Фотореле как работает: Устройство и виды фотореле

Содержание

Фотореле на плате 2 ампера. Работает прямо в светильнике. SmartRele

SmartRele «Функция Антисвет». Рассчитан только на непрерывный цикл работы с питанием от сети 220 вольт! Устанавливается в уличный светильник, в помещении работать не будет, спрашивайте модель для помещения!

ОБЩИЕ СВЕДЕНИЯ

 Предназначен для экономии электроэнергии в дневное время.
 Фотореле не «боится» засветки, не моргает, не производит никаких отключений ночью, освещение включает в 10 люкс, выключает в 2 люкса (обратный гистерезис).
 Сумеречный выключатель (фотореле – «автомат день-ночь») с световым сенсором. Используется с любыми лампами.


Включение нагрузки — при переходе фазы через ноль!

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

1. Номинальное напряжение сети: 220 В.
2. Номинальная частота: 50 Гц.
3. Максимальный потребляемый ток ламп: не более 2А (440 Вт).
4. Мощность, потребляемая от сети не более: 0.1 Вт.
5. Включение/выключение при освещенности: 10/2 Люкс.


6. Диаметр подключаемых проводов: 2.5 кв.мм.
7. Габаритные размеры, не более: 16 х 49 х 1.5 мм.
8. Масса: 0.011 кг.
9. Условия эксплуатации:
 — колебания электросети +/- 15%;
 — интервал рабочих температур от — 30 до + 40 С.

КОНСТРУКЦИЯ И ПОДКЛЮЧЕНИЕ

   На плате установленна клемма питания и выводные провода на лампу, фоторезистор. Включение освещения при падающем дневном свете через плафон светильника на фоторезистор, будет происходить ближе к окончанию сумеречного времени, если необходимо более раннее включение, поверните фоторезистор ближе к корпусу светильника, чем ближе сенсорная поверхность тем раньше включается освещение. Вставляется в светильники рядом с источником света, его включение не влияет на корректную работу платы. 

Включение освещения произойдет только на вторые сутки!
   Плата является полностью работоспособной и прошла проверку на производстве. При возникшей необходимости проверки перед установкой (возможно только на включение), погасите в комнате свет, или накройте датчик непрозрачным материалом, через 60 секунд включится освещение, при повторной проверке отключите — включите питание.
   Внимание! Регулятор рассчитан на непрерывный цикл работы, при отключение питания регулятор
 в первый цикл работает по другому алгоритму.

 

КОМПЛЕКТ ПОСТАВКИ

1. Регулятор освещения ФР — 36шт.
3. Паспорт один на 36 шт. 

УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

Монтаж платы регулятора ФР, его подключение и эксплуатация должны производиться в строгом соответствии с «Правилами устройства электроустановок» и с «Правилами эксплуатации электроустановок потребителей». Силовой щит должен быть оборудован устройством принудительного отключения напряжения с защитой от КЗ и перегрузок. При применении энергосберегающих, люминесцентных и других ламп с пусковыми устройствами, следует учитывать пусковой ток не превышающий

 2 ампер. Лампу накаливания более 60 Вт не подключать!

Фотореле для уличного освещения – гарантия оптимизации, удобства системы

Современный человек старается обеспечить себе максимальный комфорт, тем более что ассортимент инновационных приборов и устройств позволяет это сделать. Осветительные системы позволяют создать удобство, безопасность перемещения в темное время суток, выгодно преображают ландшафт. Но ручное включение, выключение светильников устраивает не каждого потребителя. Установка фотореле для уличного освещения дает возможность исключить неудобства.

Механизм действия светового реле, его разновидности

В изготовлении устройств используются различные виды фотоэлементов. Но принцип работы этих приборов аналогичный. Под воздействием лучей естественного или искусственного света среда становится непроходимой для электрического тока, выполняет функции изоляции. Вследствие отсутствия питания светильник прекращает работу. Когда световые лучи перестают попадать на прибор, происходит замыкание контактов, возобновляется подача тока к светотехническому изделию, включается свет.

У каждого типа фотоэлементов имеется определенный принцип действия:

  • в фоторезисторах под воздействием света изменяется показатель сопротивления;
  • фототранзисторы при попадании лучей регулируют электрический сигнал;
  • в фотосимисторах имеется управляющая схема, на которую подается определенный сигнал при взаимодействии с положительной или отрицательной гармоникой;
  • фототиристоры при попадании лучей вступают во взаимодействие с постоянным током;
  • в фотодиодах освещение тормозит выработку импульсов, необходимых для прохождения тока.


Независимо от того, какое фотореле для уличного освещения используется в осветительной системе, оно обеспечит автоматическое включение света в темное время суток, выключит его с наступлением рассвета. На территории с приходом сумерек будет комфортно и безопасно, исключается риск бесполезного расходования электроэнергии в дневные часы.

Выбор фотореле для работы уличной системы, основные характеристики устройства

При приобретении датчиков света, которые будут работать с одним светильником или регулировать работу всей системы, следует уделять внимание их главным характеристикам. Фотореле различаются по:

  • классу защиты;
  • рабочему напряжению;
  • мощности;
  • температурному рабочему диапазону.

Постоянные климатические воздействия не должны оказывать влияния на работу прибора. Он функционирует на открытом воздухе, следовательно, должен быть качественно защищен. Классы защиты указываются в маркировке изделия, обозначаются буквами IP, за которыми следуют двухзначные числа.

Показатель 44 свидетельствует о том, что устройству не страшны брызги дождя или капли тающих снежинок, в него не могут проникнуть пылинки, частички больше миллиметра. Эти устройства могут использоваться для работы на улице. Можно выбрать прибор с большим показателем IP, класс ниже 44 для открытого воздуха не подходит.

Фотореле работают с напряжением 12V или 220V. Выбор зависит от вида светильников. Различаются устройства и по мощности. Если прибор будет обслуживать несколько источников света, их показатели суммируются. Мощность датчика света желательно выбрать с запасом, чтобы устройству не пришлось постоянно работать с максимальной нагрузкой.

Определение оптимального температурного рабочего диапазона фотоэлемента зависит от региона.

Но и этот показатель нужно выбирать с запасом, чтобы устройство не вышло из строя в случае природных катаклизмов.

Дополнительные полезные опции в фотореле

Датчики света должны быть не только надежными. В их функции входит оптимизация работы системы, качественное управление ее работой. Эти качества обеспечиваются дополнительными опциями приборов.


Многие изготовители оборудуют устройства регулировкой, позволяющей пользователю устанавливать оптимальную чувствительность. В этих фотореле на нижней поверхности корпуса имеется вращающийся диск. Обозначение в виде стрелок позволяет определить, в какую сторону нужно его поворачивать, чтобы уменьшать, увеличивать его чувствительность. Настройка осуществляется после подключения прибора.

Диапазон изменений этого показателя у приборов может отличаться. Есть устройства, в которых чувствительность меняется от 2 до 100 Лк, от 10 до 100 Лк и т.д. Специалисты рекомендуют поворачивать регулятор в среднее положение, чтобы установить оптимальную чувствительность. От этого показателя зависит, при какой интенсивности естественного освещения будет включаться, и выключаться свет. В зимние месяцы чувствительность целесообразно снижать, чтобы отражение от снега лунного, искусственного освещения не спровоцировало отключение системы.

Еще одним полезным дополнением в приборе является опция задержки срабатывания фотореле. Она исключает ложное включение устройства при случайных попаданиях лучей, к примеру, от фар машины, проезжающей в поле действия устройства. При наличии функции замедления срабатывания фотореле не включит свет.

Типы фотодатчиков

Датчики света используются не только для определенных светильников или для системы, освещающей участок дачи или загородного дома. Фотореле для уличного освещения может применяться для оснащения фонаря на козырьке подъезда, консольных светильников, освещающих дворы, улицы, парковки.

Приборы могут быть встроенными и выносными. В устройствах встроенного типа реле и датчик света находятся в одном корпусе, подключаются непосредственно к источнику света.

Выносной фотодатчик отправляет сигнал по проводу в блок или электронное плато, размещенное в электрощите. При достижении определенного показателя срабатывания, электрическая цепь замыкается, автоматически включается свет. Выносные датчики должны иметь высокий класс защиты от отрицательных воздействий извне. Такая система используется для системы из нескольких светильников.

Датчики света могут использоваться для светильников любого вида, что обеспечивает приборам обширную сферу применения.

Подключение датчиков света в систему уличного освещения

Особых сложностей процесс подключения фотореле не вызывает. Ведущие производители датчиков света отображают процесс подключения на схеме, имеющейся на приборе. Кроме того провода устройства имеют изоляцию разных цветов, что гарантирует правильное подсоединение.

Фотореле в своем устройстве имеет три провода: «0» и две фазы. Вход фазы имеет коричневый или черный цвет. От прибора к источнику света идет красный провод. Нулевые проводки могут быть синего или зеленого цвета. Многие устройства оснащены специальными клеммами для соединения проводов. Можно обеспечить надежное, безопасное подключение в специальной герметичной распределительной коробке. Она создаст надежную защиту соединениям от внешних воздействий.


Если фотореле будет управлять работой нескольких светотехнических изделий, необходимо приобрести, установить дополнительный прибор, контроллер. Это устройство будет управлять системой освещения, получая сигналы от светового реле. Есть возможность установить систему автоматического управления системой освещения в электрическом щите. В таком случае используется выносное фотореле, которое соединяется с контроллером проводом для подачи сигнала.

Фотореле может комбинироваться с датчиком движения. Такими приборами целесообразно оборудовать светильники, которые не должны гореть постоянно. Наличие датчика движения обеспечит включение источника света при попадании в его зону движущегося объекта. Этот прибор монтируется после фотореле.

Выбор местоположения для фотореле уличного освещения

Качество работы этого прибора во многом зависит от правильности выбора места для его монтажа. Есть несколько правил, которыми нужно руководствоваться, чтобы грамотно разместить световое реле для уличного освещения. Фотореле:

  • располагается на открытом, незатененном месте;
  • находится вне зоны искусственного освещения от источников света, окон домов;
  • монтируется в доступном месте для удобного обслуживания;
  • устанавливается в местах, где исключено освещение прибора фарами машин.

Сложного ухода эти устройства не требуют. Однако поскольку они расположены в открытых местах, на них может скапливаться пыль, снег, которые следует удалять. Поэтому не нужно монтировать приборы слишком высоко, чтобы не создавать неудобств.


Настройка датчика света осуществляется после его подключения. В дневное время следует установить регулятор в крайнем правом положении. Когда интенсивность естественного освещения снизится до показателя, при котором требуется искусственный свет, нужно потихоньку поворачивать диск до включения светильника.

Пользователь может по своему усмотрению выбрать момент включения освещения. Это может быть наступление сумерек или полной темноты. Есть возможность установить разное время включения светильников в отдельных зонах с учетом их использования, создания безопасности, комфорта для перемещений, отдыха и т.д.

Установка фотореле для уличного освещения не только оптимизирует работу системы, создает удобство. Автоматическое включение, отключение светильников создает эффект присутствия хозяев. При их отсутствии это снизит риск проникновения воров на территорию загородного дома, дачи.

Участие реле в различных системах дома

Датчики света могут использоваться не только по своему прямому назначению. Оно может выполнять и другие полезные функции. Подключение фотореле в систему искусственного полива, орошения обеспечит их автоматическое включение каждую ночь.

В ассортименте изделий есть приборы, на работу которых не влияет искусственное или искусственное освещение. Реле оснащено таймером, позволяющим запрограммировать периоды включения, выключения системы. Эти приборы могут регулировать не только работу осветительной системы. Они являются участниками систем «умный дом», используются для включения, выключения воды, отопления, открывания и закрывания окон и др.

Наш интернет магазин предлагает фотореле от ведущих производителей Европы. Известность брендов является гарантией качества и надежности датчиков. Каталог включает большой ассортимент моделей, позволяющий сделать оптимальный выбор устройства с учетом мощности, специфики применения. С производителями нас связывают партнерские отношения, закупка продукции производится на льготных условиях. Стоимость этих качественных устройств у нас установлена минимальная. Это гарантирует каждому покупателю удачное приобретение.

Схемы фотореле

Фотореле — это устройство, снабженное с выносным или встроенным сумеречным датчиком, которое встроено в электрическую цепь для осветительых приборов. Датчик, реагирующий на освещение, подает сигнал на схему реле, замыкая – включая освещение в сумерки и размыкая — выключая освещение в светлое время суток.

Одной из задач, выполняемых при помощи фотодатчиков, является управление освещением. Такие схемы называются фотореле, чаще всего это простое включение освещения в темное время суток. С этой целью радиолюбителями было разработано немало схем, вот некоторые из них.

Наверное, самая простая схема показана на рисунке 1. Количество деталей в ней, невелико, меньше уже не получится, а эффективность, читай чувствительность, достаточно высокая.

Это достигнуто тем, что транзисторы VT1 и VT2 включены по схеме составного транзистора, называемой также схемой Дарлингтона. При таком включении коэффициент усиления равен произведению коэффициентов усиления составляющих транзисторов. Кроме того, такая схема обеспечивает высокий входной импеданс, что позволяет подключать высокоомные источники сигнала, как показанный на схеме фоторезистор PR1.

