Характеристика газобетонных блоков: Свойства газобетонных блоков: технические характеристики, размеры

Содержание

Свойства газобетонных блоков: технические характеристики, размеры

Главная / Статьи / Свойства газобетонных блоков

Газобетонные блоки — блоки из ячеистого бетона, которые изготавливаются путём вспучивания теста вяжущего газом, выделяющимся при химической реакции между вяжущим-газообразователем и вяжущим (портландцементом). Чаще всего газообразователем служит алюминиевая пудра.

Свойства газобетонных блоков:

  • Легкость. Стандартный мелкий блок из ячеистого бетона марки D500, размером 300х250х600 мм имеет массу  30 кг и может заменить  22 кирпича, вес которых составляет 100 кг (в расчёте на тот же объём). Легкость газобетонных блоков позволяет снизить транспортно-монтажные расходы  на устройство фундаментов и трудоемкость работ.
  • Низкая теплопроводность. Благодаря пористой структуре газобетон является конструктивно — теплоизоляционным материалом. Коэффициент теплопроводности газобетона в сухом состоянии – 0,12 Вт/м
    0
    C. Заключенный в порах воздух приводит к исключительному теплоизоляционному эффекту. В процессе эксплуатации здания из ячеистого бетона расходы на отопление снижаются на 25-30 %.
  • Теплоаккумуляционные свойства газобетона. Ячеистый бетон способен аккумулировать тепло. Он накапливает тепло от отопления или от солнечных лучей. Зимой происходит экономия топлива, а в летнее время сохраняется приятная прохлада. Применение этого материала позволяет значительно сэкономить на отоплении. По теплопроводности блоки стандартной толщины (375 мм) эквивалентны 600-миллиметровой кирпичной кладке.
  • Звукоизоляционные свойства газобетона благодаря его пористой ячеистой структуре в 10 раз выше, чем у кирпичной кладки.
  • Пожаробезопасность. Поскольку для изготовления газобетона берется лишь природное минеральное сырье, то нет и опасности возгорания. Газобетон, будучи неорганическим и негорючим материалом, выдерживает одностороннее воздействие огня в течение 3-7 часов.
    Это материал, способный защитить металлические конструкции от прямого воздействия огня.
  • Морозостойкость. Газобетон морозостоек, что объясняется наличием резервных пор, в которые при замерзании вытесняется лед и вода. Сам материал при этом не разрушается. Считается, что при соблюдении технологии строительства, морозостойкость материала не менее 25 циклов.
  • Прочность. При плотности D500 (500 кг/м3) газобетон имеет высокую прочность на сжатие – 28-40 кгс/см. Класс бетона по прочности В2,5 достигается за счет автоклавной обработки. Материал может использоваться для кладки несущих стен, стенового заполнения каркасных высотных  зданий, а также для кладки внутренних стен и перегородок.
  • Экономичность и быстрота  возведения конструкций. За счет относительно больших габаритов газобетонного блока и его малого веса (не требует специальных подъемных механизмов) существенно возрастает скорость строительства и, соответственно, снижаются трудозатраты.
    Вместо стандартного раствора используется клеевой, что также снижает стоимость возведения.  В процессе эксплуатации здания из ячеистого бетона расходы на отопление снижаются на 25-30 %.
  • Конструкционность. Точные геометрические характеристики изделий позволяют вести кладку блоков с использованием клеевого раствора, который обеспечивает прочность сцепления и исключает наличие в кладке «мостиков холода».
  • Простота обработки. Газобетон легко обрабатывается любым режущим инструментом. Газобетон пилится, сверлится, гвоздится, строгается, штрабится.  Все это делает его применение особенно привлекательным. Простота обработки ячеистого бетона позволяет создавать интересные архитектурные решения, в том числе, прорезать каналы и отверстия под розетку, электропроводку, трубопроводку, трубопроводы, арочные конфигурации.
  • Экологичность. Современный газобетон производится из песка, извести, цемента и алюминиевой пудры. Он не выделяет токсичных веществ и по своей экологичности уступает лишь дереву. Но при этом газобетон, в отличие от дерева, не гниет и не стареет. Экологическая чистота применяемых сырьевых материалов гарантирует полную безопасность газобетонных изделий для человека. Радиационный фон газобетона не превышает 9-11 мкр/ч. Это пористый материал, поэтому в доме, построенном из газобетона, дышится так же легко, как и в деревянном. 

 

технические характеристики газобетона Xella YTONG

Что такое звук и шум?

Звук – это физическое явление, вызванное колебательными движениями частиц в упругой среде (газе, жидкости или твердых телах). Шум – тот же звук, но оказывающей раздражающее воздействие на живой организм.

Давление, которое оказывают на нас посторонние шумы, измеряется силой звука в децибелах. Нагляднее всего эту физическую единицу можно представить в виде шкалы громкости:

Как классифицировать шум?

В нормативной литературе можно встретить три вида шума:

  • Воздушный – распространяется по воздуху перед тем как встретить препятствие (перекрытие, стены из газобетона и прочее).
    Например: музыка, лай собак.
  • Ударный – возникает в следствие механического воздействия на конструкцию. Например: Стук обуви, падение тяжелого предмета.
  • Структурный – передается по элементам конструкции здания (как воздушный, так и ударный). Пример: движение лифтовой кабины или работа насосного оборудования на техническом этаже.

Как снизить уровень шума?

Чаще всего ударный шум передается через перекрытие, поэтому вариантом избавления от него служит, например, «плавающий» пол. В свою очередь структурный шум имеет технический характер и избавляет от него надежная виброизоляция. Остановимся более подробно на воздушном шуме.

Есть два основных пути снижения звукового воздействия воздушного шума:

  • Снизить уровень шума источника;
  • Изолировать источник шума или себя от источника – т.е. установить преграду на пути распространения звука.

Как нормируется уровень шума?

Согласно СП 51. 13330.2011 «Защита от шума» нормируемым параметром звукоизоляции воздушного шума является индекс изоляции  – величина, служащая для оценки способности ограждающей конструкции уменьшать проходящий через нее звук.

Фактически индекс изоляции – это разница уровней звукового давления в двух смежных помещениях с некоторой акустической поправкой. Требуемые нормативные индексы звукоизоляции представлены в таблице №2 СП 51.13330.2011.

Какой блок YTONG подойдет для обеспечения звукоизоляции стен из газобетона?

По расчету СП 23-103-2003 индекс изоляции воздушного шума для ограждающей конструкции из газобетона получаем следующих значений (с подробностями расчета можно ознакомиться в Энциклопедии строительства Das Baubuch):

— к использованию в качестве стен и перегородок между квартирами, между помещениями квартир и офисами; между помещениями квартир и лестничными клетками, холлами, коридорами, вестибюлями требуется материал, имеющий индекс изоляции воздушного шума не менее 52 дБ.

style=»padding:0;»>
style=»padding:0;»>

№ п.п.

Плотность газобетонных блоков YTONG

Толщина блоков YTONG, мм

Толщина штукатурного слоя с двух сторон, мм

Индекс изоляции воздушного шума , дБ

1.

D500

150

30

53

2.

200

20

53

3.

250

10

53

4.

D600

200

20

54

5.

250

52

— к использованию в качестве перегородок без дверей между комнатами, между кухней и комнатой в квартире требуемое значение индекса изоляции воздушного шума составляет 43 дБ.

№ п.п.

Плотность газобетонных блоков YTONG

Толщина блоков YTONG, мм

Толщина штукатурного слоя с двух сторон, мм

Индекс изоляции воздушного шума , дБ

1.

D500

100

20

46

2.

125

10

44

3.

D600

100

10

43

4.

150

10

43

Газобетон YTONG благодаря особой структуре поверхности характеризуется более высоким поглощением звука по сравнению с совершенно гладкими и «жесткими» для звука поверхностями.

Таким образом, для обеспечения требуемой звукоизоляции стен в 52 дБ между квартирами достаточно возвести ограждение из газобетоннных блоков, например, класса по плотности D500 c толщиной 200-250 мм, оштукатуренную с двух сторон. А для комфортного проживания в квартире между смежными комнатами необходима перегородка из газобетона с теми же условиями, но уже толщиной 100-150 мм.

Итак, для обеспечения требуемой звукоизоляции необходимо подобрать такую ограждающую конструкцию, индекс звукоизоляции  которой будет больше или равен требуемому  по СП 51. 13330.2011.

Влажность газобетона — технические характеристики YTONG

Производственная влажность. Требования к отделке газобетонной кладки.

При производстве автоклавного газобетона на выходе из автоклава он имеет влажность около 30-40% по массе – это технологическая влажность.

На конечном этапе производства блоки устанавливаются на поддон и упаковываются в термоусадочную пленку для защиты от атмосферных осадков на период хранения.

В той же пленке блоки поступают на стройплощадку, поэтому удаление технологической влаги становится возможным только после распаковки и начала строительства. Газобетон из автоклава выходит готовым к монтажу. Вести кладку можно начинать непосредственно после поставки продукции, не нужно ждать пока газобетон просохнет после распалечивания.

В среднем, кладке потребуется от двух месяцев до полугода для удаления наибольшего количества воды и последующего плавного достижения сорбционной (равновесной) влажности. Скорость удаления влаги будет зависеть от ряда факторов: плотности и толщины газобетонных блоков, времени года и климата региона. Именно по этой причине мы рекомендуем проводить отделку фасада адгезионно-связанную с кладкой через 2-6 месяцев после завершения кладочных работ, когда влажность кладки будет составлять менее 8% по объему. При определении влажности кладки инструментальными методами можно не выполнять данные рекомендации. Ограничений по началу внутренних отделочных работ нет.

Сорбционная влажность.

За расчетную (по теплопроводности) влажность ячеистых бетонов для условий эксплуатации А принимается согласно СП 23-101 сорбционная влажность при относительной влажности воздуха 80 %, а для условий эксплуатации В – 97 %. В соответствии с ГОСТ 31359-2007 сорбционная влажность газобетона при относительной влажности воздуха 80% и 97% составляет W80=4% и W97 =5%.

Отсюда следуют и разные значения коэффициентов теплопроводности:

Условия эксплуатации ограждающих конструкций А или Б в зависимости от влажностного режима помещений и зон влажности района строительства следует устанавливать по п. 4.4 СП 50.13330.2012 «Тепловая защита зданий».

Точка росы (плоскость максимального увлажнения)

Согласно определения СП 50.13330.2012 точка росы – это такая температура, при которой начинается образование конденсата в воздухе с определенной температурой и относительной влажностью.

Простыми словами, возможность образования конденсата зависит от совокупности условий: толщины слоев конструкции и их расчетной паропроницаемости, температурного перепада и перепада парциальных давлений внутри помещения и снаружи.

Однако, для газобетонной кладки самая главная проверка вовсе не на возможность возникновения конденсации, а на количество скапливающейся влаги. В толще ограждающей конструкции не должно возникать недопустимого влагонакопления за отопительный период. Предполагается, что значение сконденсировавшейся за зиму влаги успеет испариться за летний сезон. В современных однослойных стенах из газобетонных блоков, удовлетворяющих требованиям к сопротивлению теплопередачи, недопустимого накопления влаги нет, и эксплуатационная влажность колеблется в пределах 4-5,5% по массе в течение года.

Проверку образования плоскости увлажнения (точки росы) и расчет влагонакопления осуществляют согласно СП 50.13330.2012 Главы 8 Защита от увлажнения ограждающих конструкций.

Защита от воздействия атмосферных осадков

Закрытая пористая структура материала газобетона ограничивает его гигроскопичность в процессе эксплуатации.

Капиллярный подсос незначителен, и даже при непосредственном контакте с водой глубина увлажнения ограничивается 2-3 см. Этот факт дает возможность успешно эксплуатировать кладку без отделки, при условии обеспечения отвода воды со всех горизонтальных поверхностей: оконных проемов, областей примыкания к козырькам и отмостке и т.п. Также обвязочный пояс по фундаменту из керамического кирпича устраивать не нужно.

Допускается эксплуатация неотделанной кладки из ячеистобетонных блоков автоклавного твердения с учетом требований п. 11.4 СТО НААГ 3.1-2013. Наружная отделка выполняется лишь с целью придать кладке декоративность и защитить от продувания.

 

Рис. 1. Эксплуатируемое здание 1939 года постройки из автоклавного газобетона без отделки фасада, г. Рига, ул. Эльвирас, 15

Регулирование климата внутри помещения

Избыточная влажность, образующаяся от жизнедеятельности людей, животных и растений, а также от работы оборудования (функционального назначения помещения), стремится покинуть помещение не только через системы вентиляции или оконные блоки, но и через конструкции здания.

Высокая паропроницаемость газобетона позволяет выводить излишки влаги, обеспечивая тем самым комфортный тепло-влажностный режим помещения. При этом важно не забывать о требованиях, предъявляемых к отделке газобетона.

технические характеристики газобетона Xella YTONG

Одно из главных требований к современным зданиям – пожарная безопасность. В этом плане газобетон YTONG – один из лучших материалов на рынке для строительства зданий, сооружений, брандмауэрных стен и противопожарных перегородок, в силу целого ряда причин:

        1.     Как и любой ячеистый бетон газобетон YTONG относится к группе негорючих материалов (НГ), согласно классификации ГОСТ 30244-94*. Это объясняется тем, что в составе газобетона – только минеральные компоненты. Газобетон не только не горит, но и не выделяет опасные для здоровья вещества при прямом воздействии огня. 
        2.     Конструкции из газобетона YTONG различной плотности, выполненные на тонкошовном клее, по результатам независимых испытаний, относятся к классу пожарной опасности К0(45), в соответствии с ГОСТ 30403-2012**. Класс К0 означает, что конструкция является непожароопасной: не поддерживает горение, не выделяет вредных веществ при контакте с огнём. А обозначение «45» подразумевает, что она остаётся такой при длительном времени теплового воздействия – 45 минут.
        3.     У конструкций из газобетона YTONG очень высокая огнестойкость. Это время, в течение которого они сохраняют устойчивость и другие свойства под воздействием огня. Чем выше огнестойкость, тем больше времени у находящихся в здании людей на эвакуацию. У стен из газобетона YTONG плотностью D400 и толщиной не менее 200 мм предел огнестойкости составляет REI 360. Иными словами, в течение 360 минут конструкция будет сохранять несущую способность, целостность и теплоизоляционные свойства (обеспечивать низкую температуру на противоположной пожару поверхности стены). У стены из газобетона YTONG D500 и D600 – REI 240 при толщине 150 мм (перегородка) и REI 360 при толщине от 200 мм (несущая стена). Это отличные показатели для каменной или монолитной бетонной конструкции. Более того, стена из газобетона в течение некоторого времени после того, как на неё началось воздействие огня, наоборот, набирает прочность, до момента выпаривания структурной влаги. Этот процесс может продолжаться до 4 часов при прямом воздействии огня.
     

       Благодаря тому, что газобетон YTONG негорючий, относится к классу пожарной опасности К0 и обладает высокой огнестойкостью, его можно применять для устройства противопожарных стен и перегородок самого ответственного – 1 типа (в соответствии с СП 112. 13330.2011***). В том числе для создания противопожарных зон и тамбуров-шлюзов в аэропортах.
     

       Стоит отметить, что в случае быстро потушенного пожара газобетонные стены не сильно повреждаются от огня, их можно эксплуатировать дальше (при положительной экспертизе объекта). Достаточно лишь выполнить новую отделку.

 

YTONG®:

*ГОСТ 30244-94 «Материалы строительные. Методы испытаний на горючесть».
**В соответствии с ГОСТ 30403-2012 «Конструкции строительные. Метод испытаний на пожарную опасность».
***СП 112.13330.2011 «Пожарная безопасность зданий и сооружений».
 

Технические характеристики, особенности и свойства разных марок газобетона

В большом многообразии современных строительных материалов особого внимания заслуживают блоки из газобетона. В последние годы они пользуются большой популярностью при возведении жилых и нежилых зданий, и тому есть причины.

Газобетонные блоки имеют сравнительно большие размеры. При взгляде на них может показаться, что и весят они тоже немало, но это не так: масса этих блоков сравнительно невелика. Это, в свою очередь, упрощает и ускоряет строительство.

Заслуживает внимания точность геометрии блочных изделий из газобетона. Их поверхности почти идеально ровные, что также облегчает использование этого стройматериала при возведении зданий разного назначения.

Газобетонные блоки — экологически чистый материал. При их изготовлении на заводе ДСК ГРАС используются только компоненты натурального происхождения. Блочные изделия не выделяют в воздух вредных веществ — а значит, безопасны как для владельцев возведённого из них жилья, так и для окружающей среды.

Ознакомиться с характеристиками газобетона и сравнить его с другими стройматериалами можно с помощью таблицы, приведённой ниже.


Наименование

Газобетон автоклавный

Кирпич полнотелый

Пенобетон

Плотность, кг/куб. м

300-700

1550-1700

500-1200

Вес 1 кв. м. стены, в кг

300-700

1800

300-900

Водопоглощение, в % к общей массе

20

12

18

Морозостойкость, циклы

15-100

20-25

15-50

Паропроницаемость, мг/(кв. м*ч*Па)

0,14

0,11

0,11

Прочность на сжатие, МПа

1,5-10

2,5-25

1,5-17

Теплопроводность, Вт/кв. м.

0,07-0,14

0,6-0,95

0,12-0,38

Акустические характеристики для стены толщиной 30 см, Дб

30-47

55-64

45-58


Достоинства газобетона автоклавного твердения

Стеновые блоки из газобетона, выпускаемые на заводе ДСК ГРАС, имеют следующие достоинства, в числе которых:

  • идеальная геометрия;
  • высокие шумоизоляционные свойства;
  • малый удельный вес;
  • лёгкость обработки — пиления, нарезки, сверления, штробления, выполнения других операций;
  • простота монтажа;
  • экологичность;
  • морозостойкость;
  • возможность использования клеевых смесей для соединения блоков — а значит, минимальная ширина образующихся швов;
  • высокая огнестойкость. Газобетон — это стройматериал категории НГ (несгораемый), его теплопроводность в соответствии с ГОСТ 30244 и ГОСТ 31359 минимальна. При нагревании от пламени газобетон теряет свою прочность очень медленно;
  • наконец, ценовая доступность.

Связь между размерами и массой: Блоки и перегородки


 Номенклатура и количество блоков на стандартном поддоне (размер 1,0*1,5 м, высота 1,35 объём блоков 1,8м3).

Размеры, мм

 

Вес 1 блока, кг

Кол-во блоков на поддоне

Вес 1 поддона, кг

длина

высота

ширина

D300

D350

D400

D500

D600

шт

D300

D350

D400

D500

D600

600

200

100

4,97

6,00

6,57

8,20

9,80

150

745

900

985

1230

1470

250

12,42

15,00

16,4

20,50

24,50

60

300

14,90

18,00

19,7

24,60

29,40

50

375

18,63

22,50

24,6

30,75

36,75

40

250

75

4,66

5,63

6,16

7,69

9,19

160

100

6,21

7,50

8,21

10,25

12,25

120

150

9,31

11,25

12,31

15,38

18,38

80

250

15,52

18,75

20,52

25,63

30,63

48

300

18,63

22,50

24,63

30,75

36,75

40

375

23,28

28,13

30,78

38,44

45,94

32


Номенклатура и количество блоков на увеличенном поддоне (размер 1,2*1,5 м, объём блоков 2,16 м3).

Размеры, мм

 

Вес 1 блока, кг

Кол-во блоков на поддоне

Вес 1 поддона, кг

длина

высота

ширина

D300

D350

D400

D500

D600

шт

D300

D350

D400

D500

D600

600

300

100

7,42

8,63

9,83

12,25

14,67

120

890

1035

1180

1470

1760

200

300

14,90

18,00

19,70

24,60

29,40

60

300

250

18,63

22,50

24,63

30,75

36,75

48

250

400

24,72

28,75

32,78

40,83

48,89

36

Связь между размерами и массой: Армированные изделия


Номенклатура и количество перемычек

Размер перемычек

Размер поддона

Количество перемычек

Объём

Вес упаковки       (факт)

Вес 1 шт

1500. 150.250

1500.750

20

1,125

800

40

2000.150.250

2000.750

20

1,5

1100

55

2500.150.250

2500.750

20

1,875

1400

70

1500. 100.250

1500.700

28

1,05

750

27

2000.100.250

2000.700

28

1,47

1100

39

2500.100.250

2500.700

28

1,75

1300

46

1500. 200.250

1500.800

16

1,2

900

56

2000.200.250

2000.800

16

1,6

1200

75

2500.100.250

2500.800

16

2

1500

94

Связь между размерами и массой: П-образные блоки


Номенклатура и количество П-образных перемычек

Размер перемычек

Размер поддона

Количество перемычек

Объём упаковки

Вес упаковки       (факт)

Вес 1 шт

500. 300.250

1500.1000

40

1,5

400

10

500.375.250

1500.1000

32

1,5

420

13

500.400.250

1500.1200

36

1,8

550

15


Ключевые характеристики

Прочность блоков из газобетона, выпускаемых ДСК ГРАС, зависит от плотности этого материала. Сравнительно небольшую плотность имеют разновидности с маркировкой D300, которая указывает на то, что плотность составляет 300 кг на 1 м3.

Обладает самой малой прочностью среди ячеистых бетонов (В2.0).  Такой материал чаще всего применяется для возведения несущих конструкций до полутора этажей, закладки проемов внутри здания, а также, теплоизоляции помещений. Газобетонные блочные изделия D500 прочнее, поэтому их можно использовать для сооружения несущих конструкций до пяти этажей.

Наибольшую прочность имеют блоки марки D600 В5.0. Их можно использовать для возведения высоких строений.

Ещё одна важная характеристика предлагаемого стройматериала — его устойчивость к морозу. На заводе ДСК ГРАС выпускаются разновидности с морозостойкостью от F75 до F100. Чем холоднее климат региона, в котором ведётся строительство, тем более морозостойкий материал понадобится.

Покупать стройматериалы у нас легко и удобно

В нашей компании вы сможете купить качественные строительные материалы на основе газобетона с минимальными затратами времени и сил. Обратитесь к нашим консультантам и расскажите им о ваших потребностях. Специалисты порекомендуют оптимальные марки материала, выполнят расчёт необходимого объёма, ответят на возникающие вопросы и помогут оформить оптовый или розничный заказ.

Физико-технические характеристики газобетонных блоков

Газобетон — относительно новый материал, обладающий хорошими характеристиками. Именно поэтому он так часто используется при строительстве частного жилья и бытовых помещений.

Этот материал часто применяется застройщиками, как основной. Он содержит в себе известь, цемент, песок и воду, а также пудру из алюминия. Благодаря этому имеет повышенные характеристики, газобетон жароустойчив, прочен, долговечен.

При этом он имеет приемлемую стоимость в отличие от любого другого строительного материала.

Виды газобетонных блоков по назначению

Блоки могут отличаться по плотности.

Различают следующие марки газоблоков:

  1. Теплоизоляционный — d300-d500.
  2. Конструкционный — d1000–d1200.
  3. Конструкционно-теплоизоляционный — d500-d900.

Всем им свойственны общие технические характеристики, такие как прочность, простота обработки. Это достаточно легкий материал, но несмотря на это, он обладает высоким уровнем прочности. У этого материала оптимальные теплоизоляционные показатели. Прочность может колебаться от 1,5 кг на квадратный сантиметр до 3,5 кг. Всё зависит от конкретной марки пенобетона или его пористости.

Простота обработки

Еще один важный показатель газо- и пенобетона — простота обработки. Он может быть легко разрезан или распилен. Для этого не потребуются специальные инструменты. Благодаря этому удаётся получить именно такие блоки, которые нужны для строительства.

Важно: Газобетону можно придать любую форму, даже угловую. Это позволяет производить постройку строений любой экзотической формы. Другие материалы такой возможности не дают.

Теплоизоляционные характеристики

Газобетонные блоки в сухом состоянии имеют неплохой коэффициент теплопроводности в 0,12 Вт/(м*С). Марки d500 и 600 обладают особенно низкой теплопроводностью и хорошими сберегающими тепло показателями. Поэтому они эффективно используются в строительстве всесезонного жилья, даже в холодных регионах применяется разновидность из пенобетона. То есть они способны перенести даже серьезные зимние морозы. Но и летом проявляют себя эффективно, не пропускают чрезмерное тепло, не перегреваются. Таким образом всегда поддерживается оптимальная для комфортного проживания температура.

Звукоизоляционные свойства

Подобный блок легко гасит звук: этот показатель зависит от качества материала, от его марки, плотности, используемого раствора, метода возведения стен и толщины кладки. В целом использование газобетона в строительстве позволяет создать благоприятные условия для проживания в газобетонных домах. И если допустимый индекс шумоизоляции в частном жилье и общественных местах колеблется от 41 до 60 дБ, что прописано нормой СНиП II-12-77, то газобетон полностью справляется с этой задачей:

Таблица
Марка газобетонаИндекс изоляции шума, дБ при толщине ограждающей конструкции, мм
120180240300360
D5003641444648
D6003843464850

Экологичность

Любая марка такого материала является экологически чистым продуктом. Перед выпуском в продажу любой блок проходит ряд проверок. Одна из них — измерение радиоактивности в лабораторных условиях. Этот показатель всегда очень низкий, в отличие от других стройматериалов. А значит, газобетон абсолютно безвреден для человеческого здоровья, обладает полезными свойствами пенобетона.

В газобетоне не содержатся токсичные компоненты и они не выделяются в дальнейшем в процессе эксплуатации. Газобетон не теряет свои полезные свойства даже с годами. Он ничем не уступает плитам из натурального материала, несмотря на то, что изготавливается искусственным путем. Это полностью экологически чистый строительный блок.

Вес газобетона

Газоблоки имеют небольшую массу, но зависит она от плотности. Чем она выше, тем тяжелее блоки.

При стандартных размерах 600х300х200 мм в зависимости от плотности будет иметь вес:

  • d400 — 19,4 кг.
  • d500 — 24,7 кг.
  • d600 — 28,5 кг.

Соответственно и 1м3 будет иметь следующие вес:

  • d400 — 538,9 кг.
  • d500 — 686,1 кг.
  • d600 — 791,7 кг.

Примечательно и то, что один такой блок газобетона позволяет заменить 13 шт кирпичей 250х120х65 мм (в кирпичной кладке с учетом растворного шва) общим весом 71,1 кг. Благодаря этим характеристикам срок строительства и стоимость работ значительно сокращается.

Пористость

Пористая структура газобетона

Пористость материала колеблется в пределах 85%. Это делает газобетон крепким, как камень, и дышащим, как дерево. В нем сочетаются все лучшие качества этих дорогостоящих материалов. Однако эта характеристика делает газобетон относительно дешевым стройматериалом, но не менее эффективным элементом строительства.

Плотность

Визуальное сравнение блоков разной плотности

Несмотря на объемность газобетонных блоков, они достаточно плотные и устойчивые к повреждениям — это главные показатели материала. От объемной густоты газобетона зависят его конечные параметры. Так, к примеру, чем меньше объемная густота блоков, тем больше его теплоизоляционные свойства, однако звукоизоляция материала ухудшается. Обратный принцип действует также: при высокой объемной густоте уменьшается теплоизоляция, но звукоизоляция улучшается.

Объемная густота помогает определить класс газобетона: например, марка d600 имеет плотность 600 кг/м3, D500 — 500 кг/м3, D800 — 800 кг/м3. Прочность блоков на сжатие следующая: для D500 — 2,5 МПа, для D600 — 3,2 МПа. При такой высокой прочности газобетон используют в строительстве несущих, самонесущих стен, а также стен-наполнителей.

Стойкость к грибкам и плесени

Грибки, плесень и различные бактерии — проблема любого жилья. Но если для его постройки использовались блоки из этого материала, о подобных проблемах можно забыть. Газобетонный блок считается неблагоприятной средой для развития бактерий. Даже при максимальной влажности воздуха и температуре свыше 30 градусов это практически невозможно. Поэтому в отличие от дерева и подобных ему материалов, как и для пенобетона, для газобетона нет необходимости использовать дополнительную антисептическую обработку.

Несущая способность

Газобетонный блок 500-й марки имеет высокий показатель несущей устойчивости. Именно его, чаще всего, используют при возведении высотных трехэтажных построек. Газобетонные блоки выдерживают как собственную массу, так и нагрузку плит перекрытия. Здания выше данной этажности из пенобетона обычно не возводятся. Если нужно более высокое строение, то потребуется более плотный бетон, но при этом снизится теплоизоляционная характеристика.

Стоит также учитывать хрупкость материала — он не эластичен. При малейших деформациях высокое здание покроется трещинами. Это и ставит высотный предел в 3 этажа. В данном случае строение будет стоять практически вечно. Но главное — качество фундамента: немаловажным является правильный расчет его толщины. Для того чтобы выполнить строительные работы правильно, надо следовать установленным нормам для использования газо- и пенобетона.

Морозостойкость газобетона

Для регионов с переменчивой погодой и холодным климатом эти технические характеристики являются наиболее важными. Перед продажей газобетона проводят испытания на его устойчивость к холодам. Заявленные характеристики газобетон выдерживает на все 100%: для марки d500 — это f35, то есть 35 циклов, конечно, в реальности их может быть больше. Из-за высокого уровня впитывания влаги (до 35%), характеристики производителя снизятся.

Важно: Необходимо позаботиться о защите газобетона от влаги. Тогда все технические характеристики значительно улучшатся.

Чтобы избежать попадания влаги, необходимо организовать паровой барьер внутри дома. Осуществляется он с помощью специального грунтования составом, ограничивающим прохождение влаги. Также потребуется произвести внешнюю шпатлевку. Но есть один нюанс: нельзя наносить на блоки штукатурку без грунтовки.

Паропроницаемость

Теперь по поводу паропроницаемости материала. Блоки сами по себе не обладают высокими характеристиками данного показателя. Пар вполне может проходить сквозь кладку, поэтому при использовании керамического или клинкерного кирпича для облицовки, необходимо делать вентилируемый зазор 20-40 мм. Он нужен для удаления влаги из газосиликатных блоков, т. к. кирпич имеет меньшую паропроницаемость и в случае отсутствия зазора будет способствовать накоплению влаги и разрушению стены. В него не должны попадать атмосферные осадки. Тогда блок полностью проявит свою эффективность и долговечность.

В целом газобетон позволяет создать максимально комфортный уровень влажности в помещении. Он хорошо впитывает и отдает влагу. Однако этот показатель достигается исключительно благодаря правильной кладке материала.

Огнестойкость

Газобетон абсолютно не боится пожаров — это негорючий материал, как и газосиликатный вариант. Его технические показатели позволяют осуществлять постройку противопожарных конструкций. В соответствии с указанными производителем характеристиками, он способен выдержать до 7 часов одностороннего воздействия огнем.

Кроме того, при нагреве блоки не выделяют токсичные вещества и не образуют едкий дым. При этом они не деформируются, не истекают горячими каплями, так как абсолютно не плавятся. Скорость нагревания компенсируется низкой теплопроводностью, что тоже очень важно. Используя газобетон в строительстве, жильцы получают 100% гарантию безопасности, им не страшны случайные возгорания и высокие температурные воздействия, как и в случае использования стройматериалов поддерживающих горение.

Долговечность

В западных странах уже давно используют для строительства домов газобетон. И судя по отзывам жителей той местности, некоторые дома были возведены 75 лет, а на сегодняшний день их стены остаются нерушимыми. Поэтому можно утверждать, что при правильном использовании газобетона и качественном его монтаже материал вполне может прослужить порядка 100 лет.

Скорость строительства

Такие технические характеристики, как скорость застройки, не указывается производителем, но они очень важны. Зависит этот показатель от многих факторов, в том числе от геометрии блоков и того, насколько легко обрабатывается та или иная марка материала. Наиболее хорош автоклавный вариант. Он имеет максимально точные размеры, а значит, его легко укладывать, создавая практически бесшовную конструкцию.

Вообще блоки из газобетона — тот материал, который позволяет производить все строительные работы значительно быстрее, в отличие от его аналогов. У них идеальный размер и вес. А значит, их легче и быстрее укладывать, отделывать. Блок легко обрабатывается ручными инструментами. Это позволяет создать любую форму для него, сделать в нем отверстие или нишу. Ни один другой строительный блок не может похвастаться такими характеристиками. В газобетоне легко делать выемки для коммуникаций — труб, проводов. Все это позволяет сохранить внутреннюю эстетику дома.

Важно: На подобный блок можно наклеить плитки без предварительных отделочных работ, что тоже значительно сократит временные затраты.

Особые характерные недостатки

Говоря о характеристиках, которыми обладают подобные блоки, нельзя не упомянуть об их недостатках и главный из них — недостаточно высокая степень прочности на излом. Это хрупкий материал, он вполне может растрескаться при неаккуратной работе с ним. Конечно, если произвести правильные работы по монтажу фундамента, об этой проблеме можно не беспокоиться. Фундамент должен возводиться так, чтобы усадка была минимальной, иначе через несколько лет, могут появиться трещины. Поэтому, в подавляющем большинстве случаев, при работе с данным материалом используют монолитный ленточный фундамент. Также обязательно при кладке блоков делать через каждые 2 ряда армирование.

Еще один минус, которым обладают эти блоки — водопоглощение. Оно достаточно высокое, что осложняет проведение отделочных работ. Но если обработать стены грунтовкой, то всё будет в порядке. Всех проблем очень легко избежать при правильном подходе к работе. Главное, чтобы ею занимались опытные профессионалы. В остальном блоки — это качественный, практичный и дешёвый материал для строительства.

Все о газобетонных блоках: характеристики и особенности работ

ШАГ 1. План дома

Расчет общей длины стен

Добавить параллельные оси между А-Г 012

Добавить перпендик. оси между Б-Г 012

Добавить перпендик. оси между В-Г 012

Добавить перпендик. оси между Б-В 012

Добавить перпендик. оси между А-Б 012

Размеры дома

Внимание! Наружные стены по осям А и Г являются несущими (нагрузки от крыши и плит перекрытия).

Длина А-Г, м

Длина 1-2, м

Колличество этажей 1 + чердачное помещение2 + чердачное помещение3 + чердачное помещение

ШАГ 2. Сбор нагрузок

Крыша

Форма крыши ДвускатнаяПлоская

Материал кровли ОндулинМеталлочерепицаПрофнастил, листовая стальШифер (асбестоцементная кровля)Керамическая черепицаЦементно-песчанная черепицаРубероидное покрытиеГибкая (мягкая) черепицаБитумный листКомпозитная черепица

Снеговой район РФ 1 район — 80 кгс/м22 район — 120 кгс/м23 район — 180 кгс/м24 район — 240 кгс/м25 район — 320 кгс/м26 район — 400 кгс/м27 район — 480 кгс/м28 район — 560 кгс/м2

Наведите курсор на нужный участок карты для увеличения.

Чердачное помещение (мансарда)

Отделка фасадов Не учитыватьКирпич лицевой 250х120х65Кирпич лицевой фактурный 250х60х65Клинкерная фасадная плиткаДоски из фиброцементаИскуственный каменьПриродный каменьДекоративная штукатуркаВиниловый сайдингФасадные панели

Материал наружних стен (фронтонов) Оцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал внутренних стен Не учитыватьОцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал перекрытия Железобетонное монолитное, 200ммЖелезобетонное монолитное, 150ммПлиты перекрытия бетонные многопустотные, 220ммПлиты перекрытия бетонные многопустотные (облегченные), 160ммПлиты перекрытия бетонные сплошные, 160ммЧердачное по деревяным балкам с утеплителем до 200 кг/м3Чердачное по деревяным балкам с утеплителем до 500 кг/м3Цокольное по деревянным балкам с утеплителем до 200 кг/м3Цокольное по деревянным балкам с утеплителем до 500 кг/м3

Эксплуатационная нагрузка, кг/м2 90 кг/м2 — для холодного чердака195 кг/м2 — для жилой мансарды

3 этаж

Высота 3-го этажа, м м

Отделка фасадов Не учитыватьКирпич лицевой 250х120х65Кирпич лицевой фактурный 250х60х65Клинкерная фасадная плиткаДоски из фиброцементаИскуственный каменьПриродный каменьДекоративная штукатуркаВиниловый сайдингФасадные панели

Материал наружних стен Оцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал внутренних стен Не учитыватьОцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал перекрытия Железобетонное монолитное, 200ммЖелезобетонное монолитное, 150ммПлиты перекрытия бетонные многопустотные, 220ммПлиты перекрытия бетонные многопустотные (облегченные), 160ммПлиты перекрытия бетонные сплошные, 160ммЧердачное по деревяным балкам с утеплителем до 200 кг/м3Чердачное по деревяным балкам с утеплителем до 500 кг/м3Цокольное по деревянным балкам с утеплителем до 200 кг/м3Цокольное по деревянным балкам с утеплителем до 500 кг/м3

2 этаж

Высота 2-го этажа, м м

Отделка фасадов Не учитыватьКирпич лицевой 250х120х65Кирпич лицевой фактурный 250х60х65Клинкерная фасадная плиткаДоски из фиброцементаИскуственный каменьПриродный каменьДекоративная штукатуркаВиниловый сайдингФасадные панели

Материал наружних стен Оцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал внутренних стен Не учитыватьОцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал перекрытия Железобетонное монолитное, 200ммЖелезобетонное монолитное, 150ммПлиты перекрытия бетонные многопустотные, 220ммПлиты перекрытия бетонные многопустотные (облегченные), 160ммПлиты перекрытия бетонные сплошные, 160ммЧердачное по деревяным балкам с утеплителем до 200 кг/м3Чердачное по деревяным балкам с утеплителем до 500 кг/м3Цокольное по деревянным балкам с утеплителем до 200 кг/м3Цокольное по деревянным балкам с утеплителем до 500 кг/м3

1 этаж

Высота 1-го этажа, м м

Отделка фасадов Не учитыватьКирпич лицевой 250х120х65Кирпич лицевой фактурный 250х60х65Клинкерная фасадная плиткаДоски из фиброцементаИскуственный каменьПриродный каменьДекоративная штукатуркаВиниловый сайдингФасадные панели

Материал наружних стен Оцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал внутренних стен Не учитыватьОцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал перекрытия Железобетонное монолитное, 200ммЖелезобетонное монолитное, 150ммПлиты перекрытия бетонные многопустотные, 220ммПлиты перекрытия бетонные многопустотные (облегченные), 160ммПлиты перекрытия бетонные сплошные, 160ммПолы по грунтуЧердачное по деревяным балкам с утеплителем до 200 кг/м3Чердачное по деревяным балкам с утеплителем до 500 кг/м3Цокольное по деревянным балкам с утеплителем до 200 кг/м3Цокольное по деревянным балкам с утеплителем до 500 кг/м3

Цоколь

Высота цоколя, м м

Материал цоколя Не учитыватьКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич полнотелый, 640ммКирпич полнотелый, 770ммЖелезобетонное монолитное, 200ммЖелезобетонное монолитное, 300ммЖелезобетонное монолитное, 400ммЖелезобетонное монолитное, 500ммЖелезобетонное монолитное, 600ммЖелезобетонное монолитное, 700ммЖелезобетонное монолитное, 800мм

Внутренняя отделка

Общая толщина стяжки, мм Не учитывать50мм100мм150мм200мм250мм300мм

Выравнивание стен Не учитыватьШтукатурка, 10ммШтукатурка, 20ммШтукатурка, 30ммШтукатурка, 40ммШтукатурка, 50ммГипсокартон, 12мм

Распределение нагрузок на стены

Коэффициент запаса 11.11.21.31.41.5

Газобетон: методы, применение и свойства

Газобетон относится к категории легких бетонов. Это смесь воды, цемента и мелко измельченного песка. Газобетон получают путем введения пузырьков газа в пластичную смесь цементно-песчаного раствора. Полученный продукт имеет ячеистую структуру с пустотами размером от 0,1 до 1 мм, подобными губчатой ​​резине. Кожа ячеек или пустот должна выдерживать давление перемешивания и уплотнения. Полученный в результате бетон известен как пористый или ячеистый бетон, но, строго говоря, использование слова «бетон» неуместно, поскольку в нем не используется крупный заполнитель.

Свойства газобетона :

Газобетон имеет следующие свойства:

1. Его можно пилить, резать, прибивать гвоздями. Он может удерживать гвозди.

2. Достаточно прочный.

3. Скорость проникновения воды через газобетон невысока.

4. Лучшая морозостойкость.

5. Высокое водопоглощение. Следовательно, необработанный газобетон не должен подвергаться воздействию агрессивной атмосферы.

Применение ячеистого бетона :

Газобетон обычно используется для следующих целей:

1. Из-за низкой теплопроводности и веса используется в основном для теплоизоляции.

2. Поскольку он обеспечивает лучшую огнестойкость, чем обычный бетон, он используется для защиты от огня.

3. Конструкционный газобетон используется в основном в виде сборных элементов или автоклавных блоков.Его также можно использовать для устройства полов вместо пустотелого плиточного пола.

4. В последнее время используется для световой изоляции.

Способы производства газобетона :

Есть два основных метода производства газобетона. Каждому продукту дается соответствующее название.

1. Газобетон:

Его получают в результате химической реакции с образованием газа в свежем растворе.Когда этот раствор застывает, он содержит большое количество пузырьков газа. Консистенция раствора должна быть такой, чтобы образовавшийся газ мог его расширять, но газ не должен выходить из него, т.е. консистенция раствора должна быть правильной. Скорость газовыделения, консистенция раствора и время его схватывания должны совпадать.

Для производства газа чаще всего используется окончательно измельченный алюминиевый порошок. Доля алюминиевой пудры может составлять 0,2% от массы цемента. Реакция между этим активным порошком и гидроксидом кальция или щелочами высвобождает пузырьки водорода.Также можно использовать порошковый цинк или алюминиевый сплав. Иногда перекись водорода используется для образования пузырьков кислорода.

2. Пенобетон:

Производится путем добавления в смесь пенообразователя, который вводит и стабилизирует пузырьки воздуха во время перемешивания на высокой скорости. Обычно используемый пенообразователь представляет собой некоторую форму гидролизованного белкового или смоляного мыла. В некоторых процессах стабильная предварительно сформированная пена добавляется к раствору во время перемешивания в обычном смесителе.

Газобетон можно изготавливать без песка, но такой бетон можно использовать только для неструктурных целей, например, для теплоизоляции. Плотность газобетона без песка варьируется от 200 до 300 кг / м. 3 . Когда газобетон изготавливается из смеси цемента и очень мелкого песка, плотность обычных смесей варьируется от 500 до 1100 кг / м 3 . В случае других легких бетонов прочность пенобетона зависит от плотности.Теплопроводность газобетона также зависит от его плотности.

Согласно HOFF, прочность ячеистого бетона может быть выражена как функция от пустотного пространства, взятого как сумма образовавшихся пустот и объема испарившейся воды.

Прочность бетона с плотностью 500 кг / м 3 находится в диапазоне от 3 до 4 МПа (от 30 до 40 кг / см 2 и теплопроводность около 0,1 Дж / м 2 S o Кл / м, а для бетона плотностью 1400 кг / шт соответствующие значения прочности и теплопроводности будут примерно от 12 до 14 МПа и 0.4 Дж / м 2 S ° C / м.

Для сравнения было установлено, что электропроводность обычного бетона примерно в 10 раз выше, чем у ячеистого бетона. Далее следует отметить, что теплопроводность увеличивается линейно с увеличением содержания влаги. При содержании влаги 20% электропроводность почти вдвое больше, чем при нулевом содержании влаги.

Модуль упругости газобетона обычно варьируется от 1,7 до 3,5 ГПа (от 0,25 до 0,5 x 10 6 PSi).Ползучесть, выраженная на основе отношения напряжение / прочность (ползучесть на единицу напряжения), оказывается такой же, как у обычного бетона. Однако на основе равного напряжения удельная ползучесть газобетона оказывается выше по сравнению с обычным бетоном.

Было установлено, что тепловые перемещения, усадка и влажность ячеистого бетона выше по сравнению с легким заполнителем той же прочности. Но их можно уменьшить автоклавированием i.е. высокая паровая полимеризация. Автоклавирование также улучшает прочность газобетона.

Проницаемость газобетона, вулканизированного паром при высоком давлении, уменьшается с увеличением его влажности, но даже когда бетон сухой, проницаемость при низком давлении незначительна. Соотношение между плотностью во влажном состоянии и прочностью на сжатие газобетона показано на рис. 22.3. На рис. 22.4 показано соотношение между плотностью в сухом состоянии и бетоном, отвержденным паром под высоким давлением в автоклаве. Текучий газобетон можно получить, применив суперпластификатор.

ПЕРИОДНЫЙ БЕТОН И ЕГО СВОЙСТВА

🕑 Время чтения: 1 минута

Ячеистый бетон получают путем введения воздуха или газа в суспензию, состоящую из портландцемента или извести и мелко измельченного кремнеземистого наполнителя, так что, когда смесь схватывается и затвердевает, образуется однородная ячеистая структура. Хотя это и называется газобетон, на самом деле это не бетон в правильном смысле этого слова. Как описано выше, это смесь воды, цемента и мелко измельченного песка.Газобетон также называют газобетоном, пенобетоном, ячеистым бетоном. В Индии в настоящее время есть несколько заводов по производству пенобетона.

Распространенным продуктом из пенобетона в Индии является Siporex.

Производство газобетона

Существует несколько способов производства газобетона.

(a) За счет образования газа в результате химической реакции в массе в жидком или пластическом состоянии.

(b) Путем смешивания предварительно сформированной стабильной пены с суспензией.

(c) За счет использования мелкодисперсного металлического порошка (обычно порошка алюминия) с суспензией и приведения его в реакцию с гидроксидом кальция, высвобождающимся в процессе гидратации, с выделением большого количества газообразного водорода. Этот газообразный водород, когда он содержится в суспензии, дает ячеистую структуру.

Порошок цинка также может быть добавлен вместо алюминиевого порошка. Вместо металлического порошка также использовались перекись водорода и обесцвечивающий порошок.Но в настоящее время эта практика широко не применяется.

Во втором методе предварительно сформированная устойчивая пена смешивается с цементной и измельченной песчаной суспензией, создавая ячеистую структуру, когда она затвердевает. В качестве незначительной модификации некоторые пенообразующие вещества также смешиваются и тщательно взбиваются или взбиваются (таким же образом, как и при приготовлении пены с яичным белком) для получения эффекта пены в бетоне. Таким же образом можно использовать и тщательно перемешать воздухововлекающий агент в больших количествах, чтобы ввести в бетон ячеистую структуру.Однако этот метод не может быть использован для уменьшения плотности бетона сверх определенной точки, и поэтому использование воздухововлечения нечасто практикуется для изготовления пенобетона.

Метод газификации — один из наиболее широко применяемых методов с использованием алюминиевого порошка или другого подобного материала. Этот метод применяется при крупномасштабном производстве газобетона на заводе, где весь процесс механизирован, а продукт подвергается отверждению паром под высоким давлением, т.е.е., другими словами, продукты автоклавированы. Такие изделия не будут иметь потери прочности или нестабильности размеров.

Практика использования предварительно отформованной пены с суспензией ограничивается мелкосерийным производством и работами на месте, где допускается небольшое изменение размерной стабильности. Но преимущество в том, что этим методом можно добиться любой желаемой плотности на месте.

Свойства газобетона

Использование пенобетона стало популярным не только из-за низкой плотности, но и из-за других свойств, в первую очередь теплоизоляционных.Газобетон изготавливается в диапазоне плотности от 300 кг / м3 до примерно 800 кг / м3. Классы с более низкой плотностью используются для целей изоляции, в то время как классы со средней плотностью используются для изготовления строительных блоков или несущих стен, а классы с более высокой плотностью используются в производстве сборных конструктивных элементов в сочетании со стальной арматурой.

Каковы особенности блоков и панелей AAC?

AAC или автоклавные газобетонные блоки считаются отличным строительным материалом из-за его долговечности.Он известен своими отличными тепло-, звуко- и огнестойкими характеристиками. Этот вид блоков легкий и обеспечивает максимальную гибкость, долговечность и обрабатываемость. Основные ингредиенты, включенные в блоки AAC , включают воду, цемент, кальцинированный гипс, кварцевый песок и негашеную известь. Этот вид строительного материала подходит для изготовления блоков из каменной кладки или бетонных блоков. Типы продуктов AAC включают блоки, кровельные и напольные панели, перемычки, облицовочные панели и стеновые панели.

Что такое автоклавные газобетонные блоки?

Автоклавный газобетон или AAC — это несущий, обладающий высокими изоляционными свойствами, но легкий строительный компонент, производимый в широком диапазоне прочности и размеров. По сравнению с красным кирпичом блоки AAC намного легче.

Разработанный в 1924 году материал AAC появился в Швеции и в настоящее время является одним из самых популярных строительных материалов во всем мире. Как уже упоминалось, автоклавный газобетон создается из обычных материалов, таких как цемент, вода и песок, и после процесса смешивания и формования он затем автоклавируется при нормальном нагреве и давлении, что обеспечивает его уникальные свойства.Благодаря отличным звукопоглощающим и теплоизоляционным свойствам материал AAC пользуется спросом во всем.

Об особенностях

Помимо вышеупомянутых характеристик (звукопоглощение и теплоизоляция), автоклавный газобетон является устойчивым как к вредителям, так и к пожару. Самое главное, что он экологически и экономически превосходит традиционные конструкционные строительные материалы, такие как дерево, камень, кирпич и бетон.

  • Блоки AAC считаются отличным и уникальным строительным материалом из-за его звуко-, огнестойкости и термостойкости.
  • Поскольку блоки AAC сокращают накладные расходы на строительной площадке и в то же время повышают качество здания, они всегда предпочтительнее красного кирпича.
  • Благодаря своим превосходным свойствам и характеристикам, AAC широко используется в различных строительных конструкциях, включая жилые дома, промышленные и коммерческие здания, больницы, гостиницы, школы и другие объекты.
  • Автоклавный газобетон — это материал на основе цемента, устойчивый к гниению, воде, плесени, плесени и насекомым.Каждый из блоков имеет точную форму и соответствует жестким допускам.
  • Его легкий вес снижает уровень шума, тем самым сохраняя конфиденциальность.

Теперь, если вы ищете качественные газобетонные блоки в автоклаве, обязательно свяжитесь с одним из лучших производителей блоков AAC . Если вы находитесь в Калькутте и ищете одного из ведущих производителей здесь, то UAL Industries Ltd будет лучшим выбором.

Что такое газобетон? — HESS AAC SYSTEMS

Что такое газобетон?

Газобетон был разработан в Швеции в 1924 году.В Европе газобетон с тех пор стал одним из наиболее широко используемых строительных материалов, а также он все чаще используется во многих других странах. Газобетон, как легкий, прочный, хорошо изолирующий и прочный строительный материал, выпускается во многих классах плотности и прочности.

Газобетон предлагает широкий спектр возможностей для повышения качества строительства при одновременном снижении затрат на строительной площадке. Газобетон производят из смеси кварцевого песка и / или летучей золы (PFA), извести, цемента, гипса / ангидрита, воды и алюминия и отверждают паровым отверждением в автоклавах.Благодаря своим выдающимся свойствам ячеистый бетон используется во многих строительных проектах, таких как жилые, коммерческие и промышленные здания, школы, больницы, гостиницы и другие сооружения.

Aircrete — это воздухововлекающий бетон, который на 85% по объему состоит из воздуха. Твердое вещество представляет собой кристаллический связующий агент, называемый тоберморит. В своем химическом составе тоберморит содержит диоксид кремния, оксид кальция и воду. Помимо тоберморита вяжущей фазы, газобетон содержит зерна кварца и небольшое количество других минералов.Диоксид кремния получают из кварцевого песка, летучей золы (PFA) или треснувшего кварцита. Диоксид кремния также может быть получен как побочный продукт других процессов, например формовочный песок. Оксид кальция получают из негашеной извести, гашеной извести и цемента. Небольшие количества гипса / ангидрита добавляются в качестве катализатора и для оптимизации свойств газобетона. Алюминиевый порошок / паста используется в качестве вспенивающего агента. В особых случаях могут быть добавлены дополнительные (химические) компоненты для улучшения свойств газобетона во время производства и в конечном продукте.Специальные активные ингредиенты позволяют использовать определенные отходы в качестве нового ценного сырья для производства высококачественного газобетона, что поддерживает экологичность и технологический цикл.


Преимущества газобетона

  • широкий диапазон размеров: изделия из пенобетона могут изготавливаться самых разных размеров, от стандартных блоков до больших железобетонных плит
  • отличная теплоизоляция: газобетон имеет чрезвычайно низкую теплопроводность, в результате высокая степень теплового КПД.Это означает значительную экономию затрат на отопление и охлаждение.
  • Очень легкий: пористый бетон весит примерно на 50% меньше, чем сопоставимые строительные материалы.
  • Высокая прочность на сжатие: Газобетон является твердым продуктом и, следовательно, чрезвычайно упругим. Вся поверхность включена в расчет структурного анализа
  • Высокая точность размеров: благодаря точности размеров, газобетон чрезвычайно прост в обработке, так как не требуется густой раствор
  • высокая шумоизоляция: высокая шумоизоляция благодаря пористости конструкция из газобетона
  • высокая огнестойкость: пенобетон имеет чрезвычайно высокую огнестойкость не менее 4 часов
  • термитостойкость: термиты или другие насекомые не могут повредить газобетон
  • простота обращения: благодаря отличным размерам Соотношение веса и веса, строительство из ячеистого бетона идет очень быстро

Aercon AAC Автоклавный газобетон

ASTM C 1386

ASTM C 1386 «Стандартная спецификация для стеновых конструкций из сборного автоклавного ячеистого бетона (PAAC)» В этой спецификации рассматриваются различные аспекты элементов из автоклавного ячеистого бетона, включая физические характеристики, такие как прочность на сжатие, допуск по размерам, усадка при высыхании и объемная плотность, а также качество сырья, используемого для получения продукта.Кроме того, эта спецификация определяет классы прочности с соответствующими числовыми значениями прочности на сжатие и плотности. Также описаны подробные процедуры испытаний для определения прочности на сжатие, объемной плотности в сухом состоянии, содержания влаги и усадки при высыхании.

ASTM C 1452

ASTM C 1452 «Стандартные технические условия на армированные элементы из газобетона в автоклаве» Армированные элементы состоят из стальных арматурных стержней, сваренных в маты и герметизированных газобетоном в автоклаве.Конструкция этих элементов для предполагаемых условий нагружения требует гарантии физических свойств каждого компонента, составляющего армированный элемент. Характеристики армированного элемента зависят от прочности AAC, прочности арматурных стержней и прочности сварных швов, которые скрепляют стержни вместе. Защита от разрушения арматурных стержней является важной функцией, обеспечивающей долгосрочную структурную целостность.

Этот стандарт ссылается на соответствующие разделы ASTM C 1386, а также содержит дополнительные требования к армированию.Физические характеристики прочности на сжатие AAC, объемной плотности и усадки при высыхании определяются на основе процедур испытаний, описанных в ASTM C 1386. В этом стандарте определены требования к исходным материалам, прочности стали, прочности сварных швов и защите от коррозии. Также включены процедуры испытаний для определения этих характеристик, а также производительности при изгибной нагрузке.

ASTM E 72

ASTM E 72 «Стандартные методы испытаний при проведении испытаний на прочность панелей для строительства зданий». Чтобы обеспечить надлежащую конструктивную конструкцию здания, выдерживающую боковые ветровые нагрузки, прочность на изгиб основных структурных элементов, используемых в конструкции, должна быть известный.

Этот метод испытаний представляет собой стандартизированную процедуру определения прочности на изгиб при изгибе путем приложения равномерного давления ко всей поверхности испытательной стены, имитируя давление ветра на фактическую конструкцию. Чтобы определить предел прочности при изгибе перпендикулярно стыкам станины, между испытуемым образцом и реакционной рамой помещают большую воздушную подушку. Давление воздуха внутри мешка увеличивается до тех пор, пока не произойдет разрушение образца.Характер разрушения каждого образца отмечается, а предел прочности при изгибе является стандартным. рассчитываются отклонение и коэффициент вариации.

ASTM E 90

ASTM E 90 «Лабораторные измерения потерь передачи воздушного шума от перегородок здания» Для стен, полов и других строительных конструкций важна возможность уменьшения шума с одной стороны сборки на другую с точки зрения комфорта пассажиров. любого здания, будь то одноквартирный дом или многоэтажное офисное здание.

Этот метод испытаний представляет собой стандартизированную процедуру измерения потерь при передаче звука в децибелах (дБ) в диапазоне частот от 125 до 4000 герц. Чтобы определить его акустическую эффективность, строится сборка здания между помещением источника звука и приемным помещением. Звуковое поле создается и измеряется в комнате источника, а также измеряется звуковое поле в комнате приема. Уровни звукового давления в двух помещениях, звукопоглощение в приемном помещении и площадь образца используются для расчета потерь при передаче в ряде диапазонов частот.На основе этой информации можно рассчитать значение класса передачи звука.

ASTM E 447

ASTM E 447 «Прочность каменных призм на сжатие». Чтобы обеспечить надлежащую конструкцию здания, выдерживающую гравитационные нагрузки, необходимо точно знать прочность на сжатие основных конструктивных элементов, используемых в его конструкции.

Этот метод испытаний представляет собой стандартизированную процедуру определения прочности кладки на сжатие путем приложения сжимающей нагрузки к призме, построенной из блоков кладки.Сжимающая нагрузка прикладывается к призме с помощью сферически установленного упрочненного металлического опорного блока над образцом и упрочненного металлического опорного блока под образцом. Это обеспечивает равномерное приложение концентрической нагрузки по всей площади призмы. Результаты испытаний обеспечивают свойство инженерного проектирования, известное как минимальная прочность кладки на сжатие, которая для продуктов AERCON равна f’AAC. Затем минимальная прочность кладки на сжатие используется при определении допустимого осевого напряжения, допустимого напряжения изгиба при сжатии и способности выдерживать момент, ограничиваемых сжатием в сборках AERCON.

ASTM E 514

ASTM E 514 «Стандартный метод испытаний на проникновение и утечку воды через кирпичную кладку». Здания должны хорошо работать в суровых погодных условиях, включая частые сильные грозы, сопровождаемые сильными ветрами. Стеновые системы, используемые в типовой конструкции здания, должны быть способны предотвращать попадание дождя внутрь ограждающей конструкции здания. Этот метод испытаний представляет собой стандартизированную процедуру для определения количества воды, которое полностью проникает в стенную конструкцию.Количество проникающей воды достигается за счет воздействия воды на всю конструкцию стены со скоростью 3,4 галлона / фут2 в час при давлении воздуха 10 фунтов / фут2 в течение не менее 4 часов. Это эквивалентно скорости ветра 62 мили в час и 51/2 дюйма дождя в час. Любая вода, которая проникает в скопление, собирается, измеряется и регистрируется.

ASTM E 518

ASTM E 518 «Стандартные методы испытаний прочности связи при изгибе кирпичной кладки» Для того, чтобы достичь надлежащего конструктивного расчета приложенных нагрузок, необходимо знать прочность связи при изгибе между основными конструктивными элементами, используемыми в конструкции.В этом стандарте описаны два метода испытаний, которые обеспечивают стандартизованные процедуры для определения прочности сцепления на изгиб неукрепленных блоков каменной кладки. В обоих методах испытаний используется призма, состоящая из нескольких блоков каменной кладки. Призма испытывается как балка с простой опорой, равномерно нагружаемая воздушной подушкой в ​​одном методе и третья точка — в другом. Нагрузку увеличивают до тех пор, пока не произойдет разрушение образца. Затем разрушающая нагрузка используется для расчета модуля разрыва общей площади.

ASTM E 519

ASTM E 519 «Стандартные методы испытаний на диагональное растяжение (сдвиг) в сборках каменной кладки» Для достижения надлежащего конструктивного проектирования здания, способного выдерживать боковые нагрузки с использованием стенок сдвига, прочности и жесткости основных структурных элементов, используемых при сдвиге. конструкция стены должна быть точно известна. Этот метод испытаний представляет собой стандартизированную процедуру определения прочности на диагональное растяжение (сдвиг) блоков кладки.Размер образца позволяет провести разумную оценку прочности на сдвиг, которая будет репрезентативной для полноразмерной кирпичной стены, используемой в реальном строительстве. Каждый образец состоит из блоков с непрерывным узором связи. Прямоугольный образец поворачивается на 45 градусов, когда он помещается в испытательную машину, так что его диагональная ось ориентирована вертикально. Затем образец подвергается сжатию вдоль вертикальной диагональной оси. Это приводит к отказу от диагонального растяжения, когда образец раскалывается в направлении, параллельном приложенной нагрузке.Отмечают характер разрушения каждого образца и рассчитывают среднюю прочность на сдвиг, стандартное отклонение и коэффициент вариации.

ANSI / UL 263

ANSI / UL 263 (аналог ASTM E 119) «Стандартные методы испытаний на огнестойкость строительных конструкций и материалов». Характеристики крыш, полов и стен при воздействии огня важны для безопасности жителей здания. их вещи и содержимое здания.

Этот метод испытаний представляет собой стандартизированную процедуру определения огнестойкости огражденных крыш и полов; класс огнестойкости для безудержных крыш и полов; огнестойкость несущих стен; и огнестойкость ненесущих стен при стандартном воздействии огня. Там, где это применимо, наложенная нагрузка используется для моделирования максимальной расчетной нагрузки для сборки. Этот метод испытаний обеспечивает относительную меру способности сборки предотвращать распространение огня при сохранении ее структурной целостности.

Для определения его огнестойкости сборку конструируют и подвергают стандартному огню в течение заранее определенного периода времени. После того, как сборка подвергается стандартному воздействию огня, она подвергается воздействию стандартной струи воды из пожарного шланга, предназначенной для имитации воздействия усилий при тушении пожара. Сборка считается прошедшей испытание на воздействие огня, если температура на неэкспонированной поверхности остается ниже определенного значения, таким образом измеряется ее теплопередача.Сборка считается прошедшей испытание с использованием струи из шланга, если она не позволяет воде просачиваться на неэкспонированную поверхность. Сборка должна успешно пройти обе части испытания, чтобы достичь своей огнестойкости. Класс огнестойкости присваивается в зависимости от количества времени, в течение которого сборка подвергалась действию стандарта. пожар, обычно указываемый как 1, 2, 3 или 4 часа.

ANSI / UL 2079

ANSI / UL 2079 «Испытания на огнестойкость строительных соединительных систем» При проектировании здания существуют условия, при которых физическое разделение между соседними огнестойкими элементами желательно или необходимо, например, внутренняя стена, примыкающая перпендикулярно к внешней стороне. стена.Зазор между этими стенами обеспечивает допуск на перемещение и конструкцию. Если это стены с огнестойкостью, любой зазор или стык, существующий между этими элементами, также должен быть огнестойким. Этот метод испытаний представляет собой стандартизированную процедуру определения огнестойкости соединительных систем, используемых для герметизации любого непрерывного проема между элементами с огнестойкостью. Для определения его огнестойкости строится сборка, содержащая соединительную систему. После того, как сборка построена, она циклически воспроизводится для имитации движения, которое может произойти в завершенной установке.Затем его подвергают стандартному огню в течение заданного времени. После того, как сборка подвергается стандартному воздействию огня, она подвергается воздействию стандартной струи воды из пожарного рукава, предназначенной для имитации воздействия усилий при тушении пожара. Сборка считается прошедшей испытание на воздействие огня, если температура на неэкспонированной поверхности остается ниже определенного значения, таким образом измеряется ее теплопередача. Сборка считается прошедшей испытание с использованием струи из шланга, если она не позволяет воде просачиваться на неэкспонированную поверхность.Сборка должна успешно пройти обе части испытания, чтобы достичь своей огнестойкости. Класс огнестойкости присваивается в зависимости от количества времени, в течение которого сборка подвергалась действию стандарта. пожар, обычно указываемый как 1, 2, 3 или 4 часа.

Экспериментальное исследование характеристик пор и расчет фрактальной размерности поровой структуры ячеистого бетонного блока

Важно контролировать и прогнозировать макроскопические свойства с помощью параметров структуры пор материалов на основе цемента.Микроскопическая пористая структура бетона имеет множество характеристик, таких как размеры и беспорядочное распределение. Для описания пористой структуры бетона необходимо использовать теорию фракталов. Чтобы установить взаимосвязь между характеристиками пористой структуры ячеистого бетона и пористостью, коэффициентом формы, площадью поверхности пор, средним диаметром пор и средним диаметром, фрактальная размерность пористой структуры использовалась для оценки характеристик пористой структуры ячеистого бетона. .Рентгеновские компьютерные томографические (КТ) изображения пористой структуры блока пенобетона были получены с помощью рентгеновского трехмерного микроскопа серии XTh420. Характеристики пористости газобетонного блока изучали согласно Image-Pro Plus (IPP). На основе исследования методов измерения фрактальной размерности предложенная программа MATLAB автоматически определила фрактальную размерность изображений пористой структуры газобетонного блока. Результаты исследования показали, что маленькие поры (20 мкм м ~ 60 мкм м) газобетонного блока составляют большой процент по сравнению с большими порами (60 мкм м ~ 400 мкм м или более) Судя по распределению диаметров пор, структура пор газобетонного блока имеет очевидные фрактальные особенности, а фрактальная размерность изображений поровой структуры газобетонного блока, по расчетам, находится в диапазоне 1.775–1.805. Фрактальная размерность пор сильно коррелирует с фрактальными характеристиками пор газобетонных блоков. Фрактальная размерность поровой структуры линейно увеличивается с пористостью, коэффициентом формы и площадью поверхности пор. Фрактальная размерность поровой структуры уменьшается с увеличением среднего размера пор и среднего диаметра. Таким образом, фрактальная размерность поровой структуры, рассчитанная программой MATLAB на основе теории фракталов, может быть принята в качестве интегративного оценочного индекса для оценки характеристики поровой структуры газобетонного блока.

1. Введение

Благодаря постоянному продвижению политики энергосбережения и сокращения выбросов, газобетонные блоки широко используются в строительстве благодаря их низкой плотности, теплоизоляционным свойствам, звукоизоляционным свойствам, антисейсмическим свойствам и простоте обработки. . Признано, что эти макроскопические свойства газобетонных блоков зависят от его пористой структуры [1–3]. Газобетон — это разновидность материалов на цементной основе. Внутренняя пористая структура газобетонных блоков имеет сложную форму, большое количество и сложную связь пор.Кроме того, поры и микротрещины в цементном бетоне могут вызвать разрушение конструкций. Следовательно, необходим действующий метод, позволяющий эффективно охарактеризовать сложность и неравномерность пористой структуры газобетонных блоков. В последние годы были найдены хорошие методы улучшения характеристик цементных бетонов. Многие исследователи уделяют этому исследованию много энергии и добились хороших результатов. Одним из важных методов является то, что добавление кремнистой летучей золы в цементные бетоны может изменять микроскопическую структуру пор и макроскопические свойства [4, 5].С целью изучения пористой структуры газобетонного блока в исследование была введена теория фракталов. Многие исследования [6–11] показали, что пористая структура бетона имеет явную фрактальность. Анализ микроскопической структуры пор имеет большое значение для изучения ее макроскопических свойств [12] и создания трехмерной численной модели конкретной структуры [13].

В настоящее время параметры поровой структуры трудно охарактеризовать количественно с помощью обычных методов из-за сложности и неоднородности поровой структуры.Исследования [14–17] показали, что изображения структуры пор были обработаны с помощью Image-Pro Plus (IPP), и с его помощью можно было легко получить параметры структуры пор по сравнению с порозиметрией с проникновением ртути (MIP). Параметры пористой структуры газобетона в основном включают пористость, коэффициент формы, площадь поверхности пор, средний размер пор и средний диаметр. Многие исследования показали, что пористость и площадь поверхности пор важны для прочности бетона на сжатие, а средний размер пор и средний диаметр являются факторами распределения диаметра пор.Фактор формы пористой структуры влияет на формирование внутренних каналов пор в бетоне. Таким образом, необходимо изучить параметры пористой структуры, чтобы скорректировать макроскопические свойства газобетона.

С дальнейшим развитием исследований пористой структуры все больше и больше теорий и методов вводятся в исследование пористой структуры пористых материалов. В 1960-х годах французский математик Мандельброт [18] предложил фрактальный метод для решения проблемы длины британской береговой линии и предоставил эффективные средства для изучения взаимосвязи между микроструктурой и макроскопическими свойствами пористых материалов.Многочисленные исследования [8, 19] показали, что внутренняя пористая структура бетона имеет сильные фрактальные характеристики. Хаммад и Исса [20] и Гуо и др. [21] изучили трещины на поверхности излома бетона и обнаружили, что трещины обладают значительными фрактальными характеристиками. Чем больше фрактальная размерность, тем выше трещиностойкость поверхности излома. Двумя уникальными особенностями изображений фрактальных объектов являются самоподобие и масштабная инвариантность [22, 23]. Одна из наиболее важных особенностей — самоподобие, что означает, что каждая часть фрактальных объектов геометрически подобна целому.Расчет фрактальной размерности — один из основных факторов, влияющих на практическое применение теории фракталов. Были предложены различные типы методов вычисления фрактальной размерности, такие как метод коврового покрытия [24], метод измерения подсчета ящиков [25], метод дифференциальной размерности с подсчетом ящиков [26], метод размерности Хаусдорфа [27], метод размерности емкости, Метод размерности броуновского движения [28] и метод спектральных чисел. Этими методами рассчитываются фрактальные размерности поверхности поры, объема поры и оси поры.Среди этих методов расчета фрактальной размерности метод размерности ящика является наиболее распространенным методом анализа фрактальной размерности бетона. В конкретном процессе подачи заявки необходимо проанализировать физическое количество объекта исследования. Рассчитанная фрактальная размерность имеет практическое и исследовательское значение. Peng et al. В [29–31] изучались методы расчета фрактальной размерности двумерных и трехмерных цифровых изображений и расчета фрактальной размерности пор горных пород.Ян и Шао [32] реализовали вычисление фрактальной размерности двумерных цифровых изображений с помощью программы MATLAB. Jin et al. В [33] получены зависимости между фрактальной размерностью поровой поверхности и характеристическими параметрами пор цементного раствора на основе метода МИП и фрактальной модели. Параметры пористой структуры бетона отражают сложность пористой структуры.

Пористая структура газобетонного блока не будет повреждена и полностью сохранится рентгеновской компьютерной томографией (КТ).КТ-изображения срезов блоков из газобетона содержат много информации о структуре пор по сравнению с данными, измеренными с помощью метода MIP. Таким образом, MATLAB используется для обработки изображений срезов пористой структуры газобетонных блоков в данном исследовании. Программа Fraclab была введена для расчета фрактальной размерности изображений поровой структуры. Вычисленное программой значение сравнивается с теоретическим значением по фрактальной размерности фрактальных изображений. Связь между фрактальной размерностью поровой структуры и характеристическими параметрами пор изучается на основе расчетов программы в данном исследовании, которая используется для установления взаимосвязей между характеристическими параметрами пор и макроскопическими свойствами газобетонных блоков.

2. Экспериментальная
2.1. Материалы

Газобетонные блоки были предоставлены Zhejiang Hangshi Building Materials Company. В таблице 1 приведены рабочие параметры газобетонного блока.


Материалы Объемная плотность в сухом состоянии (кг · м −3 ) Средняя прочность на сжатие (МПа) Прочность на последующее замерзание (МПа) · Теплопроводность (м · К) −1

Блок из пенобетона 619 5.2 3,4 0,153

Образцы блоков из газобетона были разрезаны на кубики размером 50 мм × 50 мм × 50 мм с помощью режущего аппарата для рентгеновской компьютерной томографии (КТ). без видимых следов пилы на поверхности образца. В процессе резки необходимо контролировать стабильность полотна режущей пилы, чтобы обеспечить плоскостность режущей плоскости и избежать повреждения пористой структуры.

2.2. КТ-изображения образца

КТ-изображения образца газобетонного блока были протестированы с использованием рентгеновского трехмерного микроскопа серии XTh420 в лаборатории компьютерной томографии Университета Чжэцзян. На рис. 1 показан рентгеновский трехмерный микроскоп серии XTh420 и изображение среза пористой структуры образца. В таблице 2 приведены рабочие параметры оборудования. Расстояние среза газобетонного блока в исследовании составляет 0,04 мм.


(Cu)

Параметры устройства Максимальное напряжение (кВ) Максимальный ток ( мк A) Максимальная мощность (Вт) Фильтр Разрешение ( мкм м) Проникновение в образец (см)

Размер параметра 320 1000 320 1∼4 1228950 9029

Испытательные этапы следующие: (1) образец помещается на держатель образца рентгеновского трехмерного микроскопа серии XTh420; (2) испытательный прибор подает напряжение и включает рентгеновское излучение; (3) запускается программное обеспечение для испытаний, вводится основная информация об образце, и образец поворачивается на 360 градусов; (4) тестовая программа рассчитывает цифровую матрицу изображений; (5) Выводятся КТ-изображения образца в оттенках серого.Наконец, было получено 1205 КТ-изображений газобетонных блоков. В статье анализируются параметры характеристик пор по данным Image-Pro Plus (IPP), а также взаимосвязь фрактальной размерности пор и характеристик структуры пор на основе компьютерных томографов образца блока из пенобетона.

3. Методы
3.1. Характеристики структуры пор Аналитический метод

Как видно из рисунка 1 (b), форма пор блока газобетона является сложной, а количество пор многочисленно.Обычными статистическими методами трудно охарактеризовать структуру пор. Для решения этой проблемы с помощью программы IPP было проведено исследование КТ-изображений пористых структур газобетонных блоков. Он может получить следующие характерные параметры структуры пор: характеризующую пористость, коэффициент формы поры, площадь поверхности пор и средний диаметр. Конкретные шаги и методы обработки изображений здесь не описываются. Вы можете обратиться к соответствующей литературе [34–36] для дальнейшего исследования.На рисунке 2 показан процесс обработки изображений IPP.


3.2. Фрактальная модель на основе метода размерности ящика

Метод измерения размерности ящика [37, 38] является одним из классических методов расчета фрактальной размерности изображений. Сначала изображение преобразуется в двоичную форму, и преобразованное в двоичное изображение изображение помещается на плоскость. Квадратное изображение со стороной r используется для покрытия всего изображения. В случае постоянного изменения размера квадратной сетки r подсчитывается количество N ( r ) квадратных сеток, покрывающих интересующее изображение, соответствующих каждому размеру r .Если соотношение между размером ячейки r и количеством ящиков N ( r ) удовлетворяет следующей формуле: где c — константа, а D — количество ящиков. В прикладном процессе можно измерить и рассчитать ряд данных, соответствующих [ r , N ( r )]. Для подбора формулы используется метод наименьших квадратов:

Можно получить размер изображения при подсчете прямоугольников D = b .

3.2.1. Расчет фрактальной размерности на основе MATLAB

Фрактальная размерность изображений поровой структуры блока из пенобетона была рассчитана с использованием программы MATLAB, основанной на методе измерения прямоугольника. Исходное изображение должно быть предварительно обработано MATLAB, чтобы улучшить качество изображения. Предварительно обработанное изображение преобразуется в двоичную цифровую матрицу. Мы можем использовать цифровую матрицу преобразованного двоичного изображения, когда исследуемая интересующая часть в двоичном изображении является белой.Если изображенная исследуемая часть бинаризованного изображения после обработки изображения является черной, нам нужна преобразованная в двоичную форму цифровая матрица после того, как изображение инвертируется. На рисунке 3 показаны результаты обработки бинаризации изображения кривой Коха с помощью MATLAB.


Программа Fraclab вызывается в командной строке MATLAB, и программа автоматически вычисляет инвертированное двоичное изображение. Программа автоматически определяет максимальный и минимальный размер коробки и количество коробок.Размер прямоугольника — это значение фрактальной размерности D = 1,2356 изображения кривой Коха, вычисленное программой.

3.2.2. Программа проверки расчетов

В таблице 3 показано сравнение результатов расчета. Из таблицы 3 видно, что рассчитанное относительное отклонение для фрактального изображения составляет максимум 3,05%, а минимальное отклонение составляет 0,49%. Относительное отклонение программы для фрактальной размерности треугольника Шерпинского и квадрата Шерпинского равно 1.22% и 0,998%. Относительное отклонение фрактальной размерности, рассчитанной для кривой Коха, составляет 2,01%. Причина отклонения может заключаться в том, что детальное изображение угла кривой Коха недостаточно четкое. Численное отклонение поля изображения, вычисленное MATLAB, составляет менее 4%. Таким образом, его можно использовать для расчета и анализа фактической фрактальной размерности изображения.

,2365

Регулируемое фрактальное изображение Размер изображения Теоретический расчет фрактальной размерности Программа MATLAB расчет фрактальной размерности Относительная погрешность (%)
610835 2 1.939 3,05
328663 1 1,0211 2,11
214 219 1,2618 1,2365
0,491
219 274 1,585 1,5656 1,22
244 244 1,8928 1,9117 0.998

4. Экспериментальные результаты и обсуждение
4.1. Характеристики структуры пор

Чтобы полностью изучить характеристики структуры пор образца блока из пенобетона, для анализа были взяты пять изображений срезов структуры пор в верхней, средней и нижней частях образца. Данные по параметрам измерения структуры пор, рассчитанные на основе IPP, были статистически проанализированы следующим образом.Таблицы 4–6 соответственно соответствуют параметрам, характеризующим поровую структуру верхней, средней и нижней частей образца газобетонного блока. Взяв в качестве примера таблицу 4, можно увидеть, что коэффициент формы пор в газобетонном блоке составляет 2,91, а диаметр Ферета равен 67,23. Общий процент площади пор 62%. По стереологическому принципу за характеристическую пористость газобетонного блока можно принять 62%. По статистике характерных параметров пористой структуры в верхней, средней и нижней частях газобетонного блока результаты показывают, что пористость газобетонного блока составляет 64.33% по данным IPP. Видно, что неправильная форма структуры пор внутри газобетонного блока занимает большой процент, что в основном обусловлено режимом газообразования в процессе производства газобетонного блока. Эти параметры могут обеспечивать эталонные индексы для контроля структуры пор, соотношения сырья и контроля качества пористых материалов.

3 # верхний96

Образец Фактор формы На площадь (об./ всего) Feret (среднее)

1 # верх 3,33 0,60 45,97
2 # верх 2,71 2,71 2,71 1,74 0,69 35,81
4 # верх 1,89 0,63 137,65
5 # верх 4,87
Среднее значение 2,91 0,62 67,23


9029 Площадь всего) Feret (среднее)

1 # средний 4,95 0,57 75,69
2 # средний 3.23 0,64 55,99
3 # средний 3,35 0,64 65,37
4 # средний 3,47 0,64 67294 0,70 39,15
Среднее значение 3,38 0,64 60,74

9029 3 # нижний
9029 Площадь 9029 (объект/ всего) Feret (среднее)

1 # нижний 2,01 0,70 43,41
2 # нижний 2,04 2,04
4,51 0,64 93,53
4 # нижний 4,49 0,64 93,27
5 # нижний 2,5368 55,91
Среднее значение 3,12 0,67 65,45

4.2. Распределение диаметра пор

Распределение диаметра пор может описывать форму распределения размеров внутренней пористой структуры газобетонного блока. В ходе исследования для анализа были взяты пять изображений срезов пористой структуры в верхней, средней и нижней частях образца. Данные о распределении диаметров пор определяли по 15 срезам изображений структуры поры КТ.Все изображения срезов структуры пор взяты из одного сканируемого образца. Выборка выборки соответствует исследованиям литературы [34]. Гистограмма распределения среднего диаметра построена для представления диаграммы распределения диаметра пор блока из газобетона на основе пятнадцати изображений срезов структуры пор. Рисунки 4–6 показывают распределение пор по размерам в верхней, средней и нижней частях газобетонного блока и имеют аналогичные тенденции. Поры (20 мкм мкм ~ 60 мкм мкм) называются макроскопическими капиллярными порами.Из диаграммы распределения пор по размеру трех частей видно, что на мелкие поры (20 мкм мкм ~ 60 мкм мкм) газобетонного блока приходится большая процентная доля по сравнению с большими порами (60 мкм). м∼400 мкм м и более). Макроскопические капиллярные поры обычны во внутренней части газобетонного блока.




4.3. Фрактальная размерность изображений поровой структуры

Значения фрактальной размерности изображений поровой структуры 1205 были рассчитаны и подсчитаны с помощью программы MATLAB.Фрактальная размерность изображений пористой структуры блока из газобетона составляет от 1,775 до 1,805, а средняя фрактальная размерность составляет 1,789.

Рисунок 7 показывает, что фрактальная размерность изображений поровой структуры уменьшается с глубиной среза. Фрактальная размерность исходного изображения пористой структуры больше, чем на следующих изображениях. Это связано с неровной поверхностью резания из-за пилы из твердого сплава. Фрактальная размерность изображений срезов поровой структуры распределена по двум полосам.Необходимо найти и изучить взаимосвязь между параметрами структуры поры и фрактальной размерностью поры. Мы ожидаем использовать фрактальную размерность пор для эффективной оценки сложности и неравномерности структуры пор газобетонных блоков.


Всего для обработки было выбрано 25 КТ-изображений (по одному на каждые 50 листов) и получены соответствующие параметры структуры пор. Фрактальная размерность изображений структуры пор, рассчитанная с помощью программы MATLAB, и характеристические параметры структуры пор, рассчитанные с помощью IPP, показаны в таблице 7.Соотношения между фрактальной размерностью и характеристическими параметрами показаны на рисунках 8–12.

7933 TOP10517914

Серийный номер изображения среза Фрактальная размерность пор Площадь поверхности пор (мм 2 ) Средний диаметр (мм)% Коэффициент формы Средний размер пор (мм)

TOP001 1.8013 576,43 0,0979 2,7408 72,00 0,0720
TOP051 1,7909 630,31 0,1190 2,2716 69,63 0,1039
TOP101 1,7896 387,72 0,1189 2,0649 66,32 0,1067
TOP151 1,7882 305,77 0,1315 2.0131 64,41 0,1307
TOP201 1,7875 325,77 0,1373 1,8923 62,63 0,1330
TOP251 1,7979 565,09 0,1075 2,6218 72.66 0,0860
TOP301 1,7983 591,38 0,1122 2,5251 71,41 0,0931
1 9029 17847 127,96 0,1687 1,7471 59,08 0,1813
TOP401 1,7828 115,99 0,1684
0,1746 1,6972 57,80 0,1897
TOP501 1,7836 101,35 0,1845 1.6799 57,39 0.2017
TOP551 1,7955 673,84 0,1369 2,2237 67,32 0,1306 0,2139
TOP651 1,7968 673,20 0,1398 2,1855 67,19 0,1330
TOP701 1 689,55 0,1406 2,1390 66,25 0,1345
TOP751 1,7822 77,28 0,1958 0,2004 1,6857 56,97 0,2238
TOP851 1,7929 668,68 0,1417 2.2726 67,60 0,1373
TOP901 1,7798 154,53 0,1894 1,7849 58,44 0,2095
TOP951 1,7800 158,64 0,1926 1,7823 59.22 0,2156
TOP1001 1,7925 591,57 0,1229 2,6484 71,50 0,1078
1 235,43 0,1769 1,9227 61,80 0,1912
TOP1101 1,7905 314,21 0,1643 2,0033 63,68 0,1744
TOP1151 1,7940 665,94 0,1561 2,2238 67,46 0,1561
TOP1201 1,7938 257,03 0.1834 2,1431 65,25 0,1995






4.3.1 4.3.1. Взаимосвязь между фрактальной размерностью пор и пористостью

Пористость газобетонного блока является одним из фатальных макроскопических показателей эффективности. Макроскопические характеристики газобетонного блока зависят от пористости, например, проницаемости, теплоизоляции и звукоизоляции.Таким образом, изучение пористости газобетонных блоков способствует дальнейшему развитию исследований его макроскопических характеристик. Рисунок 8 показывает, что фрактальная размерность поры линейно увеличивается с пористостью. Как видно из рисунка 8, существует хорошая корреляция между пористостью и фрактальной размерностью пор, а коэффициент регрессии R 2 0,8359 указывает на сильную корреляцию между фрактальной размерностью пор и пористостью. Пористость увеличивается с увеличением фрактальной размерности поровой структуры.Фрактальная размерность представляет собой сложность изображений структуры пор [33]. Это указывает на то, что пространственная занятость поровой структуры увеличивается с увеличением пористости. И множество структур пор, которые перекрываются и пересекаются, приводят к более сложным формам структуры пор. Результаты согласуются с взглядами Yu et al. [39] и Xie et al. [40]. Из наших результатов можно отметить, что метод расчета фрактальной размерности полезен. Результаты предыдущих работ показали, что пористость является основным фактором, влияющим на проницаемость и теплоизоляционные свойства газобетонных блоков.Чтобы соответствовать требованиям к теплоизоляционным свойствам газобетонных блоков, многие компании исследуют новый состав смеси из газобетонных блоков, который держится в секрете от внешнего мира. Обычная пористость газобетонных блоков, которую предлагали многие компании, составляет 65% ∼85%. Из приведенного выше анализа фрактальная размерность пор сильно коррелирует с пористостью. Следовательно, пористость газобетонного блока можно косвенно оценить по фрактальной размерности изображений структуры пор.Для эффективного прогнозирования проницаемости газобетонного блока следует использовать фрактальную размерность пор.

4.3.2. Взаимосвязь между размером фрактала поры и фактором формы

Фактор формы также является одним из важных параметров характеристики структуры поры. Это важный показатель, позволяющий определить, близка ли форма поровой структуры к кругу. Форма поровой структуры играет важную роль в формировании внутренних каналов пор пористых материалов.Он предусматривает, что коэффициент формы сферы равен 1, и чем больше значение, соответствующее коэффициенту формы, тем выше степень отклонения от сферы. На рисунке 9 показано, что коэффициент линейной корреляции R 2 между фрактальной размерностью и коэффициентом формы достигает 0,8054. По мере увеличения фрактальной размерности поровой структуры фактор формы поровой структуры также увеличивается. Это указывает на то, что форма структуры поры больше отклоняется от круглой формы, что аналогично соотношению между фрактальной размерностью поры и пористостью, приведенным в разделе 4.4.1. Результаты предыдущих работ показали, что коэффициент формы имеет тенденцию к уменьшению с увеличением плотности бетона [41]. По принципу, чем больше плотность, тем больше круговая структура пор газобетонного блока. Следовательно, фрактальную размерность пор можно использовать для характеристики степени отклонения структуры поры от круглой формы. То есть фрактальная размерность пор имеет тенденцию к уменьшению с увеличением плотности газобетонного блока. Таким образом, фрактальная размерность пор позволяет оценить плотность газобетонного блока.Наконец, его можно использовать в качестве эталона для последующего определения формы поперечного сечения трехмерного порового канала газобетонного блока и установления порового канала газобетонного блока.

4.3.3. Взаимосвязь между фрактальной размерностью пор и площадью поверхности пор

Многие исследования показали, что площадь поверхности пор связана со степенью гидратации пенобетона. По мере увеличения площади поверхности пор увеличивается и степень гидратации газобетона.Степень гидратации газобетона также связана с прочностью бетона на сжатие. Это показывает, что прочность бетона быстро увеличивается на ранней стадии и медленно на более поздней стадии. То есть прочность на сжатие линейно увеличивается с площадью поверхности пор. На рисунке 10 показано, что коэффициент линейного уравнения R 2 между фрактальной размерностью поры и площадью поверхности поры достигает 0,7241. Это указывает на то, что фрактальная размерность поры хорошо коррелирует с площадью поверхности поры.В случае одинаковой пористости, чем меньше площадь поверхности пор, тем меньше количество пор с малым диаметром пор и тем меньше шероховатость поверхности пор. Шероховатость и распределение пор по размерам на поверхности пор можно оценить по фрактальной размерности пор. Прочность на сжатие линейно увеличивается с фрактальной размерностью пор в сочетании с приведенным выше анализом. Наконец, прочность на сжатие газобетонного блока можно оценить по фрактальной размерности пор.

4.3.4. Взаимосвязь между фрактальным размером поры и средним размером пор и средним диаметром

Средний размер пор и средний диаметр — это параметры, которые характеризуют средний размер поровой структуры и обычно применяются к распределению пор по размерам. На средний диаметр пор газобетонного блока влияет множество факторов, в том числе сырье, технологические параметры и условия твердения. Из таблицы 7 можно найти интересный феномен, заключающийся в том, что размер среднего диаметра пор является прерывистым.Причина в том, что изображения структуры пор содержат макроскопические поры, и макроскопические поры будут появляться и исчезать непрерывно с увеличением глубины среза. Таким образом, необходимо установить взаимосвязь фрактальной размерности поры и среднего диаметра поры. Таким образом, необходимо исследование взаимосвязи параметров структуры пор и фрактальной размерности пор. На рисунках 11 и 12 показано, что коэффициент корреляции линейного уравнения R 2 между фрактальной размерностью поры и средним размером поры и средним диаметром равен 0.6426 и 0,6155. Средний размер пор и средний диаметр демонстрируют ту же тенденцию изменения с увеличением фрактальной размерности. Другими словами, средний размер пор и средний диаметр демонстрируют очевидную тенденцию к уменьшению с увеличением фрактальной размерности. Этот вывод согласуется с результатами, опубликованными в литературе Jin et al. [33]. Из наших результатов можно отметить, что метод расчета фрактальной размерности полезен. Согласно теории фракталов, чем больше фрактальная размерность поры, тем меньше средний размер отверстия и тем сложнее пространственное распределение пор в газобетонном блоке.Это указывает на то, что количество мелких отверстий увеличивается. В случае одинаковой пористости газобетонного блока, чем больше средний диаметр пор и средний диаметр, тем меньше количество отверстий и тем толще стенка пор соответствующей структуры пор. Результаты показывают, что фрактальная размерность пор может описывать распределение пор по размерам, а также открывает путь для последующего изучения взаимосвязи между фрактальной размерностью и капиллярным давлением воды.

5. Выводы

В данной работе исследованы параметры структуры пор на основе IPP и представлен метод расчета фрактальной размерности согласно MATLAB. Исследованы взаимосвязи между фрактальной размерностью поровой структуры и параметрами поровой структуры. Основываясь на экспериментальных результатах этого исследования, можно сделать следующие выводы: (1) Небольшие поры (20 мкм м ~ 60 мкм мкм) газобетонного блока составляют большой процент по сравнению с большими порами ( 60 мкм м∼400 мкм м или более) от распределения диаметров пор.(2) Фрактальная размерность пор газобетонного блока составляет от 1,775 до 1,805. (3) Фрактальная размерность пор газобетонного блока сильно коррелирует с пористостью и фактором формы поры. (4) Фрактальная размерность пор газобетонного блока хорошо коррелирует с площадью поверхности пор. Размер фрактальной размерности пор может эффективно характеризовать шероховатость и распределение пор по размерам на поверхности пор. (5) Корреляция между фрактальной размерностью пор газобетонного блока и средним диаметром пор и средним диаметром является общей.Фрактальную размерность пор можно использовать в качестве показателя для оценки среднего размера пор и распределения их диаметров. Когда фрактальная размерность пор больше, средний размер пор меньше, а когда пористость больше, структура пор ухудшается.

Доступность данных

Данные, использованные для подтверждения выводов этого исследования, можно получить у соответствующего автора по запросу.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Благодарности

Это исследование финансировалось Чжэцзянским базовым исследовательским проектом в области общественного благосостояния (LGF8E080016) и Китайской ассоциацией инженерных строительных стандартов.

Воздушный бетон против бетона: что лучше?

Aircrete — это экологически чистый строительный материал с равномерно распределенными стабильными воздушными ячейками и более низкой плотностью, что делает его легким для комфортной работы. С другой стороны, бетон, который содержит крупные и плотные традиционные заполнители, является прочным, что делает его идеальным для несущих конструкций.Итак, что лучше?

И Aircrete, и бетон обладают неоспоримыми преимуществами перед другими. Преимущество газобетона по сравнению с бетоном заключается в его легкости, доступности и высокой теплоизоляции. С другой стороны, бетон отлично подходит для тяжелого строительства. Он оснащен каменными агрегатами для прочности и может выдерживать большие веса.

В этом руководстве будут сравниваться и противопоставляться различные характеристики, которые придают бетону и газобетону универсальные свойства в качестве строительных материалов.В этом случае пользователь должен решить, какой из них лучше всего подходит для него. Читайте и узнайте.

Воздушный бетон против бетона

Aircrete, также известный как газобетон, относится к семейству легких цементных кладочных материалов, известных как формованный бетон. Это популярный строительный материал в Европе и Азии, на его долю приходится треть всех бетонных блоков, используемых в Великобритании.

Газобетон — самый легкий из семейства бетонных блоков. Газобетонные блоки состоят из песка, цемента, извести, пылевидной топливной золы (PFA) и воды.К суспензии добавляется небольшое количество сульфата алюминия, который вступает в реакцию с известью с образованием пузырьков водорода. Смесь расширяется в «лепешку», и водород диффундирует при замене воздухом.

Правильное соотношение воды и цемента для цементного раствора для газобетона составляет от 1 до 2 и может варьироваться в зависимости от требований конкретного проекта. Когда смесь частично застывает, ее разрезают на блоки и переносят в автоклав для отверждения паром под высоким давлением для затвердевания и придания прочности.

При производстве газобетона в основном используется мало или совсем отсутствует крупнозернистый заполнитель.Замена добавок полностью или частично меняет плотность газобетона от 400 кг / м3 до 1600 кг / м3.

Напротив, бетон — это композитный материал, который включает мелкие и крупные заполнители в сочетании с жидким цементом, который со временем затвердевает. Суспензия смешивается с сухим портландцементом и водой для получения смеси, которая принимает формы при заливке или формовании.

Отверждение — это необходимый процесс, который обеспечивает достижение конечной полной прочности бетона.Этот метод позволяет происходить гидратации и позволяет образовывать гидрат силиката кальция. За четыре недели бетонная смесь достигает более 90 процентов своей концентрации.

В течение первых трех дней гидратация и твердение бетона имеют решающее значение. При испарении воды может произойти быстрое высыхание и усадка, что приведет к увеличению растягивающих напряжений, когда она не набрала достаточной прочности.

Отверждение бетона помогает поддерживать достаточное количество влаги, что способствует гидратации цемента.Если отверждение происходит при правильной температуре, это будет способствовать затвердеванию бетона. Отверждение играет жизненно важную роль в поддержании прочности бетона, что делает его пригодным для тяжелого строительства.

Однако, поскольку бетон имеет слабую прочность на разрыв, армирующие материалы, такие как сталь, могут обеспечивать прочность на разрыв для несущих конструкций. И наоборот, поскольку правильное отверждение бетона приводит к увеличению прочности, оно также снижает проницаемость и уменьшает образование трещин в местах преждевременного высыхания поверхности.

Под удобоукладываемостью бетона понимается его способность правильно заполнять форму без снижения качества и выполнения желаемой работы. Технологичность зависит от количества воды, размера и формы заполнителя.

Кроме того, вяжущее содержание может определять удобоукладываемость бетона. Когда в амальгаме объединяется больше воды и химических примесей, улучшается удобоукладываемость бетона.

Контраст и сравнение газобетона и бетонных свойств

Aircrete и бетон сравниваются и различаются по своим свойствам.Каждый из этих строительных материалов находит свое применение в строительстве. Давайте посмотрим на эти свойства.

Плотность

Aircrete включает любой тип портландцемента и смеси летучей золы. Из 90-фунтового мешка цемента получается 40-50 галлонов газобетона. Газобетон имеет низкую плотность и относительно более низкую общую прочность по сравнению со стандартным бетоном.

Типичный диапазон плотности от 20 до 60 фунтов / куб. Фут соответствует полному диапазону прочности от 50 до 930 фунтов на квадратный дюйм.Для увеличения прочности газобетона можно добавить мелкую пену, которая имеет высокую плотность, что приводит к более прочному воздухобетону.

Газобетон низкой плотности — менее 300 кг / м3. Однако специализированное оборудование для производства, смешивания и перекачивания пены улучшило продукт, что позволило изготавливать блоки плотностью 75 кг / м3. Плотность в сухом состоянии от 25 фунтов / фут3 до 100 фунтов / фут3 составляет пенобетон. Однако он варьируется в зависимости от области применения от 12,5 фунт / фут3 до 100 фунтов / фут3.

Напротив, бетон различается по плотности и составляет около 150 фунтов / куб. Фут, что обеспечивает относительно более высокую общую прочность, чем пористый бетон.Кроме того, бетон с низкой прочностью включает 14 МПа (2000 фунтов на квадратный дюйм), а бетон для повседневного использования включает 20 МПа (2900 фунтов на квадратный дюйм).

Типичные высокопрочные бетонные блоки имеют прочность от 40 МПа (5800 фунтов на квадратный дюйм) до 410 МПа (59,00 фунтов на квадратный дюйм). Кроме того, очень жесткие коммерческие конструкции включают бетон с плотностью 130 МПа (18900 фунтов на квадратный дюйм).

Изоляционные свойства

Газобетон обладает отличными изоляционными свойствами как летом, так и зимой. Aircrete состоит из миллионов крошечных закрытых ячеек с воздухом, которые дают ему другое применение, чем обычный бетон.

В обычных бетонных конструкциях от 40 до 50 процентов потерь энергии происходит вокруг тепловых мостов, где пол и крыша встречаются со стеной. Aircrete обеспечивает бесшовную интеграцию в полы, стены и потолки, устраняя тепловой мост, что упрощает обогрев и охлаждение купольного дома.

Контраст и сравнение преимуществ газобетона по сравнению с бетоном

Газобетон, как и стандартный бетон, дает множество преимуществ. Вот как эти два продукта сравниваются и контрастируют.

Экономичный

Aircrete — это высококачественный недорогой материал, исключающий необходимость в таких заполнителях, как гравий, песок и камни. И наоборот, бетон — это композитный материал, в котором для повышения прочности используются крупные заполнители, что делает его более дорогим, чем газобетон.

Кроме того, смешивание стандартного бетона — не такой простой процесс, как кажется. Объединение бетонных заполнителей — сложный процесс, который занимает много места на строительной площадке и требует много места для работы с материалами.Сборные изделия из газобетона доставляются на строительную площадку и собираются, чтобы сформировать желаемую конструкцию.

Газобетон обеспечивает гладкую отделку, позволяющую сэкономить на штукатурных работах и ​​трудозатратах, связанных с покраской. С другой стороны, бетонные поверхности имеют тенденцию быть пористыми и иметь относительно неинтересный вид.

Таким образом, можно применять различные виды отделки для улучшения внешнего вида и предотвращения появления пятен, проникновения воды и замерзания на поверхность. Например, декоративные камни, такие как кварцит, небольшие речные камни или битое стекло на поверхности бетона, создают декоративную отделку.

Другая отделка, достигаемая долблением, окраской или обычными методами, позволяет получить отличную отделку для бетона. Таким образом, строительство и отделка бетонных конструкций обходятся дороже, чем дома из газобетона.

Энергоэффективный

Хотя использование изоляционных материалов не является широко распространенным, несмотря на их долгосрочную финансовую выгоду, Aircrete предлагает отличный теплоизоляционный эффект и экономит энергию. Газобетон помогает домовладельцу сэкономить значительную сумму денег на счетах в течение года.

Бетон, который является самым популярным строительным материалом в мире, не является хорошим изолятором из-за его сопротивления тепловому потоку. Таким образом, бетонная конструкция не снизит потребление электроэнергии из-за системы кондиционирования воздуха; следовательно, это не экономично. Однако для объединения и производства сырья требуется мало энергии.

В то время как изоляция сводит к минимуму потери энергии через ограждающую конструкцию здания, как и в случае с воздушным бетоном, тепловая масса использует стены для хранения и выделения энергии в бетоне.Тем не менее, бетон обладает высокими тепловыми массами, что делает его идеальным для изготовления электрических ночных аккумуляторов.

Кроме того, хорошо спроектированные и бетонные тротуары и дороги более экономичны для движения и служат дольше, чем другие покрытия.

Простота в эксплуатации и использовании

Aircrete включает легкие сборные конструкции, такие как блоки, стены, крыши, полы, перемычки и облицовочные панели. Готовые изделия легко транспортировать и собирать в желаемые конструкции.Кроме того, вы можете сделать газобетон самостоятельно с помощью небольшой машины Aircrete, которая называется — маленький дракон.

С другой стороны, бетон требует тщательной подготовки перед использованием на стройплощадке. Предварительно необходимо продумать конструкцию смеси, качество бетона, процессы укладки, снятие формы с поверхности и отверждение.

Кроме того, бетон может показаться простым в обращении, но для достижения наилучших результатов он требует выравнивания почвы, что требует расчистки земли и удаления верхнего слоя почвы. Кроме того, выравнивание грунта имеет решающее значение для адекватной поддержки и придания формы конструкции.

Также следует помнить об ограниченном временном интервале работы с бетоном. Следовательно, отказ подходящих инструментов может привести к некачественной установке и пустой трате времени, денег и усилий. Также он быстро сохнет, не оставляя времени на внесение изменений.

Экологически опасный

Сегодня мы все более привержены защите окружающей среды. Aircrete оказывает меньшее воздействие на окружающую среду по сравнению с бетоном, поскольку состоит из экологически чистых материалов.К ним относятся: летучая зола, известь, цемент, гипс, алюминиевый порошок и вода.

При производстве газобетона цемент расширяется в шесть раз по сравнению с исходным объемом с помощью воздуха, что снижает углеродный след. Кроме того, по мере того, как клеи с меньшим углеродным следом станут широко доступными, можно будет сделать воздухобетон более экологически чистым. К тому же утилизация газобетона не наносит вреда окружающей среде.

Основным компонентом бетона является цемент, который выделяет в атмосферу значительное количество парниковых газов — CO2.Портландцемент составляет восемь процентов глобальных выбросов углекислого газа из-за спекания известняка и глины при 2700 F.

И наоборот, шлифование бетона может привести к образованию опасной пыли, а длительное воздействие цемента может привести к заболеванию почек, силикозу, раздражению кожи и другим последствиям.

Национальный институт охраны труда и здоровья рекомендует прикреплять кожухи местной вытяжной вентиляции к электрическим шлифовальным станкам для бетона для борьбы с пылью.Кроме того, при работе с влажным бетоном всегда необходимо использовать соответствующие средства защиты.

Вторичная переработка бетона — это стандартный метод утилизации бетонных конструкций.

Амортизатор

Военная тренировка США по огнестрельному оружию использует пенобетон с высокой интенсивностью. Емкость поглощения энергии в аэробетоне колеблется от 4 до 15 МДж / м3, в зависимости от его плотности. Кроме того, панели из пенобетона имеют структуру с непрерывными порами, что обеспечивает возможность звукопоглощения в офисах, рядом с дорогами, системами отопления, вентиляции и кондиционирования воздуха и т. Д.

Кроме того, газобетон может плавать, что делает его пригодным для плавания на море, хотя он должен быть в защитной мембране.

С другой стороны, бетон является плохим амортизатором и не подходит для покрытия полов в местах, где проводятся физические тренировки, например, в тренажерных залах и спортзалах. Однако он идеально подходит для гаражей и складских помещений, где прочный пол имеет решающее значение.

Водонепроницаемость

Газобетон водонепроницаем, не гниет и не разлагается в воде.Он может стать идеальным выбором для крыши. Это позволяет без проблем иметь растительность и опрыскивать ее.

Напротив, типичные бетонные поверхности не так водонепроницаемы, поскольку становятся пористыми по мере высыхания. По мере того, как вода просачивается в бетон, она начинает изнашиваться и создавать более крупные карманы, в которых вода может скапливаться и вызывать дальнейшие повреждения.

Однако есть продукты, которые при смешивании с бетоном делают его менее пористым. Кроме того, покрытие поверхности, которое наносится в процессе отверждения, создает водонепроницаемую отделку.

Прочность

Разработка Aircrete в первую очередь предназначалась для использования во внутренней обшивке стен пустотелых стен вместо легкоблоков. Изначально некоторые постройки из газобетонных блоков через несколько месяцев после строительства давали трещины из-за пузырей нестабильной формы.

Газобетон с очень низкой плотностью не подходит для несущих конструкций и подвержен ударным повреждениям. Чем выше объем добавляемого воздуха, тем более хрупким становится газобетон.Следовательно, воздух, вовлеченный в газобетон, должен содержать крошечные, стабильные и равномерно распределенные пузырьки, которые остаются неповрежденными и изолированными.

С другой стороны, бетон обеспечивает превосходную общую прочность при применении в несущих конструкциях. По мере созревания он набирает силу, что делает его отличным строительным материалом для использования в плотинах, дорожных проектах и ​​т. Д. Кроме того, железобетон, в состав которого входят стальные арматурные стержни, углеродные волокна, стекловолокно, стальные волокна или углеродные волокна, может нести растягивающие нагрузки.

Однако, когда бетон не армирован прочными на растяжение материалами (часто сталью), возникает растрескивание матрицы. Все бетонные конструкции растрескиваются из-за усадки и жесткости.

Трещины в бетоне могут быть поверхностными — шириной менее нескольких миллиметров и глубиной или структурными — крупнее 0,25 дюйма. Плохие методы строительства вызывают поверхностные трещины, циклы замораживания-оттаивания и реакционную способность щелочных заполнителей.

Структурные трещины, которые распространяются глубже через стену или плиту, возникают в результате эрозии заполняющего материала, поддерживающего бетонную конструкцию.Кроме того, бетон имеет низкий коэффициент теплового расширения и дает усадку по мере созревания. Поэтому бетон, подверженный длительным нагрузкам, склонен к ползучести.

Огнестойкий

Aircrete пожаробезопасен и может без горения изготавливать уличные печи и костровые ямы. Широкое применение газобетонных блоков не горит и сдерживает распространение огня внутри здания. Газобетонный блок толщиной 100 мм может противостоять возгоранию до четырех часов. Однако бетонные конструкции обладают высокой степенью огнестойкости благодаря свойствам структурной формы.

Бетонные конструкции обладают более высокой степенью огнестойкости, чем конструкции из бетона и стали, из-за низкой теплопроводности. Бетон — негорючее вещество и имеет низкую скорость теплопередачи. Это гарантирует сохранение структурной целостности и сводит к минимуму риск возгорания.

В большинстве случаев бетон не требует дополнительной противопожарной защиты, так как имеет встроенную стойкость. Его можно использовать как противопожарную защиту для стальных рам или как противопожарный щит для пусковой площадки ракеты.

Применения, подходящие для Aircrete

Большинство сборных блоков из газобетона бывают разных форм и размеров. Изделия из воздухобетона могут быть изготовлены с любой прочностью в зависимости от области применения.

  • Плиты перекрытия
  • Сборные блоки, элементы стен и панели
  • Жилищные системы
  • Изоляция подземных труб
  • Заливная изоляция кровли и настилов пола
  • Замена для нестабильных грунтов
  • Акустические подкладки пола и амортизация для заброшенных резервуаров
  • , шахты, пустотелые блоки и трубопроводы
  • Заливка для снижения нагрузки над подземным сооружением
  • Свалки
  • Заливка на подходе к мосту
Применения Подходит для бетона

Бетон предназначен для различных применений, таких как восстановление, ремонт и строительство.Он может использовать различные приложения, в том числе:

  • Плотины, мосты, бассейны
  • Коммерческие и жилые здания
  • Тротуарные блоки, дороги, путепроводы и автостоянки
  • Фонарные столбы, балки и настил
  • Подвалы
  • Изоляционные бетонные формы
  • Промышленные, коммерческие и жилые конструкция плиты перекрытия
  • Трубы
  • Дренажные трубы
  • Стены и другие области применения
Заключение

В нижних диапазонах плотности газобетон более хрупкий и имеет меньшую общую прочность, чем стандартный бетон.Хотя это может быть недостатком для несущих конструкций, это выгодно для конструкций из газобетона, таких как купола, крыши и полы. Кроме того, газобетон экологичен, водонепроницаем, прост в обращении и экономичен.

Бетон идеально подходит для тяжелых строительных проектов. Он выдерживает вес и гравитацию.

Необходимо отметить, что каждая форма бетона обладает уникальным набором характеристик и характеристик.

Обновлено: 27.08.2021 — 12:17

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *