Как посчитать площадь трубы: площадь трубы формула · Как пользоваться Контрольная Работа РУ

Содержание

формула через диаметр, наружная поверхность, сечение, как посчитать и вычислить

Содержание:

Проектирование любого трубопровода – ответственное дело, от качественного проведения которого зависит скорость, дешевизна и даже сама возможность дальнейших работ. Краеугольный камень такого проектирования – расчёт геометрических параметров элементов системы: площади трубы (в сечении), площадей наружной поверхности трубы и внутренней. На этих параметрах строятся все дальнейшие расчёты, в том числе гидравлические, термодинамические и прочностные. Простейшим методам вычисления параметров труб посвящена эта статья.


Для чего нужны геометрические вычисления

Прежде чем начать замерять или узнавать исходные размеры, необходимо осознать, для каких целей послужат произведённые вычисления.

Таких целей несколько:

  1. Вычисление термодинамических параметров системы. Формула площади поверхности трубы необходима при расчёте теплоотдачи отдельной трубы, участка трубопровода или, к примеру, тёплого пола. Для того, чтобы узнать эти параметры, необходимо высчитать общую площадь изделия или системы, с которой в окружающую среду происходит теплоотдача.
  2. Расчёт теплопотерь по направлению «источник тепла-отопительный прибор». В этом случае наибольшая потеря тепловой энергии происходит на самом длинном участке с наибольшей площадью контакта с окружающей средой, то есть опять-таки в трубах. Поэтому, как и в предыдущем случае, узнав площадь поверхности теплоотдачи, можно, основываясь на этом значении и количестве выделяемого тепла в исходной точке, спланировать число и размер отопительных приборов в будущей системе. Читайте также: «Как рассчитать площадь поверхности трубы – примеры расчета внешней и внутренней площади».
  3. Оценка необходимого количества теплоизоляционных материалов. При работе труб в условиях холодного климата или резких перепадов наружной температуры без использования утеплителя не обойтись, а чтобы рассчитать точное его количество, необходимо найти площадь труб (в данном случае наружную), которые нужно покрыть термоизоляционным слоем. Следует отметить, что в промышленных масштабах правильный расчёт количества утеплителя поможет значительно сэкономить средства предприятия, сократив затраты и на непредвиденный ремонт (если утеплителя закупили меньше и трубы промёрзли), и на ненужный материал. Впрочем, небольшой запас утеплителя при закупке всё же необходим.
  4. Расчёт количества денежных средств, необходимых для приобретения нужного количества смазок, антикоррозийных покрытий, красящих веществ и т.п. К примеру, способ, как посчитать площадь трубы под покраску, достаточно прост: необходимое значение рассчитывается с помощью двух параметров – длины трубы и наружного диаметра (о формуле расчёта ниже). Второй шаг – получение данных о расходе покрытия на квадратный метр поверхности (или приведение исходного значения к метрическим единицам). После этого можно вычислить необходимое количество краски на всю длину трубы или трубопровода. Как и в предыдущем случае, точный расчёт поможет сократить расходы на закупку красящих веществ. В случае же, когда расход материала значительно больше запланированного, следует или уменьшить неэффективную толщину покрытия, или задуматься о намеренных или случайных потерях в процессе производства, упаковки или использования продукции.
  5. Вычисление максимальной пропускной способности трубы. Давайте разберемся, как рассчитать пропускную способность трубы правильно. В этом случае необходим расчёт площади сечения трубы. Опираясь на полученное максимальное значение производительности, рассчитывают (в процентном соотношение) и рабочее, которое в итоге и используется в технологической схеме. Следует отметить, что и расчёт проходимости трубы важен для проектирования трубопроводов. Ошибка в меньшую сторону приведёт к угрозе частых засорений и, соответственно, необходимости внеплановых ремонтов. Отклонение в большую строну грозит недостаточным гидравлическим напором, ударяющим по производительности, и, в случае конструирования теплопередающих установок, излишними потерями тепла во время работы и простоя.2,

    где l – толщина стенки трубы.

    Если в первой формуле принять R и D не внешними, а внутренними диаметрами, то учитывать толщину стенки не понадобится, и расчёт можно вести по первому уравнению.

    Нужно понимать, что перед тем, как вычислить площадь трубы в сечении, все исходные параметры следует привести к одинаковым единицам измерения (детальнее: «Как рассчитать площадь сечения трубы – простые и проверенные способы»). В принципе, по желанию расчёты можно вести в любых единицах – миллиметрах, сантиметрах, метрах и т.д. главное при проведении дальнейших вычислительных операций привести значение площади к стандартному виду (квадратным метрам).


    Следует ещё учитывать, что в напорных трубопроводах рабочая среда перемещается по всему объёму трубы, а в случае устройства самотёчной конструкции жидкость заполняет собой только часть объёма трубы – так называемое живое сечение (прочитайте также: «Как рассчитать объем трубы – советы из практики»). При гидравлических расчётах таких систем, соответственно, учитывается именно площадь живого сечения трубы, то есть площадь поперечного сечения перемещающегося в ней потока.

    Вычисление площади наружной поверхности трубы

    Как и в предыдущем случае, можно найти площадь трубы через диаметр. Формула расчёта также довольно проста, ведь развёртка площади цилиндра представляет собой прямоугольник, для которого длина одной стороны равна длине окружности наружного сечения, второй – длине отрезка трубы.

    Соответственно, формула площади трубы имеет вид:

    S=2πRL=πDL,

    где R – наружный радиус изделия, D – наружный диаметр, L – продольная длина трубы.

    Как и в предыдущем случае, расчёт необходимо вести в одинаковых единицах (например, если диаметр трубы равен 15 мм, а длина – 1,5 м, то при перерасчёте нужно использовать или значения 15 и 1500 мм, или 0,015 и 1,5 м).


    Основываясь на величине площади внешней поверхности трубы, рассчитывают необходимое количество красящих материалов или теплоизоляционных веществ.

    Вычисление площади внутренней поверхности трубы

    Площадь вычисляют по той же формуле, заменяя значения R и D соответственно на внутренние радиус и диаметр.

    Можно вычислить требуемое значение и с учётом наружных значений и толщины стенок изделия:

    S=2π(R-l)∙L=2π(D/2-l)∙L

    Вычисление внутренней площади изделия позволяет проводить гидродинамические расчёты, учитывающие внутреннюю шероховатость.

    С этим параметром связано несколько закономерностей:

    • при увеличении диаметра трубы влияние шероховатости на движение потока ослабляется;
    • если внутренняя поверхность трубы имеет склонность к образованию отложений (например, в случае стальных труб), со временем площадь внутренней поверхности и внутреннего сечения изменяются, а пропускная способность изделия падает.

    Как можно убедиться, формулы вычисления основных геометрических параметров труб достаточно просты и могут применяться в расчётах как профессионалами, так и новичками.

    видео-инструкция как рассчитать своими руками, как посчитать, калькулятор, цена, фото

    Скорее всего, вам приходилось сталкиваться с проблемой расчета площади поверхности трубопровода и его внутреннего сечения. В этом обычно помогает формула, известная многим из школьного курса, хотя и забытая. В данной статье мы узнаем, как посчитать площадь трубы и ее диаметр правильно.

    Формулы подсчета площади цилиндра и объема жидкости, проходящей через него

    Для чего это нужно знать

    Ниже рассмотрим ситуации, когда данные параметры обычно всегда необходимо учитывать в работе:

    1. Знание формулы площади будет полезным, когда рассчитывается теплоотдача теплого пола или регистра отопления.Данные можно получить, исходя из общей площади, которая отдает воздуху в помещении тепло от рабочей жидкости определенной температуры.
    2. Второй вариант – обратная ситуация, которая встречается также часто. Особенно, если необходимо подсчитать потери тепла по всей протяженности трубопровода к отопительному прибору. При расчете количества и размеров конвекторов, радиаторов и других приборов инструкция требует знать точно, какое количество калорий они смогут выдавать. Данные определяются с учетом площади поверхности трубопровода, транспортирующего воду.

    На фото – расчет отопления 1 кв. м площади, исходя от диаметра трубопровода

    1. Если вы будете знать, как посчитать площадь поверхности трубы, вы сможете закупить правильное количество теплоизоляции. Очень часто протяженность теплотрассы составляет десятки километров, поэтому точные данные помогут компаниям сохранить внушительные средства.

    Калькулятор площади поверхности трубыиз стали для покрасочных работ

    1. Еще один момент – затраты на покраску или антикоррозионное покрытие, цена которых иногда внушительна. В данном случае знания позволят точно рассчитать необходимый объем материала. Кроме того, так можно косвенными методами определить нерадивость исполнителей работ, если расходы на 1 м
      2
      поверхности будут существенно возрастать.
    2. Расчет площади трубы (сечение) позволит узнать максимальную проходимость изделия. Конечно, можно просто установить сразу заведомо больший диаметр, однако при больших капиталовложениях в строительные объекты данный показатель играет существенную роль в перерасходе средств.

    Совет: помните, хотя в частном доме перерасход бюджета при установке трубы на шаг больше будет небольшим, зато вы потеряете на теплопотерях, так как чем больше поверхность предмета, тем больше тепла он отдает в единицу времени.

    Не стоит также забывать, что когда открывается кран горячего водоснабжения, объем жидкости в водопроводе бесцельно остывает. Большой диаметр трубы аккумулирует большое количество воды, которая в ней будет стоять, поэтому вы потратите больше тепла на нагрев помещения.

    Совет: калькулятор площади трубы вы сможете найти на нашем сайте, а также на сайтах специализированных компаний.

    Как рассчитать сечение

    1. Необходимо высчитать площадь круга и отнять толщину стенок.
    2. Формула следующая: S = π(D/2-N)2.D – диаметр, N – толщина стенок.

    Совет: не забывайте, что в напорных водопроводах рабочая жидкость заполняет весь их объем.
    В самотечной системе канализации – поток в основном смачивает только часть стенок, поэтому труба оказывает меньшее сопротивление, чем в полностью заполненной.

    Для гидравлических расчетов последней и ввели понятие – живое сечение.

    Диаметр водопровода должен соответствовать его задачам

    Расчет поверхности

    Геометрическая задача, с которой вы не раз встречались на уроках, когда нужно было узнать площадь поверхности цилиндра, а, труба – это он и есть. Чтобы узнать нужную цифру необходимо знать длину окружности и высоту цилиндра (в нашем случае длину трубопровода).

    Формула длины окружности – Lокр = πD, поверхности – S = πDL, где L–длина трубопровода, а D–его диаметр.

    Для окрашивания можно использовать данную формулу напрямую, если же необходимо проводить теплоизоляционные работы, материала понадобиться несколько больше, так как он имеет толщину. К тому же во время процесса минеральная вата укладывается с некоторым перехлестом полотен.

    Утепление стальных изделий своими руками

    Рассчитываем внутреннюю поверхность

    Не специалисты обязательно зададут вопрос – для чего нужно знать данный параметр? Специалисты же ответят – для гидродинамических расчетов, чтобы знать, какая площадь имеет контакт с водой во время движения по трубам.

    Внутренняя поверхность пластиковых изделий не зарастает минеральными отложениями

    С этим параметром есть несколько связанных нюансов:

    ДиаметрЧем он больше, тем меньше шероховатость стенок оказывает влияние на движение рабочей жидкости. Если у трубопровода диаметр большой, а его длина маленькая, сопротивлением трубы можно пренебречь.
    ШероховатостьДанный параметр имеет большое значение для гидродинамических расчетов. Например, стальная ржавая внутри водопроводная труба и гладкая полипропиленовая по-разному влияют на скорость рабочей жидкости.
    Постоянство внутреннего диаметраСтальные и чугунные изделия из-за коррозии и минеральных отложений со временем изменяют свою внутреннюю площадь. Из-за этого проход для потока уменьшается.

    Совет: не нужно забывать, что стальной водопровод для подачи холодной воды уменьшит свою проходимость в течение 10 лет почти в 2 раза.

    Коррозия на внутренней поверхности уменьшает проход для рабочей жидкости

    Как можно убедиться, формулы вычисления основных геометрических параметров труб достаточно просты и могут применяться в расчётах как профессионалами, так и новичками.

    видео-инструкция как рассчитать своими руками, как посчитать, калькулятор, цена, фото

    Скорее всего, вам приходилось сталкиваться с проблемой расчета площади поверхности трубопровода и его внутреннего сечения. В этом обычно помогает формула, известная многим из школьного курса, хотя и забытая. В данной статье мы узнаем, как посчитать площадь трубы и ее диаметр правильно.

    Формулы подсчета площади цилиндра и объема жидкости, проходящей через него

    Для чего это нужно знать

    Ниже рассмотрим ситуации, когда данные параметры обычно всегда необходимо учитывать в работе:

    1. Знание формулы площади будет полезным, когда рассчитывается теплоотдача теплого пола или регистра отопления.Данные можно получить, исходя из общей площади, которая отдает воздуху в помещении тепло от рабочей жидкости определенной температуры.
    2. Второй вариант – обратная ситуация, которая встречается также часто. Особенно, если необходимо подсчитать потери тепла по всей протяженности трубопровода к отопительному прибору. При расчете количества и размеров конвекторов, радиаторов и других приборов инструкция требует знать точно, какое количество калорий они смогут выдавать. Данные определяются с учетом площади поверхности трубопровода, транспортирующего воду.

    На фото – расчет отопления 1 кв. м площади, исходя от диаметра трубопровода

    1. Если вы будете знать, как посчитать площадь поверхности трубы, вы сможете закупить правильное количество теплоизоляции. Очень часто протяженность теплотрассы составляет десятки километров, поэтому точные данные помогут компаниям сохранить внушительные средства.

    Калькулятор площади поверхности трубыиз стали для покрасочных работ

    1. Еще один момент – затраты на покраску или антикоррозионное покрытие, цена которых иногда внушительна. В данном случае знания позволят точно рассчитать необходимый объем материала. Кроме того, так можно косвенными методами определить нерадивость исполнителей работ, если расходы на 1 м
      2
      поверхности будут существенно возрастать.
    2. Расчет площади трубы (сечение) позволит узнать максимальную проходимость изделия. Конечно, можно просто установить сразу заведомо больший диаметр, однако при больших капиталовложениях в строительные объекты данный показатель играет существенную роль в перерасходе средств.

    Совет: помните, хотя в частном доме перерасход бюджета при установке трубы на шаг больше будет небольшим, зато вы потеряете на теплопотерях, так как чем больше поверхность предмета, тем больше тепла он отдает в единицу времени.

    Не стоит также забывать, что когда открывается кран горячего водоснабжения, объем жидкости в водопроводе бесцельно остывает. Большой диаметр трубы аккумулирует большое количество воды, которая в ней будет стоять, поэтому вы потратите больше тепла на нагрев помещения.

    Совет: калькулятор площади трубы вы сможете найти на нашем сайте, а также на сайтах специализированных компаний.

    Как рассчитать сечение

    1. Необходимо высчитать площадь круга и отнять толщину стенок.
    2. Формула следующая: S = π(D/2-N)2.D – диаметр, N – толщина стенок.

    Совет: не забывайте, что в напорных водопроводах рабочая жидкость заполняет весь их объем.
    В самотечной системе канализации – поток в основном смачивает только часть стенок, поэтому труба оказывает меньшее сопротивление, чем в полностью заполненной.

    Для гидравлических расчетов последней и ввели понятие – живое сечение.

    Диаметр водопровода должен соответствовать его задачам

    Расчет поверхности

    Геометрическая задача, с которой вы не раз встречались на уроках, когда нужно было узнать площадь поверхности цилиндра, а, труба – это он и есть. Чтобы узнать нужную цифру необходимо знать длину окружности и высоту цилиндра (в нашем случае длину трубопровода).

    Формула длины окружности – Lокр = πD, поверхности – S = πDL, где L–длина трубопровода, а D–его диаметр.

    Для окрашивания можно использовать данную формулу напрямую, если же необходимо проводить теплоизоляционные работы, материала понадобиться несколько больше, так как он имеет толщину. К тому же во время процесса минеральная вата укладывается с некоторым перехлестом полотен.

    Утепление стальных изделий своими руками

    Рассчитываем внутреннюю поверхность

    Не специалисты обязательно зададут вопрос – для чего нужно знать данный параметр? Специалисты же ответят – для гидродинамических расчетов, чтобы знать, какая площадь имеет контакт с водой во время движения по трубам.

    Внутренняя поверхность пластиковых изделий не зарастает минеральными отложениями

    С этим параметром есть несколько связанных нюансов:

    ДиаметрЧем он больше, тем меньше шероховатость стенок оказывает влияние на движение рабочей жидкости. Если у трубопровода диаметр большой, а его длина маленькая, сопротивлением трубы можно пренебречь.
    ШероховатостьДанный параметр имеет большое значение для гидродинамических расчетов. Например, стальная ржавая внутри водопроводная труба и гладкая полипропиленовая по-разному влияют на скорость рабочей жидкости.
    Постоянство внутреннего диаметраСтальные и чугунные изделия из-за коррозии и минеральных отложений со временем изменяют свою внутреннюю площадь. Из-за этого проход для потока уменьшается.

    Совет: не нужно забывать, что стальной водопровод для подачи холодной воды уменьшит свою проходимость в течение 10 лет почти в 2 раза.

    Коррозия на внутренней поверхности уменьшает проход для рабочей жидкости

    Формула расчета при этом будет такой – S=π(D-2N)L, где N–толщина стенки, L–длина трубопровода, D–его диаметр.

    Вывод

    Данная статья только лишь позволила освежить в памяти формулы, которые дают понятие как рассчитать площадь трубы и ее поверхности. Как ни странно, но данные знания нередко помогают решить возникающие задачи во время домашнего ремонта.Видео в этой статье поможет найти вам дополнительную информацию по этой тематике.