Рисунок 1. Схема простого фотореле

Работа схемы достаточно проста. Сопротивление фоторезистора PR1 с увеличением освещенности уменьшается до нескольких КОм (темновое сопротивление несколько МОм), что приведет к открыванию транзистора VT1. Его коллекторный ток откроет транзистор VT2, который включит реле K1, которое своим контактом включит нагрузку.

Диод VD1 защищает схему от ЭДС самоиндукции, возникающей в момент выключения реле K1. Таким образом, очень маломощный сигнал фоторезистора преобразуется в сигнал достаточный для включения обмотки реле.

Чувствительность этой простой схемы достаточно высока, иногда просто избыточна. Чтобы ее уменьшить, и регулировать в необходимых пределах можно добавить с схему переменный резистор R1, показанный на схеме пунктиром.

Напряжение питания указано в пределах 5…15В, — зависит от рабочего напряжения реле. Для напряжения 6В подойдут реле РЭС9, РЭС47, а для напряжения 12В РЭС49, РЭС15. При указанных на схеме транзисторах ток обмотки реле не должен превышать 50мА.

Если вместо транзистора VT2 поставить, например, КТ815, то выходной ток может быть больше, что позволит применить более мощные реле. А вообще, чем выше напряжение питания, тем выше и чувствительность фотореле.

Схема фотореле с фотодиодом

Схема этого фотореле показана на рисунке 2.

Рисунок 2. Схема фотореле с фотодиодом

Как и предыдущая, она также содержит минимальное количество деталей, благодаря применению операционного усилителя (ОУ). В данной схеме ОУ включен по схеме компаратора (сравнивающего устройства). Нетрудно видеть, что фотодиод LED1 включен в фотодиодном режиме, — питание подано так, что фотодиод смещен в обратном направлении.

Поэтому, при снижении уровня освещенности сопротивление светодиода Led1 возрастает, что приводит к уменьшению падения напряжения на резисторе R1, а следовательно и на инвертирующем входе компаратора OP1.

Напряжение на неинвертирующем входе ОУ устанавливается при помощи переменного резистора R2, и является пороговым — задает порог срабатывания. Как только напряжение на инвертирующем входе станет меньше, чем пороговое, на выходе компаратора появится высокий уровень напряжения, который откроет транзистор T1, который включит реле K1.

Реле и транзистор в этой схеме можно подобрать, руководствуясь рекомендациями к схеме, показанной на рисунке 6. В качестве компаратора можно использовать ОУ типа К140УД6, К140УД7 или подобные. Источник питания для схемы подойдет любой, можно даже бестрансформаторный, без гальванической развязки от сети. В этом случае при наладке следует быть внимательным, соблюдать правила техники безопасности. Идеальным вариантом следует считать использование для настройки схемы разделительного трансформатора или, как его иногда называют трансформатора безопасности.

Настройка устройства сводится к установке порогового напряжения таким образом, чтобы включение происходило уже при наступлении сумерек. Чтобы не дожидаться этого природного момента, можно в затемненной комнате засвечивать фотодиод лампой накаливания, включенной через тиристорный регулятор мощности. Эта же методика пригодна для настройки и других схем фотореле.

Возможно, что при срабатывании фотореле релюшка будет дребезжать. Избавиться от этого явления можно присоединив параллельно катушке электролитический конденсатор на несколько сотен микрофарад.

Фотореле на микросхеме

Специализированная микросхема КР1182ПМ1 представляет собой фазовый регулятор мощности, то же самое, что обычный тиристорный. Весьма важным и ценным свойством такого регулятора мощности является то, что он включается в схему как двухполюсник, не требуя для себя дополнительного провода питания: просто включил параллельно выключателю и все уже работает! На рисунке 4 показано, как на этой микросхеме можно построить несложное фотореле.

Рис. 3. Микросхема КР1182ПМ1

Рисунок 4. Схема фотореле на микросхеме КР1182ПМ1

Управляющие выводы микросхемы 3 и 6. Если между ними подключить просто обычный однополюсный выключатель, то при его замыкании нагрузка будет отключаться! Если его разомкнуть, то нагрузка подключится. Кстати, без дополнительных внешних тиристоров или симистора, и даже без радиатора, микросхема выдерживает нагрузку до 150Вт. Это в случае, если при включении нагрузки нет бросков тока, как у ламп накаливания. Лампу накаливания в таком варианте можно включать мощностью не более 75Вт.

Просто выключатель к этим выводам подключать как бы ни к чему, если только в комплексе с другими деталями. Если не обращать внимания на фототранзистор и электролитический конденсатор, мысленно оставить только переменный резистор R1, то получается просто фазовый регулятор мощности: при перемещении его движка вверх по схеме выводы 3 и 6 замыкаются накоротко, тем самым отключая нагрузку, как упомянутым выше контактом. При перемещении движка вниз по схеме мощность в нагрузке изменяется от 0…100%. Тут все понятно и просто.

Если к этим выводам подключить электролитический конденсатор (считаем, что фототранзистора в схеме пока нет), то получится просто плавное включение нагрузки. Каким образом?

Сопротивление разряженного конденсатора невелико, поэтому поначалу управляющие выводы микросхемы 3 и 6 практически замкнуты накоротко и нагрузка отключена. По мере заряда сопротивление конденсатора возрастает (достаточно вспомнить проверку конденсаторов омметром), напряжение на нем тоже растет, мощность в нагрузке плавно увеличивается. Получается устройство плавного включения нагрузки. Причем мощность в нагрузку будет подана на столько, насколько введен движок переменного резистора R1. При отключении устройства от сети конденсатор разряжается через резистор R1, подготавливая устройство к следующему включению. Если конденсатор разрядиться не успеет, то плавного включения не будет.

Вот теперь и добрались до самого главного, до фотореле. Если теперь к управляющим выводам 3 и 6 подключить фототранзистор, то получится фотореле. Работает оно следующим образом. Днем при высокой освещенности фототранзистор открыт, поэтому сопротивление его участка коллектор – эмиттер невелико, выводы 3 и 6 замкнуты между собой, нагрузка отключена.

При плавном уменьшении освещенности в вечерние часы фототранзистор плавненько будет открываться, постепенно увеличивая мощность в нагрузке, то есть в лампе. Никаких пороговых элементов в этой схеме нет, поэтому лампа будет зажигаться и гаснуть постепенно.

Чтобы фотореле не сработало в тот момент, когда включится своя же лампа, фототранзистор желательно защитить от такой подсветки. Проще всего это сделать с помощью пластиковой трубки.

Ранее ЭлектроВести писали, что в Верховную Раду внесли законопроект №4347 о создании государственного фонда декарбонизации. Согласно документу, налог на выбросы углекислого газа увеличат с 10 до 30 грн/т, а полученные средства пустят на «зеленые» и энергоэффективные программы.

По материалам: electrik.info.

Фотореле, реле освещения, сумеречное реле, как установить датчик фотореле, настройка и регулировка. На что обратить внимание при настройке реле.

Фотореле, реле освещения, фотоблоки, сумеречное реле, сумеречные контакторы — все эти названия определяют один прибор, который стал давно в жизни человека необходимым и действия которых мы уже и не замечаем, когда он работает в повседневной жизни. Потребление электричества стало уже давно большой проблемой и для ее решения проводятся научные исследования, этот вопрос поднимается симпозиумах и т.д.
Как решить этот сложный вопрос: возросла техническая оснащенность человека в бытовой повседневной жизни, а следовательно нужно больше вырабатывать электроэнергии. Где ее взять?
Один из ответом — это разумное, экономное использование электроэнергии. Мы работаем в помещении, часто там горит свет и никого нет, вопрос возникает: а для кого он горит если там нет человека? Значит надо выключать и для этого существую специальные датчики движения. С наступлением рассвета на улице стало светло — значит надо выключить свет, а для этого человеком придумано фотореле. В каждом доме, в каждом подъезде имеется лестничное освещение и оно «горит» всю ночь, а зачем, если все спят и никто не ходит в подъезде? Ведь в квартире мы выключаем свет когда ложимся спать, а значит и в подъезде можно выключить свет. оставив только дежурное освещение, а при выходе человека из квартиры свет должен автоматически включиться и когда он вышел на улицу из подъезда выключить снова его — для этого существую специальные приборы совмещающие в себе функцию датчика движения и фотореле.

Состав фотореле

В состав обычно входят элементы:
  • Электронный блок;
  • Датчик с кабелем для подключения;
  • Коммутационное устройство:
    -выходное электромагнитное реле или тиристорный ключ, входящее в состав электронного блока;
    -контактор
  • Дополнительное оборудование — кронштейн для крепления датчика, защитный корпус (кожух) для установки на улице, дистанционный пульт, модуль передачи данных.
  • Имеются модели, где сумеречное реле совмещено с таймером, сочетание с функцией планирования времени.

Правила установки

Уличное реле освещения, фотореле требования к ним различаются только в отдельных деталях.
1. Не рекомендуется установка датчика в сторону солнца, яркого источника света т.к. это выведет датчик из строя.
2. Установить необходимое время задержки срабатывания, при освещении датчика в ночное время фарами машин и т.д.
3. Не устанавливать датчик в направлении ламп,прожекторов и пр. , так при неправильной установке сумеречное реле войдет в циклический режим: при наступлении темного времени суток, датчик сработает включит фонарь, а от фонаря снова сработает на отключение и процесс будет повторятся пока не наступит утро.
4. При размещении датчик на улице, его необходимо поместить под навес для защиты от дождя, снега, необязательно помещать датчик в трубу, т.к. из-за этого может в дальнейшем труба забиться снегом, потом оттаивание, лед, мороз и до наступления потепления датчик будет «замурован» льдом, свет на сенсор будет попадать ослабленным, а отсюда его следует нечеткая работа.
5. Для правильной регулировки чувствительности рекомендуется задержку установить на «0», отрегулировать регулятором чувствительности освещенности устойчивое срабатывание реле, ну и конечно, это надо проводить во время когда наступила темнота, т.е. в это время необходимо включать уличные фонари.
6. Для использования реле в диапазоне низких температур (особенно касается выносного датчика), к его выбору относитесь очень тщательно, т. к. минусовая температура и резкая смена температур (холод и оттепель, а потом ночные заморозки) приводит к отслоению чувствительного слоя, а соответственно фотореле будет работать неустойчиво или выйдет из строя, а следовательно прибор станет неработоспособным.
7. При размещении внешнего сенсора на улице, выбирайте не только с защитой IP56, IP65, но и соответствующее климатическое исполнение УХЛ.
  

Фотореле разных производителей применяются для включения и выключения света в подъезде, на улице, в помещении. Фотореле ФР, и её различные модификации ФР-7Е, оно включает и выключает свет при установленном значении освещенности, с такими же функциями фирмы Орбис и и производителя Elko. Распространенные марки известных производителей ФР 601, ФР 7, фр 7е, фр 602, ФР2, ФР6, фр 94, выключатель светоконтролирующий LXP03, фрл 02, со встроенным фотодатчиком AZH 112, фр 75, ФР — М01 — 1 — 15, ABB TW1, фотоблоки ФБ-2М, светочувствительное реле ФБ-9.
Основные технические параметры

Технические характеристики реле освещения в основном имеют примерно схожие параметры и отличаются уровнем работы реле в диапазоне освещенности, характеристиками мощности коммутируемой нагрузки и дополнительными параметрами: наличием управляющего входа для блокирования выхода, к примеру коммутирующим таймером.

Параметры SOU-1 ФР-9М VEGA
Напряжение питания AC/DC 12 — 240 V
(AC 50 — 60 Гц)
AC 230 V / 50 — 60 Гц
24 50Гц / 24 пост 220 50Гц 230 V AC
Настраиваемое время задержки 0 — 2 мин 0, 30c, 1мин, 3мин, 10мин 60 с
Уровень освещенности (диапазоны), Лк 1 — 100 Lx
100 — 50000 Lx
0.5…30, 3…300 5-300 Люкс (лог. шкала)
Количество контактов 1x переключ
16 A / AC1
1 переключ 16 A 10 A 250 Vас
Индикация выхода зеленый, красный LED зеленый, желтый LED  
Длина провода сенсора (датчика) макс. 50 м
(обычный провод)
до 50 м встроенный
Температурный диапазон -20 .. +55 °C -10 .. +55 °C
-40 .. +60 °C датч.
-30 º.. +50 ºC
Дополнительные Блокировка входа    
Корпус 1-МОДУЛЬ 1-МОДУЛЬ Настенный монтаж или на опоре
Особенности применения

Основное предназначение сумеречного выключателя в автоматическом включения света при наступлении темноты и отключения света с приходом рассвета. Функция случайного включения освещения позволяет симулировать присутствие (к примеру хозяина дома) коммутация: по программе (AUTO) /постоянно вручную/случайная (КУБИК)

Варианты схем подключения и диаграммы работы

Варианты схемы подключения фотореле могут быть разные, трех проводные, четырех проводные, диаграммы работы примерно одинаковы.

Схема подключения сумеречного реле TW в модульном исполнении фирмы АВВ, диаграмма работы.

Сумеречный-световой включатель SOU-3, наружное покрытие IP65, корпус для монтажа на стену, снимающаяся крышка без болтов, встроенный датчик освещения, выбор из трех диапазонов уровня освещенности и раздельно выбор из трех уровней задержки времени (для иллюминации коротких колебаний уровня освещенности — например фары автомобилей). Для правильной функции устройства необходима установка сенсором вниз или в сторону.

Как работают реле? — Объясни это!

Как работают реле? — Объясни это! Рекламное объявление

Вы можете этого не осознавать, но вы постоянно настороже, остерегаетесь угроз, готовы действовать в любой момент. Миллионы лет эволюции заставили ваш мозг спасти вашу кожу, когда малейшая опасность угрожает вашему существованию. Если вы используете силу инструмент, например, и крошечная щепа летит к вашему глазу, один из ваши ресницы отправят сигнал в ваш мозг, который заставит вас веки закрываются в мгновение ока — достаточно быстро, чтобы защитите свое зрение.Здесь происходит то, что крошечный стимул вызывает гораздо больший и полезный отклик. Вы можете найти тот же трюк работает во всех видах машин и электрических приборы, где датчики готовы включить или за доли секунды с помощью умных магнитных переключателей, называемых реле. Давайте подробнее рассмотрим, как они работают!

На фото: типичное реле со снятым пластиковым корпусом. Вы можете увидеть два пружинных контакта слева и катушку электромагнита (красно-коричневый цилиндр медного цвета) справа.В этом реле, когда через катушку протекает ток, он превращает ее в электромагнит. Магнит толкает переключатель влево, сжимая пружинные контакты вместе и замыкая цепь, к которой они прикреплены. Это реле электронного программатора погружного нагревателя горячей воды. Электронная схема в программаторе включает или выключает магнит в заранее запрограммированное время дня, используя относительно небольшой ток. Это позволяет намного большему току проходить через пружинные контакты для питания элемента, который нагревает горячую воду.

Что такое реле?

Изображение: Если бы реле были собаками: Предположим, у вас есть огромная свирепая собака, которая так крепко спит, что никогда не просыпается, когда он услышал шум. В качестве сторожевой собаки это было бы бесполезно! Но что, если бы вы купили еще и маленькую, очень бдительную собаку? Если маленькая собака слышал шум, он начинал лаять и будил большую собаку, которая могла атаковать злоумышленника. Так работают реле: они используйте небольшой электрический ток, чтобы вызвать гораздо больший.

Реле — это электромагнитный переключатель, управляемый относительно небольшой электрический ток, который может включать или выключать гораздо более мощный электрический Текущий. Сердце реле — электромагнит (катушка с проводом, которая становится временный магнит, когда через него проходит электричество). Вы можете думать о реле как своего рода электрический рычаг: включите его слабым током, и он включает («усиливает») другой прибор используя гораздо больший ток. Почему это полезно? Как имя предполагает, что многие датчики являются невероятно чувствительными частями электронное оборудование и производят только небольшие электрические токи. Но часто они нужны нам для управления более крупными устройствами, которые используют большие токи.Реле перекрывают разрыв, позволяя токи, чтобы активировать более крупные. Это означает, что реле могут работать как переключатели. (включение и выключение) или как усилители (преобразование малых токи в более крупные).

Как работают реле

Вот две простые анимации, иллюстрирующие, как реле используют одну цепь для включения второй цепи.

Когда мощность течет через первую цепь (1), она активирует электромагнит (коричневый), генерируя магнитное поле (синее), которое притягивает контакт (красный) и активирует вторую цепь (2). При отключении питания пружина возвращает контакт в исходное положение, снова отключая вторую цепь.

Это пример «нормально разомкнутого» (NO) реле: контакты во второй цепи по умолчанию не подключены и включаются только тогда, когда через магнит протекает ток. Другие реле являются «нормально замкнутыми» (NC; контакты соединены так, что через них по умолчанию течет ток) и отключаются только тогда, когда срабатывает магнит, растягивая или раздвигая контакты.Наиболее распространены нормально разомкнутые реле.

Вот еще одна анимация, показывающая, как реле связывает две цепи. вместе. По сути, это то же самое, но немного по-другому. Слева — входная цепь, питаемая от переключателя. или какой-то датчик. Когда этот контур активирован, он питает ток к электромагниту, который замыкает металлический выключатель и активирует вторую, выходную цепь (с правой стороны). Относительно небольшой ток во входной цепи, таким образом, активирует больший ток в выходная цепь:

  1. Входная цепь (синяя петля) отключена, и ток не течет через нее, пока что-то (датчик или замыкание переключателя) не включит ее. Выходная цепь (красная петля) также отключена.
  2. Когда во входной цепи течет небольшой ток, он активирует электромагнит (показанный здесь темно-синей катушкой), который создает вокруг него магнитное поле.
  3. Электромагнит, находящийся под напряжением, притягивает к себе металлический стержень в выходной цепи, замыкая переключатель и позволяя гораздо большему току проходить через выходную цепь.
  4. В выходной цепи работает сильноточный прибор, например, лампа или электродвигатель.
Рекламные ссылки

Реле на практике

Фото: Еще один взгляд на реле. Вверху: Если смотреть прямо вниз, вы можете увидеть пружинные контакты слева, механизм переключения посередине и катушку электромагнита справа. Внизу: то же реле, снятое спереди.

Предположим, вы хотите построить систему охлаждения с электронным управлением. система, которая включает или выключает вентилятор в зависимости от комнатной температуры изменения. Вы можете использовать какую-то схему электронного термометра, чтобы почувствовать температуру, но будет производить только небольшие электрические токи — слишком малы, чтобы приводить в действие электродвигатель в большой большой поклонник. Вместо этого вы можете подключить цепь термометра к входная цепь реле. Когда в этом цепь, реле активирует свою выходную цепь, пропустить гораздо больший ток и включить вентилятор.

Реле не всегда включаются; иногда вместо этого они очень услужливо выключают. В Например, для оборудования электростанций и линий электропередачи вы найдете защитные реле , которые срабатывают при возникновении неисправностей, чтобы предотвратить повреждение от таких вещей, как скачки тока.Когда-то для этой цели широко применялись электромагнитные реле, подобные описанным выше. В наши дни электронные реле на основе интегральных схем вместо этого выполняют ту же работу; они измеряют напряжение или ток в цепи и автоматически принимают меры, если они превышают заданное значение. предел.

Реле прочие

На фото: четыре старомодных реле максимальной токовой защиты на устаревшей силовой подстанции в 1986 году, незадолго до ее сноса. Фото любезно предоставлено Библиотекой Конгресса США.

До сих пор мы рассматривали переключающие реле очень общего назначения, но существует довольно много вариантов эта основная тема, включая (и это далеко не исчерпывающий список):

  • Реле высокого напряжения: они специально разработаны для коммутации высоких напряжений и токов. значительно превышает возможности обычных реле (обычно до 10 000 вольт и 30 ампер).
  • Электронные и полупроводниковые реле (также называемые твердотельными реле или SSR): переключают токи полностью электронными, без движущихся частей, поэтому они быстрее, тише, меньше, надежнее, и служат дольше, чем электромагнитные реле.К сожалению, они обычно дороже, меньше эффективны и не всегда работают так чисто и предсказуемо (из-за таких проблем, как токи утечки).
  • Реле таймера и задержки срабатывания: они запускают выходные токи на ограниченный период времени (обычно от доли секунды до примерно 100 часов или четырех дней).
  • Тепловые реле: они включаются и выключаются, чтобы останавливать такие вещи, как электродвигатели, от перегрева, что-то вроде биметаллических ленточных термостатов.
  • Реле максимального тока и направленные реле: сконфигурированные различными способами, они предотвращают протекание чрезмерных токов в неправильном направлении по цепи (обычно в энергетическом, распределительном или питающем оборудовании).
  • Реле дифференциальной защиты: срабатывают при несимметрии тока или напряжения в двух разных частях цепи.
  • Реле защиты по частоте (иногда называемые реле понижения и повышения частоты): эти твердотельные устройства срабатывают, когда частота переменного тока слишком высока, слишком мала или и того, и другого.

Кто изобрел реле?

Фото: Реле широко использовались для коммутации и маршрутизации вызовов на телефонных станциях. например, этот, сделанный в 1952 году.Фото любезно предоставлено Исследовательским центром NASA Glenn Research Center (NASA-GRC).

Реле были изобретены в 1835 году пионером американского электромагнетизма. Джозеф Генри; на демонстрации в колледже Нью-Джерси, Генри использовал небольшой электромагнит, чтобы включать и выключать более крупный, и предположил, что реле можно использовать для управления электрическими машинами на очень больших расстояниях. Генри применил эту идею к другому изобретению, над которым он работал в то время, электрическому телеграфу (предшественнику телефона), который был успешно разработан Уильямом Куком и Чарльзом Уитстоном в Англии и (гораздо более известен) Сэмюэлем Ф.Б. Морс в США. Позднее реле использовались в телефонной коммутации и первых электронных компьютерах и оставались чрезвычайно популярными до появления транзисторов в конце 1940-х годов; по словам Бэнкрофта Герарди, в ознаменование 100-летия работы Генри по электромагнетизму, к тому времени только в Соединенных Штатах работало около 70 миллионов реле. Транзисторы — это крошечные электронные компоненты, которые могут выполнять ту же работу, что и реле, работая как усилители или переключатели.Хотя они переключаются быстрее, потребляют гораздо меньше электроэнергии, занимают небольшую часть места и стоят намного меньше, чем реле, они обычно работают только с небольшими токами, поэтому реле все еще используются во многих приложениях. Именно разработка транзисторов стимулировала компьютерную революцию с середины 20 века. Но без реле не было бы транзисторов, поэтому реле — и такие пионеры, как Джозеф Генри — тоже заслуживают похвалы!

Рекламные ссылки

Узнать больше

На этом сайте

Другие веб-сайты

  • Электромеханическое реле Джозефа Генри: краткое описание того, как Джозеф Генри изобрел реле в 1835 году.
  • Генри как первопроходец электротехники Бэнкрофт Герарди, Bell Systems Technical Journal, июль 1932 г. Эта интересная историческая статья из архивов Bell была опубликована в ознаменование столетия электрических открытий Джозефа Генри. Он дает прекрасное представление о важности Генри и о том, как он при своей жизни помог «подключить» мир к электричеству.

Видео

  • Как сделать реле: довольно простое 2,5-минутное видео-руководство покажет вам, как намотать собственные электромагниты и установить их на плату, чтобы создать собственное самодельное реле.
  • Как работает автомобильное реле: это короткое и простое видеообъяснение расскажет вам о том, что я объяснил выше. То же объяснение, немного другие слова.

Книги

Простые практичные руководства
  • СДЕЛАТЬ: Электроника Чарльза Платта. Maker Media, 2015. Эксперимент 7 по исследованию реле — отличное практическое введение. Вы можете открыть реле и поэкспериментировать с его внутренними механизмами!
  • Свидетель: Электроника Роджера Бриджмена.New York: DK, 2007. (Для младших читателей в возрасте 9–12 лет. Включает историю, науку и технологии.)
  • «Телефонные проекты для злого гения» Томаса Петруцеллиса. McGraw-Hill Professional, 2008. (Включает некоторые цепи, в которых используются реле.)
Подробные технические книги
  • Электрические реле: принципы и применение Владимира Гуревича. CRC Press, 2018. После открытия краткой истории реле эта книга проведет нас через магнитные принципы, работа релейных контактов, внешний вид и упаковка, а также сопутствующие устройства, такие как герконы.В последующих главах рассматриваются варианты основных реле, включая реле высокого напряжения, тепловые реле и реле времени.
  • Свидетель: Электроника Роджера Бриджмена. New York: DK, 2007. (Для младших читателей в возрасте 9–12 лет. Включает историю, науку и технологии.)
  • «Телефонные проекты для злого гения» Томаса Петруцеллиса. McGraw-Hill Professional, 2008. (Включает некоторые цепи, в которых используются реле.)
История науки

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США.Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2009, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом своим друзьям с помощью:

Медиа-запросы?

Вы журналист, у вас есть вопрос для СМИ или просьба об интервью? Вы можете связаться со мной для получения помощи здесь.

Цитируйте эту страницу

Вудфорд, Крис. (2009/2020) Реле. Получено с https://www.explainthatstuff.com/howrelayswork.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Твердотельное реле

(МОП-транзистор с оптической связью) Структура и характеристики

МОП-транзистор с оптической связью — это полностью твердотельное реле, которое состоит из светодиода (СИД) для стороны входа и полевых МОП-транзисторов для точки контакта.Поэтому его обычно называют твердотельным реле (SSR). По сравнению с традиционным механическим реле, полевой МОП-транзистор с оптической связью не только меньше и легче, но и легче в управлении и имеет высокую скорость. Кроме того, он производит мало шума. Эти особенности делают его идеальным реле.

Структура и функции описаны ниже.

Строение

Как показано на рисунке 1, полевой МОП-транзистор с оптической связью состоит из светоизлучающего диода (СИД) на входной стороне, фотоэлектрического диода (PVD), обращенного к светодиоду, и полевых МОП-транзисторов, которые служат контактом.

Рис. 1. Схема внутренней перспективы (Цвета приведены для облегчения понимания и не имеют отношения к реальным цветам.)

Входной светодиод (LED) излучает инфракрасный свет, когда через него проходит прямой ток. Когда этот свет падает на фотоэлектрический диод (PVD), в PVD генерируется напряжение. Когда это напряжение подается на затворы полевых МОП-транзисторов, они включают и выключают ток стока. Два полевых МОП-транзистора соединены последовательно в обратном порядке, поэтому они также могут переключать переменный ток.

Кроме того, поскольку существует два типа полевых МОП-транзисторов, нормально выключенный (тип расширения) и нормально включенный (тип истощения), можно сделать первое реле типа контакта А (замыкающий контакт), используя соединение, которое дает положительное напряжение затвора, и сделайте последнее реле типа контакта B (размыкающий контакт), используя соединение, которое дает отрицательное напряжение затвора.

Более того, наш MOSFET с оптической связью имеет внутри оригинальный контроллер привода. Контроллер ускоряет разряд из затвора полевого МОП-транзистора, когда светодиод перестает излучать свет.Таким образом, обеспечивается плавное высокоскоростное переключение. Благодаря такой конструкции вход и выход полностью электрически изолированы, а контакт выходной стороны обеспечивает проводимость с хорошей линейностью и высокими характеристиками отсечки как в прямом, так и в обратном направлениях.

Как показано на следующем рисунке, в нашем MOSFET с оптической связью входной светодиод и PVD на выходной стороне изолированы друг от друга изолирующей смолой с высокой прозрачностью, а внешняя сторона дополнительно покрыта черным смола с высокой темнотой.Таким образом, он работает строго и стабильно независимо от внешней яркости.

Рис. 2. Формовочная конструкция

Существует два типа формованных конструкций: стандартный тип базовой конструкции (рисунок слева) и тип с высокой изоляцией и большим изоляционным расстоянием (рисунок справа).

Особенности

Как описано выше, полевые МОП-транзисторы с оптической связью представляют собой полностью твердотельные реле, состоящие из полупроводников, и имеют следующие особенности по сравнению с обычными механическими реле или оптопарами.

Компактный размер и легкий вес

Ультракомпактные продукты, которых нет среди механических реле, такие как небольшой корпус (SOP) и сверхмалые полевые МОП-транзисторы с плоскими выводами, разрабатываются один за другим и идеально подходят для оборудования, для которого размещается на компактных размерах и малом весе, таких как портативные компьютеры, мобильные информационные терминалы и различные адаптерные карты, а также оборудование для тестирования полупроводников, которое требует монтажа с высокой плотностью.

Рис. 3. Фотография внешнего вида (размер каждого квадрата примерно 1 см x 1 см)

Превосходная устойчивость к ударам и вибрации

Поскольку полевые МОП-транзисторы с оптической связью не имеют металлических контактов и движущихся частей, которые подвергаются воздействию физических вибраций и ударов, они особенно подходят для портативных информационных терминалов, таких как портативные аудиоустройства и портативные компьютеры, станки и автоматические тестеры, которые требуется устойчивость к ударам и вибрации.

Бесшумный

МОП-транзисторы с оптической связью не создают шума при работе, в отличие от механических реле, и поэтому очень эффективны для снижения уровня шума в таких местах, как офисы, заводы и дома.

Кроме того, полевые МОП-транзисторы с оптической связью не вызывают контактных искр, в отличие от механических реле. Таким образом, они не вызывают радиочастотных помех в окружающем аудиовизуальном оборудовании, и не стоит беспокоиться о дополнительных нагрузках на детали, проходящие тестирование.

Высокоскоростная работа

Поскольку полевые МОП-транзисторы с оптической связью работают со светом и электронами, их рабочая скорость более чем в 10 раз выше, чем у механических реле. Поэтому они подходят для оборудования для тестирования полупроводников и других продуктов, требующих высокоскоростной работы.

Чрезвычайно низкий уровень неисправностей

МОП-транзисторы с оптической связью не подвержены вибрации, возникающей в механических реле, и по сравнению с обычными оптопарами имеют большую устойчивость к колебаниям электрического потенциала между входной и выходной сторонами.В результате неисправности из-за этих факторов крайне редки.

Высокая изоляция, высокая надежность

Поскольку полевой МОП-транзистор с оптической связью использует оптическое соединение между входом и выходом, они полностью изолированы электрически.

Более того, будучи реле, полевые МОП-транзисторы с оптической связью являются полупроводниковыми устройствами, такими как микропроцессоры или запоминающие устройства, и, таким образом, не подвержены механическому износу и ухудшению качества контактов, вызванным операциями переключения. Это делает их подходящими для приложений непрерывного высокоскоростного переключения, таких как оборудование для тестирования полупроводников.

Высокая чувствительность и низкое энергопотребление

Поскольку полевые МОП-транзисторы с оптической связью обычно имеют чрезвычайно низкий управляющий ток, составляющий всего несколько мА, и отсутствие индукции на входе, в отличие от катушек, они могут напрямую управляться логическими вентилями КМОП. В результате внешняя схема очень проста, а поскольку полевые МОП-транзисторы с оптической связью имеют низкое энергопотребление, они эффективны для снижения теплового излучения и экономии энергии в портативных компьютерах с батарейным питанием и портативных информационных терминалах, а также в оборудовании для тестирования полупроводников. где они используются в большом количестве.

Возможность работы с высоким напряжением, большим током и переменным током по сравнению с оптопарами

Оптопара состоит из фотодетектора и контактного элемента на микросхеме. С другой стороны, полевой МОП-транзистор с оптической связью имеет фотодетектор и МОП-транзисторы для контакта различных микросхем друг с другом. Следовательно, легко создавать полевые МОП-транзисторы с оптической связью, которые могут управлять высоким напряжением или большим током, выбирая микросхему полевого МОП-транзистора.

Кроме того, поскольку два полевых МОП-транзистора последовательно соединены в обратном порядке для контакта, можно включать и выключать не только постоянный, но и переменный ток.

Малая температурная зависимость и высокая линейность характеристик

МОП-транзисторы, используемые для контакта на выходной стороне, имеют хорошую линейность как в прямом, так и в обратном направлениях, что делает их идеальными для управления мельчайшими аналоговыми сигналами.

Поскольку сопротивление полевого МОП-транзистора в открытом состоянии мало колеблется в широком диапазоне температур, необходимом для портативных компьютеров, КПК и т. Д., Можно получить стабильные характеристики.

Рисунок 4 Примеры характеристик

Основываясь на этих различных функциях, мы предлагаем богатые линейки полевых МОП-транзисторов с оптической связью, которые поддерживают от минутных сигналов до управления большим током, что позволяет пользователям выбрать идеальный МОП-транзистор для каждого из своих приложений.

Использование твердотельного реле

Узнайте, как легко подключить твердотельное реле

Твердотельное реле (SSR) — альтернатива использованию классического переключателя, когда вы хотите включить или выключить цепь. SSR запускается внешним напряжением, приложенным к его клемме управления. У него нет движущихся частей, поэтому он может работать намного быстрее и дольше, чем традиционный переключатель. Если он использует инфракрасный свет в качестве контакта; две стороны реле фотосвязаны.

Зачем использовать реле вместо переключателя?

Основные факторы — удобство, безопасность и стоимость.Реле меньше и дешевле переключателей. С переключателем вам также придется прокладывать более толстые провода (достаточно, чтобы выдерживать ток 30-40 ампер), потому что он требует большего напряжения, чем реле. Думайте о реле как о пульте дистанционного управления, оно обеспечивает безопасность, увеличивая расстояние до источника питания.

Провода SSR меньше и большего сечения, чем у переключателя. SSR также быстрее, меньше по размеру и имеют более длительный срок службы, чем механическое реле. Они помогают повысить безопасность, поскольку вы имеете дело с меньшим напряжением и силой тока, давая вам меньшее напряжение / силу тока, контролируя более высокое напряжение / силу тока.Для гораздо более высоких напряжений SSR — отличная альтернатива, когда обычный переключатель не может использоваться из-за перегорания под действием тока.

На схеме ниже показано, как подключить твердотельное реле. Обратите внимание, что схема относится к твердотельному реле (SSR) типа DC / DC.

Твердотельное реле (DC / DC):

Подсоедините положительную клемму (R) к кнопочному переключателю.
Подключите отрицательную клемму (R) к отрицательной клемме аккумулятора 1.
Подключите положительную клемму (L) к положительной клемме аккумулятора 2.
Подключите отрицательную клемму (L) к положительной клемме нагрузки.

Батарея 1:
Обратите внимание, что первая батарея использовалась в качестве изолятора.
Подключите отрицательную клемму аккумулятора 1 к отрицательной клемме SSR (R).
Подключите положительный полюс аккумуляторной батареи 1 к кнопочному переключателю.

Кнопочный переключатель:
Подключите одну клемму к положительной клемме (R) твердотельного реле.
Подключите вторую клемму к плюсовой клемме аккумуляторной батареи 1.

Нагрузка:
Подключите положительную клемму нагрузки к отрицательной клемме (L) SSR.
Подключите отрицательную клемму нагрузки к отрицательной клемме аккумулятора 2.

Аккумулятор 2:
Подключите положительный вывод аккумулятора 2 к положительному выводу на выходе.

Подключите отрицательную клемму аккумулятора 2 к отрицательной клемме нагрузки.


Если у вас есть вопросы, обращайтесь в техническую группу Jameco по адресу [электронная почта защищена].

Управление реле с помощью Arduino

Всем привет, добро пожаловать на мой канал. Это мой 4-й урок о том, как управлять РЕЛЕ (не модулем реле) с помощью Arduino.

Существуют сотни учебных пособий о том, как использовать «релейный модуль», но я не смог найти хорошего, в котором показано, как использовать релейный модуль, а не релейный модуль. Итак, здесь мы должны обсудить, как работает реле и как мы можем подключить его к Arduino.

Примечание: Если вы выполняете какие-либо работы с «сетевым питанием», например, с электропроводкой переменного тока 120 В или 240 В, вы всегда должны использовать соответствующее оборудование и защитные приспособления и определить, достаточно ли у вас навыков и опыта, или проконсультироваться с лицензированным электриком.Этот проект не предназначен для использования детьми.

Шаг 1: Основы

Реле — это большой механический переключатель, который включается или выключается при подаче напряжения на катушку.

В зависимости от принципа действия и конструктивных особенностей реле бывают разных типов, например:

  • многомерные реле и так далее, с различными номинальными характеристиками, размерами и областями применения.

Однако в этом руководстве мы будем обсуждать только электромагнитные реле.

Справочник по различным типам реле:

Шаг 2: Мое реле (SRD-05VDC-SL-C)

Реле, на которое я смотрю, — это SRD-05VDC-SL-C.Это очень популярное реле среди любителей электроники Arduino и DIY.

Это реле имеет 5 контактов. 2 для катушки. Средний — COM (общий), а остальные два — NO (нормально открытый) и NC (нормально закрытый). Когда ток течет через катушку реле, создается магнитное поле, которое заставляет железный якорь двигаться, замыкая или разрывая электрическое соединение. Когда электромагнит находится под напряжением, NO — это тот, который включен, а NC — тот, который выключен. Когда катушка обесточена, электромагнитная сила исчезает, и якорь возвращается в исходное положение, включая замыкающий контакт.Замыкание и размыкание контактов приводит к включению и выключению цепей.

Теперь, если мы посмотрим на верхнюю часть реле, первое, что мы увидим, — это SONGLE, это название производителя. Затем мы видим «Номинальный ток и напряжение»: это максимальный ток и / или напряжение, которое может пройти через переключатель. Он начинается с 10 А при 250 В переменного тока и снижается до 10 А при 28 В постоянного тока. Наконец, нижний бит говорит: SRD-05VDC-SL-C SRD: модель реле. 05VDC: Также известное как «Номинальное напряжение катушки» или «Напряжение активации реле», это напряжение, необходимое катушке для активации реле.

  • S: обозначает структуру «герметичного типа»
  • L: это «чувствительность катушки», которая составляет 0,36 Вт.
  • C: сообщает нам о контактной форме.

. реле для получения дополнительной информации. http://old.ghielectronics.com/downloads/man/20084 …

Шаг 3: Знакомство с реле

Начнем с определения контактов катушки реле.

Это можно сделать либо подключив мультиметр к режиму измерения сопротивления со шкалой 1000 Ом (поскольку сопротивление катушки обычно находится в диапазоне от 50 до 1000 Ом), либо используя батарею.На этом реле обозначена полярность «нет», так как в нем нет внутреннего подавляющего диода. Следовательно, положительный выход источника питания постоянного тока может быть подключен к любому из контактов катушки, а отрицательный выход источника питания постоянного тока будет подключен к другому контакту катушки или наоборот. Если мы подключим нашу батарею к правильным контактам, вы действительно можете услышать звук * щелчка * при включении переключателя.

Если вы когда-нибудь запутаетесь в определении того, какой из них является нормально разомкнутым, а какой — нормально замкнутым, выполните следующие шаги, чтобы легко определить, что:

  • Установите мультиметр в режим измерения сопротивления.
  • Переверните реле вверх дном, чтобы увидеть контакты, расположенные в его нижней части.
  • Теперь подключите один на щупе мультиметра к контакту между катушками (общий контакт)
  • Затем подключите другой щуп один за другим к оставшимся 2 контактам.

Только один из контактов замыкает цепь и будет показывать активность на мультиметре.

Шаг 4: Arduino и реле

* Возникает вопрос: «Зачем использовать реле с Arduino?»

Контакты GPIO микроконтроллера (общего назначения ввода / вывода) не могут работать с устройствами с более высокой мощностью.Светодиоды достаточно просты, но большие силовые элементы, такие как лампочки, двигатели, насосы или вентиляторы, требуют более хитрой схемы. Вы можете использовать реле 5 В для переключения тока 120–240 В и использовать Arduino для управления реле.

* Реле в основном позволяет при относительно низком напряжении легко управлять цепями более высокой мощности. Реле выполняет это, используя 5 В, выводимое с вывода Arduino, для подачи питания на электромагнит, который, в свою очередь, замыкает внутренний физический переключатель для включения или выключения цепи более высокой мощности.Коммутационные контакты реле полностью изолированы от катушки и, следовательно, от Arduino. Единственная связь — магнитное поле. Этот процесс называется «Электрическая изоляция».

* Теперь возникает вопрос, зачем нам нужен дополнительный бит схемы для управления реле? Катушке реле требуется большой ток (около 150 мА) для управления реле, чего Arduino не может обеспечить. Поэтому нам нужно устройство для усиления тока. В этом проекте транзистор 2N2222 NPN управляет реле, когда переход NPN становится насыщенным.

Шаг 5: Требования к оборудованию

Для этого руководства нам потребуется:

  • 1 x Arduino Nano / UNO (все, что под рукой)
  • 1 x 1N4007 Высоковольтный диод с высоким номинальным током для защиты микроконтроллера от напряжения шипы
  • 1 x 2N2222 NPN-транзистор общего назначения
  • 1 светодиод и ограничивающий ток резистор 220 Ом для проверки возможности подключения

USB-кабель для загрузки кода в Arduino и общее паяльное оборудование.

Шаг 6: Сборка

* Начнем с подключения контактов VIN и GND Arduino к положительным и отрицательным шинам макета.

* Затем подключите один из выводов катушки к положительной 5-вольтовой шине макетной платы.

* Далее нам нужно подключить диод к электромагнитной катушке. Диод на электромагните проводит в обратном направлении, когда транзистор выключен, чтобы защитить от скачка напряжения или обратного потока тока.

* Затем подключите коллектор NPN-транзистора ко 2-му выводу катушки.

* Излучатель подключается к отрицательной шине макета.

* Наконец, с помощью резистора 1 кОм подключите базу транзистора к выводу D2 Arduino.

* На этом наша схема завершена, теперь мы можем загрузить код в Arduino для включения или выключения реле. В основном, когда + 5В протекает через резистор 1 кОм к базе транзистора, ток около 0,0005 ампер (500 микроампер) течет и включает транзистор. Ток силой около 0,07 А начинает течь через переход, включая электромагнит.Затем электромагнит тянет переключающий контакт и перемещает его, чтобы подключить клемму COM к клемме NO.

* После подключения нормально разомкнутой клеммы можно включить лампу или любую другую нагрузку. В этом примере я просто включаю и выключаю светодиод.

Шаг 7: Код

Код очень простой. Просто начните с определения цифрового вывода 2 Arduino как вывода реле.

Затем определите pinMode как OUTPUT в разделе настройки кода. Наконец, в разделе цикла мы собираемся включать и выключать реле после каждых 500 циклов ЦП, устанавливая контакт реле на HIGH и LOW соответственно.

Шаг 8: Заключение

* Помните: очень важно установить диод поперек катушки реле, потому что при снятии тока с катушки генерируется всплеск напряжения (индуктивный откат катушки) (электромагнитные помехи). из-за схлопывания магнитного поля. Этот скачок напряжения может повредить чувствительные электронные компоненты, управляющие цепью.

* Самое важное: как и в случае с конденсаторами, мы всегда занижаем рейтинг реле, чтобы снизить риск отказа реле.Допустим, вам нужно работать при 10 А при 120 В переменного тока, не используйте реле, рассчитанное на 10 А при 120 В переменного тока, вместо этого используйте реле большего размера, например 30 А при 120 В переменного тока. Помните, что мощность = ток * напряжение, поэтому реле на 30 А при 220 В может выдерживать до 6000 Вт устройства.

* Если вы просто замените светодиод на любое другое электрическое устройство, такое как вентилятор, лампочка, холодильник и т. Д., Вы сможете превратить это устройство в интеллектуальное устройство с розеткой, управляемой Arduino.

* Реле также можно использовать для включения или выключения двух цепей. Один, когда электромагнит включен, а второй, когда электромагнит выключен.

* Реле помогает в электрической изоляции. Коммутационные контакты реле полностью изолированы от катушки и, следовательно, от Arduino. Единственная связь — магнитное поле.

Примечание: Короткое замыкание на выводах Arduino или попытка запустить от него сильноточные устройства могут повредить или разрушить выходные транзисторы на выводе или повредить весь чип AtMega. Часто это приводит к «мертвому» контакту микроконтроллера, но оставшийся чип все равно будет нормально работать.По этой причине рекомендуется подключать выводы ВЫХОДА к другим устройствам с резисторами 470 Ом или 1 кОм, если для конкретного приложения не требуется максимальный ток, потребляемый выводами.

Шаг 9: Спасибо

Еще раз спасибо за просмотр этого видео! Надеюсь, это вам поможет. Если вы хотите поддержать меня, вы можете подписаться на мой канал и смотреть другие мои видео. Спасибо, еще раз в моем следующем видео.

Релейный контакт — обзор

3.3 Отключение с электрической сигнализацией

Схема электрического отключения также показана в общих чертах на рис.41. Любая электрическая функция отключения передается на передний и задний соленоиды отключения через дублированные системы контактов реле. Эти реле разделены на расцепители категории A и категории B . Отдельные наборы контактов на одних и тех же реле отключают автоматические выключатели напрямую в случае отключения категории A и через реле с малой прямой мощностью в случае категории B. Для включения механических отключений, например, отключение по превышению скорости, чтобы сигнализировать об отключении автоматических выключателей, потеря давления защитной жидкости обнаруживается наборами реле давления, которые обеспечивают дополнительные входы для инициирования отключений категории B через реле малой прямой мощности.Реле давления также могут использоваться для отключения котла и вспомогательных устройств, например, обратных клапанов стравливаемого пара, в зависимости от области применения.

Реле с малой прямой мощностью используют измерение мощности через трансформаторы напряжения и тока, чтобы определить, когда вырабатываемая мощность составляет менее 1%. Это обеспечивает почти полное закрытие паровых клапанов и недопустимость превышения скорости при размыкании автоматических выключателей, даже если в дальнейшем закрытие парового клапана не происходит.

Вышеупомянутые общие принципы могут быть реализованы различными способами с резервированием «1 из 2» или «2 из 3».Хотя ранее описанная гидравлическая система отключения представляет собой систему «1 из 2», будет видно, что совместимость с трехканальной электрической системой все еще возможна. Теперь подробно описывается каждая из двух систем.

Резервирование системы «1 из 2» является более сложным, чем предполагает простая интерпретация этого названия. В каждый из двух каналов встроены дополнительные преобразователи, так что можно использовать не менее двух преобразователей на канал или всего четыре преобразователя.Последовательное соединение двух контактов инициирования отключения в каждом канале позволяет любому отдельному преобразователю выйти из строя, не вызывая отключения турбины. Однако ни один единичный отказ электрического компонента не предотвратит истинного отключения. Идентификация неисправных компонентов осуществляется либо схемами контроля, либо рутинными испытаниями под нагрузкой датчиков, инициирующих срабатывание «передней» и «задней» систем, по очереди. На Рис. 2.42 показана упрощенная схема отключения для одного отключения категории A, , одного отключения категории B и аварийных кнопок оператора.«Передняя» и «задняя» цепи полностью независимы и питаются от двух разных источников питания постоянного тока. Необходимо подать питание на соленоид отключения турбины SOL, чтобы инициировать отключение турбины через клапан аварийного отключения (контур 2). В качестве резерва на схеме 3 показан дублированный набор контактов, управляющих вспомогательным реле OP. Отдельные наборы контактов в этом реле затем приводят в действие электромагнитные клапаны сброса давления каждого реле парового клапана, они относятся к типу 2.

РИС. 2.42. Упрощенная схема отключения с резервированием «1 из 2» с дополнительным резервированием датчиков

Цепь 1 показывает типичную функцию отключения категории A , высокое давление выхлопных газов турбины низкого давления, измеряемое реле давления PS6 и 7.Они показаны в нормальном рабочем положении; при возникновении условия отключения PS6 замыкается и активирует реле флага AXR1.1. Если PS7 также замыкается, TR3 запитывается через контакты AXR1.1 и AXR1.2. Если «передняя» система проверяется, переключатель проверки будет в положении T1, и вместо инициирования отключения лампа LP1 загорится при замыкании PS6 и PS7. Контрольно-измерительные приборы, связанные с контрольным переключателем, позволяют подавать атмосферное давление на реле давления PS6 и PS7, тем самым всесторонне проверяя функционирование всех компонентов вплоть до лампы.

Контур 4 очень похож, в этом случае PS1 и PS2 обеспечивают отключение реле низкого давления жидкости категории B , показанное на рис. 2.41. Вспомогательное реле TPR2.1 используется для обеспечения других блокировок, а также отключений. Один контакт TPR2.1 подключен параллельно с другими отключающими контактами категории B для включения реле отключения TR7. В свою очередь, контакты этого реле, которые не показаны, инициируют отключение автоматического выключателя через реле малой прямой мощности.

Концепция отключения «1 из 2» обеспечивается дублированием в цепи заднего канала, где полностью независимые наборы датчиков инициируют отключение.Из-за конфигурации гидравлической системы отключения турбины отключение происходит, как только подается питание на любой из соленоидов отключения турбины.

В примерах, выбранных для иллюстрации типичных отключений категорий A и B , использовалось по два реле давления в каждом канале. Для других функций отключения может подойти другая форма резервирования. Таким образом, в некоторых приложениях для отключения используется высокая температура выхлопных газов низкого давления, измерение выполняется в каждом потоке каждого выхлопа.Для машины с шестью выхлопными трубами будет использоваться 12 преобразователей, по шесть в каждом канале, объединенных в три пары, чтобы обеспечить защиту от ложных срабатываний.

На рисунке 2.43 показан второй способ реализации схемы электрического отключения турбогенератора с использованием системы большинства голосов «2 из 3». Используя эту технику, практически невозможно, чтобы какой-либо отдельный компонент или отказ датчика вызвал ложное срабатывание. Точно так же единичный отказ не предотвратит отключение. Вспомогательные контакты, не показанные на рисунке, выдают оператору сигнал тревоги в случае отказа и запрещают тестирование под нагрузкой до тех пор, пока неисправность не будет устранена.

РИС. 2.43. Упрощенная схема отключения с использованием резервирования «2 из 3»

Схема очень проста, при этом основные функциональные блоки дублируются или дублируются по мере необходимости. Преобразователи подключены к трем аналогичным вспомогательным цепям отключения. Во вспомогательной цепи отключения 1 PS7 обеспечивает типичную функцию отключения категории A , такую ​​как высокое давление выхлопных газов турбины низкого давления. Он управляет вспомогательным реле RL7 через флаговое реле. Эквивалентными вспомогательными реле в каналах 2 и 3 являются реле RL8 и RL9.В правой части схемы показаны четыре цепи, каждая из которых использует набор контактов от реле RL7, RL8 и RL9, подключенных по схеме голосования «2 из 3». Первые два набора управляют передними и задними соленоидами отключения турбины, в то время как вторые два набора управляют реле отключения TR3 и TR4, чтобы обеспечить прямое отключение выключателя.

Особенностью этой системы является то, что испытание под нагрузкой может проводиться на каждом преобразователе по очереди, а работа цепи проверяется вплоть до работы соленоида отключения турбины.Таким образом, если передний соленоид гидравлически изолирован и контакты контрольного переключателя TF замкнуты, датчик PS7 может быть сброшен в атмосферу, что приведет к замыканию контактов, включив RL7 и соленоид отключения передней турбины.

Фактическое действие этого может быть показано оператору с помощью реле давления жидкости, контролирующего давление жидкости защиты в соответствующей точке на переднем аварийном отключающем клапане. Во время тестирования задние соленоиды отключения турбины обеспечивают защиту в случае реального отключения.Аналогичные средства тестирования предусмотрены для большинства датчиков, причем входные сигналы для тестирования применяются с помощью электромагнитного клапана, расположенного рядом с каждым датчиком. Это позволяет проводить все испытания под нагрузкой из ячеек расцепителя с полным набором показаний для тестера, чтобы можно было легко отслеживать и устранять неисправности.

Схема категории B очень похожа на схему, описанную для категории A. Здесь отключающие контакты всех параметров отключения подключены параллельно.Таким образом, несколько подобных наборов в канале 1 работают параллельно с PS1 и RL11, и все они управляют реле RL1, которое является одним из вспомогательных реле отключения, образующих группы контактов «2 из 3» для управления соленоидами отключения турбины и реле категории B. реле отключения TR7 и TR8.

Уточнить результаты поиска или просмотреть

Уточнить результаты поиска или просмотреть

Уточните свой взгляд на библиотеку или конкретную папку.Немедленно.

По сценарию Джеймса Фокса
Обновлено больше недели назад

Наш инструмент Refine предоставляет ряд полезных критериев для сужения вашей совокупности файлов до более мелких и простых в использовании выборок. Вы можете использовать инструмент уточнения, не вводя предварительно поисковый запрос. Просто начните выбирать параметры, и соответствующие файлы будут возвращены. Это отличается от нашего инструмента расширенного поиска, где вы должны сначала выбрать поисковый запрос.

  • Формат файла — Вам нужно найти готовые к использованию фотографии для запуска нового веб-сайта? Image Relay работает с файлами любого формата, и вы можете быстро отфильтровать файлы по типу — изображения, документы, видео — это не имеет значения, вы быстро получите те, которые вам нужны.

  • Ограничение шаблонов и метаданных — с помощью этой функции вы можете ограничить свой шаблон метаданных, если у вас их несколько. В нем вы также можете искать в определенном поле метаданных. Например, если есть поле создателя, вы можете ввести имя, и оно будет возвращать результаты именно из этого поля, а не всего документа или всех полей метаданных, таких как общий поиск.

  • Даты. Хотите просмотреть самые свежие файлы или, может быть, хотите просмотреть файлы из прошлогодней праздничной кампании? Быстро фильтруйте файлы, загруженные за последние 24 часа, последние 7 дней, последний месяц или в любой выбранный вами диапазон дат.

  • Ориентация. У вашей компании есть несколько типов логотипов? Независимо от того, горизонтальные, вертикальные или сложенные, вы можете быстро сузить список файлов, чтобы найти нужный.

  • Цвет. Вы запускаете новую кампанию и нуждаетесь в изображениях, которые будут хорошо сочетаться с зеленой рамкой. Как найти изображения с правильным цветовым балансом? Image Relay автоматически определяет преобладающий цвет каждого файла, что упрощает вашей команде фильтрацию и поиск нужного файла.

Вы можете уточнить всю библиотеку или определенную папку, которая вам нужна. Вы также можете сократить результаты поиска с помощью инструментов уточнения.

Дополнительная литература:
Базовый поиск
Расширенный поиск
Использование логических операторов

Как работают электронные компоненты

Электронные гаджеты стали неотъемлемой частью нашей жизни. Они сделали нашу жизнь комфортнее и удобнее. Электронные гаджеты находят широкое применение в современном мире, от авиации до медицины и здравоохранения.Фактически, революция в электронике и революция в компьютерах идут рука об руку.

Большинство гаджетов имеют крошечные электронные схемы, которые могут управлять машинами и обрабатывать информацию. Проще говоря, электронные схемы — это линия жизни различных электроприборов. В этом руководстве подробно рассказывается об общих электронных компонентах, используемых в электронных схемах, и о том, как они работают.

В этой статье я дам обзор электронных схем. Затем я предоставлю дополнительную информацию о 7 различных типах компонентов.Для каждого типа я буду обсуждать состав, принцип работы, а также функцию и значение компонента.

  1. Конденсатор
  2. Резистор
  3. Диод
  4. Транзистор
  5. Индуктор
  6. Реле
  7. Кристалл кварца


Обзор электронной схемы

Электронная схема — это структура, которая направляет и управляет электрическим током для выполнения различных функций, включая усиление сигнала, вычисление и передачу данных.Он состоит из нескольких различных компонентов, таких как резисторы, транзисторы, конденсаторы, катушки индуктивности и диоды. Для соединения компонентов друг с другом используются токопроводящие провода или дорожки. Однако цепь считается завершенной, только если она начинается и заканчивается в одной и той же точке, образуя цикл.


Элементы электронной схемы

Сложность и количество компонентов в электронной схеме может изменяться в зависимости от ее применения. Однако простейшая схема состоит из трех элементов, включая токопроводящую дорожку, источник напряжения и нагрузку.

Элемент 1: токопроводящий путь

Электрический ток течет по токопроводящей дорожке. Хотя медные провода используются в простых цепях, они быстро заменяются токопроводящими дорожками. Проводящие дорожки — это не что иное, как медные листы, наклеенные на непроводящую основу. Они часто используются в небольших и сложных схемах, таких как печатные платы (PCB).

Элемент 2: Источник напряжения

Основная функция цепи — обеспечить безопасное прохождение электрического тока через нее.Итак, первый ключевой элемент — это источник напряжения. Это двухконтактное устройство, такое как аккумулятор, генераторы или энергосистемы, которые обеспечивают разность потенциалов (напряжение) между двумя точками в цепи, так что ток может течь через них.

Элемент 3: Нагрузка

Нагрузка — это элемент в цепи, который потребляет мощность для выполнения определенной функции. Лампочка — простейшая нагрузка. Однако сложные схемы имеют разные нагрузки, такие как резисторы, конденсаторы, транзисторы и транзисторы.


Факты об электронных схемах

Факт 1: Обрыв цепи

Как упоминалось ранее, цепь всегда должна образовывать петлю, чтобы через нее протекал ток. Однако, когда дело доходит до разомкнутой цепи, ток не может течь, поскольку один или несколько компонентов отключены намеренно (с помощью переключателя) или случайно (сломанные части). Другими словами, любая цепь, не образующая петли, является разомкнутой.

Факт 2: Замкнутый контур

Замкнутый контур — это контур, который образует контур без каких-либо прерываний.Таким образом, это полная противоположность разомкнутой цепи. Однако полная цепь, которая не выполняет никаких функций, остается замкнутой цепью. Например, цепь, подключенная к разряженной батарее, может не работать, но это все равно замкнутая цепь.

Факт 3: Короткое замыкание

В случае короткого замыкания между двумя точками электрической цепи образуется соединение с низким сопротивлением. В результате ток имеет тенденцию течь через это вновь образованное соединение, а не по намеченному пути.Например, если есть прямое соединение между отрицательной и положительной клеммами батареи, ток будет проходить через нее, а не через цепь.

Однако короткое замыкание обычно приводит к серьезным несчастным случаям, так как ток может протекать на опасно высоких уровнях. Следовательно, короткое замыкание может повредить электронное оборудование, вызвать взрыв батарей и даже вызвать пожар в коммерческих и жилых зданиях.

Факт 4: Печатные платы (PCB)

Для большинства электронных приборов требуются сложные электронные схемы.Вот почему разработчикам приходится размещать крошечные электронные компоненты на печатной плате. Он состоит из пластиковой платы с соединительными медными дорожками с одной стороны и множества отверстий для крепления компонентов. Когда макет печатной платы наносится химическим способом на пластиковую плату, она называется печатной платой или печатной платой.

Рисунок 1: Печатная плата . [Источник изображения]
Факт 5: Интегральные схемы (ИС)

Хотя печатные платы могут предложить множество преимуществ, для большинства современных приборов, таких как компьютеры и мобильные телефоны, требуются сложные схемы, состоящие из тысяч и даже миллионов компонентов.Вот тут-то и пригодятся интегральные схемы. Это крошечные электронные схемы, которые могут поместиться внутри небольшого кремниевого чипа. Джек Килби изобрел первую интегральную схему в 1958 году в компании Texas Instruments. Единственная цель ИС — повысить эффективность электронных устройств при уменьшении их размера и стоимости производства. С годами интегральные схемы становились все более сложными по мере развития технологий. Вот почему персональные компьютеры, ноутбуки, мобильные телефоны и другая бытовая электроника с каждым днем ​​становятся все дешевле и лучше.

Рисунок 2: Интегральные схемы. [Источник изображения]

Электронные компоненты

Благодаря современным технологиям, процесс сборки электронных схем был полностью автоматизирован, особенно это касается изготовления микросхем и печатных плат. Количество и расположение компонентов в схеме может варьироваться в зависимости от ее сложности. Однако он построен с использованием небольшого количества стандартных компонентов.

Следующие компоненты используются для создания электронных схем.


Компонент 1: Конденсатор

Конденсаторы

широко используются для построения различных типов электронных схем.Конденсатор — это пассивный двухконтактный электрический компонент, который может электростатически накапливать энергию в электрическом поле. Проще говоря, он работает как небольшая аккумуляторная батарея, накапливающая электричество. Однако, в отличие от аккумулятора, он может заряжаться и разряжаться за доли секунды.

Рисунок 3: Конденсаторы [Источник изображения]
A. Состав Конденсаторы

бывают всех форм и размеров, но обычно они состоят из одинаковых основных компонентов. Между ними уложены два электрических проводника или пластины, разделенные диэлектриком или изолятором.Пластины состоят из проводящего материала, такого как тонкие пленки из металла или алюминиевой фольги. С другой стороны, диэлектрик — это непроводящий материал, такой как стекло, керамика, пластиковая пленка, воздух, бумага или слюда. Вы можете вставить два электрических соединения, выступающих из пластин, чтобы зафиксировать конденсатор в цепи.

B. Как это работает?

Когда вы прикладываете напряжение к двум пластинам или подключаете их к источнику, на изоляторе возникает электрическое поле, в результате чего на одной пластине накапливается положительный заряд, а на другой накапливается отрицательный заряд.Конденсатор продолжает сохранять заряд, даже если вы отключите его от источника. В тот момент, когда вы подключаете его к нагрузке, накопленная энергия перетекает от конденсатора к нагрузке.

Емкость — это количество энергии, хранящейся в конденсаторе. Чем выше емкость, тем больше энергии он может хранить. Увеличить емкость можно, сдвинув пластины ближе друг к другу или увеличив их размер. В качестве альтернативы вы также можете улучшить изоляционные качества, чтобы увеличить емкость.

C. Функция и значение

Хотя конденсаторы выглядят как батареи, они могут выполнять различные типы функций в цепи, такие как блокировка постоянного тока с одновременным прохождением переменного тока или сглаживание выходного сигнала от источника питания. Они также используются в системах передачи электроэнергии для стабилизации напряжения и потока мощности. Одной из наиболее важных функций конденсатора в системах переменного тока является коррекция коэффициента мощности, без которой вы не сможете обеспечить достаточный пусковой момент для однофазных двигателей.

Фильтры для конденсаторов

Если вы используете микроконтроллер в цепи для запуска определенной программы, вы не хотите, чтобы его напряжение упало, поскольку это приведет к сбросу контроллера. Вот почему дизайнеры используют конденсатор. Он может обеспечить микроконтроллер необходимой мощностью на долю секунды, чтобы избежать перезапуска. Другими словами, он отфильтровывает шумы в линии питания и стабилизирует источник питания.

Применения удерживающего конденсатора

В отличие от батареи, конденсатор быстро разряжается.Вот почему он используется для кратковременного питания цепи. Батареи вашей камеры заряжают конденсатор, прикрепленный к вспышке. Когда вы делаете снимок со вспышкой, конденсатор высвобождает свой заряд за доли секунды, генерируя вспышку света.

Применение конденсатора таймера

В резонансной или зависящей от времени схеме конденсаторы используются вместе с резистором или катушкой индуктивности в качестве элемента синхронизации. Время, необходимое для зарядки и разрядки конденсатора, определяет работу схемы.


Компонент 2: резистор

Резистор — это пассивное двухконтактное электрическое устройство, которое препятствует прохождению тока. Это, наверное, самый простой элемент в электронной схеме. Это также один из наиболее распространенных компонентов, поскольку сопротивление является неотъемлемым элементом почти всех электронных схем. Обычно они имеют цветовую маркировку.

Рисунок 4: Резисторы [Источник изображения]
A. Состав

Резистор — это совсем не модное устройство, потому что сопротивление — это естественное свойство, которым обладают почти все проводники.Итак, конденсатор состоит из медной проволоки, обернутой вокруг изоляционного материала, такого как керамический стержень. Количество витков и толщина медной проволоки прямо пропорциональны сопротивлению. Чем больше количество витков и чем тоньше провод, тем выше сопротивление.

Также можно встретить резисторы, изготовленные по спирали из углеродной пленки. Отсюда и название резисторы с углеродной пленкой. Они предназначены для схем с низким энергопотреблением, потому что резисторы с углеродной пленкой не так точны, как их аналоги с проволочной обмоткой.Однако они дешевле проводных резисторов. К обоим концам прикреплены клеммы проводов. Поскольку резисторы не учитывают полярность в цепи, ток может течь в любом направлении. Таким образом, не нужно беспокоиться о том, чтобы прикрепить их вперед или назад.

B. Как это работает?

Резистор может показаться не очень большим. Можно подумать, что он ничего не делает, кроме потребления энергии. Однако он выполняет жизненно важную функцию: контролирует напряжение и ток в вашей цепи.Другими словами, резисторы дают вам контроль над конструкцией вашей схемы.

Когда электрический ток начинает течь по проводу, все электроны начинают двигаться в одном направлении. Это похоже на воду, текущую по трубе. По тонкой трубе будет течь меньше воды, потому что у нее меньше места для ее движения.

Точно так же, когда ток проходит через тонкую проволоку в резисторе, электронам становится все труднее двигаться через него. Короче говоря, количество электронов, проходящих через резистор, уменьшается по мере увеличения длины и толщины провода.

C. Функция и значение У резисторов

есть множество применений, но три наиболее распространенных — это управление током, деление напряжения и цепи резистор-конденсатор.

Ограничение тока

Если в цепь не добавить резисторы, ток будет опасно высоким. Это может привести к перегреву других компонентов и их повреждению. Например, если вы подключите светодиод напрямую к батарее, он все равно будет работать.Однако через некоторое время светодиод нагреется, как огненный шар. В конечном итоге он сгорит, поскольку светодиоды менее устойчивы к нагреву.

Но, если ввести в схему резистор, он снизит протекание тока до оптимального уровня. Таким образом, вы можете дольше держать светодиод включенным, не перегревая его.

Делительное напряжение Также используются резисторы

для понижения напряжения до нужного уровня. Иногда для определенной части схемы, такой как микроконтроллер, может потребоваться более низкое напряжение, чем для самой схемы.Здесь на помощь приходит резистор.

Допустим, ваша схема работает от аккумулятора 12 В. Однако для микроконтроллера требуется только питание 6 В. Итак, чтобы разделить напряжение пополам, все, что вам нужно сделать, это подключить последовательно два резистора с равным сопротивлением. Проволока между двумя резисторами снизит наполовину напряжение вашей цепи, к которой может быть подключен микроконтроллер. Используя соответствующие резисторы, вы можете снизить напряжение в цепи до любого уровня.

Резисторно-конденсаторные цепи Резисторы

также используются в сочетании с конденсаторами для создания интегральных схем, которые содержат массивы резистор-конденсатор в одной микросхеме.Их также называют RC-фильтрами или RC-сетями. Они часто используются для подавления электромагнитных помех (EMI) или радиочастотных помех (RFI) в различных инструментах, включая порты ввода / вывода компьютеров и ноутбуков, локальные сети (LAN) и глобальные сети (WAN), среди прочего. Они также используются в станках, распределительных устройствах, контроллерах двигателей, автоматизированном оборудовании, промышленных приборах, лифтах и ​​эскалаторах.


Компонент 3: Диод

Диод — это устройство с двумя выводами, которое позволяет электрическому току течь только в одном направлении.Таким образом, это электронный эквивалент обратного клапана или улицы с односторонним движением. Он обычно используется для преобразования переменного тока (AC) в постоянный ток (DC). Он изготовлен либо из полупроводникового материала (полупроводниковый диод), либо из вакуумной трубки (вакуумный ламповый диод). Однако сегодня большинство диодов изготовлено из полупроводникового материала, особенно из кремния.

Рисунок 5: Диод [Источник изображения]
A. Состав

Как упоминалось ранее, существует два типа диодов: вакуумные диоды и полупроводниковые диоды.Вакуумный диод состоит из двух электродов (катода и анода), помещенных внутри герметичной вакуумной стеклянной трубки. Полупроводниковый диод состоит из полупроводников p-типа и n-типа. Поэтому он известен как диод с p-n переходом. Обычно он изготавливается из кремния, но также можно использовать германий или селен.

B. Как это работает?
Вакуумный диод

Когда катод нагревается нитью накала, в вакууме образуется невидимое облако электронов, называемое пространственным зарядом.Хотя электроны испускаются катодом, отрицательный объемный заряд отталкивает их. Поскольку электроны не могут достичь анода, через цепь не протекает ток. Однако, когда анод становится положительным, объемный заряд исчезает. В результате ток начинает течь от катода к аноду. Таким образом, электрический ток внутри диода течет только от катода к аноду и никогда от анода к катоду.

Соединительный диод P-N

Диод с p-n переходом состоит из кремниевых полупроводников p-типа и n-типа.Полупроводник p-типа обычно легируется бором, оставляя в нем дырки (положительный заряд). С другой стороны, полупроводник n-типа легирован сурьмой, добавляя в него несколько дополнительных электронов (отрицательный заряд). Таким образом, электрический ток может протекать через оба полупроводника.

Когда вы складываете блоки p-типа и n-типа вместе, лишние электроны n-типа объединяются с дырками p-типа, создавая зону обеднения без каких-либо свободных электронов или дырок. Короче, ток через диод больше не может проходить.

Когда вы подключаете отрицательную клемму батареи к кремнию n-типа, а положительную клемму к p-типу (прямое смещение), ток начинает течь, поскольку электроны и дырки теперь могут перемещаться по переходу. Однако, если вы перевернете клеммы (обратное смещение), ток не будет течь через диод, потому что дырки и электроны отталкиваются друг от друга, расширяя зону истощения. Таким образом, как и вакуумный диод, переходной диод может пропускать ток только в одном направлении.

С.Функция и значение

Хотя диоды являются одними из простейших компонентов электронной схемы, они находят уникальное применение в различных отраслях промышленности.

Преобразование переменного тока в постоянный

Наиболее распространенное и важное применение диодов — преобразование переменного тока в постоянный. Обычно полуволновой (один диод) или двухполупериодный (четыре диода) выпрямитель используется для преобразования мощности переменного тока в мощность постоянного тока, особенно в бытовых источниках питания. Когда вы пропускаете источник питания переменного тока через диод, через него проходит только половина формы волны переменного тока.Поскольку этот импульс напряжения используется для зарядки конденсатора, он создает устойчивые и непрерывные постоянные токи без каких-либо пульсаций. Различные комбинации диодов и конденсаторов также используются для создания различных типов умножителей напряжения для умножения небольшого переменного напряжения на высокие выходы постоянного тока.

Обходные диоды

Обходные диоды часто используются для защиты солнечных панелей. Когда ток от остальных элементов проходит через поврежденный или пыльный солнечный элемент, это вызывает перегрев.В результате общая выходная мощность снижается, создавая горячие точки. Диоды подключаются параллельно солнечным элементам, чтобы защитить их от проблемы перегрева. Эта простая конструкция ограничивает напряжение на неисправном солнечном элементе, позволяя току проходить через неповрежденные элементы во внешнюю цепь.

Защита от скачков напряжения

Когда источник питания внезапно прерывается, он создает высокое напряжение в большинстве индуктивных нагрузок.Этот неожиданный скачок напряжения может повредить нагрузку. Однако вы можете защитить дорогое оборудование, подключив диод к индуктивным нагрузкам. В зависимости от типа защиты эти диоды известны под разными названиями, включая демпферный диод, обратный диод, подавляющий диод и диод свободного хода, среди других.

Демодуляция сигнала

Они также используются в процессе модуляции сигнала, поскольку диоды могут эффективно удалять отрицательный элемент сигнала переменного тока.Диод выпрямляет несущую волну, превращая ее в постоянный ток. Звуковой сигнал извлекается из несущей волны, этот процесс называется звуковой частотной модуляцией. Вы можете слышать звук после некоторой фильтрации и усиления. Следовательно, в радиоприемниках обычно используются диоды для извлечения сигнала из несущей волны.

Защита от обратного тока

Изменение полярности источника постоянного тока или неправильное подключение батареи может привести к протеканию значительного тока через цепь.Такое обратное подключение может повредить подключенную нагрузку. Вот почему защитный диод включен последовательно с плюсовой стороной клеммы аккумулятора. В случае правильной полярности диод становится смещенным в прямом направлении, и ток течет по цепи. Однако в случае неправильного подключения он становится смещенным в обратном направлении, блокируя ток. Таким образом, это может защитить ваше оборудование от возможных повреждений.


Компонент 4: Транзистор

Один из важнейших компонентов электронной схемы, транзисторы произвели революцию в области электроники.Эти крошечные полупроводниковые устройства с тремя выводами существуют уже более пяти десятилетий. Их часто используют как усилители и переключающие устройства. Вы можете думать о них как о реле без каких-либо движущихся частей, потому что они могут включать или выключать что-то без какого-либо движения.

Рисунок 6: Транзисторы [Источник изображения]
A. Состав

Вначале германий использовался для создания транзисторов, которые были чрезвычайно чувствительны к температуре. Однако сегодня они изготавливаются из кремния, полупроводникового материала, обнаруженного в песке, потому что кремниевые транзисторы гораздо более устойчивы к температуре и дешевле в производстве.Есть два разных типа биполярных переходных транзисторов (BJT), NPN и PNP. Каждый транзистор имеет три контакта, которые называются базой (b), коллектором (c) и эмиттером (e). NPN и PNP относятся к слоям полупроводникового материала, из которых изготовлен транзистор.

B. Как это работает?

Когда вы помещаете кремниевую пластину p-типа между двумя стержнями n-типа, вы получаете NPN-транзистор. Эмиттер присоединен к одному n-типу, а коллектор — к другому.База прикреплена к р-образному типу. Избыточные дырки в кремнии p-типа действуют как барьеры, блокирующие прохождение тока. Однако, если вы приложите положительное напряжение к базе и коллектору и отрицательно зарядите эмиттер, электроны начнут течь от эмиттера к коллектору.

Расположение и количество блоков p-типа и n-типа остаются инвертированными в транзисторе PNP. В этом типе транзистора один n-тип находится между двумя блоками p-типа. Поскольку распределение напряжения отличается, транзистор PNP работает иначе.Транзистор NPN требует положительного напряжения на базу, в то время как PNP требует отрицательного напряжения. Короче говоря, ток должен течь от базы, чтобы включить PNP-транзистор.

C. Функция и значение

Транзисторы функционируют как переключатели и усилители в большинстве электронных схем. Дизайнеры часто используют транзистор в качестве переключателя, потому что, в отличие от простого переключателя, он может превратить небольшой ток в гораздо больший. Хотя вы можете использовать простой переключатель в обычной цепи, для усовершенствованной схемы может потребоваться различное количество токов на разных этапах.

Транзисторы в слуховых аппаратах

Одно из самых известных применений транзисторов — слуховой аппарат. Обычно небольшой микрофон в слуховом аппарате улавливает звуковые волны, преобразовывая их в колеблющиеся электрические импульсы или токи. Когда эти токи проходят через транзистор, они усиливаются. Затем усиленные импульсы проходят через динамик, снова преобразуя их в звуковые волны. Таким образом, вы можете слышать значительно более громкую версию окружающего шума.

Транзисторы в компьютерах и калькуляторах

Все мы знаем, что компьютеры хранят и обрабатывают информацию, используя двоичный язык «ноль» и «единица». Однако большинство людей не знают, что транзисторы играют решающую роль в создании чего-то, что называется логическими вентилями, которые являются основой компьютерных программ. Транзисторы часто соединяются с логическими вентилями, чтобы создать уникальный элемент устройства, называемый триггером. В этой системе транзистор остается включенным, даже если вы уберете ток базы.Теперь он переключается или выключается всякий раз, когда через него проходит новый ток. Таким образом, транзистор может хранить ноль, когда он выключен, или единицу, когда он включен, что является принципом работы компьютеров.

Транзисторы Дарлингтона

Транзистор Дарлингтона состоит из двух соединенных вместе транзисторов с полярным соединением PNP или NPN. Он назван в честь своего изобретателя Сидни Дарлингтона. Единственная цель транзистора Дарлингтона — обеспечить высокий коэффициент усиления по току при низком базовом токе.Вы можете найти эти транзисторы в приборах, которым требуется высокий коэффициент усиления по току на низкой частоте, таких как регуляторы мощности, драйверы дисплея, контроллеры двигателей, световые и сенсорные датчики, системы сигнализации и усилители звука.

IGBT и MOSFET транзисторы

Биполярные транзисторы с изолированным затвором (IGBT) часто используются в качестве усилителей и переключателей в различных инструментах, включая электромобили, поезда, холодильники, кондиционеры и даже стереосистемы.С другой стороны, полевые транзисторы металл-оксид-полупроводник (MOSFET) обычно используются в интегральных схемах для управления уровнями мощности устройства или для хранения данных.


Компонент 5: Индуктор

Катушка индуктивности, также известная как реактор, представляет собой пассивный компонент цепи, имеющей два вывода. Это устройство хранит энергию в своем магнитном поле, возвращая ее в цепь при необходимости. Было обнаружено, что когда две катушки индуктивности помещаются рядом, не касаясь друг друга, магнитное поле, создаваемое первой катушкой индуктивности, воздействует на вторую катушку индуктивности.Это был решающий прорыв, который привел к изобретению первых трансформаторов.

Рисунок 7: Катушки индуктивности [Источник изображения]
A. Состав

Это, вероятно, простейший компонент, состоящий только из мотка медной проволоки. Индуктивность прямо пропорциональна количеству витков в катушке. Однако иногда катушка наматывается на ферромагнитный материал, такой как железо, слоистое железо и порошковое железо, для увеличения индуктивности. Форма этого сердечника также может увеличить индуктивность.Тороидальные (в форме бублика) сердечники обеспечивают лучшую индуктивность по сравнению с соленоидными (стержневыми) сердечниками на такое же количество витков. К сожалению, индукторы в интегральной схеме сложно соединить, поэтому их обычно заменяют резисторами.

B. Как это работает?

Когда ток проходит по проводу, он создает магнитное поле. Однако уникальная форма индуктора приводит к созданию гораздо более сильного магнитного поля. Это мощное магнитное поле, в свою очередь, сопротивляется переменному току, но пропускает через него постоянный ток.Это магнитное поле также хранит энергию.

Возьмем простую схему, состоящую из батареи, переключателя и лампочки. Лампа будет ярко светиться, как только вы включите выключатель. Добавьте в эту цепь индуктивность. Как только вы включаете выключатель, лампочка переключается с яркой на тусклую. С другой стороны, когда переключатель выключен, он становится очень ярким, всего на долю секунды до полного выключения.

Когда вы включаете переключатель, индуктор начинает использовать электричество для создания магнитного поля, временно блокируя прохождение тока.Но только постоянный ток проходит через индуктор, как только магнитное поле заполнено. Вот почему лампочка переключается с яркой на тусклую. Все это время индуктор накапливает некоторую электрическую энергию в виде магнитного поля. Итак, когда вы выключаете выключатель, магнитное поле поддерживает постоянный ток в катушке. Таким образом, лампочка некоторое время горит ярко перед тем, как погаснуть.

C. Функция и значение

Хотя индукторы полезны, их сложно включить в электронные схемы из-за их размера.Поскольку они более громоздкие по сравнению с другими компонентами, они увеличивают вес и занимают много места. Следовательно, их обычно заменяют резисторами в интегральных схемах (ИС). Тем не менее, индукторы имеют широкий спектр промышленных применений.

Фильтры в настроенных схемах

Одним из наиболее распространенных применений индукторов является выбор желаемой частоты в настроенных схемах. Они широко используются с конденсаторами и резисторами, подключенными параллельно или последовательно, для создания фильтров.Импеданс катушки индуктивности увеличивается с увеличением частоты сигнала. Таким образом, автономная катушка индуктивности может действовать только как фильтр нижних частот. Однако, когда вы объединяете его с конденсатором, вы можете создать режекторный фильтр, потому что сопротивление конденсатора уменьшается с увеличением частоты сигнала. Таким образом, вы можете использовать различные комбинации конденсаторов, катушек индуктивности и резисторов для создания различных типов фильтров. Они присутствуют в большинстве электронных устройств, включая телевизоры, настольные компьютеры и радио.

Дроссели как дроссели

Если через дроссель протекает переменный ток, он создает противоположный ток. Таким образом, он может преобразовывать источник переменного тока в постоянный. Другими словами, он подавляет подачу переменного тока, но позволяет постоянному току проходить через него, отсюда и название «дроссель». Обычно они используются в цепях питания, которым необходимо преобразовать подачу переменного тока в подачу постоянного тока.

Ферритовые бусины

Ферритовый шарик или ферритовый дроссель используется для подавления высокочастотного шума в электронных схемах.Некоторые из распространенных применений ферритовых шариков включают компьютерные кабели, телевизионные кабели и кабели для зарядки мобильных устройств. Эти кабели иногда могут действовать как антенны, взаимодействуя с аудио- и видеовыходами вашего телевизора и компьютера. Таким образом, индукторы используются в ферритовых шариках, чтобы уменьшить такие радиочастотные помехи.

Индукторы в датчиках приближения

Большинство датчиков приближения работают по принципу индуктивности. Индуктивный датчик приближения состоит из четырех частей, включая индуктор или катушку, генератор, схему обнаружения и выходную схему.Осциллятор генерирует флуктуирующее магнитное поле. Когда объект приближается к этому магнитному полю, начинают накапливаться вихревые токи, уменьшая магнитное поле датчика.

Схема обнаружения определяет силу датчика, в то время как выходная схема вызывает соответствующий ответ. Индуктивные датчики приближения, также называемые бесконтактными датчиками, ценятся за их надежность. Они используются на светофорах для определения плотности движения, а также в качестве датчиков парковки легковых и грузовых автомобилей.

Асинхронные двигатели

Асинхронный двигатель, вероятно, является наиболее распространенным примером применения индукторов. Обычно в асинхронном двигателе индукторы устанавливаются в фиксированном положении. Другими словами, им не разрешается выравниваться с близлежащим магнитным полем. Источник питания переменного тока используется для создания вращающегося магнитного поля, которое затем вращает вал. Потребляемая мощность регулирует скорость вращения. Следовательно, асинхронные двигатели часто используются в приложениях с фиксированной скоростью.Асинхронные двигатели очень надежны и прочны, поскольку нет прямого контакта между двигателем и ротором.

Трансформаторы

Как упоминалось ранее, открытие индукторов привело к изобретению трансформаторов, одного из основных компонентов систем передачи энергии. Вы можете создать трансформатор, объединив индукторы общего магнитного поля. Обычно они используются для повышения или понижения напряжения в линиях электропередач до желаемого уровня.

Накопитель энергии

Катушка индуктивности, как и конденсатор, также может накапливать энергию. Однако, в отличие от конденсатора, он может накапливать энергию в течение ограниченного времени. Поскольку энергия хранится в магнитном поле, она схлопывается, как только отключается источник питания. Тем не менее, индукторы функционируют как надежные накопители энергии в импульсных источниках питания, например, в настольных компьютерах.


Компонент 6: реле

Реле — это электромагнитный переключатель, который может размыкать и замыкать цепи электромеханическим или электронным способом.Для работы реле необходим относительно небольшой ток. Обычно они используются для регулирования малых токов в цепи управления. Однако вы также можете использовать реле для управления большими электрическими токами. Реле — это электрический эквивалент рычага. Вы можете включить его небольшим током, чтобы включить (или усилить) другую цепь, использующую большой ток. Реле могут быть либо электромеханическими, либо твердотельными.

Рисунок 8: Реле [Источник изображения]
A. Состав

Электромеханическое реле (ЭМИ) состоит из корпуса, катушки, якоря, пружины и контактов.Рама поддерживает различные части реле. Якорь — это подвижная часть релейного переключателя. Катушка (в основном из медной проволоки), намотанная на металлический стержень, создает магнитное поле, которое перемещает якорь. Контакты — это токопроводящие части, которые размыкают и замыкают цепь.

Твердотельное реле (SSR) состоит из входной цепи, цепи управления и выходной цепи. Входная цепь эквивалентна катушке электромеханического реле. Схема управления действует как связующее устройство между входными и выходными цепями, в то время как выходная цепь выполняет ту же функцию, что и контакты в ЭМИ.Твердотельные реле становятся все более популярными, поскольку они дешевле, быстрее и надежнее электромеханических реле.

B. Как это работает?

Используете ли вы электромеханическое реле или твердотельное реле, это нормально замкнутое (NC) или нормально разомкнутое (NO) реле. В случае реле NC контакты остаются замкнутыми при отсутствии питания. Однако в нормально разомкнутом реле контакты остаются разомкнутыми при отсутствии питания.Короче говоря, всякий раз, когда через реле протекает ток, контакты либо размыкаются, либо замыкаются.

В ЭМИ источник питания возбуждает катушку реле, создавая магнитное поле. Магнитная катушка притягивает металлическую пластину, установленную на якоре. Когда ток прекращается, якорь возвращается в исходное положение под действием пружины. EMR также может иметь один или несколько контактов в одном пакете. Если в цепи используется только один контакт, она называется цепью с одиночным разрывом (SB). С другой стороны, цепь двойного размыкания (DB) идет с буксировочными контактами.Обычно реле с одинарным размыканием используются для управления маломощными устройствами, такими как индикаторные лампы, в то время как контакты с двойным размыканием используются для управления мощными устройствами, такими как соленоиды.

Когда дело доходит до работы SSR, вам необходимо подать напряжение выше, чем указанное напряжение срабатывания реле, чтобы активировать входную цепь. Вы должны подать напряжение ниже установленного минимального напряжения падения реле, чтобы деактивировать входную цепь. Схема управления передает сигнал из входной цепи в выходную.Выходная цепь включает нагрузку или выполняет желаемое действие.

C. Функция и значение

Поскольку они могут управлять сильноточной цепью с помощью слаботочного сигнала, в большинстве процессов управления используются реле в качестве первичных устройств защиты и переключения. Они также могут обнаруживать неисправности и нарушения, возникающие в системах распределения электроэнергии. Типичные приложения включают телекоммуникации, автомобили, системы управления дорожным движением, бытовую технику и компьютеры, среди прочего.

Защитные реле

Защитные реле используются для отключения или отключения цепи при обнаружении каких-либо нарушений. Иногда они также могут подавать сигнал тревоги при обнаружении неисправности. Типы реле защиты зависят от их функции. Например, реле максимального тока предназначено для определения тока, превышающего заданное значение. При обнаружении такого тока реле срабатывает, отключая автоматический выключатель, чтобы защитить оборудование от возможного повреждения.

Дистанционное реле или реле импеданса, с другой стороны, может обнаруживать отклонения в соотношении тока и напряжения, а не контролировать их величину независимо. Он срабатывает, когда отношение V / I падает ниже заданного значения. Обычно защитные реле используются для защиты оборудования, такого как двигатели, генераторы, трансформаторы и т. Д.

Реле автоматического повторного включения

Реле автоматического повторного включения предназначено для многократного повторного включения автоматического выключателя, который уже отключен с помощью защитного реле.Например, при резком падении напряжения в электрической цепи вашего дома может наблюдаться несколько кратковременных перебоев в подаче электроэнергии. Эти сбои происходят из-за того, что реле повторного включения пытается автоматически включить защитное реле. В случае успеха питание будет восстановлено. В противном случае произойдет полное отключение электроэнергии.

Тепловые реле

Тепловое воздействие электрической энергии — принцип работы теплового реле. Короче говоря, он может обнаруживать повышение температуры окружающей среды и соответственно включать или выключать цепь.Он состоит из биметаллической полосы, которая нагревается при прохождении через нее сверхтока. Нагретая полоса изгибается и замыкает замыкающий контакт, отключая автоматический выключатель. Наиболее распространенное применение теплового реле — защита электродвигателя от перегрузки.


Компонент 7. Кристалл кварца

Кристаллы кварца находят несколько применений в электронной промышленности. Однако в основном они используются в качестве резонаторов в электронных схемах. Кварц — это встречающаяся в природе форма кремния.Однако теперь его производят синтетически, чтобы удовлетворить растущий спрос. Проявляет пьезоэлектрический эффект. Если вы приложите физическое давление к одной стороне, возникающие в результате вибрации создадут переменное напряжение на кристалле. Резонаторы из кварцевого кристалла доступны во многих размерах в зависимости от требуемых применений.

Рисунок 9: Кристалл кварца [Источник изображения]
A. Состав

Как упоминалось ранее, кристаллы кварца либо производятся синтетическим путем, либо встречаются в природе.Их часто используют для создания кварцевых генераторов для создания электрического сигнала с точной частотой. Обычно форма кристаллов кварца гексагональная с пирамидками на концах. Однако для практических целей их разрезают на прямоугольные плиты. К наиболее распространенным типам форматов резки относятся X, Y и AT. Эта плита помещается между двумя металлическими пластинами, называемыми удерживающими пластинами. Внешняя форма кварцевого кристалла или кварцевого генератора может быть цилиндрической, прямоугольной или квадратной.

Б.Как это работает?

Если подать на кристалл переменное напряжение, он вызовет механические колебания. Огранка и размер кристалла кварца определяют резонансную частоту этих колебаний или колебаний. Таким образом, он генерирует постоянный сигнал. Кварцевые генераторы дешевы и просты в изготовлении синтетическим способом. Они доступны в диапазоне от нескольких кГц до нескольких МГц. Поскольку кварцевые генераторы имеют более высокую добротность или добротность, они очень стабильны во времени и температуре.

C. Функция и значение

Исключительно высокая добротность позволяет использовать кристаллы кварца и резонансный элемент в генераторах, а также в фильтрах в электронных схемах. Вы можете найти этот высоконадежный компонент в радиочастотных приложениях, в качестве тактовых схем генератора в платах микропроцессоров, а также в качестве элемента синхронизации в цифровых часах.

Кварцевые часы

Проблема традиционных часов с винтовой пружиной заключается в том, что вам нужно периодически заводить катушку.С другой стороны, маятниковые часы зависят от силы тяжести. Таким образом, они по-разному показывают время на разных уровнях моря и высотах из-за изменений силы тяжести. Однако на характеристики кварцевых часов не влияет ни один из этих факторов. Кварцевые часы питаются от батареек. Обычно крошечный кристалл кварца регулирует шестеренки, которые управляют секундной, минутной и часовой стрелками. Поскольку кварцевые часы потребляют очень мало энергии, батарея часто может работать дольше.

Фильтры

Вы также можете использовать кристаллы кварца в электронных схемах в качестве фильтров.Они часто используются для фильтрации нежелательных сигналов в радиоприемниках и микроконтроллерах. Большинство основных фильтров состоят из одного кристалла кварца. Однако усовершенствованные фильтры могут содержать более одного кристалла, чтобы соответствовать требованиям к рабочим характеристикам. Эти кварцевые фильтры намного превосходят фильтры, изготовленные с использованием ЖК-компонентов.


Заключение

От общения с близкими, живущими на разных континентах, до приготовления горячей чашки кофе — электронные устройства затрагивают практически все аспекты нашей жизни.Однако что заставляет эти электронные устройства выполнять, казалось бы, трудоемкие задачи всего за несколько минут? Крошечные электронные схемы — основа всего электронного оборудования.

Обновлено: 09.10.2021 — 16:57

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *