоль волокон | 500 | 0,18 | 15 | 20 | 0,29 | 0,35 | |||
Дерево дуба поперек волокон | 700 | 0,23 | 10 | 15 | 0,18 | 0,23 | |||
Металл дюралюминий | 2600 | 221 | 0 | 0 | 221 | 221 | |||
Железобетон | 2500 | 1,69 | 2 | 3 | 1,92 | 2,04 | |||
Туфобетон | 1600 | 0,52 | 7 | 10 | 0,7 | 0,81 | |||
Известняк | 2000 | 0,93 | 2 | 3 | 1,16 | 1,28 | |||
Раствор извести с песком | 1700 | 0,52 | 2 | 4 | 0,70 | 0,87 | |||
Песок под строительные работы | 1600 | 0,035 | 1 | 2 | 0,47 | 0,58 | |||
Туфобетон | 1800 | 0,64 | 7 | 10 | 0,87 | 0,99 | |||
Облицовочный картон | 1000 | 0,18 | 5 | 10 | 0,21 | 0,23 | |||
Многослойный строительный картон | 650 | 0,13 | 6 | 12 | 0,15 | 0,18 | |||
Вспененный каучук | 60-95 | 0,034 | 5 | 15 | 0,04 | 0,054 | |||
Керамзитобетон | 1400 | 0,47 | 5 | 10 | 0,56 | 0,65 | |||
Керамзитобетон | 1600 | 0,58 | 5 | 10 | 0,67 | 0,78 | |||
Керамзитобетон | 1800 | 0,86 | 5 | 10 | 0,80 | 0,92 | |||
Кирпич (пустотный) | 1400 | 0,41 | 1 | 2 | 0,52 | 0,58 | |||
Кирпич (керамический) | 1600 | 0,47 | 1 | 2 | 0,58 | 0,64 | |||
Пакля строительная | 150 | 0,05 | 7 | 12 | 0,06 | 0,07 | |||
Кирпич (силикатный) | 1500 | 0,64 | 2 | 4 | 0,7 | 0,81 | |||
Кирпич (сплошной) | 1800 | 0,88 | 1 | 2 | 0,7 | 0,81 | |||
Кирпич (шлаковый) | 1700 | 0,52 | 1,5 | 3 | 0,64 | 0,76 | |||
Кирпич (глиняный) | 1600 | 0,47 | 2 | 4 | 0,58 | 0,7 | |||
Кирпич (трепельный) | 1200 | 0,35 | 2 | 4 | 0,47 | 0,52 | |||
Металл медь | 8500 | 407 | 0 | 0 | 407 | 407 | |||
Сухая штукатурка (лист) | 1050 | 0,15 | 4 | 6 | 0,34 | 0,36 | |||
Плиты минеральной ваты | 350 | 0,091 | 2 | 5 | 0,09 | 0,11 | |||
Плиты минеральной ваты | 300 | 0,070 | 2 | 5 | 0,087 | 0,09 | |||
Плиты минеральной ваты | 200 | 0,070 | 2 | 5 | 0,076 | 0,08 | |||
Плиты минеральной ваты | 100 | 0,056 | 2 | 5 | 0,06 | 0,07 | |||
Линолеум ПВХ | 1800 | 0,38 | 0 | 0 | 0,38 | 0,38 | |||
Пенобетон | 1000 | 0,29 | 8 | 12 | 0,38 | 0,43 | |||
Пенобетон | 800 | 0,21 | 8 | 12 | 0,33 | 0,37 | |||
Пенобетон | 600 | 0,14 | 8 | 12 | 0,22 | 0,26 | |||
Пенобетон | 400 | 0,11 | 6 | 12 | 0,14 | 0,15 | |||
Пенобетон на известняке | 1000 | 0,31 | 12 | 18 | 0,48 | 0,55 | |||
Пенобетон на цементе | 1200 | 0,37 | 15 | 22 | 0,60 | 0,66 | |||
Пенополистирол (ПСБ-С25) | 15 – 25 | 0,029 – 0,033 | 2 | 10 | 0,035 – 0,052 | 0,040 – 0,059 | |||
Пенополистирол (ПСБ-С35) | 25 – 35 | 0,036 – 0,041 | 2 | 20 | 0,034 | 0,039 | |||
Лист пенополиуретановый | 80 | 0,041 | 2 | 5 | 0,05 | 0,05 | |||
Панель пенополиуретановая | 60 | 0,035 | 2 | 5 | 0,41 | 0,41 | |||
Облегченное пеностекло | 200 | 0,07 | 1 | 2 | 0,08 | 0,09 | |||
Утяжеленное пеностекло | 400 | 0,11 | 1 | 2 | 0,12 | 0,14 | |||
Пергамин | 600 | 0,17 | 0 | 0 | 0,17 | 0,17 | |||
Перлит | 400 | 0,111 | 1 | 2 | 0,12 | 0,13 | |||
Плита перлитоцементная | 200 | 0,041 | 2 | 3 | 0,052 | 0,06 | |||
Мрамор | 2800 | 2,91 | 0 | 0 | 2,91 | 2,91 | |||
Туф | 2000 | 0,76 | 3 | 5 | 0,93 | 1,05 | |||
Бетон на зольном гравии | 1400 | 0,47 | 5 | 8 | 0,52 | 0,58 | |||
Плита ДВП (ДСП) | 200 | 0,06 | 10 | 12 | 0,07 | 0,08 | |||
Плита ДВП (ДСП) | 400 | 0,08 | 10 | 12 | 0,11 | 0,13 | |||
Плита ДВП (ДСП) | 600 | 0,11 | 10 | 12 | 0,13 | 0,16 | |||
Плита ДВП (ДСП) | 800 | 0,13 | 10 | 12 | 0,19 | 0,23 | |||
Плита ДВП (ДСП) | 1000 | 0,15 | 10 | 12 | 0,23 | 0,29 | |||
Полистиролбетон на портландцементе | 600 | 0,14 | 4 | 8 | 0,17 | 0,20 | |||
Вермикулитобетон | 800 | 0,21 | 8 | 13 | 0,23 | 0,26 | |||
Вермикулитобетон | 600 | 0,14 | 8 | 13 | 0,16 | 0,17 | |||
Вермикулитобетон | 400 | 0,09 | 8 | 13 | 0,11 | 0,13 | |||
Вермикулитобетон | 300 | 0,08 | 8 | 13 | 0,09 | 0,11 | |||
Рубероид | 600 | 0,17 | 0 | 0 | 0,17 | 0,17 | |||
Плита фибролит | 800 | 0,16 | 10 | 15 | 0,24 | 0,30 | |||
Металл сталь | 7850 | 58 | 0 | 0 | 58 | 58 | |||
Стекло | 2500 | 0,76 | 0 | 0 | 0,76 | 0,76 | |||
Стекловата | 50 | 0,048 | 2 | 5 | 0,052 | 0,06 | |||
Стекловолокно | 50 | 0,056 | 2 | 5 | 0,06 | 0,064 | |||
Плита фибролит | 600 | 0,12 | 10 | 15 | 0,18 | 0,23 | |||
Плита фибролит | 400 | 0,08 | 10 | 15 | 0,13 | 0,16 | |||
Плита фибролит | 300 | 0,07 | 10 | 15 | 0,09 | 0,14 | |||
Клееная фанера | 600 | 0,12 | 10 | 13 | 0,15 | 0,18 | |||
Плита камышитовая | 300 | 0,07 | 10 | 15 | 0,09 | 0,14 | |||
Раствор цементо-песчаный | 1800 | 0,58 | 2 | 4 | 0,76 | 0,93 | |||
Металл чугун | 7200 | 50 | 0 | 0 | 50 | 50 | |||
Раствор цементно-шлаковый | 1400 | 0,41 | 2 | 4 | 0,52 | 0,64 | |||
Раствор сложного песка | 1700 | 0,52 | 2 | 4 | 0,70 | 0,87 | |||
Сухая штукатурка | 800 | 0,15 | 4 | 6 | 0,19 | 0,21 | |||
Плита камышитовая | 200 | 0,06 | 10 | 15 | 0,07 | 0,09 | |||
Цементная штукатурка | 1050 | 0,15 | 4 | 6 | 0,34 | 0,36 | |||
Плита торфяная | 300 | 0,064 | 15 | 20 | 0,07 | 0,08 | |||
Плита торфяная | 200 | 0,052 | 15 | 20 | 0,06 | 0,064 |
Рекомендуем также прочесть и другие наши статьи, где мы рассказываем о том как правильно выбирать утеплитель:
Выводы и полезное видео по теме
Видеоролик тематически направленный, где достаточно подробно разъясняется – что такое КТП и «с чем его едят». Ознакомившись с материалом, представленным в ролике, появляются высокие шансы стать профессиональным строителем.
Очевидный момент – потенциальному строителю обязательно необходимо знать о теплопроводности и ее зависимости от различных факторов. Эти знания помогут строить не просто качественно, но с высокой степенью надежности и долговечности объекта. Использование коэффициента по существу – это реальная экономия денег, допустим, на оплате за те же коммунальные услуги.
Если у вас появились вопросы или есть ценная информация по теме статьи, пожалуйста, оставляйте свои комментарии в расположенном ниже блоке.
sovet-ingenera.com
Таблица теплопроводности строительных материалов: коэффициенты
ПОДЕЛИТЕСЬ
В СОЦСЕТЯХ
Любое строительство независимо от его размера всегда начинается с разработки проекта. Его цель – спроектировать не только внешний вид будущего строения, еще и просчитать основные теплотехнические характеристики. Ведь основной задачей строительства считается сооружение прочных, долговечных зданий, способных поддерживать здоровый и комфортный микроклимат, без лишних затрат на отопление. Несомненную помощь при выборе сырья, используемого для возведения постройки, окажет таблица теплопроводности строительных материалов: коэффициенты.
Тепло в доме напярямую зависит от коэффициента теплопроводности строительных материалов
Что такое теплопроводность?
Теплопроводность – это процесс передачи энергии тепла от нагретых частей помещения к менее теплым. Такой обмен энергией будет происходить, пока температура не уравновесится. Применяя это правило к ограждающим системам дома, можно понять, что процесс теплопередачи определяется промежутком времени, за который происходит выравнивание температуры в комнатах с окружающей средой. Чем это время больше, тем теплопроводность материала, применяемого при строительстве, ниже.
Отсутствие теплоизоляции дома скажется на температуре воздуха внутри помещения
Для характеристики проводимости тепла материалами используют такое понятие, как коэффициент теплопроводности. Он показывает, какое количество тепла за одну единицу временного промежутка пройдет через одну единицу площади поверхности. Чем выше подобный показатель, тем сильнее теплообмен, значит, постройка будет остывать значительно быстрее. То есть при сооружении зданий, домов и прочих помещений необходимо использовать материалы, проводимость тепла которых минимальна.
Сравнительные характеристики теплопроводности и термического сопротивления стен, возведенных из кирпича и газобетонных блоков
Что влияет на величину теплопроводности?
Тепловая проводимость любого материала зависит от множества параметров:
- Пористая структура. Присутствие пор предполагает неоднородность сырья. При прохождении тепла через подобные структуры, где большая часть объема занята порами, охлаждение будет минимальным.
- Плотность. Высокая плотность способствует более тесному взаимодействию частиц друг с другом. В результате теплообмен и последующее полное уравновешивание температур происходит быстрее.
- Влажность. При высокой влажности окружающего воздуха или намокании стен постройки, сухой воздух вытесняется капельками жидкости из пор. Теплопроводность в подобном случае значительно увеличивается.
Теплопроводность, плотность и водопоглощение некоторых строительных материалов
Применение показателя теплопроводности на практике
В строительстве все материалы условно подразделяются на теплоизоляционные и конструкционные. Конструкционное сырье отличается наибольшими показателями теплопроводности, но именно его применяют для постройки стен, перекрытий, прочих ограждений. Согласно таблице теплопроводности строительных материалов, при возведении стен из железобетона, для низкого теплообмена с окружающей средой толщина конструкции должна быть около 6 метров. В таком случае строение получится огромным, громоздким и потребует немалых затрат.
Наглядный пример — при какой толщине различных материалов их коэффициент теплопроводности будет одинаковым
Поэтому при возведении постройки следует отдельное внимание уделять дополнительным теплоизолирующим материалам. Слой теплоизоляции может не понадобиться только для построек из дерева или пенобетона, но даже при использовании подобного низкопроводного сырья толщина конструкции должна быть не менее 50 см.
Нужно знать! У теплоизоляционных материалов значения показателя теплопроводности минимальны.
Теплопроводность готового здания. Варианты утепления конструкций
При разработке проекта постройки необходимо учесть все возможные варианты и пути потери тепла. Большое его количество может уходить через:
- стены – 30%;
- крышу – 30%;
- двери и окна – 20%;
- полы – 10%.
Теплопотери неутепленного частного дома
При неверном расчете теплопроводности на этапе проектирования, жильцам остается довольствоваться только 10% тепла, получаемого от энергоносителей. Именно поэтому дома, возведенные из стандартного сырья: кирпича, бетона, камня рекомендуют дополнительно утеплять. Идеальная постройка согласно таблице теплопроводности строительных материалов должна быть выполнена полностью из теплоизолирующих элементов. Однако малая прочность и минимальная устойчивость к нагрузкам ограничивает возможности их применения.
Нужно знать! При обустройстве правильной гидроизоляции любого утеплителя высокая влажность не повлияет на качество теплоизоляции и сопротивление постройки теплообмену будет значительно выше.
Сравнительный график коэффициентов теплопроводности некоторых строительных материалов и утеплителей
Самым распространенным вариантом сочетание несущей конструкции из высокопрочных материалов с дополнительным слоем теплоизоляции. Сюда можно отнести:
- Каркасный дом. При его постройке каркасом из древесины обеспечивается жесткость всей конструкции, а укладка утеплителя производится в пространство между стойками. При незначительном уменьшении теплообмена в некоторых случая может потребоваться утепление еще и снаружи основного каркаса.
- Дом из стандартных материалов. При выполнении стен из кирпича, шлакоблоков, утепление должно проводиться по наружной поверхности конструкции.
Необходимая тепло- и гидроизоляция для сохранения тепла в частном доме
Таблица теплопроводности строительных материалов: коэффициенты
В этой таблице собраны показатели теплопроводности самых распространенных строительных материалов. Пользуясь подобными справочниками, можно без проблем рассчитать необходимую толщину стен и применяемого утеплителя.
Таблица коэффициента теплопроводности строительных материалов:
Таблица теплопроводности строительных материалов: коэффициенты
Теплопроводность строительных материалов (видео)
ОЦЕНИТЕМАТЕРИАЛ Загрузка… ПОДЕЛИТЕСЬ
В СОЦСЕТЯХ
СМОТРИТЕ ТАКЖЕ
REMOO В ВАШЕЙ ПОЧТЕremoo.ru
Таблица теплопроводности строительных материалов и утеплителей
ПОДЕЛИТЕСЬ В СОЦСЕТЯХ
Строительство каждого объекта лучше начинать с планировки проекта и тщательного расчета теплотехнических параметров. Точные данные позволит получить таблица теплопроводности строительных материалов. Правильное возведение зданий способствует оптимальным климатическим параметрам в помещении. А таблица поможет правильно подобрать сырье, которое будут использоваться для строительства.


Теплопроводность материалов влияет на толщину стен
Содержание статьи
Назначение теплопроводности
Теплопроводность является показателем передачи тепловой энергии от нагреваемых предметов в помещении к предметам с более низкой температурой. Процесс теплообмена производится, пока температурные показатели не уравняются. Для обозначения тепловой энергии используется специальный коэффициент теплопроводности строительных материалов. Таблица поможет увидеть все требуемые значения. Параметр обозначает, сколько тепловой энергии пропускается через единицу площади в единицу времени. Чем больше данное обозначение, тем качественнее будет теплообмен. При возведении зданий необходимо применять материал с минимальным значением тепловой проводимости.


На схеме представлены показатели различных вариантов
Коэффициент теплопроводности это такая величина, которая равна количеству теплоты, проходящей через метр толщины материала за час. Использование подобной характеристики обязательно для создания лучшей теплоизоляции. Теплопроводность следует учесть при подборе дополнительных утепляющих конструкций.


Что оказывает влияние на показатель теплопроводности?
Теплопроводность определяется такими факторами:
- пористость определяет неоднородность структуры. При пропуске тепла через такие материалы процесс охлаждения незначительный;
- повышенное значение плотности влияет на тесные соприкосновения частиц, что способствует более быстрому теплообмену;
- повышенная влажность увеличивает данный показатель.


Характеристики различных материалов
Использование значений коэффициента теплопроводности на практике
Материалы представлены конструкционными и теплоизоляционными разновидностями. Первый вид обладает большими показателями теплопроводности. Они применяются для строительства перекрытий, ограждений и стен.
При помощи таблицы определяются возможности их теплообмена. Чтобы данный показатель был достаточно низким для нормального микроклимата в помещении стены из некоторых материалов должны быть особенно толстыми. Чтобы этого избежать, рекомендуется использовать дополнительные теплоизолирующие компоненты.


При выборе утеплителя нужно изучить характеристики каждого варианта
Показатели теплопроводности для готовых построек. Виды утеплений
При создании проекта нужно учитывать все способы утечки тепла. Оно может выходить через стены и крышу, а также через полы и двери. Если вы неправильно проведете расчеты проектирования, то придется довольствоваться только тепловой энергией, полученной от отопительных приборов. Здания, построенные из стандартного сырья: камня, кирпича либо бетона нужно дополнительно утеплять.


Монтаж минеральной ваты
Дополнительная теплоизоляция проводится в каркасных зданиях. При этом деревянный каркас придает жесткости конструкции, а утепляющий материал прокладывается в пространство между стойками. В зданиях из кирпича и шлакоблоков утепление производится снаружи конструкции.
Выбирая утеплители необходимо обращать внимание на такие факторы, как уровень влажности, влияние повышенных температур и типа сооружения. Учитывайте определенные параметры утепляющих конструкций:
- показатель теплопроводности оказывает влияние на качество теплоизолирующего процесса;
- влагопоглощение имеет большое значение при утеплении наружных элементов;
- толщина влияет на надежность утепления. Тонкий утеплитель помогает сохранить полезную площадь помещения;
- важна горючесть. Качественное сырье имеет способность к самозатуханию;
- термоустойчивость отображает способность выдерживать температурные перепады;
- экологичность и безопасность;
- звукоизоляция защищает от шума.


Характеристики разных видов утеплителей
В качестве утеплителей применяются следующие виды:
- минеральная вата устойчива к огню и экологична. К важным характеристикам относится низкая теплопроводность;


Данный материал относится к самым доступным и простым вариантам
- пенопласт – это легкий материал с хорошими утеплительными свойствами. Он легко устанавливается и обладает влагоустойчивостью. Рекомендуется для применения в нежилых строениях;
- базальтовая вата в отличие от минеральной отличается лучшими показателями стойкости к влаге;
- пеноплэкс устойчив к влажности, повышенным температурам и огню. Имеет прекрасные показатели теплопроводности, прост в монтаже и долговечен;


Для пеноплекса характерна пористая структура
- пенополиуретан известен такими качествами, как негорючесть, хорошие водоотталкивающие свойства и высокая пожаростойкость;
- экструдированный пенополистирол при производстве проходит дополнительную обработку. Обладает равномерной структурой;


Данный вариант бывает разной толщины
- пенофол представляет из себя многослойный утепляющий пласт. В составе присутствует вспененный полиэтилен. Поверхность пластины покрывается фольгой для обеспечения отражения.
Для теплоизоляции могут применяться сыпучие типы сырья. Это бумажные гранулы или перлит. Они имеют стойкость к влаге и к огню. А из органических разновидностей можно рассмотреть волокно из древесины, лен или пробковое покрытие. При выборе, особое внимание уделяйте таким показателям как экологичность и пожаробезопасность.
Обратите внимание! При конструировании теплоизоляции, важно продумать монтаж гидроизолирующей прослойки. Это позволит избежать высокой влажности и повысит сопротивляемость теплообмену.
Таблица теплопроводности строительных материалов: особенности показателей
Таблица теплопроводности строительных материалов содержит показатели различных видов сырья, которое применяется в строительстве. Используя данную информацию, вы можете легко посчитать толщину стен и количество утеплителя.


Утепление производится в определенных местах
Как использовать таблицу теплопроводности материалов и утеплителей?
В таблице сопротивления теплопередаче материалов представлены наиболее популярные материалы. Выбирая определенный вариант теплоизоляции важно учитывать не только физические свойства, но и такие характеристики как долговечность, цена и легкость установки.
Знаете ли вы, что проще всего выполнять монтаж пенооизола и пенополиуретана. Они распределяются по поверхности в виде пены. Подобные материалы легко заполняют полости конструкций. При сравнении твердых и пенных вариантов, нужно выделить , что пена не образует стыков.


Коэффициент разнообразных типов сырья
Значения коэффициентов теплопередачи материалов в таблице
При произведении вычислений следует знать коэффициент сопротивления теплопередаче. Данное значение является отношением температур с обеих сторон к количеству теплового потока. Для того чтобы найти теплосопротивление определенных стен и используется таблица теплопроводности.


Значения плотности и теплопроводности
Все расчеты вы можете провести сами. Для этого толщина прослойки теплоизолятора делится на коэффициент теплопроводности. Данное значение часто указывается на упаковке, если это изоляция. Материалы для дома измеряются самостоятельно. Это касается толщины, а коэффициенты можно отыскать в специальных таблицах.


Теплопроводность некоторых конструкций
Коэффициент сопротивления помогает выбрать определенный тип теплоизоляции и толщину слоя материала. Сведения о паропроницаемости и плотности можно посмотреть в таблице.
При правильном использовании табличных данных вы сможете выбрать качественный материал для создания благоприятного микроклимата в помещении.
Теплопроводность строительных материалов (видео)
ПОДЕЛИТЕСЬ В СОЦСЕТЯХ


aquatic-home.ru
Таблица теплопроводности строительных материалов. Характеристики и сравнение строительных материалов :: SYL.ru
Строительство коттеджа или дачного дома – это сложный и трудоемкий процесс. И для того, чтобы будущее строение простояло не один десяток лет, нужно соблюдать все нормы и стандарты при его возведении. Поэтому каждый этап строительства требует точных расчетов и качественного выполнения необходимых работ.
Одним из самых важных показателей при строительстве и отделке строения является теплопроводность строительных материалов. СНИП (строительные нормы и правила) дает полный спектр информации по данному вопросу. Ее необходимо знать, чтобы будущее здание было комфортным для проживания как в летний, так и в зимний период.
Идеальный теплый дом
От конструктивных особенностей строения и применяемых при его возведении материалов зависит комфорт и экономичность проживания в нем. Комфорт заключается в создании оптимального микроклимата внутри вне зависимости от внешних погодных условий и температуры окружающей среды. Если материалы подобраны правильно, а котельное оборудование и вентиляция установлены согласно нормам, то в таком доме будет комфортная прохладная температура летом и тепло зимой. К тому же если все материалы, используемые при строительстве, обладают хорошими теплоизоляционными свойствами, то расходы на энергоносители при отоплении помещений будут минимальны.

Понятие теплопроводности
Теплопроводность – это передача тепловой энергии между непосредственно соприкасающимися телами или средами. Простыми словами теплопроводность – это способность материала проводить температуру. То есть, попадая в какую-то среду с отличающейся температурой, материал начинает принимать температуру этой среды.
Этот процесс имеет большое значение и в строительстве. Так, в доме с помощью отопительного оборудования поддерживается оптимальная температура (20-25°C). Если температура на улице будет ниже, то когда отключается отопление, все тепло из дома через некоторое время выйдет на улицу, и температура понизится. Летом происходит обратная ситуация. Чтобы сделать температуру в доме ниже уличной, приходится использовать кондиционер.
Коэффициент теплопроводности
Потеря тепла в доме неизбежна. Она происходит постоянно, когда температура снаружи меньше, чем в помещении. А вот ее интенсивность – это переменная величина. Она зависит от множества факторов, главными среди которых являются:
- Площадь поверхностей, участвующих в теплообмене (крыша, стены, перекрытия, пол).
- Показатель теплопроводности строительных материалов и отдельных элементов здания (окна, двери).
- Разница между температурами на улице и внутри дома.
- И другие.
Для количественной характеристики теплопроводности строительных материалов используют специальный коэффициент. Используя этот показатель, можно довольно просто рассчитать необходимую теплоизоляцию для всех частей дома (стены, крыша, перекрытия, пол). Чем выше коэффициент теплопроводности строительных материалов, тем больше интенсивность потери тепла. Таким образом, для постройки теплого дома лучше применять материалы с более низким показателем этой величины.
Коэффициент теплопроводности строительных материалов, как и любых других веществ (жидких, твердых или газообразных), обозначается греческой буквой λ. Единицей его измерения является Вт/(м*°C). При этом расчет ведется на один квадратный метр стены толщиной в один метр. Разница температур здесь берется 1°. Практически в любом строительном справочнике имеется таблица теплопроводности строительных материалов, в которой можно посмотреть значение этого коэффициента для различных блоков, кирпичей, бетонных смесей, пород дерева и других материалов.
Определение потерь тепла
Потери тепла в любом здании всегда есть, но в зависимости от материала они могут изменять свое значение. В среднем потеря тепла происходит через:
- Крышу (от 15 % до 25 %).
- Стены (от 15 % до 35 %).
- Окна (от 5 % до 15 %).
- Дверь (от 5 % до 20 %).
- Пол (от 10 % до 20 %).

Для определения потерь тепла применяют специальный тепловизор, который определяет наиболее проблемные места. Они выделяются на нем красным цветом. Меньшая потеря тепла происходит в желтых зонах, далее – в зеленых. Зоны с наименьшей потерей тепла выделяются синим цветом. А определение теплопроводности строительных материалов должно проводиться в специальных лабораториях, о чем должен свидетельствовать сертификат качества, прилагаемый к продукции.

Пример расчета потерь тепла
Если взять, к примеру, стену из материала с коэффициентом теплопроводности 1, то при разности температур с двух сторон этой стены в 1°, потери тепла составят 1 Вт. Если же толщину стены взять не 1 метр, а 10 см, то потери составят уже 10 Вт. В случае, если разность температур будет 10°, то тепловые потери также составят 10 Вт.
Рассмотрим теперь на конкретном примере расчет потери тепла целого здания. Высоту его возьмем 6 метров (8 с коньком), ширину – 10 метров, а длину – 15 метров. Для простоты расчетов берем 10 окон площадью 1 м2. Температуру внутри помещения будем считать равную 25°C, а на улице -15°C. Вычисляем площадь всех поверхностей, через которые происходит потеря тепла:
- Окна – 10 м2.
- Пол – 150 м2.
- Стены – 300 м2.
- Крыша (со скатами по длинной стороне) – 160 м2.
Формула теплопроводности строительных материалов позволяет вычислить коэффициенты для всех частей здания. Но проще использовать уже готовые данные из справочника. Там есть таблица теплопроводности строительных материалов. Рассмотрим каждый элемент по отдельности и определим его тепловое сопротивление. Оно рассчитывается по формуле R = d/λ, где d – толщина материала, а λ – коэффициент его теплопроводности.
Пол – 10 см бетона (R=0,058 (м2*°C)/Вт) и 10 см минеральной ваты (R=2,8 (м2*°C)/Вт). Теперь складываем эти два показателя. Таким образом, тепловое сопротивление пола равняется 2,858 (м2*°C)/Вт.
Аналогично считаются стены, окна и кровля. Материал – ячеистый бетон (газобетон), толщина 30 см. В таком случае R=3,75 (м2*°C)/Вт. Тепловое сопротивление пластового окна — 0,4 (м2*°C)/Вт.
Кровлю будем считать из минеральной ваты толщиной в 10 см и профлиста. Так как металл имеет высокий коэффициент теплопроводности, то профлист в расчет не берем. Тогда R крыши составит 2,8 (м2*°C)/Вт.
Следующая формула позволяет выяснить потери тепловой энергии.
Q = S * T / R, где S – площадь поверхности, T – разница температур снаружи и внутри (40°C). Рассчитаем потери тепла для каждого элемента:
- Для крыши: Q = 160*40/2,8=2,3 кВт.
- Для стен: Q = 300*40/3,75=3,2 кВт.
- Для окон: Q = 10*40/0,4=1 кВт.
- Для пола: Q = 150*40/2,858=2,1 кВт.
Далее все эти показатели суммируются. Таким образом, для данного коттеджа тепловые потери составят 8,6 кВт. А для поддержания оптимальной температуры потребуется котельное оборудование мощностью не менее 10 кВт.
Материалы для внешних стен
На сегодняшний день существует множество стеновых строительных материалов. Но наибольшей популярностью в частном домостроении по-прежнему пользуются строительные блоки, кирпичи и дерево. Основные отличия – это плотность и теплопроводность строительных материалов. Сравнение дает возможность выбрать золотую середину в соотношении плотность/теплопроводность. Чем выше плотность материала, тем выше его несущая способность, а следовательно, и прочность конструкции в целом. Но при этом ниже его тепловое сопротивление, а как следствие, расходы на энергоносители выше. С другой стороны, чем выше тепловое сопротивление, тем ниже плотность материала. Меньшая плотность, как правило, подразумевает наличие пористой структуры.

Чтобы взвесить все за и против, необходимо знать плотность материала и его коэффициент теплопроводности. Следующая таблица теплопроводности строительных материалов для стен дает значение этого коэффициента и его плотность.
Материал | Теплопроводность, Вт/(м*°C) | Плотность, т/м3 |
Железобетон | 1,7 | 2,5 |
Керамзитобетонные блоки | 0,14 – 0,66 | 0,5 – 1,8 |
Керамический кирпич | 0,56 | 1,8 |
Силикатный кирпич | 0,7 | 1,8 |
Газобетонные блоки | 0,08 – 0,29 | 0,3 – 1 |
Сосна | 0,18 | 0,5 |

Утеплители для стен
При недостаточной тепловой сопротивляемости внешних стен могут применяться различные утеплители. Так как значения теплопроводности строительных материалов для утепления могут иметь весьма низкий показатель, то чаще всего толщины в 5-10 см будет достаточно для создания комфортной температуры и микроклимата в помещениях. Широкое применение на сегодняшний день получили такие материалы, как минеральная вата, пенополистирол, пенопласт, пенополиуритан и пеностекло.

Следующая таблица теплопроводности строительных материалов, используемых для утепления наружных стен, дает значение коэффициента λ.
Материал | Теплопроводность, Вт/(м*°C) |
Минеральная вата | 0,048 – 0,07 |
Пенополистирол | 0,031 – 0,05 |
Экструдированный пенополистирол | 0,036 |
Пенополиуритан | 0,02 – 0,041 |
Пеностекло | 0,07 – 0,11 |

Особенности применения стеновых утеплителей
Применение утеплителей для наружных стен имеет некоторые ограничения. Это прежде всего связанно с таким параметром, как паропроницаемость. Если стена сделана из пористого материала, такого как газобетон, пенобетон или керамзитобетон, то применять лучше минеральную вату, так как этот параметр у них практически одинаковый. Использование пенополистирола, пенополиуритана или пеностекла возможно только при наличии специального вентиляционного зазора между стеной и утеплителем. Для дерева это также критично. А вот для кирпичных стен данный параметр не так критичен.
Теплая кровля
Утепление кровли позволяет избежать ненужных перерасходов при отоплении дома. Для этого могут применяться все виды утеплителей как листового формата, так и напыляемые (пенополиуритан). При этом не следует забывать про пароизоляцию и гидроизоляцию. Это весьма важно, так как мокрый утеплитель (минеральная вата) теряет свои свойства по тепловой сопротивляемости. Если же кровля не утепляется, то необходимо основательно утеплить перекрытие между чердаком и последним этажом.
Пол
Утепление пола весьма важный этап. При этом также необходимо применять пароизоляцию и гидроизоляцию. В качестве утеплителя используется более плотный материал. Он, соответственно, имеет более высокий коэффициент теплопроводности, чем кровельный. Дополнительной мерой для утепления пола может послужить подвал. Наличие воздушной прослойки позволяет повысить тепловую защиту дома. А оборудование системы теплого пола (водяного или электрического) дает дополнительный источник тепла.
Заключение
При строительстве и отделке фасада необходимо руководствоваться точными расчетами по тепловым потерям и учитывать параметры используемых материалов (теплопроводность, паропроницаемость и плотность).
www.syl.ru
Теплопроводность строительных материалов: таблица параметров
Ссылка на статью успешно отправлена!
Отправим материал вам на e-mail
Любые строительные работы начинаются с создания проекта. При этом планируется как расположение комнат в здании, так и рассчитываются главные теплотехнические показатели. От данных значений зависит, насколько будущая постройка будет теплой, долговечной и экономичной. Позволит определить теплопроводность строительных материалов – таблица, в которой отображены основные коэффициенты. Правильные расчеты являются гарантией удачного строительства и создания благоприятного микроклимата в помещении.

Чтобы дом был теплым без утеплителя потребуется определенная толщина стен, которая отличается в зависимости от вида материала
Содержание статьи
Теплопроводность: понятие и теория
Теплопроводность представляет собой процесс перемещения тепловой энергии от прогретых частей к холодным. Обменные процессы происходят до полного равновесия температурного значения.

Комфортный микроклимат в доме зависит от качественной теплоизоляции всех поверхностей
Процесс теплопередачи характеризуется промежутком времени, в течение которого выравниваются температурные значения. Чем больше времени проходит, тем ниже теплопроводность строительных материалов, свойства которых отображает таблица. Для определения данного показателя применяется такое понятие как коэффициент теплопроводности. Он определяет, какое количество тепловой энергии проходит через единицу площади определенной поверхности. Чем данный показатель больше, тем с большей скоростью будет остывать здание. Таблица теплопроводности нужна при проектировании защиты постройки от теплопотерь. При этом можно снизить эксплуатационный бюджет.

Потери тепла на разных участках постройки будут отличаться
Полезный совет! При постройке домов стоит использовать сырье с минимальной проводимостью тепла.
От чего зависит величина теплопроводности?
От множества факторов зависит значение теплопроводности строительных материалов. Таблица коэффициентов, представленная в нашем обзоре, это наглядно показывает.

Наглядный пример демонстрирует свойство теплопроводности
На данный показатель оказывают влияние следующие параметры:
- более высокая плотность способствует прочному взаимодействию частиц друг с другом. При этом уравновешивание температур производится более быстро. Чем плотнее материал, тем лучше пропускается тепло;
- пористость сырья свидетельствует о его неоднородности. При перемещении тепловой энергии через подобную структуру охлаждение будет небольшим. Внутри гранул находится только воздух, который обладает минимальным количеством коэффициента. Если поры маленькие, то при этом затрудняется передача тепла. Но повышается значение теплопроводность;
- при повышенной влажности и промокании стен здания показатель прохождения тепла будет выше.

Чем ниже показатель теплопроводности строительного сырья, тем уютнее и теплее в помещении
Использование значений теплопроводности на практике
Материалы, используемые в строительстве, могут быть конструкционными и теплоизолирующими.

Существует огромное количество материалов с теплоизолирующими свойствами
Самое большое значение теплопроводности у конструкционных материалов, которые используются при возведении перекрытий, стен и потолков. Если не использовать сырье с теплоизолирующими свойствами, то для сохранения тепла потребуется монтаж толстого слоя утеплителя для возведения стен.

Часто для утепления строений используются более простые материалы
Поэтому при возведении постройки стоит использовать дополнительные материалы. При этом значение имеет теплопроводность строительных материалов, таблица показывает все значения.

В некоторых случаях более эффективным считается утепление снаружи
Полезная информация! Для построек из древесины и пенобетона не обязательно использовать дополнительное утепление. Даже применяя низкопроводной материал, толщина сооружения не должна быть менее 50 см.
Особенности теплопроводности готового строения
Планируя проект будущего дома, нужно обязательно учесть возможные потери тепловой энергии. Большая часть тепла уходит через двери, окна, стены, крышу и полы.

В многоквартирных домах потери тепла будут отличаться по сравнению с частным строением
Если не выполнять расчеты по теплосбережению дома, то в помещении будет прохладно. Рекомендуется постройки из кирпича, бетона и камня дополнительно утеплять.

Утепление построек из бетона или камня повышает комфортные условия внутри здания
Полезный совет! Перед тем как утеплять жилище, необходимо продумать качественную гидроизоляцию. При этом даже повышенная влажность не повлияет на особенности теплоизоляции в помещении.
Разновидности утепления конструкций
Теплое здание получится при оптимальном сочетании конструкции из прочных материалов и качественного теплоизолирующего слоя. К подобным сооружениям можно отнести следующие:
- при возведении каркасной постройки, используемая древесина обеспечивает жесткость здания. Утеплитель прокладывается между стойками. В некоторых случаях применяется утепление снаружи здания;

Монтажные работы по утеплению каркасного сооружения требуют использования дополнительных конструктивных элементов
- здание из стандартных материалов: шлакоблоков или кирпича. При этом утепление часто проводится по наружной стороне.

Особенности монтажа теплоизолирующего материала с внутренней стороны
Как определить коэффициенты теплопроводности строительных материалов: таблица
Помогает определить коэффициент теплопроводности строительных материалов – таблица. В ней собраны все значения самых распространенных материалов. Используя подобные данные, можно рассчитать толщину стен и используемый утеплитель. Таблица значений теплопроводности:

Необходимые коэффициенты для самых различных материалов
Чтобы определить величину теплопроводности используются специальные ГОСТы. Значение данного показателя отличается в зависимости от вида бетона. Если материал имеет показатель 1,75, то пористый состав обладает значением 1,4. Если раствор выполнен с применением каменного щебня, то его значение 1,3.

Технические характеристики утеплителей для бетонных полов

О значении теплопроводности можно судить по сравнительным характеристикам
Полезные рекомендации
Потери через потолочные конструкции значительны для проживающих на последних этажах. К слабым участкам относится пространство между перекрытиями и стеной. Подобные участки считаются мостиками холода. Если над квартирой присутствует технический этаж, то при этом потери тепловой энергии меньше.

Выполняя утепление потолка на веранде или террасе, можно использовать более легкие стройматериалы
Утепление потолочного перекрытия на верхнем этаже производится снаружи. Также потолок можно утеплить внутри квартиры. Для этого применяется пенополистирол или теплоизоляционные плиты.

При утеплении потолка, стоит подобрать материал для пароизоляции и для гидроизоляции
Прежде чем утеплять любые поверхности, стоит узнать теплопроводность строительных материалов, таблица СНиПа поможет в этом. Утеплять напольное покрытие не так сложно как другие поверхности. В качестве утепляющих материалов применяются такие материалы как керамзит, стекловата ил пенополистирол.

Создание теплого пола требует особых знаний. Важно учитывать высоту и толщину материалов
Чтобы качественно утеплить квартиру на последних этажах, можно полноценно использовать возможности центрального отопления. При этом важно повысить отдачу тепло от радиаторов. Для этого стоит воспользоваться следующими советами:
- если какая-то часть батарей холодная, то требуется спустить воздух. При этом открывается специальный клапан;
- чтобы тепло проникало внутрь дома, на не обогревало стены, рекомендуется установить защитный экран с покрытием из фольги;
- для свободной циркуляции подогретого воздуха не стоит радиаторы загромождать мебелью или шторами;
- если снять декоративный экран, то теплоотдача увеличиться на 25 %.

Выбор качественных радиаторов позволяет лучше сберечь тепло в помещении
Тепловые потери через входные двери могут составлять до 10 %. При этом значительное количество тепла тратится на воздушные массы, которые поступают снаружи. Для устранения сквозняков надо переустановить изношенные уплотнители и щели, которые могут появиться между стеной и коробом. В данном случае дверное полотно можно обить, а щели заполнить с помощью монтажной пены.

Выбор утеплителя зависит от материала самой двери
Одним из основных источников теплопотерь являются окна. Если рамы старые, то появляются сквозняки. Через оконные проемы теряется около 35% тепловой энергии. Для качественного утепления применяются двухкамерные стеклопакеты. К другим способам относится утепление щелей монтажной пеной, оклейка мест стыков с рамой специальным уплотнителем и нанесение силиконового герметика. Правильное и комплексное утепление является гарантией комфортного и теплого дома, в котором не появиться плесень, сквозняки и холодный пол.

Экономьте время: отборные статьи каждую неделю по почте
homemyhome.ru