    Как верно вычислить площадь трубы снаружи и в — Учебник сантехника

    Вероятнее, вам приходилось сталкиваться с проблемой расчета площади поверхности трубопровода и его внутреннего сечения. В этом в большинстве случаев оказывает помощь формула, узнаваемая многим из школьного курса, не смотря на то, что и забытая. В данной статье мы определим, как посчитать площадь трубы и ее диаметр верно.

    Для чего это необходимо знать

    Ниже рассмотрим обстановке, в то время, когда данные параметры в большинстве случаев неизменно нужно учитывать в работе:

    1. Знание формулы площади будет нужным, в то время, когда рассчитывается теплоотдача теплого пола либо регистра отопления.Данные возможно взять, исходя из неспециализированной площади, которая отдает воздуху в помещении тепло от рабочей жидкости определенной температуры.
    2. Второй вариант — обратная обстановка, которая видится кроме этого довольно часто. Особенно, в случае если нужно подсчитать теплопотери по всей протяженности трубопровода к отопительному прибору. При расчете количества и размеров конвекторов, радиаторов и других устройств инструкция требует знать точно, какое количество калорий они смогут выдавать. Данные определяются с учетом площади поверхности трубопровода, транспортирующего воду.

    1. Если вы станете знать, как посчитать площадь поверхности трубы, вы сможете закупить верное количество теплоизоляции. Частенько протяженность теплотрассы образовывает десятки километров, исходя из этого правильные данные окажут помощь компаниям сохранить внушительные средства.

    1. Еще один момент – затраты на покраску либо антикоррозионное покрытие, цена которых время от времени внушительна. В этом случае знания разрешат точно вычислить нужный количество материала. Помимо этого, так возможно косвенными способами выяснить нерадивость исполнителей работ, в случае если затраты на 1 м2 поверхности будут значительно возрастать.
    2. Расчет площади трубы (сечение) разрешит определить большую проходимость изделия. Само собой разумеется, возможно сходу заведомо больший диаметр, но при громадных капиталовложениях в строительные объекты данный показатель играется значительную роль в перерасходе средств.

    Совет: не забывайте, не смотря на то, что в частном доме перерасход бюджета при установке трубы на ход больше будет маленьким, но вы утратите на теплопотерях, поскольку чем больше поверхность предмета, тем больше тепла он отдает в единицу времени.

    Не следует кроме этого забывать, что в то время, когда раскрывается кран тёплого водоснабжения, количество жидкости в водопроводе бесцельно остывает. Громадный диаметр трубы аккумулирует много воды, которая в ней будет стоять, исходя из этого вы израсходуете больше тепла на нагрев помещения.

    Совет: калькулятор площади трубы вы сможете обнаружить нашем сайте, и на сайтах профильных фирм.

    Как вычислить сечение

    1. Нужно высчитать площадь круга и отнять толщину стенок.
    2. Формула следующая: S = ?(D/2-N)2.D – диаметр, N – толщина стенок.

    Совет: помните, что в напорных водопроводах рабочая жидкость заполняет целый их количество. В самотечной системе канализации — поток по большей части смачивает лишь часть стенок, исходя из этого труба оказывает меньшее сопротивление, чем в всецело заполненной.

    Для гидравлических расчетов последней и ввели понятие — живое сечение.

    Расчет поверхности

    Геометрическая задача, с которой вы неоднократно виделись на уроках, в то время, когда необходимо было определить площадь поверхности цилиндра, а, труба — это он и имеется. Дабы определить нужную цифру нужно знать длину окружности и высоту цилиндра (в нашем случае длину трубопровода).

    Формула длины окружности – Lокр = ?D, поверхности – S = ?DL, где L–протяженность трубопровода, а D–его диаметр.

    Для окрашивания возможно применять данную формулу напрямую, в случае если же нужно проводить теплоизоляционные работы, материала пригодиться больше, поскольку он имеет толщину. К тому же на протяжении процесса минеральная вата укладывается с некоторым перехлестом полотен.

    Рассчитываем внутреннюю поверхность

    Не эксперты в обязательном порядке зададут вопрос – для чего необходимо знать данный параметр? Эксперты же ответят – для гидродинамических расчетов, дабы знать, какая площадь имеет контакт с водой на ходу по трубам.

    С этим параметром имеется пара связанных нюансов:

    ДиаметрЧем он больше, тем меньше шероховатость стенок влияет на движение рабочей жидкости. В случае если у трубопровода диаметр громадной, а его протяженность маленькая, сопротивлением трубы возможно пренебречь.
    ШероховатостьДанный параметр имеет громадное значение для гидродинамических расчетов. К примеру, стальная ржавая в водопроводная труба и гладкая полипропиленовая по-различному воздействуют на скорость рабочей жидкости.
    Постоянство внутреннего диаметраСтальные и чугунные изделия из-за коррозии и минеральных отложений со временем изменяют свою внутреннюю площадь. Вследствие этого проход для потока значительно уменьшается.

    Совет: не требуется забывать, что стальной водопровод для подачи холодной воды уменьшит свою проходимость в течение 10 лет практически в 2 раза.

    Формула расчета наряду с этим будет таковой – S=?(D-2N)L, где N–толщина стены, L–протяженность трубопровода, D–его диаметр.

    Вывод

    Данная статья лишь только разрешила освежить в памяти формулы, каковые дают понятие как вычислить площадь трубы и ее поверхности. Как ни необычно, но данные знания часто оказывают помощь решить появляющиеся задачи на протяжении домашнего ремонта.Видео в данной статье окажет помощь отыскать вам дополнительную данные по данной тематике.

    Загрузка…

    Онлайн калькулятор: Подсчет труб с торца

    Собственно, идем по следам запроса подсчет труб с торца.

    Если вкратце — имеется пучок труб, чем-то связанных. Длину «веревки» можно померить. Радиус одной трубы — тоже. Требуется определить число труб в пучке без утомительного пересчитывания — расчетом.

    Здравый смысл, впрочем, подсказывает, что расчетом совсем точно число труб в пучке определить нельзя — слишком много факторов. Окружность может быть неправильной, например, трубы могут улечься неравномерно и т. д.

    Так что совсем без пересчитывания не получится, но задача сама по себе интересная, и можно попытаться вывести оценку сверху. Ну то есть рассчитать число труб для некоего идеального случая, тогда в реальности в пучке будет не больше труб, чем было рассчитано.

    Калькулятор, который делает оценку сверху ниже, а рассуждения, которые привели к выводу этой оценки, как водится, под ним — для любознательных.

    Подсчет числа упакованных окружностей
    Точность вычисления

    Знаков после запятой: 2

    Примерная общая площадь

     

    Площадь одной окружности

     

    Примерная полезная площадь

     

    Число окружностей (оценка сверху)

     

    content_copy Ссылка save Сохранить extension Виджет

    Идеальный случай — все трубы лежат ровно, правильная окружность и т. п. В общем, некоторые упрощения задачи, позволяющие применить геометрические знания и математический расчет 🙂

    Кстати, оценку сверху тоже можно получать несколькими способами, и, в общем, они будут справедливы. Тут ведь главное как можно ближе приблизиться к реальному числу.

    Например, вот самая простая оценка сверху:

    1. По длине описывающей окружности находим ее площадь, или площадь сечения всего пучка:


    2. По радиусу трубы находим ее площадь сечения:

    3. Делим общую площадь сечения на площадь сечения одной трубы.

    Очевидно, что это будет оценка сверху — больше труб, чем получится в результате, в данную окружность не впихнешь. Но эта оценка сверху будет не очень точной, так как очевидно, что трубы лежат не вплотную друг к другу, а с зазорами, и часть общей площади сечения расходуется на дырки между трубами. См. картинку

    Надо учесть эти потери и сделать оценку числа труб более точной. Для начала разберемся с площадью зазора между трубами. Для этого рассмотрим треугольник, вершины которого образованы центрами соприкасающихся окружностей. Каждая сторона, очевидно, равна двум радиусам, и по формуле Герона его площадь равна . Площадь эта состоит из полезного пространства, занятого тремя секторами (от каждой окружности), и дырки. Сектора эти, очевидно, имеют угол в 180 градусов, а значит площадь всех трех секторов равна половине площади окружности .
    Таким образом, отношение полезной площади к общей площади треугольника равно
    Самое замечательное в этом выводе то, что это соотношение никоим образом не зависит от радиуса.

    Идем дальше. Как видно из рисунка, «неплотно» упакованные окружности можно представить в виде «плотно» упакованных треугольников с дыркой посередине. Таким образом, имея общую площадь всего пучка, и считая, что это пучок треугольников — из соотношения выведенного выше, можно найти, сколько полезной площади в данном пучке — после чего разделить полученную полезную площадь на площадь одной окружности, получив, таким образом, еще одну оценку сверху числа труб в пучке.

    Внимательный читатель может сказать — а как же потери площади на границе пучка? Визуально они больше, чем потери внутри пучка. Это действительно так. Но! Во-первых, это никоим образом не отменяет того, что мы получаем оценку сверху — как оценка сверху, она остается справедливой — ведь если потери площади на границах больше, то труб войдет немного меньше, чем мы рассчитали. Во-вторых, а насколько эти потери больше? Можно ли это оценить? Этим я сейчас и займусь.

    Итак, плотно упакованный пучок (кстати, то, что самой плотной упаковкой является вариант, при котором каждая окружность окружена шестью другими, доказано математически) можно представить как упакованные треугольники и упакованные прямоугольники, плюс одна окружность, образованная сгибами.

    Потери площади в прямоугольниках, действительно, больше. Применяя те же самые рассуждения, получаем, что отношение полезной и общей площади . Величина опять постоянная, и их можно сравнить — полезной площади в прямоугольнике меньше в раз.

    То есть, общую площадь пучка заполняют треугольники с соотношением полезной площади , прямоугольники с соотношением полезной площади и еще одна «полезная» окружность. Таким образом, общая полезная площадь, исходя из которой можно найти число труб в пучке состоит из

    Честно говоря, думать о том, как найти общую площадь треугольников и общую площадь прямоугольников было уже лень, но представляется очевидным, что с увеличением радиуса пучка число прямоугольников растет пропорционально длине окружности, а значит, радиусу, а вот число треугольников растет пропорционально площади окружности, а значит, квадрату радиуса — то есть быстрее. Отсюда следует, что при достаточно большом (по сравнению с радиусом одной окружности) общем радиусе пучка прямоугольной составляющей можно пренебречь, точнее, считать ее потери равными потерям треугольной составляющей, и тогда полезная площадь в пучке будет равна
    , а число труб в пучке, соответственно , которое смело можно округлять до ближайшего большего. Все ж таки оценка сверху.

    Напомним, что речь идет о большом пучке, так как в маленьком (см. последнюю картинку) опоясывающая «веревка» вовсе не приближается по форме к окружности, то чем больше пучок по сравнению с одной окружностью, тем ближе его форма к одной большой окружности — такое вот упрощение.

    Мне тут обещали пересчитать трубы и сравнить практику с теорией — теперь буду ждать.

    Формулы для расчета изгибов труб и коробов

    Расчеты и формулы

    Использование всего нескольких математических формул позволяет правильно рассчитать изгиб практически под любым углом. Недорогой научный калькулятор и угловой искатель — единственные необходимые дополнительные инструменты.

    При расчете допусков на изгиб для определения длины обрезки трубы из полиэтилена высокой плотности или трубы из ПВХ необходимо рассчитать радиус центральной линии (CLR) готовой изогнутой трубы.Этот радиус будет изменяться в зависимости от внешнего диаметра трубы, толщины стенки и угла, под которым труба должна быть изогнута.

    Элементы изгиба

    Важно понимать различные элементы изгиба, чтобы производить точные расчеты.

    Расчет толщины стенки

    ISO 161-1 использует следующую формулу для расчета толщины стенки трубы:

    σ с = PN. (Da-s / 20.s) = PN.S

    σ с = кольцевое напряжение (Н / мм 2 ) | PN = нормальное давление (бар) | da = внешний диаметр трубы (мм)

    s = толщина стенки (мм) | S = труба серийная (-)

    Расчет стандартного размерного отношения

    Используя те же переменные, что и выше, стандартное соотношение размеров (SDR) трубы можно рассчитать следующим образом:

    SDR = да / с

    Труба HDPE SDR Минимальный длительный срок службы
    Радиус холодной гибки
    9 или менее Труба 20x OD
    11, 13.5 Труба 25x OD
    15,5, 17, 21 Труба 27x OD
    26 34x наружный диаметр трубы
    32,5 42x наружный диаметр трубы
    41 52x наружный диаметр трубы
    С фитингом или фланцем
    в колене
    100x НД трубы

    Расчет CLR (радиуса центральной линии) для угла изгиба

    После того, как вы выбрали подходящий штамп для гибки трубы, исходя из внешнего диаметра трубы и толщины стенки, вы сможете определить радиус изгиба.

    Простой способ определить радиус центральной линии изгиба под определенным углом — это вычислить полный круг, а затем разделить это число на 360, чтобы найти измерение в один градус. Затем используйте эту формулу:

    π (2r) или πD

    π (пи) = 3,1416

    Например, если ваша матрица создает радиус 2,2 дюйма, и вам нужно создать изгиб на 35 °, ваши расчеты будут выглядеть примерно так:

    для расчета одного градуса изгиба

    3.1416 (2×2,2) = 13,823 / 360 = 0,0384

    для расчета CLR изгиба 35 °

    0,0384 x 35 = 1,344 дюйма

    Расчет изгиба со смещением

    Расчет трехточечного изгиба седла

    Расчет четырехточечного изгиба седла

    Большинство изгибов, кроме 90 °, можно рассчитать с использованием геометрии треугольника. Черная линия представляет собой изгиб трубы со смещением; красный треугольник представляет треугольную геометрию, создаваемую этим смещением.

    Длины / стороны треугольника обозначены буквами «a», «b» и «c». Буква «d» обозначает угол изгиба трубы. Независимо от того, как трубка в этой конфигурации изогнута (или как ориентирован треугольник), один из углов треугольника будет равен 90 °; другой угол будет зависеть от первого угла (d) и может быть рассчитан как (90 — d).

    Относительно простые математические формулы синуса, косинуса и тангенса могут использоваться для определения углов треугольника и, следовательно, необходимых углов изгиба трубы.Большинство научных калькуляторов (и даже калькуляторов, встроенных в смартфоны) имеют эти функции.

    Расчет синуса

    Синус (d) = A / C

    A = синус (d) x C

    C = A / синус (d)

    Расчет косинуса

    Cos (d) = B / C

    B = cos (d) x C

    C = B / cos (d)

    Расчет тангенса

    Tan (d) = A / B

    A = загар (d) x B

    B = A / tan (d)

    Просмотрите информацию о гибочной трубе с помощью гибочного станка, а также диаграмм вычитаний и множителей.

    Другие статьи, которые могут вам понравиться:

    Выбор подходящей трубы для подземных коммуникаций

    Сварка и соединение труб из ПНД

    онлайн-курсов PDH. PDH для профессиональных инженеров. ПДХ Инжиниринг.

    «Мне нравится широта ваших курсов по HVAC; не только экологичность или экономия энергии

    курсов. «

    Russell Bailey, P.E.

    Нью-Йорк

    «Он укрепил мои текущие знания и научил меня еще нескольким новым вещам

    , чтобы познакомить меня с новыми источниками

    информации.»

    Стивен Дедак, П.Е.

    Нью-Джерси

    «Материал был очень информативным и организованным. Я многому научился, и они были

    .

    очень быстро отвечает на вопросы.

    Это было на высшем уровне. Будет использовать

    снова. Спасибо. «

    Blair Hayward, P.E.

    Альберта, Канада

    «Простой в использовании сайт.Хорошо организовано. Я действительно буду снова пользоваться вашими услугами.

    проеду по вашей роте

    имя другим на работе «

    Roy Pfleiderer, P.E.

    Нью-Йорк

    «Справочные материалы были превосходными, а курс был очень информативным, особенно потому, что я думал, что я уже знаком.

    с деталями Канзас

    Городская авария Хаятт.»

    Майкл Морган, P.E.

    Техас

    «Мне очень нравится ваша бизнес-модель. Мне нравится просматривать текст перед покупкой. Я нашел класс

    .

    информативно и полезно

    на моей работе »

    Вильям Сенкевич, П.Е.

    Флорида

    «У вас большой выбор курсов, а статьи очень информативны.Вы

    — лучшее, что я нашел ».

    Russell Smith, P.E.

    Пенсильвания

    «Я считаю, что такой подход позволяет работающему инженеру легко зарабатывать PDH, давая время на изучение

    материал «

    Jesus Sierra, P.E.

    Калифорния

    «Спасибо, что разрешили мне просмотреть неправильные ответы.На самом деле

    человек узнает больше

    от отказов »

    John Scondras, P.E.

    Пенсильвания

    «Курс составлен хорошо, и использование тематических исследований является эффективным.

    способ обучения »

    Джек Лундберг, P.E.

    Висконсин

    «Я очень впечатлен тем, как вы представляете курсы; i.э., позволяя

    студент, оставивший отзыв на курс

    материалов до оплаты и

    получает викторину «

    Арвин Свангер, П.Е.

    Вирджиния

    «Спасибо за то, что вы предложили все эти замечательные курсы. Я определенно выучил и

    получил много удовольствия «.

    Mehdi Rahimi, P.E.

    Нью-Йорк

    «Я очень доволен предлагаемыми курсами, качеством материалов и простотой поиска.

    на связи

    курсов.»

    Уильям Валериоти, P.E.

    Техас

    «Этот материал в значительной степени оправдал мои ожидания. По курсу было легко следовать. Фотографии в основном обеспечивали хорошее наглядное представление о

    .

    обсуждаемых тем ».

    Майкл Райан, P.E.

    Пенсильвания

    «Именно то, что я искал. Потребовался 1 балл по этике, и я нашел его здесь.»

    Джеральд Нотт, П.Е.

    Нью-Джерси

    «Это был мой первый онлайн-опыт получения необходимых мне кредитов PDH. Это было

    информативно, выгодно и экономично.

    Я очень рекомендую

    всем инженерам »

    Джеймс Шурелл, П.Е.

    Огайо

    «Я понимаю, что вопросы относятся к« реальному миру »и имеют отношение к моей практике, и

    не на основании какой-то непонятной секции

    законов, которые не применяются

    до «нормальная» практика.»

    Марк Каноник, П.Е.

    Нью-Йорк

    «Отличный опыт! Я многому научился, чтобы использовать свой медицинский прибор»

    организация «

    Иван Харлан, П.Е.

    Теннесси

    «Материалы курса имели хорошее содержание, не слишком математическое, с хорошим акцентом на практическое применение технологий».

    Юджин Бойл, П.E.

    Калифорния

    «Это был очень приятный опыт. Тема была интересной и хорошо изложенной,

    а онлайн-формат был очень

    доступный и простой для

    использовать. Большое спасибо. «

    Патрисия Адамс, P.E.

    Канзас

    «Отличный способ добиться соответствия требованиям PE Continuing Education в рамках ограничений по времени лицензиата.»

    Joseph Frissora, P.E.

    Нью-Джерси

    «Должен признаться, я действительно многому научился. Помогает иметь печатный тест во время

    обзор текстового материала. Я

    также оценил просмотр

    фактических случаев «

    Жаклин Брукс, П.Е.

    Флорида

    «Документ» Общие ошибки ADA при проектировании объектов «очень полезен.Модель

    испытание потребовало исследований в

    документ но ответы были

    в наличии »

    Гарольд Катлер, П.Е.

    Массачусетс

    «Я эффективно использовал свое время. Спасибо за то, что у вас есть широкий выбор.

    в транспортной инженерии, которая мне нужна

    для выполнения требований

    Сертификат ВОМ.»

    Джозеф Гилрой, П.Е.

    Иллинойс

    «Очень удобный и доступный способ заработать CEU для моих требований PG в Делавэре».

    Ричард Роудс, P.E.

    Мэриленд

    «Я многому научился с защитным заземлением. Пока все курсы, которые я прошел, были отличными.

    Надеюсь увидеть больше 40%

    курсов со скидкой.»

    Кристина Николас, П.Е.

    Нью-Йорк

    «Только что сдал экзамен по радиологическим стандартам и с нетерпением жду возможности сдать еще

    курсов. Процесс прост, и

    намного эффективнее, чем

    вынужден путешествовать. «

    Деннис Мейер, P.E.

    Айдахо

    «Услуги, предоставляемые CEDengineering, очень полезны для профессионалов

    Инженеры получат блоки PDH

    в любое время.Очень удобно »

    Пол Абелла, P.E.

    Аризона

    «Пока все отлично! Поскольку я постоянно работаю матерью двоих детей, у меня мало

    время искать, где на

    получить мои кредиты от. «

    Кристен Фаррелл, П.Е.

    Висконсин

    «Это было очень познавательно и познавательно.Легко для понимания с иллюстрациями

    и графики; определенно делает это

    проще поглотить все

    теорий. «

    Виктор Окампо, P.Eng.

    Альберта, Канада

    «Хороший обзор принципов работы с полупроводниками. Мне понравилось пройти курс по

    .

    мой собственный темп во время моего утро

    метро

    на работу.»

    Клиффорд Гринблатт, П.Е.

    Мэриленд

    «Просто найти интересные курсы, скачать документы и взять

    викторина. Я бы очень рекомендовал

    вам на любой PE, требующий

    CE единиц. «

    Марк Хардкасл, П.Е.

    Миссури

    «Очень хороший выбор тем из многих областей техники.»

    Randall Dreiling, P.E.

    Миссури

    «Я заново узнал то, что забыл. Я также рад помочь финансово

    по ваш промо-адрес который

    сниженная цена

    на 40%. «

    Конрадо Казем, П.E.

    Теннесси

    «Отличный курс по разумной цене. Воспользуюсь вашими услугами в будущем».

    Charles Fleischer, P.E.

    Нью-Йорк

    «Это был хороший тест и фактически подтвердил, что я прочитал профессиональную этику

    кодов и Нью-Мексико

    правил. «

    Брун Гильберт, П.E.

    Калифорния

    «Мне очень понравились занятия. Они стоили потраченного времени и усилий».

    Дэвид Рейнольдс, P.E.

    Канзас

    «Очень доволен качеством тестовых документов. Буду использовать CEDengineerng

    .

    при необходимости дополнительных

    Сертификация

    . «

    Томас Каппеллин, П.E.

    Иллинойс

    «У меня истек срок действия курса, но вы все же выполнили свое обязательство и дали

    мне то, за что я заплатил — много

    оценено! «

    Джефф Ханслик, P.E.

    Оклахома

    «CEDengineering предоставляет удобные, экономичные и актуальные курсы.

    для инженера »

    Майк Зайдл, П.E.

    Небраска

    «Курс был по разумной цене, а материалы были краткими и

    хорошо организовано. «

    Glen Schwartz, P.E.

    Нью-Джерси

    «Вопросы подходили для уроков, а материал урока —

    .

    хороший справочный материал

    для деревянного дизайна. «

    Брайан Адамс, П.E.

    Миннесота

    «Отлично, я смог получить полезные рекомендации по простому телефонному звонку».

    Роберт Велнер, П.Е.

    Нью-Йорк

    «У меня был большой опыт работы в прибрежном строительстве — проектирование

    Строительство курс и

    очень рекомендую

    Денис Солано, P.E.

    Флорида

    «Очень понятный, хорошо организованный веб-сайт. Материалы курса этики Нью-Джерси были очень хорошими

    хорошо подготовлен. «

    Юджин Брэкбилл, P.E.

    Коннектикут

    «Очень хороший опыт. Мне нравится возможность загружать учебные материалы по номеру

    .

    обзор где угодно и

    всякий раз, когда.»

    Тим Чиддикс, P.E.

    Колорадо

    «Отлично! Сохраняю широкий выбор тем на выбор».

    Уильям Бараттино, P.E.

    Вирджиния

    «Процесс прямой, без всякой ерунды. Хороший опыт».

    Тайрон Бааш, П.E.

    Иллинойс

    «Вопросы на экзамене были зондирующими и продемонстрировали понимание

    материала. Полная

    и всесторонний ».

    Майкл Тобин, P.E.

    Аризона

    «Это мой второй курс, и мне понравилось то, что мне предложили этот курс

    поможет по телефону

    работ.»

    Рики Хефлин, П.Е.

    Оклахома

    «Очень быстро и легко ориентироваться. Я определенно буду использовать этот сайт снова».

    Анджела Уотсон, П.Е.

    Монтана

    «Легко выполнить. Нет путаницы при подходе к сдаче теста или записи сертификата».

    Кеннет Пейдж, П.E.

    Мэриленд

    «Это был отличный источник информации о солнечном нагреве воды. Информативный

    и отличный освежитель ».

    Luan Mane, P.E.

    Conneticut

    «Мне нравится подход к регистрации и возможность читать материалы в автономном режиме, а затем

    вернись, чтобы пройти викторину «

    Алекс Млсна, П.E.

    Индиана

    «Я оценил объем информации, предоставленной для класса. Я знаю

    это вся информация, которую я могу

    использование в реальных жизненных ситуациях »

    Натали Дерингер, P.E.

    Южная Дакота

    «Обзорные материалы и образец теста были достаточно подробными, чтобы позволить мне

    успешно завершено

    конечно.»

    Ира Бродская, П.Е.

    Нью-Джерси

    «Веб-сайтом легко пользоваться, вы можете скачать материалы для изучения, а потом вернуться

    и пройдите викторину. Очень

    удобно а на моем

    собственный график «

    Майкл Глэдд, P.E.

    Грузия

    «Спасибо за хорошие курсы на протяжении многих лет.»

    Dennis Fundzak, P.E.

    Огайо

    «Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать PDH

    Сертификат

    . Спасибо за изготовление

    процесс простой. »

    Fred Schaejbe, P.E.

    Висконсин

    «Опыт положительный.Быстро нашел курс, который соответствовал моим потребностям, и прошел

    часовой PDH в

    один час. «

    Стив Торкильдсон, P.E.

    Южная Каролина

    «Мне понравилось загружать документы для проверки содержания

    и пригодность, до

    имея для оплаты

    материал

    Ричард Вимеленберг, P.E.

    Мэриленд

    «Это хорошее напоминание об EE для инженеров, не занимающихся электричеством».

    Дуглас Стаффорд, П.Е.

    Техас

    «Всегда есть возможности для улучшения, но я ничего не могу придумать в вашем

    .

    процесс, требующий

    улучшение.»

    Thomas Stalcup, P.E.

    Арканзас

    «Мне очень нравится удобство участия в онлайн-викторине и получение сразу

    Свидетельство

    . «

    Марлен Делани, П.Е.

    Иллинойс

    «Учебные модули CEDengineering — это очень удобный способ доступа к информации по номеру

    .

    многие различные технические зоны за пределами

    по своей специализации без

    надо путешествовать.»

    Hector Guerrero, P.E.

    Грузия

    Средние штаты: расчеты стальных труб

    внутри диаметр = внешний диаметр — толщина стенки в
    Масса трубка = 10.6802 * внутренний диаметр * толщина стенки фунт / фут
    вода = 0.3405 * внутренний диаметр 2 фунт / фут
    Поверхность внешний = 0.2618 * за пределами диаметр футов 2
    внутренний = 0.2618 * внутри диаметр футов 2
    Поперечное сечение площадь = область пустая + область металл в 2
    площадь пустая = 0.785 * внутренний диаметр 2 в 2
    площадь металл = 0.785 * (внешний диаметр 2 — внутренний диаметр 2 ) в 2
    Длина окружности внешний = 3.14159 * внешний диаметр в
    внутренний = 3.14159 * внутри диаметр в
    Объем Всего = объем металл + объем пустой в 3
    металл = 37.6991 * внешний диаметр 2 — объем пустой в 3
    пустой = 37.6991 * внутренний диаметр 2 в 3

    Калькулятор труб: объем, площадь, вместимость, размер

    Если вы имеете дело с трубопроводом, вы часто можете столкнуться с ситуацией, когда необходимо оценить объем трубы.Для вас существуют различные варианты. Вы можете решить эту проблему, применив соответствующую формулу. Он подойдет лучше всего, если вы опытный профессионал и знаете, как правильно им пользоваться. Или вы можете пройти наиболее удобным и надежным способом в соответствующем онлайн-приложении. Вот один из ценных и очень полезных из них, который можно использовать для оценки объема, пропускной способности или внешней площади труб, трубок и подобных тел. Все, что вам нужно, это просто вставить в коробки соответствующий размер.После проведения оценки вы получите значения общего объема трубопровода, объема на погонный метр и площади поверхности трубы.

    Первая функция онлайн-приложения — калькулятор объема трубы.

    Оценка объема трубы — классическая задача в области прикладной науки и техники. Эта задача кажется нетривиальной. Если вы используете аналитические формулы для оценки объема жидкости в различных резервуарах и резервуарах или других физических объектах, это может быть сложно и утомительно.Тем не менее, вычислить объем элементарных тел могло быть проще. Например, всего несколько математических формул помогут вам рассчитать объем трубопровода. Стандартная единица измерения объема жидкости в трубах — м³. Но наше онлайн-приложение дает результаты в литрах, за исключением расчета площади трубы, которая указывается в м². При расчете необходимо указать внутренний диаметр, внешний диаметр трубы и ее длину.

    Все параметры должны быть указаны в мм:

    • L — Длина трубы;
    • D1 — Внутренний диаметр;
    • D2 — Наружный диаметр.2 * л.

      Где:

      • L — длина трубы;
      • R1 — внутренний радиус;
      • R2 — внешний радиус.

      Во-вторых, его можно использовать как вычислитель пропускной способности трубы. Эта функция поможет вам в оценке при выборе труб для нужд газоснабжения или водоснабжения. Емкость трубы — метрический объем. Он показывает максимальный поток, который вы можете пройти через систему, например система отопления, за определенный период времени. Если вы используете пластиковые трубы, их пропускная способность будет постоянной и не изменится со временем, потому что пластик устойчив к внутренней коррозии.Противоположная ситуация может возникнуть в случае использования металлических труб. Важно знать спецификацию обслуживания собранных элементов, используемых при подключении сантехнического оборудования. Это обеспечит стабильную подачу воды, когда вы откроете кран в ванной. Это критическая проблема для трубопроводов системы отопления, поскольку используемая горячая вода даже ускоряет процесс возникновения коррозии. Обратите внимание, что длина трубы влияет на ее пропускную способность.

      И последнее использование этого бесплатного программного обеспечения — калькулятор площади трубы.

      Знать поверхность трубы необходимо при оценке объема требуемых лакокрасочных материалов. Площадь трубы рассчитывается по следующей формуле P = 2 * π * R2 * L.

      % PDF-1.4 % 1778 0 объект > эндобдж xref 1778 88 0000000016 00000 н. 0000003036 00000 н. 0000003187 00000 п. 0000003955 00000 н. 0000004104 00000 п. 0000004254 00000 н. 0000004284 00000 н. 0000004592 00000 н. 0000004906 00000 н. 0000005327 00000 н. 0000005588 00000 н. 0000006173 00000 п. 0000006434 00000 н. 0000006959 00000 п. 0000007223 00000 н. 0000007813 00000 п. 0000007842 00000 н. 0000007955 00000 п. 0000008070 00000 н. 0000008212 00000 н. 0000008518 00000 н. 0000008807 00000 н. 0000009146 00000 п. 0000009552 00000 п. 0000010179 00000 п. 0000010372 00000 п. 0000010883 00000 п. 0000014201 00000 п. 0000014740 00000 п. 0000015290 00000 п. 0000015565 00000 п. 0000018033 00000 п. 0000021396 00000 п. 0000024590 00000 п. 0000027581 00000 п. 0000030567 00000 п. 0000030767 00000 п. 0000031042 00000 п. 0000031548 00000 п. 0000031814 00000 п. 0000032001 00000 п. 0000032589 00000 н. 0000032981 00000 п. 0000033258 00000 п. 0000036322 00000 п. 0000039803 00000 п. 0000057352 00000 п. 0000085234 00000 п. 0000114389 00000 п. 0000128337 00000 н. 0000128780 00000 н. 0000129056 00000 н. 0000130704 00000 н. 0000153108 00000 н. 0000154647 00000 н. 0000154728 00000 н. 0000154799 00000 н. 0000155043 00000 н. 0000155450 00000 н. 0000155698 00000 н. 0000174107 00000 н. 0000174733 00000 н. 0000175004 00000 н. 0000175583 00000 н. 0000175870 00000 н. 0000176368 00000 н. 0000176637 00000 н. 0000177110 00000 н. 0000177397 00000 н. 0000199370 00000 н. 0000199643 00000 н. 0000199940 00000 н. 0000217370 00000 н. 0000217637 00000 н. 0000218027 00000 н. 0000233185 00000 п. 0000233466 00000 н. 0000233822 00000 н. 0000239022 00000 н. 0000261743 00000 н. 0000274389 00000 н. 0000286072 00000 н. 0000335730 00000 н. 0000336183 00000 п. 0000336431 00000 н. 0000336581 00000 н. 0000002823 00000 н. 0000002056 00000 н. трейлер ] / Назад 1306718 / XRefStm 2823 >> startxref 0 %% EOF 1865 0 объект > поток h ޔ RYHTQξ C4θPW7gwLmC / -I @ ASP = aBXA 玩 Ap

      Расход и его отношение к скорости

      Цели обучения

      К концу этого раздела вы сможете:

      • Рассчитайте расход.
      • Определите единицы объема.
      • Опишите несжимаемые жидкости.
      • Объясните последствия уравнения неразрывности.

      Скорость потока Q определяется как объем жидкости, проходящей через некоторое место через область в течение периода времени, как показано на рисунке 1. В символах это может быть записано как

      [латекс] Q = \ frac {V} {t} \\ [/ latex],

      , где V — объем, а t — прошедшее время.Единица СИ для расхода — м 3 / с, но часто используются другие единицы для Q . Например, сердце взрослого человека в состоянии покоя перекачивает кровь со скоростью 5 литров в минуту (л / мин). Обратите внимание, что литровый (л) равен 1/1000 кубического метра или 1000 кубических сантиметров (10 -3 м 3 или 10 3 см 3 ). В этом тексте мы будем использовать любые метрические единицы, наиболее удобные для данной ситуации.

      Рисунок 1.Скорость потока — это объем жидкости в единицу времени, проходящий мимо точки через область A . Здесь заштрихованный цилиндр жидкости проходит через точку P по однородной трубе за время t . Объем цилиндра составляет Ad , а средняя скорость составляет [латекс] \ overline {v} = d / t \\ [/ latex], так что скорость потока составляет [латекс] Q = \ text {Ad} / t. = A \ overline {v} \\ [/ латекс].

      Пример 1. Расчет объема по скорости потока: сердце накачивает много крови за всю жизнь

      Сколько кубических метров крови перекачивает сердце за 75 лет жизни при средней скорости потока 5.00 л / мин?

      Стратегия

      Время и расход Q даны, поэтому объем V может быть вычислен из определения расхода.

      Решение

      Решение Q = V / t для объема дает

      В = Qt.

      Подстановка известных значений дает

      [латекс] \ begin {array} {lll} V & = & \ left (\ frac {5. {3} \ text {L}} \ right) \ left (5.{3} \ end {array} \\ [/ latex].

      Обсуждение

      Это количество около 200 000 тонн крови. Для сравнения, это значение примерно в 200 раз превышает объем воды, содержащейся в 6-полосном 50-метровом бассейне с дорожками.

      Расход и скорость связаны, но совершенно разными физическими величинами. Чтобы сделать различие ясным, подумайте о скорости течения реки. Чем больше скорость воды, тем больше скорость течения реки. Но скорость потока также зависит от размера реки.Стремительный горный ручей несет гораздо меньше воды, чем, например, река Амазонка в Бразилии. Точное соотношение между расходом Q и скоростью [латекс] \ bar {v} \ [/ latex] составляет

      .

      [латекс] Q = A \ overline {v} \\ [/ latex],

      , где A — площадь поперечного сечения, а [latex] \ bar {v} \\ [/ latex] — средняя скорость. Это уравнение кажется достаточно логичным. Это соотношение говорит нам, что скорость потока прямо пропорциональна величине средней скорости (далее называемой скоростью) и размеру реки, трубы или другого водовода.Чем больше размер трубы, тем больше площадь его поперечного сечения. На рисунке 1 показано, как получается это соотношение. Заштрихованный цилиндр имеет объем

      .

      V = Ad,

      , который проходит через точку P за время t . Разделив обе стороны этого отношения на т , получим

      [латекс] \ frac {V} {t} = \ frac {Ad} {t} \\ [/ latex].

      Отметим, что Q = V / t и средняя скорость [латекс] \ overline {v} = d / t \\ [/ latex].Таким образом, уравнение принимает вид [латекс] Q = A \ overline {v} \\ [/ latex]. На рис. 2 показана несжимаемая жидкость, текущая по трубе с уменьшающимся радиусом. Поскольку жидкость несжимаема, одно и то же количество жидкости должно пройти через любую точку трубы за заданное время, чтобы обеспечить непрерывность потока. В этом случае, поскольку площадь поперечного сечения трубы уменьшается, скорость обязательно должна увеличиваться. Эту логику можно расширить, чтобы сказать, что скорость потока должна быть одинаковой во всех точках трубы. В частности, для точек 1 и 2,

      [латекс] \ begin {case} Q_ {1} & = & Q_ {2} \\ A_ {1} v_ {1} & = & A_ {2} v_ {2} \ end {cases} \\ [/ latex ]

      Это называется уравнением неразрывности и справедливо для любой несжимаемой жидкости.Следствия уравнения неразрывности можно наблюдать, когда вода течет из шланга в узкую форсунку: она выходит с большой скоростью — это и есть назначение форсунки. И наоборот, когда река впадает в один конец водохранилища, вода значительно замедляется, возможно, снова набирая скорость, когда она покидает другой конец водохранилища. Другими словами, скорость увеличивается, когда площадь поперечного сечения уменьшается, и скорость уменьшается, когда увеличивается площадь поперечного сечения.

      Рисунок 2.Когда трубка сужается, тот же объем занимает большую длину. Для того, чтобы тот же объем проходил через точки 1 и 2 за заданное время, скорость должна быть больше в точке 2. Процесс в точности обратим. Если жидкость течет в обратном направлении, ее скорость будет уменьшаться при расширении трубки. (Обратите внимание, что относительные объемы двух цилиндров и соответствующие стрелки вектора скорости не в масштабе.)

      Поскольку жидкости по существу несжимаемы, уравнение неразрывности справедливо для всех жидкостей.Однако газы сжимаемы, поэтому уравнение следует применять с осторожностью к газам, если они подвергаются сжатию или расширению.

      Пример 2. Расчет скорости жидкости: скорость увеличивается при сужении трубки

      Насадка радиусом 0,250 см крепится к садовому шлангу радиусом 0,900 см. Расход через шланг и насадку составляет 0,500 л / с. Рассчитайте скорость воды (а) в шланге и (б) в форсунке.

      Стратегия

      Мы можем использовать соотношение между расходом и скоростью, чтобы найти обе скорости.{2}} = 1,96 \ text {m / s} \\ [/ latex].

      Решение для (b)

      Мы могли бы повторить этот расчет, чтобы найти скорость в сопле [латекс] \ bar {v} _ {2} \\ [/ latex], но мы воспользуемся уравнением непрерывности, чтобы получить несколько иное представление. {2}} \ bar {v} _ {1} \\ [/ latex].{2}} 1,96 \ text {m / s} = 25,5 \ text {m / s} \\ [/ latex].

      Обсуждение

      Скорость 1,96 м / с примерно подходит для воды, выходящей из шланга без сопла. Сопло создает значительно более быстрый поток, просто сужая поток до более узкой трубки.

      Решение последней части примера показывает, что скорость обратно пропорциональна квадрату радиуса трубы, что дает большие эффекты при изменении радиуса. Мы можем задуть свечу на большом расстоянии, например, поджав губы, тогда как задувание свечи с широко открытым ртом совершенно неэффективно.Во многих ситуациях, в том числе в сердечно-сосудистой системе, происходит разветвление потока. Кровь перекачивается из сердца в артерии, которые подразделяются на более мелкие артерии (артериолы), которые разветвляются на очень тонкие сосуды, называемые капиллярами. В этой ситуации непрерывность потока сохраняется, но сохраняется сумма расходов в каждом из ответвлений в любой части вдоль трубы. Уравнение неразрывности в более общем виде принимает вид

      [латекс] {n} _ {1} {A} _ {1} {\ overline {v}} _ {1} = {n} _ {2} {A} _ {2} {\ overline {v} } _ {2} \\ [/ latex],

      , где n 1 и n 2 — количество ответвлений в каждой из секций вдоль трубы.

      Пример 3. Расчет скорости потока и диаметра сосуда: ветвление в сердечно-сосудистой системе

      Аорта — это главный кровеносный сосуд, по которому кровь покидает сердце и циркулирует по всему телу. (а) Рассчитайте среднюю скорость кровотока в аорте, если скорость потока составляет 5,0 л / мин. Аорта имеет радиус 10 мм. (б) Кровь также течет через более мелкие кровеносные сосуды, известные как капилляры. Когда скорость кровотока в аорте составляет 5,0 л / мин, скорость кровотока в капиллярах составляет около 0.33 мм / с. Учитывая, что средний диаметр капилляра составляет 8,0 мкм м, рассчитайте количество капилляров в системе кровообращения.

      Стратегия

      Мы можем использовать [latex] Q = A \ overline {v} \\ [/ latex] для расчета скорости потока в аорте, а затем использовать общую форму уравнения непрерывности для расчета количества капилляров как всех другие переменные известны. {2} \ left (0.{9} \ text {capillaries} \\ [/ latex].

      Обсуждение

      Обратите внимание, что скорость потока в капиллярах значительно снижена по сравнению со скоростью в аорте из-за значительного увеличения общей площади поперечного сечения капилляров. Эта низкая скорость предназначена для того, чтобы дать достаточно времени для эффективного обмена, хотя не менее важно, чтобы поток не становился стационарным, чтобы избежать возможности свертывания. Кажется ли разумным такое большое количество капилляров в организме? В активной мышце можно найти около 200 капилляров на мм 3 , или около 200 × 10 6 на 1 кг мышцы.На 20 кг мышц это составляет примерно 4 × 10 9 капилляров.

      Сводка раздела

      • Расход Q определяется как объем V , протекающий через момент времени t , или [латекс] Q = \ frac {V} {t} \\ [/ latex], где V объем и т время.
      • Единица объема в системе СИ — м 3 .
      • Другой распространенной единицей измерения является литр (л), который составляет 10 -3 м 3 .
      • Расход и скорость связаны соотношением [латекс] Q = A \ overline {v} \\ [/ latex], где A — площадь поперечного сечения потока, а [латекс] \ overline {v} \\ [ / латекс] — его средняя скорость.
      • Для несжимаемых жидкостей скорость потока в различных точках постоянна. То есть

      [латекс] \ begin {case} Q_ {1} & = & Q_ {2} \\ A_ {1} v_ {1} & = & A_ {2} v_ {2} \\ n_ {1} A_ {1 } \ bar {v} _ {1} & = & n_ {2} A_ {2} \ bar {v} _ {2} \ end {case} \\ [/ latex].

      Концептуальные вопросы

      1. В чем разница между расходом и скоростью жидкости? Как они связаны?

      2. На многих рисунках в тексте показаны линии тока. Объясните, почему скорость жидкости максимальна там, где линии тока находятся ближе всего друг к другу.(Подсказка: рассмотрите связь между скоростью жидкости и площадью поперечного сечения, через которую она течет.)

      3. Определите некоторые вещества, которые являются несжимаемыми, а некоторые — нет.

      Задачи и упражнения

      1. Каков средний расход бензина в см 3 / с на двигатель автомобиля, движущегося со скоростью 100 км / ч, если он составляет в среднем 10,0 км / л?

      2. Сердце взрослого человека в состоянии покоя перекачивает кровь со скоростью 5,00 л / мин. (a) Преобразуйте это в см 3 / с.(b) Какова эта скорость в м 3 / с?

      3. Кровь перекачивается из сердца со скоростью 5,0 л / мин в аорту (радиусом 1,0 см). Определите скорость кровотока по аорте.

      4. Кровь течет по артерии радиусом 2 мм со скоростью 40 см / с. Определите скорость потока и объем, который проходит через артерию за 30 с.

      5. Водопад Хука на реке Вайкато — одна из самых посещаемых природных достопримечательностей Новой Зеландии (см. Рис. 3).В среднем река имеет скорость потока около 300 000 л / с. В ущелье река сужается до 20 м в ширину и в среднем 20 м в глубину. а) Какова средняя скорость реки в ущелье? b) Какова средняя скорость воды в реке ниже водопада, когда она расширяется до 60 м, а глубина увеличивается в среднем до 40 м?

      Рис. 3. Водопад Хука в Таупо, Новая Зеландия, демонстрирует скорость потока. (Источник: RaviGogna, Flickr)

      6. Основная артерия с площадью поперечного сечения 1.00 см 2 разветвляется на 18 артерий меньшего размера, каждая со средней площадью поперечного сечения 0,400 см 2 . Во сколько раз снижается средняя скорость крови при переходе в эти ветви?

      7. (a) Когда кровь проходит через капиллярное русло в органе, капилляры соединяются, образуя венулы (маленькие вены). Если скорость кровотока увеличивается в 4 раза, а общая площадь поперечного сечения венул составляет 10,0 см 2 , какова общая площадь поперечного сечения капилляров, питающих эти венулы? (б) Сколько вовлечено капилляров, если их средний диаметр равен 10.0 мкм м?

      8. Система кровообращения человека насчитывает примерно 1 × 10 9 капиллярных сосудов. Каждый сосуд имеет диаметр около 8 мкм м. Предполагая, что сердечный выброс составляет 5 л / мин, определите среднюю скорость кровотока через каждый капиллярный сосуд.

      9. (a) Оцените время, которое потребуется для наполнения частного бассейна емкостью 80 000 л с использованием садового шланга со скоростью 60 л / мин. (b) Сколько времени потребуется для заполнения, если вы сможете перенаправить в него реку среднего размера, текущую на высоте 5000 м 3 / с?

      10.Скорость потока крови через капилляр с радиусом 2,00 × 10 -6 составляет 3,80 × 10 9 . а) Какова скорость кровотока? (Эта малая скорость дает время для диффузии материалов в кровь и из нее.) (B) Если предположить, что вся кровь в организме проходит через капилляры, сколько их должно быть, чтобы нести общий поток 90,0 см 3 / с? (Полученное большое количество является завышенной оценкой, но все же разумно.)

      11. (a) Какова скорость жидкости в пожарном шланге с 9.Диаметр 00 см, пропускающий 80,0 л воды в секунду? б) Какая скорость потока в кубических метрах в секунду? (c) Вы бы ответили иначе, если бы соленая вода заменила пресную воду в пожарном шланге?

      12. Диаметр главного всасывающего воздуховода воздухонагревателя составляет 0,300 м. Какова средняя скорость воздуха в воздуховоде, если его объем равен объему внутри дома каждые 15 минут? Внутренний объем дома эквивалентен прямоугольному массиву шириной 13,0 м на 20.0 м в длину на 2,75 м в высоту.

      13. Вода движется со скоростью 2,00 м / с по шлангу с внутренним диаметром 1,60 см. а) Какая скорость потока в литрах в секунду? (b) Скорость жидкости в сопле этого шланга составляет 15,0 м / с. Каков внутренний диаметр сопла?

      14. Докажите, что скорость несжимаемой жидкости через сужение, например, в трубке Вентури, увеличивается с коэффициентом, равным квадрату коэффициента уменьшения диаметра. (Обратное применимо к потоку из сужения в область большего диаметра.)

      15. Вода выходит прямо из крана диаметром 1,80 см со скоростью 0,500 м / с. (Из-за конструкции крана скорость потока не меняется.) (A) Какова скорость потока в см 3 / с? (б) Каков диаметр ручья на 0,200 м ниже крана? Пренебрегайте эффектами поверхностного натяжения.

      16. Необоснованные результаты Горный ручей имеет ширину 10,0 м и среднюю глубину 2,00 м. Во время весеннего стока расход в ручье достигает 100 000 м 3 / с.а) Какова средняя скорость потока в этих условиях? б) Что неразумного в этой скорости? (c) Что неразумно или непоследовательно в помещениях?

      Глоссарий

      расход:
      сокращенно Q , это объем V , который проходит мимо определенной точки за время t , или Q = V / t
      литр:
      единица объема, равная 10 −3 м 3

      Избранные решения проблем и упражнения

      1.2,78 см 3 / с

      3. 27 см / с

      5. (а) 0,75 м / с (б) 0,13 м / с

      7. (а) 40.0 см 2 (б) 5.09 × 10 7

      9. (а) 22 ч (б) 0,016 с

      11. (а) 12,6 м / с (б) 0,0800 м 3 / с (в) Нет, не зависит от плотности.

      13. (а) 0,402 л / с (б) 0,584 см

      15. (а) 128 см 3 / с (б) 0,890 см

      Площадь полого цилиндра — кривая и общая площадь полого цилиндра

      Твердая поверхность, образованная линией, движущейся параллельно фиксированной линии, а ее конец описывает замкнутую фигуру на плоскости, называется цилиндром.Цилиндр — это предельный случай призмы. Этот старомодный вид используется в фундаментальных применениях геометрии, однако непредсказуемая числовая перспектива переместилась на бесконечную криволинейную поверхность, и это способ, которым в настоящее время повсеместно охарактеризован цилиндр в нескольких современных частях геометрии и топологии. . Сдвиг в прямом смысле вызвал некоторую неопределенность с терминологией.

      Если линия перпендикулярна основанию, цилиндр называется Правым цилиндром, в противном случае он называется наклонным цилиндром.Линия, соединяющая центры оснований, называется осью цилиндра. Полый цилиндр — это цилиндр, свободный изнутри и имеющий некоторую разницу между внутренним и внешним радиусом.

      Части цилиндра:

      Основание и сторона

      Цилиндр — это твердое тело, которое обычно можно увидеть в повседневной жизни, например соломинка. Если вы его разбираете, вы обнаруживаете, что у него есть два перекрытия, называемые базами, которые обычно являются обходными.Основания согласованы и параллельны друг другу. Если вам каким-то образом удалось «развернуть» цилиндр, вы обнаружите, что его сторона действительно имеет форму прямоугольника, когда его выпрямляют.

      Высота

      Высота h — это перпендикулярное расстояние между двумя основаниями. {2}) \]

      Пример 1:

      Найдите вес, площадь боковой поверхности и общую площадь поверхности стальной трубы, внутренняя и внешняя диаметры r составляют 15 см и 17 см соответственно, а длина — 10 м; один кубический сантиметр железа весом 0.{2} \].

      Пример 2:

      Полая цилиндрическая медная труба имеет длину 21 дм. Его внешний и внутренний диаметр составляют 10 см и 6 см соответственно. Найдите объем меди, из которого изготовлена ​​труба.

      Решение:

      Учитывая, что:

      \ [\ text {Высота цилиндрической трубы h} = 21 дм = 210 см \]

      \ [\ text {Таким образом, Внешний радиус}, R = \ frac {10} {2} = 5см \]

      \ [\ text {Внутренний радиус}, r = \ frac {6} {2} = 3 см \]

      Объем меди, использованной при производстве трубы

      = \ [\ text {Объем внешнего цилиндра} — \ text {Объем внутреннего цилиндра} \]

      = \ [\ pi R ^ {2} h — \ pi r ^ {2} h \]

      = \ [\ pi (R ^ {2} — r ^ {2}) h \]

      = \ [\ frac {22} {7} [5 ^ {2} — 3 ^ {2}] \ times 210 = \ frac {22} {7} \ times 16 \ times 210 \]

      = \ [22 \ times 16 \ times 30 \]

      = \ [10560 куб. {2} \]

      = \ [2 \ times \ frac {22} {7} \ times 2.{2} \ text {хорошо} = рупий. 40 \]

      Стоимость 291,06 м2 колодца = рупий. (40 × 291,06) = рупий. 11642.40

      Тестовый образец:

      Пример:

      Площадь боковой поверхности полой трубки составляет 4224 см². Позже он был разрезан по высоте и образовал прямоугольный лист шириной 33 см. Найти периметр прямоугольного листа?

      (ответ = 322 см.)

      Пример:

      Общая площадь открытой с обоих концов полой металлической трубки с внешним радиусом 8 см и высотой 10 см составляет 338π см2.Принимая r как внутренний радиус, представьте уравнение для r и используйте его для определения толщины металла в цилиндре.

      (ответ = 3 см)

      Пример:

      Общая площадь полого керамического цилиндра, открытого с обеих сторон, составляет 4620 кв. См, площадь опорного кольца — 115,5 кв. См, высота — 7 см.

Обновлено: 27.07.2021 — 14:42

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *