Заземление трехфазной сети в частном доме: Заземление в частном доме своими руками: 220В и 380В

Содержание

Трехфазное электроснабжение частного дома. Фото, видео

Автор Alexey На чтение 6 мин. Просмотров 1.3k. Опубликовано Обновлено

Общая схема трехфазного подключения

Несмотря на, то строите ли вы новый дом или хотите модернизировать старый без электропроводки обойтись не получится, поскольку все приборы в доме потребляют электроэнергию в большей или меньшей мере. Подключение частного дома к электросети дело непростое и небыстрое.

Существует два типа электропитания одно- и трехфазный. Большинство используют однофазный тип и считают, что этого достаточно. Так и есть. Сейчас же все чаще выбирают трехфазный, поскольку он позволяет значительно снизить нагрузку на сеть равномерно распределив ее на три параллельные линии.

Разница между трехфазным и однофазным подключением

Большинство считают, что, перейдя на трехфазное подключение дома можно увеличить потребляемую мощность.

Но это совсем не так. Такой вопрос следует решать с компанией, которая поставляет электричество.
В данном типе подключения используют 4 или 5 проводов. Три линии подачи тока (фаза), нулевой проводник (или просто ноль) и заземление, иногда ноль и заземление подключают одним проводом.

Сравнение типов подключения

В таком случае можно примерно рассчитать количество приборов, которые можно одновременно включить в сеть на каждую линию чтобы не было перенапряжения. В однофазовом подключении используют 2 или 3 провода. Соответственно 1 фаза, 1 ноль и заземление.

Тогда все напряжение идет на одну линию и перегрузок просто не избежать.Силовой щиток однофазного электроснабжения частного дома немного меньше чем для трехфазного, и если нужно заменить один на другой, то придется добавить свободного места. Что касается использования домовой проводки, то и тут есть различия. В первом случае толщина жил кабеля значительно больше, чем во втором, поскольку и нагрузка тоже выше.

Документация для подключения.

Для того чтобы не было проблем с законом все нужно сделать как следует и подготовить необходимые документы и договора.

  • Энергоснабжающая компания должна дать определенные условия эксплуатации.
  • Проектная документация на снабжение здания электроэнергией.
  • Акт разграничения по балансовой принадлежности.
  • Акт лабораторных исследований схемы, которая собрана для определенного дома.
  • Акт осмотра всего оборудования.
  • Договор с энергосбытовой компанией.

Проект трехфазной сети.

Для начала нужно сделать проект, где будут учтены все особенности потребления электроэнергии. Чаще всего делают разделение на группы потребителей, то есть розетки отдельно подключаются, а освещение отдельно. Это дает возможность отключить отдельную группу для ремонтных работ и не доставлять неудобства в использовании другой группы.

Проект трехфазной сети

Для каждой рассчитывают максимальную мощность потребления электричества, и соответственно подбирают провода нужной толщины.

Например, для освещения чаще используют провод толщиной 1,5мм, а для розеток – 2,5 мм.

Для каждой группы нужно использовать приборы автоматического выключения тока, чтобы при коротком замыкании не возникло возгорание проводки.
Имея на руках проект подключения дома можно рассчитать количество необходимых материалов (проводов), приборов и даже планируемый размер силового щитка. А также можно наметить размещение розеток, выключателей и стабилизирующих устройств.

Как подключать?

Существует два вида подключения. Подземный и воздушный. Для частного дома используют преимущественно второй вариант, потому что:

  • меньше времени тратиться на работу;
  • есть возможность использования любых схем;
  • стоимость подключения значительно ниже;
  • при необходимости легче ремонтировать.

Нужно учитывать, что при воздушном подключении расстояние до ближайшего столба к частному дому должно быть не больше 15 м. Если же отрезок длиннее, нужно добавить дополнительный столб чтобы избежать сильного провисания или обрыва линии при плохих погодных условиях. Вблизи не должно быть крупных деревьев или больших веток.А также провода не должны мешать перемещению транспортных средств или пешеходов
На частный дом трехфазная линия крепится на высоте не меньше чем 2,7м, а при необходимости и выше. Там помещают специальные изоляторы, к которым и присоединяется питание, а уже оттуда провода идут к силовому щиту.

Щиток лучше прикрепить на фасаде здания. Дальше от щитка по всему дому идут в нужных направлениях провода. Если есть пристройки где используется электричество, то к ним проводка идет тоже от щитка.
Счетчик для трехфазной линии.

Для особого подключения электричества нужен и особенный счетчик.

Трехфазный счетчик

Счетчики для трехфазного подключения позволяют экономить электроэнергию, выбрать модель, подходящую именно потребителю, отслеживать перепады напряжения. Такие приборы есть трех видов:

  1. Прямого включения. Подключаются непосредственно к сети.
  2. Полукосвенного включения. Нужен трансформатор напряжения. При оплате, показания счетчика умножаются на коэффициент трансформации, который указан на приборе.
  3. Косвенного включения. Нужен трансформатор напряжения и силы тока. Подходит тем, кто подключается от высоковольтных линий электропередач. Чаще всего используют на предприятиях.

Для однофазного счетчика существует одна стандартная схема подключения, а для счетчиков трехфазной линии их много, поскольку видов несколько.
Устройства прямого включения имеют схему подключения немного схожую на схему однофазного счетчика. Обязательно следует учитывать порядок присоединения проводов в соответствии с цветом, который указан в схеме и не забывать, что четные номера — это нагрузка, а нечетные — цвет провода. Схема подключения размещена на задней крышке прибора, а также в паспорте.

Электросчетчик полукосвенного включения также применяют в домах и для их подключения есть множество схем. Чаще всего используются три из них: десятипроводная схема подключения, схема по типу звезда, соединение с помощью коробки с клеммами.

Первая самая распространенная, поскольку самая простая. По данной схеме для каждой фазы используют три провода, которые присоединяются в строгом порядке, десятый провод — ноль. Всегда выбирается такая схема подключения счетчика, при которой можно легко отремонтировать ее любую часть.
Какой бы ни была схема подключения частного дома к электросети, не стоит забывать, что работать с напряжением, не имея нужного образования небезопасно для жизни. Поэтому и для выбора нужной схемы, нужного счетчика электроэнергии, и для самого подключения следует воспользоваться услугами человека, который в этом непросто разбирается, а специально обучался несколько лет.

Вы предоставляете план дома, указываете места где нужно разместить розетки, выключатели, где будут стоять котлы или бойлер, а квалифицированный специалист рассчитает длину проводов, их толщину, и подберет все необходимые приборы для безопасного использования электропроводки в частном доме. Подключение частного дома к электросети дело непростое и небыстрое.

Как в частный дом выполнить ввод электроэнергии

Как в частный дом выполнить ввод электроэнергии

В этой статье ЭлектроВести расскажут вам, как выполнить ввод электроэнергии в частный дом.

Подключение дома к электрической сети. Ввод электричества в дом и на прилегающую территорию: практические советы и основные моменты которые нужно знать.

Чаще всего в населенных пунктах, где преобладают частные дома, используются воздушные линии электропередач. Однако могут применяться и кабельные подземные магистрали.

Часть такой линии от ближайшей опоры до ввода в дом принято называть ответвлением. Оно может быть проложено по воздуху или под землей. Законодательно определено, что ответвление находится в собственности владельца линии электропередачи. Техническое обслуживание, эксплуатация и реконструкции ответвления входят в его обязанности.

Самостоятельное проведение работ без согласования с владельцем ЛЭП выполнять запрещено.

Для создания нового ответвления и подключения его к вводу здания необходимо иметь проект, который должен быть согласован с представителями владельца линии до начала выполнения работ. В документе должен быть отражен перечень всех технических решений и материалов.

Если выполнить ответвление своими силами затруднительно, то тогда следует заключить договор с энергоснабжающей организацией о подключении здания к ЛЭП и оплатить предоставление услуги.

По старым правилам ответвления для частных домов с однофазной схемой выполнялись двумя проводниками:

  • L – фазным;
  • PEN – нулевым совмещенным.

У трехфазных схем использовались 4 проводника: три фазных (L1, L2, L3) и один нулевой совмещенный.

Существующие правила эксплуатации требуют создать расщепление совмещенного нулевого проводника PEN у ввода в дом на:

  • рабочий N;
  • защитный РЕ.

Для этого применяют искусственные заземлители, которые дополнительно повышают безопасность эксплуатации ЛЭП и не противоречат требованиям действующих правил.

Большинство находящихся в эксплуатации распределительных сетей низкого напряжения построены с использованием системы защитного заземления TN-C. Такая сеть обычно состоит из питающего трансформатора, трех фазных проводников и объединенного PEN-проводника, совмещающего в себе функции нейтрального (N) и защитного (PE) проводников. Однако такая система построения электрических сетей низкого напряжния не позволяет в должной мере удовлетворить повышенные требованиям эксплуатации потребителей электроэнергии, которые подключаются к указанным электрическим сетям.

Подключение ввода дома к воздушной линии электропередач

Место расщепления может быть выбрано на ближайшей опоре ЛЭП или в электрическом распределительном щите дома.

При выполнении расщепления внутри здания необходимо учитывать вероятность обрыва или отгорания нулевого проводника у питающей ЛЭП. На приведенном ниже рисунке наглядно показано, что при созданной аварийной ситуации через установленное повторное заземление дома станет протекать электрический ток от всех ближайших присоединений.

Схема работы ответвления ВЛ-0,4 кВ для частного дома с повторным заземлением при обрыве нуля на линии (для увеличения нажмите на рисунок)

При такой ситуации нагрузка на провод ответвления PEN проводника значительно возрастет, он станет сильно нагреваться и может перегореть. Это можно исключить использованием провода повышенной мощности, выдерживающего такую же токовую нагрузку, как и провода ЛЭП.

С этой целью для ответвительного PEN проводника выбирают провод с площадью поперечного сечения S отв равной аналогичному значению у провода линии S лин.

При расщеплении PEN проводника непосредственно на опоре ВЛ для владельца дома эта задача упрощается, а большой запас толщины проводов делать нет необходимости. Их можно уменьшить до разумных пределов, обеспечивающих нормальное протекание тока нагрузки. Но к распределительному щиту дома придется тянуть три жилы, а не две для однофазной схемы и пять, а не четыре для трехфазной схемы.

Состав жил кабеля для подключения к ответвлению с повторным заземлением на опоре по схеме TN-C-S

Место перехода с системы TN-C на TN-C-S определяется расположением схемы расщепления PEN проводника.

Для подключения зданий по схеме TN-C повторное заземление и расщепление PEN проводника не выполняется, а количество жил в кабеле уменьшается на одну.

Системы заземления TN-S и TN-C-S различаются режимами работы N- и PE-проводников, поскольку в системе TN-S разделение на N- и РЕ-проводники производится по всей сети, а в системе TN-C-S такое разделение осуществляется только в определенной ее части. Применение системы TN-C-S считается наиболее перспективным, так как не требует коренной реконструкции распределительной сети низкого напряжения и, соответственно, увеличения материальных затрат. В этом случае разделение общего PEN-проводника на N- и РЕ-проводники производится обычно в месте присоединения ответвления к основной магистрали (например, ввод в здание, ответвление на объект, использующий трехфазное напряжение и др.). При этом металлические корпуса однофазных и трехфазных электроприемников заземляются с помощью РЕ-проводника непосредственно и/или через «трехполюсные» розетки (так называемые «евророзетки»), снабженные дополнительным заземляющим контактом с целью обеспечения электробезопасности в отношении возможного поражения людей электрическим током.

Подключение ввода дома к подземной кабельной линии электропередач

Все принципы выполнения электрической схемы, рассмотренные для воздушной ЛЭП, полностью соответствуют требованиям подключения к кабельным линиям. Отличия заключаются в способах расположения и механического подключения составных частей монтируемого участка. Коммутация жил кабеля ответвления к подземной линии выполняется в специальном металлическом шкафу.

Для его монтажа необходимо выполнить фундамент, обеспечивающий устойчивость конструкции при деформации грунтов во время промерзания зимой и в условиях осенне-весенней распутицы.

Материал шкафа и конструкция должны отвечать требованиям повышенной прочности для того, чтобы противостоять попыткам вандалов проникновения к электрооборудованию. С этой целью такие шкафы рекомендуется поднимать на высоту более двух метров. Такие же шкафы часто располагают на опорах ВЛ.

Все работы на воздушной ЛЭП и подземной кабельной линии, включая монтаж ответвлений, проводятся исключительно по утвержденному проекту силами местной обслуживающей организации.  Самостоятельное выполнение подключений категорически запрещено и опасно для жизни!

Конструктивные особенности воздушного ответвления

Закрепление проводов электрической схемы к опорам осуществляется через фарфоровые, стеклянные или полимерные изоляторы. В случае использования самонесущих кабелей СИП применяют специальный крепеж, который продается вместе с кабелями. При размещении ответвления важно выдержать все расстояния, обеспечивающие безопасность пользования электроэнергией.

Особенности конструкции воздушного ответвления (для увеличения нажмите на рисунок)

Если от ближайшей опоры до ввода в дом расстояние превышает 25 метров, то необходимо устанавливать дополнительную опору в качестве промежуточной. При расположении проводов над проезжей частью дороги минимальное провисание нижнего провода не должно быть меньше 6 метров.

В случае необходимости расположения кабелей над дорожками их требуется монтировать на высоте, превышающей 3,5 метра. Расположение изоляторов на стене дома выбирают так, чтобы прикрепленные к ним провода размещались над поверхностью земли не ниже, чем на 2,75 метра. Выращивание деревьев и даже кустарников под электрическими проводами недопустимо.

Над закрепленными изоляторами могут находиться элементы крыши, балкон и другие архитектурные конструкции. Расстояние от них до токоведущих частей должно превышать 0,2 м. Для присоединения изолированных алюминиевых проводов к линии используют скрутку или специальные зажимы.

Правила монтажа ответвления отдельными проводами

Ввод проводов воздушной ВЛ в деревянное здание

Этот способ широко использовался до появления в продаже самонесущих изолированных кабелей СИП. Для его применения проход через стену выполняется изолированным проводом, который дополнительно отделяется от стены фарфоровой втулкой, воронкой и полутвердой изоляционной трубкой из резины или полиэтилена.

Каждый провод схемы закрепляется на своем изоляторе, установленном около входного отверстия. Его можно делать общим для всех проводов, но прокладка их должна быть выполнена в отдельных изолированных трубах. Изоляторы на стене дома должны отстоять друг от друга не менее, чем на 20 см.

Правила монтажа ответвления кабелем

Для низких строений используют трубостойку и ввод кабеля выполняют через крышу.

Схема организации ввода кабеля в низкое строение

При этом способе необходимо обеспечить удаление кабеля от крыши на 2 метра или более. Стальная трубостойка в обязательном порядке подключается к контуру заземления дома.

В отдельных случаях удобно применить подставной столб.

Схема организации ввода кабеля с помощью приставного столба

Спуск кабеля по столбу в этом случае тоже рекомендуется выполнять в стальной трубе.

При любом способе подключения ответвительные провода или кабель должны быть целыми, не иметь разрывов и подсоединений. Их необходимо подключать одним концом к изоляторам линии, а вторым — непосредственно на клеммы вводного автомата для коммутации на электросчетчик.

Установка вводного устройства

Как выполнить вводное устройство для частоного дома. Протяженные магистрали линий объединяют множество потребителей с трансформаторной подстанцией. При транспортировке электрической энергии постоянно происходят коммутации нагрузок, сопровождаемые переходными процессами, качанием мощностей, колебаниями токов, напряжений, частоты.

Во время грозового периода существует вероятность попадания энергии молнии в воздушные ЛЭП. Все эти неисправности призваны устранять защиты линии, но до момента их срабатывания электропроводка дома может пострадать.

Поэтому между линией электропередачи и распределительным щитом дома необходимо монтировать еще один шкаф, выполняющий функцию защит электрооборудования здания от проникновения в электропроводку анормальных режимов, периодически возникающий на ЛЭП. Его называют вводным устройством. В нем размещают:

  • мощный автоматический выключатель или заменяют его обычным рубильником вида серии РБ-31 с комплектом предохранителей, укомплектованных мощными плавкими вставками, рассчитанными на токи около 100 А;
  • разрядники или ограничители перенапряжения, защищающие от проникновения высокого потенциала молнии;
  • схему расщепления PEN проводника, подключенного к повторному заземлению.

На рисунке ниже показана конструкция трехфазного вводного устройства. Для однофазной схемы оно упрощается использованием элементов только одной фазы.

Конструкция вводного устройства

Вводное устройство можно размещать прямо на опоре воздушной ЛЭП или на стене дома с наружной стороны. Его конструкция для подключения к подземным кабельным линиям устроена так же, как и для ВЛ.

Наличие повторного заземления в доме требует установки молниезащиты и системы УЗИП.

В заключение еще раз обратите внимание, что все работы на линиях электропередач и их опорах разрешено выполнять только обученному и допущенному персоналу организации, за которой закреплено это электрооборудование.

Ранее ЭлектроВести писали, что председатель комитета Верховной Рады по вопросам энергетики и жилищно-коммунальных услуг, депутат от фракции «Слуга народа» Андрей Герус намерен обратиться в Антимонопольный комитет (АМКУ) для проверки «спецаукционов» по продаже электроэнергии национальной атомной энергогенерирующей компании «Энергоатом» на наличие нарушений конкурентного законодательства.

По материалам: electrik.info.

Заземление в частном доме

Электропитание жилых домов осуществляется только по сетям с глухозаземленной нейтралью. Для таких сетей ГОСТ Р 5051.2-94 регламентирует применение заземление по схемам TN и TT.

Особенностью системы TN является то, что заземляемые части потребителей соединены с нейтралью источника питания нулевыми проводниками. Включает в себя три схемы:

  • TN-C. Нулевые проводники — рабочий и защитный – представлены одним проводником по всей длине линии. Повсеместно распространена в старых домах. В настоящее время использовать не рекомендуется.
  • TN-C-S. Аналогична подсистеме TN-C, но на вводе в дом производится расщепление общего проводника на нулевой рабочий и отдельно нулевой защитный. При этом требуется произвести дополнительно повторное заземление жилого дома. Рекомендуется взамен TN-C.
  • TN-S. Нулевые проводники – рабочий и защитный – проложены раздельно по всей длине линии. Обеспечивает наибольшую безопасность. Рекомендуется в современном строительстве. Требует применения в трехфазной сети пятижильного, а в однофазной – трехжильного кабеля.

В отличие от предыдущей системы в системе TT глухозаземленная нейтраль источника питания не соединяется проводниками с заземляемыми частями потребителей. Для защитного заземления потребителей необходимо отдельное заземляющее устройство. Применение системы TT раньше было запрещено. Теперь ее применение возможно, но только при условии установки в доме УЗО. Как минимум, одного на вводе в дом. Наиболее целесообразны и экономичны системы заземления для частного дома по схемам TN-C-S и TN-S.

Для того, чтобы принять решение, как правильно сделать заземление дома, нужно выяснить, какая  из систем заземления была применена в подведенной к дому линии электропередачи.  

В старых системах электроснабжения трехфазная система выполнена четырехжильным кабелем, а однофазная – двухжильным. Специальная жила для защитного заземления в них отсутствует. А нулевая жила заземлена у источника электроэнергии. То есть используется схема заземления дома TN-C. В большинстве случаев именно такая подводка электроэнергии производилась к домам частного сектора. Поэтому заземление в частном доме приходится делать заново. При этом требуется  не только делать контур заземления дома снаружи, входящий в состав повторного заземления, но и переделывать внутреннюю электропроводку. В результате реализуется схема заземления частного дома по типу TN-C-S.

Если в кабеле, подведенном к вашему дому, есть специальная жила для защитного заземления, значит, есть возможность реализовать схему TN-S.  Выполнять дополнительно повторное заземление дома может потребоваться только в случае необходимости его молниезащиты.

Повторное заземление безусловно необходимо при использовании схем заземления TN-C-S и TT. При использовании схемы TN-S оно может потребоваться для устройства молниезащиты. Повторное заземление оборудуется непосредственно около заземляемого дома. Конструктивно такое заземление включает в себя заземлитель и заземляющий проводник. В качестве заземлителя используются металлический штырь, уголок, труба. Обычно применяются не один, а несколько заземлителей. Чаще всего  берут    три заземлителя, из которых образуется контур в виде треугольника. Расстояние между заземлителями должно быть около 2 м. Заземлители забиваются на глубину не менее 2-3 м. Между ними роется неглубокая траншея (приблизительно 50 см.). В нее укладываются горизонтальные соединители, обычно выполняемые из полосового металла. Все заземлители соединяются между собой в виде замкнутого контура.  Лучший способ соединения – сварка. От контура также по траншее укладывается заземляющий проводник, соединяющий контур заземления с заземляющей шиной в вводном щите. Сделать такое устройство заземления дома не представляет труда. Можно сделать заземление в частном доме с использованием типовых комплектов, предлагаемых промышленностью, например, ZANDZ-6, или комплектов для реализации типовых схем заземления: «Воронья лапа», «Комбинированное заземление», «Замкнутый контур заземления дома».

 Подробные консультации и стоимость услуг Вы можете получить , связавшись с нами:

  • тел/факс: (8212)21-30-20

 

Выполнение заземления в частном доме | Полезные статьи

Понравилось видео? Подписывайтесь на наш канал!

Выполнить правильно заземление в частном доме довольно сложно. Современная схема заземления частного дома включает в себя электроприборы, распределительный щиток со специальной шиной для подключения заземления, а также заземляющий проводник и сам заземлитель.

Что может быть заземлителем?

Рисунок 1. Принцип действия контура заземления Согласно нормам ПУЭ, заземлителем могут выступать различные подходящие для этой цели конструкции. Наиболее удобно использовать естественные заземлители, к которым относятся:

  • прокладываемые в земле водопроводные и прочие металлические трубопроводы, за исключением трубопроводов, по которым транспортируются горючие жидкости, газы и взрывчатые смеси;
  • скважинные трубы;
  • металлические конструкции дома, постоянно соприкасающиеся с землей.

 

Как выполнить заземление розеток?

Рисунок 2. Шина заземления в электрощите При наличии естественных заземлителей контур заземления частного дома выполняется довольно просто: выполняется отвод, то есть заземляющий проводник прокладывается от заземлителя до силового щита, в котором подключается к шине РЕ. Заземление в частном доме будет более надежным, если отвод выполнить с применением сварки и болтового соединения.

А выполняется заземление частного дома своими руками так: к естественному заземлителю привариваются стальная полоса и болт, к которому через болтовое соединение уже присоединяется медный провод, идущий в дом к силовому щиту.

На этом заземление частного дома своими руками не заканчивается, поскольку необходимо заземлить все розетки, для чего от щита к ним разводится провод. Здесь схема заземления частного дома может выполняться в двух вариантах. 1) Проложить к каждой розетке трехжильный кабель, например ВВГ, в котором две жилы будут фазой и нулем, а третья — «землей». 2) Если же розетки уже подключены двухжильным проводом, можно развести заземление отдельно одним одножильным проводом. На подключении розеток заземление в частном доме можно считать законченным.

 

Заземление с искусственным заземлителем

Рисунок 3. Схема выполнения контура заземления Если же сделать заземление в частном доме с применением естественного заземлителя не получается, нужно выполнить контур самостоятельно. Сама схема заземления частного дома при этом останется той же.

Чтобы сделать заземление в частном доме с искусственным заземлителем, лучше всего применить круглую стальную заготовку с диаметром от 16 мм, хотя подойдет и стальной уголок 50 х 50  мм с длиной в 2–2,5 метра. Заготовки вбиваются вертикально в землю так, чтобы над поверхностью осталось около 10 см. Заземлители между собой соединяются по контуру стальными заготовками. Соединения лучше выполнять сваркой.

Такое устройство заземления в частном доме отличается большей трудоемкостью, но считается более надежным и целесообразным, поскольку заземление на водопроводную трубу и проч. , ведет к ускоренному разрушению такого естественного заземлителя.

В целом же устройство заземления в частном доме не является чрезмерно сложной работой, хотя ее выполнение все равно лучше доверить специалистам.

 

Как сделать заземление в частном доме и на даче самому (схемы подключения)

Ни для кого не секрет, что защитное заземление необходимо для каждого жилого помещения, как для частного строения, так и для квартиры многоэтажного дома. Оно убережет жилище и людей от попадания молнии, защитит от действия электрического тока в случае его утечки из-за нарушения изоляции проводки или электроприборов. Кроме того, заземление выполняет функцию отвода накапливающегося статического напряжения и стекающего по ее корпусу тока от конденсаторов, являющихся частью электрической схемы встроенных сетевых фильтров. В статье расскажем, как сделать заземление в частном доме и на даче, рассмотрим частые ошибки при монтаже.

Системы заземления, отличия, преимущества, особенности

Описать простыми словами схему заземления можно следующим образом. Корпусы мощных электроприборов, через медные провода соединяются с медной шиной, которая в свою очередь соединяется с заземляющей полосой, выведенной от конструкции, помещенной под землей во дворе дома.

Мощные бытовые приборы через медные провода соединяются с заземляющей шиной

Теперь можно более подробно рассмотреть, как устроена эта конструкция, и каким образом действует вся система в целом:

  1. В грунте выкапывается яма, в которой на расстоянии 1,2-2 метра друг от друга, вертикально вниз забиваются 3 или 4 металлических элемента (отрезки арматуры, уголка или толстостенной трубы) длиной 1,5–3 м
  2. Элементы между собой обвариваются перемычками, изготовленными из металлической полосы, толщиной 3-4 мм или уголка
  3. От полученной конструкции в распределительный щиток внутри дома проводится металлическая полоса (трасса)
  4. В свою очередь трасса через медную жилу, посредством болтовых соединений коммутируется с медной шиной.

Полученная таким образом система называется контуром заземления. В зависимости от расположения забиваемых в грунт элементов, система может быть линейная или замкнутая. Читайте также статью: → «Контур заземления: монтаж». Место расположения подземной коммуникации лучше устроить в малоиспользуемом месте и в целях безопасности оградить его. Глубину залегания необходимо сделать не менее 60 см.

Линейная схема контура заземления

Такой способ предполагает забивание штырей в землю по одной линии. Три элемента располагаются в один ряд и последовательно соединяются двумя перемычками. От крайнего из них, трасса проводится в дом. Достоинством такого способа является простота исполнения: вместо ямы нужно выкопать простую ровную канаву. Кроме того, для соединения конструкции нужны всего две перемычки, вместо трех, как во втором варианте. Соответственно и сварочных стыков нужно всего три, а не четыре.

Выбрать безопасное место для размещения устройства не представляет труда, потому что оно практически не имеет площади и может разместиться вдоль забора или тыльной стены дома. Недостаток заключается в уязвимости схемы: при нарушении одного из соединений (сварки или полосы), вся система теряет свою эффективность.

Эскиз линейного заземления частного дома из 4 последовательно соединенных элементов

Замкнутая схема заземления

Такой вариант подразумевает расположение трех, забиваемых в землю металлических элементов, в форме треугольника. Штырей может быть больше и фигуры могут быть разными, но принцип действия один — при повреждении любого соединения, конструкция сохраняет свою функциональность. Достоинством такого способа можно назвать надежность и практичность. Явных недостатков не имеется, за исключением необходимости больших затрат труда на выкапывание ямы. Читайте также статью: → «Монтаж контура заземления в доме».

Контур заземления в частном доме – замкнутая схема в форме треугольника

Способ подключения системы заземления ТТ

Отличительная особенность системы ТТ заключается в том, что заземляющий проводник РЕ является абсолютно независимым от рабочей нулевой жилы сети. То есть он не выводится из заземляющего контура параллельно с проводом N, а заземляется через свой собственный контур. Говоря доступными словами: РЕ не имеет ничего общего с нулевым и фазным проводом, спускаемым к частному дому от опор электропередач. Он соединяется с землей через трассу, заведенную в дом от описанной выше системы заземления.

Проводник РЕ разводится по всему дому и к нему подключаются корпуса мощной бытовой техники и всех металлических объектов, способных проводить электрический ток. Таким образом РЕ-проводник объединяет все точки возможного появления неконтролируемого напряжения в одну общую систему уравнивания потенциалов. Соединять с рабочим нулем (проводом N) какие-либо заземленные конструкции, в том числе корпуса электроприборов – категорически запрещено.  

Схема заземления по системе ТТ с РЕ проводником

Преимуществом системы ТТ является сохранение безопасности электрической сети и запитанных от нее потребителей в случае обрыва нулевого провода, выходящего от подстанции. Такое иногда происходит, особенно в частном секторе, где обрыв провода на столбах может случиться из-за ветра, скорость которого не гасится высотными зданиями, или от веток деревьев. При обрыве или замыкании, в электросетях могут возникнуть непредвиденные скачки и падения напряжения, которые будут погашены с помощью описываемой системы. Но остается опасность одновременного пробития фазы на корпус потребителя электроэнергии в момент касания его человеком.

Практический совет: для предотвращения поражения электротоком необходимо установить дополнительный уровень защиты, который включает в себя устройства защитного отключения УЗО и автоматические выключатели.

Применение устройств защитного отключения

Схема подключения розетки через УЗО, ВА и заземляющий РЕ-проводник

УЗО желательно установить в цепи всех мощных и дорогих бытовых приборов, а также на выходе из электрощитка. Потребители подключаются через устройства с уставкой до 30 мА, которые обеспечивают защиту от:

  • утечки тока в следствии нарушения изоляции;
  • поражения электрическим током;
  • возникновения пожара от искрения из-за нарушения контакта.

Однако защитные отключающие устройства не обеспечивают защиту от токов короткого замыкания. Поэтому рекомендуется наряду с УЗО использовать автоматические выключатели.

Система заземления TN-C-S

Данная схема предполагает объединение на определенном этапе до ввода в жилой дом двух проводников:

  1. Рабочий ноль, подводимый от трансформаторной подстанции
  2. Защитный заземляющий проводник.

Для этой цели снаружи дома нужно установить распределительный щит, в котором расположить две шины, соединенные между собой перемычкой. На одну из них подводятся оба проводника, а уходит один – РЕ, со второй уходит провод N. Таким образом, производится соединение и расщепление контуров на рабочий и заземляющий.

На щиток внутри дома поступают три жилы:

  • одна – L фаза;
  • вторая – N ноль;
  • третья – РЕ-проводник.

Каждая розетка подключается с заземляющим контуром, обеспечивая заземление всех электроприборов, имеющих евро-вилку.

Схема заземления по системе TN-C-S с РЕ-проводником

Практический совет: несмотря на наличие заземления, для обеспечения более полной защиты от поражения электрическим током, рекомендуется устройство СУП.

Система уравнивания потенциалов

СУП подразумевает подключение через медные провода корпусов всех мощных бытовых приборов (стиральная машина, бойлер, посудомоечная машина, конвектор) к медной шине заземления, описанной выше. Сюда же заземляются ванна, трубы горячего и холодного водоснабжения. Получается, что через такое соединение создается единый контур, посредством которого устраняется разность напряжений всех токопроводящих поверхностей.

Иными словами, в случае утечки тока на одном объекте, он равно распределится по всем остальным, утратив поражающую силу. Тоже произойдет при пробитии тока через воду. А наличие заземления сводит распределение к минимуму, уводя основной заряд на землю. Тем не менее, СУП не оградит от малых утечек, происходящих вследствие нарушения изоляции проводников. Для этой цели служит УЗО, о котором рассказывалось выше.

Проверка заземления в доме

Проверка работоспособности системы заземления производится либо в случае переезда в новый дом, чтобы убедиться в безопасности, либо сразу после создания контура своими силами. Для проверки понадобится прибор тестер «мультиметр». Читайте также статью: → «Проверка цепей мультиметром или тестером». Далее проверка осуществляется в следующем порядке:

Щупы прибора поместить на L и РЕ и проверить заземление
  • мультиметр приводится в рабочее положение, для чего щупы с проводами подсоединяются к контактам «com» — черный, VΩ – красный;
  • переключатель режимов измерения выставляется на измерение напряжения;
  • измеряется напряжение сети в розетке путем контакта щупов с фазным и нулевым проводом;
  • далее осуществляется контакт между фазным и заземляющим проводом.

При исправном заземлении, прибор покажет значение схожее с первым измерением. Если же показания будут отсутствовать – контур не работает. Подобную процедуру можно проделать с «контролькой» — лампочкой, ввинченной в электрический патрон с подключенными проводами.

При исправном заземлении «контролька» должна загораться, как от контакта проводов с L и N, так и от контакта между L и РЕ. Если этого не происходит – заземление отсутствует.

Проверка заземления при вводе на 380 В

При оборудовании ввода в частное домостроение на 380 В с использованием трехфазного электросчетчика, разводка внутри дома будет преобразовываться в 220 В путем отбора одной токоведущей фазы и нулевого провода. Поэтому проверка заземления в розетке будет аналогичной ранее рассмотренной процедуре.

Если необходимо проверить заземление в цепи трехфазного потребителя (например, электродвигателя), то щупы мультиметра необходимо разместить так, чтобы один обеспечивал контакт с токоведущей фазой, а второй – с контуром заземления. Наличие результата – признак работоспособности системы.

Дополнительное защитное устройство

Заземление частного дома может предусматривать обустройство молниезащиты, то есть приспособления, способного принимать разряд молнии при его попадании в дом и направлять его в землю. Однако импульсный скачок напряжения при попадании молнии может быть настолько силен, что может привести к выходу электрооборудования и даже распределительный щиток.

Чтобы избежать такого развития событий, в щитке рекомендуется устанавливать устройство защиты от импульсных перенапряжений (УЗИП). В случае исправного заземляющего контура и применения дополнительных защитных устройств, частный дом, а также находящаяся в нем бытовая техника защищены от многих негативных факторов:

№ п/пНегативный факторЗащитное действие
1.Короткое замыканиеВыключатель автомат, СУП
2.Утечка на корпусЗаземление, УЗО
3.Неисправность электропроводкиСУП, УЗО
4.Удар молнииЗаземление, УЗИП

Наиболее распространенные ошибки при создании заземляющей системы в частном доме

  1. Использование ветхих материалов в качестве забиваемых в землю штырей и перемычек между ними. Это может привести к разрушению и выходу всей конструкции из строя или утрачиванию ее эффективности.
  2. Значительное удаление подземной системы от домостроения. Этого не нужно делать, ведь чем ближе к дому будет расположение конструкции, тем быстрее опасный разряд достигнет земли. Рекомендуется располагать подземную часть заземляющей цепи с северной стороны дома, где всегда тень, земля более сырая, для лучшего контакта.
  3. Зануление, то есть установка перемычки в розетках между контактом заземления и нулевым проводом. Этого нельзя делать ни при каких обстоятельствах.
  4. Экономия на приобретении и установке УЗИП при оборудовании молниезащиты. Это может стоить выходом из строя дорогостоящей бытовой техники или всей электропроводки.
  5. Использование при организации СУП алюминиевых проводов для соединения с шиной. Алюминий и медь при окислении теряют контакт между собой, в результате чего утрачивается работоспособность всей системы.

Оцените качество статьи:

Заземление — газ отопление вода электричество

    «Земля-матушка» прокормит, говорит землепашец, прокладывая первую борозду. Земля защитит – утверждает электрик, подключая дом к подземному контуру. Оба они правы, но сегодня нас больше интересует способность нашей планеты принимать на себя удары электрического тока.

    Мы ответим на вопрос, зачем нужно заземление в частном доме и что представляет собой его конструкция. Надеемся, что наш рассказ поможет владельцам усадеб понять исключительную важность данного метода защиты от поражения электротоком.

Как работает заземление

    Наш дом наполнен разнообразными электроприборами. Все они потребляют ток и не представляют опасности до момента повреждения изоляции. Как только целостность Как работает заземлениедиэлектрического слоя проводника нарушается, ток из покорного работника превращается в опасного врага. Прикосновение рукой или любой другой открытой частью тела к прибору, в котором произошел «пробой на корпус», может закончиться трагически.

    Для исключения подобного риска предназначено защитное заземление. Принцип его действия основан на том, что электрическое сопротивление нашей планеты близко к нулю. Любой человек, напротив, – проводник с достаточно большим номиналом (около 1000 Ом). Согласно физическим законам ток движется в сторону наименьшего электросопротивления. Поэтому, выбирая между нашим телом и землей, ток предпочитает уйти в грунт.

    В теории, как говорится, всегда все гладко. На самом же деле, любое заземление обладает собственным активным сопротивлением. Поэтому при проектировании его конструкции очень важен точный расчет. Он сводится к подбору такого омического сопротивления защитного контура, чтобы при контакте с оголенным проводником или прибором пробитым «на корпус» через человека прошел ток, не представляющий угрозы для жизни. Основной удар при этом должен принять металл и передать его в землю.

Конструкция защитного заземления

Конструкция заземленияСостоит из двух частей:

  •     Внутренней. В здании все непроводящие ток части (корпуса) электрооборудования подключают к заземляющим проводам, выводимым на распределительный щиток.
  • Внешней. От щитка к заземлению идет проводник (стальная полоса). Она приваривается к заземляющему контуру.

    Конструкция заземления совершенно одинакова как для одно, так и для трехфазной сети. Она представляет собой несколько электродов (стальных уголков, труб, двутавров), забитых в грунт и сваренных между собой стальной полосой в виде треугольника или квадрата. Выбор формы и размера контура забивки электродов зависит от площади территории усадьбы и габаритов здания.

    Правила оговаривают допустимое расстояние от дома до защитного контура. Согласно этим требованиям, он должен располагаться не ближе 1 метра и не далее 10 метров от фундамента. Глубина погружения электродов в грунт также лимитируется. Она должна быть не меньше толщины промерзания грунта. В средней полосе России эта величина составляет 80 см. Степень насыщенности почвы влагой также влияет на глубину закладки контура. Если водоносный горизонт расположен близко к поверхности грунта, то электроды приходится закапывать неглубоко. В сухой почве их, напротив, забивают на максимально возможную глубину.

    Проектируя размеры контура и площадь сечения применяемого проката, следует учесть такие требования:

  • Стержни должны располагаться на расстоянии не менее 1,2 метра друг от друга.
  • Сечение металлопроката, используемого для забиваемых электродов и верхней обвязки должно быть не менее 1,5 квадратных сантиметра.

    На практике для изготовления вертикальных заземлителей чаще всего используют уголок из стали размером 50х50 мм и толщиной стенки 5 мм. Горизонтальную обвязку делают из полосовой стали сечением 40х4 мм или используют тот же самый уголок. Подробные требования к материалу и размерам контура содержатся в разделе 1.7 Правил устройства электроустановок.

    Важное замечание. Нормы запрещают собирать контур из строительной арматуры. Причина состоит в том, что у нее каленый наружный слой. Термообработка ухудшает распределение тока по поверхности металла и ускоряет процесс его коррозии в грунте.

Любителям красить металл для его защиты от ржавчины нужно отказаться от этой затеи. Контур, покрытый краской, перестает выполнять свою работу, поскольку при этом блокируется прямой контакт металла с землей. Лучший вариант защиты – использование оцинкованного стального профиля.

    Закончив монтаж контура защитного заземления, берут омметр и проверяют его сопротивление. Для частного дома оно должно быть не более 30 Ом.

Как сделать своими руками заземление в частном доме

Электропроводка во всех современных квартирах и домах делается с третьим защитным проводником, который подключается к шине PE заземления в электрическом щите.

Назначение заземления.

При помощи заземляющих контактов розетки соединяются металлические корпуса холодильников, СВЧ печей, стиральных машин и т. д. с заземлением. Благодаря чему при возникновении поломок бытовой техники, при которых происходит пробой фазы на корпус- возникает короткое замыкание или токи перегрузки и выбивает автомат.

Да же если при незначительных утечках его не выбьет и человек прикоснется к металлическому корпусу- ток проходящий через его тело будет очень малым и безопасным.  Сопротивление тела человека от 1000 до 100 000 Ом, а сопротивление заземления по нормам должно быть не более 4 Ом. И ток на землю пропорционально будет во столько раз больше, во сколько раз больше сопротивление человека, чем заземления.

Таким образом заземление защищает нас от электротравматизма, а кроме того заземленный металлический корпус электроприборов многократно снижает уровень излучаемого ими вредного электромагнитного излучения.

В обязательном порядке сделайте перемычку между заземляющей и нулевой шинами в электрощите на 380 Вольт. Это защитит вашу всю бытовую технику и лампочки от перегорания в случае обрыва нуля. Подробнее об этом в статье о скачках напряжения.

Как сделать заземление.

В качестве естественного заземляющего устройства могут использоваться металлические трубы или конструкции, находящиеся в земле.

Но как показывает моя многолетняя практика электрика, эффективные естественные заземлители возле частного дома находятся очень редко, поэтому делать заземление приходится самостоятельно. Это не сложный процесс и с ним справиться практически любой. Для этого Вам понадобятся:

  • Для электродов- трубы или уголок с толщиной стенки от 4 миллиметров, арматура толщиной не менее 14 мм.
  • Для соединений— сварочный аппарат.
  • Для резки— болгарка или ножовка по металлу.
  • Металлическая полоса шириной не менее 50 мм и толщиной от 3 миллиметров (50х3) для соединения электродов и монтажа заземляющего вывода возле электрощита.
  • Для подключения у электрощиту— медный провод ПВ3 сечением не менее 10 квадратных миллиметров.

Я делаю заземление по следующим образом:

  1. Выкапываю траншею в виде треугольника.
  2. Забиваю кувалдой три арматуры или уголка длиной 2 метра по вершинам треугольника ниже уровня земли на сантиметров 20-30. Если дом стоит на песчаных почвах с высоким удельным сопротивлением, тогда делаем треугольник со стороной 3 метра и забиваем 6 электродов через каждые 1.5 метра. Это делается для того, что бы добиться необходимой величины сопротивления не более 4 Ом. А если посыпать  солью электроды— сопротивление значительно снизится, но ускорится процесс коррозии.
  3. Все электроды соединяем полосой (50х3 мм) между собой надежно только при помощи сварки.
  4. Делаем вывод полосой к фундаменту дома и запускаем ее через стену в дом возле электрощита.
  5. Покрываем все места сварки антикором.
  6. Я после этого проверяю величину сопротивления специальным дорогостоящим измерительным прибором с работы. При необходимости добавляю электроды. Вам придется пропустить этот шаг.
  7. Засыпаем траншею.
  8. Окрашиваем внешнюю часть полосы, находящуюся над поверхностью земли.
  9. В доме к полосе привариваем болт.
  10. Надеваем и опрессовываем наконечник на медный провод. Прикручиваем его к болту.
  11. Заводим провод в щит и подключаем его к главной заземляющей шине (ГЗШ). На нее же присоединяется заземляющий проводник от линии электропитания и на отдельную шину заземления PE. И обязательно делается перемычка между ГЗШ и нулевой шиной.  Но если у Вас не трехфазный ввод на 380 В, а однофазный на 220 Вольт, то в установке ГЗШ нет необходимости, тогда подключайте провод с заземляющего контура сразу на шину PE.

Вот и все заземление для вашего дома готово! Теперь осталось подключить к шине PE все проводники, идущие на розетки и светильники.

Металл в земле подвергается коррозии, поэтому не используйте тонкое железо и хорошо сваривайте.

Трехфазная электрическая мощность | Передача электроэнергии

Трехфазная электроэнергия — распространенный метод передачи электроэнергии. Это тип многофазной системы, которая в основном используется для питания двигателей и многих других устройств. Трехфазная система использует меньше проводящего материала для передачи электроэнергии, чем эквивалентные однофазные, двухфазные системы или системы постоянного тока при том же напряжении.

В трехфазной системе три проводника цепи несут три переменных тока (одинаковой частоты), которые достигают своих мгновенных пиковых значений в разное время.Если взять за основу один проводник, то два других тока задерживаются во времени на одну треть и две трети одного цикла электрического тока. Эта задержка между «фазами» обеспечивает постоянную передачу мощности в течение каждого цикла тока, а также позволяет создавать вращающееся магнитное поле в электродвигателе.

Трехфазные системы могут иметь или не иметь нейтральный провод. Нейтральный провод позволяет трехфазной системе использовать более высокое напряжение, поддерживая при этом однофазные устройства с более низким напряжением.В ситуациях распределения высокого напряжения обычно не бывает нейтрального провода, поскольку нагрузки можно просто подключить между фазами (соединение фаза-фаза).

Трехфазный имеет свойства, которые делают его очень востребованным в электроэнергетических системах. Во-первых, фазные токи имеют тенденцию нейтрализовать друг друга, суммируясь до нуля в случае линейной сбалансированной нагрузки. Это позволяет исключить нейтральный провод на некоторых линиях; все фазные проводники проходят одинаковый ток и поэтому могут иметь одинаковый размер для сбалансированной нагрузки.Во-вторых, передача мощности на линейную сбалансированную нагрузку является постоянной, что помогает снизить вибрации генератора и двигателя. Наконец, трехфазные системы могут создавать магнитное поле, которое вращается в заданном направлении, что упрощает конструкцию электродвигателей. Три — это самый низкий фазовый порядок, демонстрирующий все эти свойства.

Большинство бытовых нагрузок однофазные. Обычно трехфазное питание либо вообще не поступает в жилые дома, либо там, где оно поступает, оно распределяется на главном распределительном щите.

На электростанции электрический генератор преобразует механическую энергию в набор переменных электрических токов, по одному от каждой электромагнитной катушки или обмотки генератора. Токи являются синусоидальными функциями времени, все с одной и той же частотой, но смещены во времени, чтобы получить разные фазы. В трехфазной системе фазы расположены равномерно, что дает разделение фаз на одну треть цикла. Частота сети обычно составляет 50 Гц в Азии, Европе, Южной Америке и Австралии и 60 Гц в США и Канаде (но более подробную информацию см. В разделе «Системы электроснабжения»).

Генераторы выдают напряжение в диапазоне от сотен вольт до 30 000 вольт. На электростанции трансформаторы «повышают» это напряжение до другого, пригодного для передачи.

После многочисленных дополнительных преобразований в сети передачи и распределения мощность окончательно преобразуется в стандартное сетевое напряжение (, т.е. «домашнее» напряжение). Электропитание может быть уже разделено на одну фазу на этом этапе или все еще может быть трехфазным.При трехфазном понижении выход этого трансформатора обычно соединяется звездой со стандартным напряжением сети (120 В в Северной Америке и 230 В в Европе и Австралии), являющимся фазным напряжением. Другая система, обычно встречающаяся в Северной Америке, — это соединение вторичной обмотки треугольником с центральным ответвлением на одной из обмоток, питающих землю и нейтраль. Это позволяет использовать трехфазное напряжение 240 В, а также три различных однофазных напряжения (120 В между двумя фазами и нейтралью, 208 В между третьей фазой (известной как верхняя ветвь) и нейтралью и 240 В между любыми двумя фазами). быть доступным из того же источника.

В большом оборудовании для кондиционирования воздуха и т. Д. Используются трехфазные двигатели из соображений эффективности, экономии и долговечности.

Нагреватели сопротивления, такие как электрические котлы или отопление помещений, могут быть подключены к трехфазным системам. Аналогичным образом может быть подключено электрическое освещение. Эти типы нагрузок не требуют наличия вращающегося магнитного поля, характерного для трехфазных двигателей, но используют более высокий уровень напряжения и мощности, обычно связанный с трехфазным распределением.Системы люминесцентного освещения также выигрывают от уменьшения мерцания, если соседние светильники получают питание от разных фаз.

Большие выпрямительные системы могут иметь трехфазные входы; Результирующий постоянный ток легче фильтровать (сглаживать), чем выходной сигнал однофазного выпрямителя. Такие выпрямители могут использоваться для зарядки аккумуляторов, процессов электролиза, таких как производство алюминия, или для работы двигателей постоянного тока.

Интересным примером трехфазной нагрузки является электродуговая печь, используемая в сталеплавильном производстве и при переработке руд.

В большинстве стран Европы печи рассчитаны на трехфазное питание. Обычно отдельные нагревательные элементы подключаются между фазой и нейтралью, чтобы обеспечить подключение к однофазной сети. Во многих регионах Европы единственным доступным источником является однофазное питание.

Иногда преимущества трехфазных двигателей делают целесообразным преобразование однофазной мощности в трехфазную. Мелкие клиенты, такие как жилые или фермерские хозяйства, могут не иметь доступа к трехфазному питанию или могут не захотеть оплачивать дополнительную стоимость трехфазного обслуживания, но все же могут пожелать использовать трехфазное оборудование.Такие преобразователи также могут позволять изменять частоту, позволяя регулировать скорость. Некоторые локомотивы переходят на многофазные двигатели, приводимые в действие такими системами, даже несмотря на то, что поступающее питание на локомотив почти всегда либо постоянное, либо однофазное переменное.

Поскольку однофазная мощность стремится к нулю в каждый момент, когда напряжение пересекает ноль, но трехфазная подает мощность непрерывно, любой такой преобразователь должен иметь способ накапливать энергию в течение необходимой доли секунды.

Один из методов использования трехфазного оборудования в однофазной сети — это вращающийся фазовый преобразователь, по сути, трехфазный двигатель со специальными пусковыми устройствами и коррекцией коэффициента мощности, которые создают сбалансированные трехфазные напряжения.При правильной конструкции эти вращающиеся преобразователи могут обеспечить удовлетворительную работу трехфазного оборудования, такого как станки, от однофазного источника питания. В таком устройстве накопление энергии осуществляется за счет механической инерции (эффект маховика) вращающихся компонентов. Внешний маховик иногда находится на одном или обоих концах вала.

Второй метод, который был популярен в 1940-х и 50-х годах, был методом, который назывался «методом трансформатора». В то время конденсаторы были дороже трансформаторов.Таким образом, автотрансформатор использовался для подачи большей мощности через меньшее количество конденсаторов. Этот метод работает хорошо и имеет сторонников даже сегодня. Использование метода преобразования имени отделяет его от другого распространенного метода, статического преобразователя, поскольку оба метода не имеют движущихся частей, что отделяет их от вращающихся преобразователей.

Другой часто применяемый метод — использование устройства, называемого статическим преобразователем фазы. Этот метод работы трехфазного оборудования обычно используется с нагрузками двигателя, хотя он обеспечивает только 2/3 мощности и может вызвать перегрев нагрузок двигателя, а в некоторых случаях — перегрев.Этот метод не будет работать, когда задействованы чувствительные схемы, такие как устройства ЧПУ, или в нагрузках индукционного или выпрямительного типа.

Производятся некоторые устройства, имитирующие трехфазное питание от однофазного трехпроводного источника питания. Это достигается за счет создания третьей «субфазы» между двумя токоведущими проводниками, в результате чего разделение фаз составляет 180 ° — 90 ° = 90 °. Многие трехфазные устройства будут работать в этой конфигурации, но с меньшей эффективностью.

Преобразователи частоты (также известные как твердотельные инверторы) используются для точного управления скоростью и крутящим моментом трехфазных двигателей.Некоторые модели могут питаться от однофазной сети. ЧРП работают путем преобразования напряжения питания в постоянный ток, а затем преобразования постоянного тока в подходящий трехфазный источник для двигателя.

Цифровые фазовые преобразователи — это новейшая разработка в технологии фазовых преобразователей, которая использует программное обеспечение в мощном микропроцессоре для управления твердотельными компонентами переключения питания. Этот микропроцессор, называемый процессором цифровых сигналов (DSP), контролирует процесс преобразования фазы, непрерывно регулируя модули ввода и вывода преобразователя для поддержания сбалансированной трехфазной мощности при любых условиях нагрузки.

  • Трехпроводное однофазное распределение полезно, когда трехфазное питание недоступно, и позволяет удвоить нормальное рабочее напряжение для мощных нагрузок.
  • Двухфазное питание, как и трехфазное, обеспечивает постоянную передачу мощности линейной нагрузке. Для нагрузок, которые соединяют каждую фазу с нейтралью, при условии, что нагрузка имеет одинаковую потребляемую мощность, двухпроводная система имеет ток нейтрали, который превышает ток нейтрали в трехфазной системе.Кроме того, двигатели не являются полностью линейными, что означает, что, несмотря на теорию, двигатели, работающие на трех фазах, имеют тенденцию работать более плавно, чем на двухфазных. Генераторы на Ниагарском водопаде, установленные в 1895 году, были крупнейшими генераторами в мире в то время и были двухфазными машинами. Истинное двухфазное распределение энергии по существу устарело. В системах специального назначения для управления может использоваться двухфазная система. Двухфазное питание может быть получено от трехфазной системы с использованием трансформаторов, называемых трансформатором Скотта-Т.
  • Моноциклический источник питания — это название асимметричной модифицированной двухфазной системы питания, используемой General Electric около 1897 года (отстаивавшей Чарльз Протеус Стейнмец и Элиху Томсон; это использование, как сообщается, было предпринято, чтобы избежать нарушения патентных прав). В этой системе генератор был намотан с однофазной обмоткой полного напряжения, предназначенной для освещения нагрузок, и с небольшой (обычно линейного напряжения) обмоткой, которая вырабатывала напряжение в квадратуре с основными обмотками. Намерение состояло в том, чтобы использовать эту дополнительную обмотку «силового провода» для обеспечения пускового момента для асинхронных двигателей, при этом основная обмотка обеспечивает питание осветительных нагрузок.После истечения срока действия патентов Westinghouse на симметричные двухфазные и трехфазные системы распределения электроэнергии моноциклическая система вышла из употребления; его было трудно анализировать, и его хватило на недостаточное время для разработки удовлетворительного учета энергии.
  • Созданы и испытаны системы высокого порядка фаз для передачи энергии. Такие линии передачи используют 6 или 12 фаз и конструктивные решения, характерные для линий передачи сверхвысокого напряжения. Линии передачи высокого порядка могут позволить передачу большей мощности через данную линию передачи на полосе отчуждения без затрат на преобразователь HVDC на каждом конце линии.

Многофазная система — это средство распределения электроэнергии переменного тока. Многофазные системы имеют три или более электрических проводника, находящихся под напряжением, по которым проходят переменные токи с определенным временным сдвигом между волнами напряжения в каждом проводнике. Полифазные системы особенно полезны для передачи энергии электродвигателям. Самый распространенный пример — трехфазная система питания, используемая в большинстве промышленных приложений.

Один цикл напряжения трехфазной системы

На заре коммерческой электроэнергетики на некоторых установках для двигателей использовались двухфазные четырехпроводные системы.Основным преимуществом этого было то, что конфигурация обмоток была такой же, как у однофазного двигателя с конденсаторным пуском, а при использовании четырехпроводной системы концептуально фазы были независимыми и легко анализировались с помощью математических инструментов, доступных в то время. . Двухфазные системы заменены трехфазными. Двухфазное питание с углом между фазами 90 градусов может быть получено из трехфазной системы с использованием трансформатора, подключенного по Скотту.

Многофазная система должна обеспечивать определенное направление вращения фаз, поэтому напряжения зеркального отображения не учитываются при определении порядка фаз.Трехпроводная система с двумя фазными проводниками, разнесенными на 180 градусов, по-прежнему остается только однофазной. Такие системы иногда называют расщепленной фазой.

Полифазное питание особенно полезно в двигателях переменного тока, таких как асинхронный двигатель, где оно генерирует вращающееся магнитное поле. Когда трехфазный источник питания завершает один полный цикл, магнитное поле двухполюсного двигателя вращается на 360 ° в физическом пространстве; Двигатели с большим количеством пар полюсов требуют большего количества циклов питания, чтобы совершить один физический оборот магнитного поля, и поэтому эти двигатели работают медленнее.Никола Тесла и Михаил Доливо-Добровольский изобрели первые практические асинхронные двигатели, использующие вращающееся магнитное поле — ранее все коммерческие двигатели были постоянного тока, с дорогими коммутаторами, щетками, требующими большого технического обслуживания, и характеристиками, непригодными для работы в сети переменного тока. Многофазные двигатели просты в сборке, они самозапускаются и мало вибрируют.

Были использованы более высокие номера фаз, чем три. Обычной практикой для выпрямительных установок и преобразователей HVDC является обеспечение шести фаз с интервалом между фазами 60 градусов, чтобы уменьшить генерацию гармоник в системе питания переменного тока и обеспечить более плавный постоянный ток.Построены экспериментальные линии передачи высокого фазового порядка, содержащие до 12 фаз. Они позволяют применять правила проектирования сверхвысокого напряжения (СВН) при более низких напряжениях и позволяют увеличить передачу мощности в коридоре той же ширины линии электропередачи.

Жилые дома и малые предприятия обычно снабжаются одной фазой, взятой из одной из трех фаз коммунального обслуживания. Индивидуальные клиенты распределяются по трем фазам, чтобы сбалансировать нагрузки. Однофазные нагрузки, такие как освещение, могут быть подключены от фазы под напряжением к нейтрали цепи, что позволяет сбалансировать нагрузку в большом здании по трем фазам питания.Сдвиг фаз линейных напряжений составляет 120 градусов; напряжение между любыми двумя проводами под напряжением всегда в 3 раза больше между проводом под напряжением и нулевым проводом. См. Статью Системы электроснабжения для получения списка однофазных распределительных напряжений по всему миру; трехфазное линейное напряжение будет в 3 раза больше этих значений.

В Северной Америке в многоквартирных домах может быть распределено напряжение 120 В (линия на нейтраль) и 208 В (линия на линию). Основные однофазные приборы, такие как духовки или плиты, предназначенные для системы с разделением фаз на 240 В, обычно используемой в односемейных домах, могут не работать должным образом при подключении к 208 Вольт; нагревательные приборы будут развивать только 3/4 своей номинальной мощности, а электродвигатели не будут правильно работать при подаче напряжения на 13% ниже.

3-х фазное напряжение. Линейное и фазное напряжение

Получение трехфазного тока. Многофазной системой называют систему переменного тока, состоящую из нескольких цепей, в которых действует ЭДС. источники энергии имеют одинаковую частоту, но сдвинуты по фазе. Однофазная цепь в такой системе называется фазной. Каждая ЭДС может действовать в своей собственной цепочке и не быть связана с другими ЭДС. В этом случае электрическая система называется несвязанной.Связанные многофазные системы, в которых отдельные фазы электрически соединены между собой, получили широкое распространение на практике.

По сравнению с однофазным многофазным током есть несколько преимуществ. Для передачи такой же мощности требуется провод меньшего сечения. В работе двигателей и устройств переменного тока используется вращающееся магнитное поле, создаваемое неподвижными катушками или обмотками.

Рис. Один

Из всех систем многофазного тока широкое распространение на практике получил трехфазный ток.Трехфазный ток можно объяснить следующим образом. Если в однородном магнитном поле (рис.1) расположить три витка под углом 120 ° друг к другу и вращать их с постоянной угловой скоростью, в катушках будет наведена ЭДС, которая также будет сдвинута по фазе. на 120 ° . В промышленности для получения трехфазного тока на статоре генератора переменного тока делают три обмотки, смещенные одна относительно другой на 120 ° . Такие обмотки называются фазами генератора.


Фиг.2

Соединения звездой. Соединив фазные обмотки генератора или потребителя так, чтобы концы обмоток были замкнуты в одну общую точку, и соединив начала обмоток с линейными проводами, мы получим соединение, называемое звездой (рис. 2). Таким образом, мы видим, что при образовании трехфазной системы, соединенной звездой из трех однофазных систем переменного тока, вместо шести проводов требуется только четыре.Условно соединение звездой обозначается как Y . Точки, в которых соединяются концы фазных обмоток, называются нулевыми, а провод, соединяющий их, нулевым или нейтральным. Три провода, соединяющие свободные концы фаз генератора с концами фаз потребителя, называются линейными.

При равномерно нагруженной трехфазной симметричной системе нулевой провод не нужен; Вся мощность может передаваться по трем проводам. Однако при включении в электрическую цепь однофазных потребителей невозможно добиться равномерной нагрузки фаз.Поэтому в таких случаях нулевой провод необходим, хотя его сечение равно половине сечения линейного провода.


Фиг.3

При таком соединении конец первой фазы связан с началом второй, конец второй — с началом третьей, а конец третьей — с началом первой фазы, а линейные провода подключаются к точкам соединения фаз (рис.3). Соединение треугольником условно знаком Δ .

При соединении треугольником фазы генератора образуют замкнутый контур с низким сопротивлением. При неправильном подключении обмотки ЭДС могут увеличиться вдвое. При небольшом сопротивлении цепи можно установить режим, близкий к короткому замыканию.

При соединении треугольником каждая фазная обмотка создает линейное напряжение. Фазное напряжение в этом случае линейно. Соединительный треугольник используется для освещения и силовых нагрузок.

В трехфазных двигателях обычно выводятся все шесть концов трех обмоток, которые при желании можно соединить звездой или треугольником.

В электрооборудовании жилых многоквартирных домов, а также в частном секторе, в трехфазных и однофазных сетях. Первоначально электрическая сеть идет от трехфазной электростанции, а чаще всего к жилым домам. Подключается трехфазное электроснабжение. Кроме того, он имеет разветвление на отдельные фазы.Этот метод используется для создания максимально эффективной передачи электрического тока от электростанции к месту назначения, а также для снижения потерь при транспортировке.

Чтобы определить количество фаз в вашей квартире, просто откройте распределительный щит, расположенный на лестничной площадке или прямо в квартире, и посмотрите, сколько проводов идет в квартиру. Если сеть однофазная, то будет 2 провода. Возможен еще один третий провод — заземление.

Трехфазные сети в квартирах редко используются в случаях подключения старых электроплит с тремя фазами, или мощных нагрузок в виде циркулярной пилы или нагревательных приборов.Количество фаз также можно определить по входному напряжению. В 1-фазной сети напряжение 220 вольт, в 3-х фазной тоже 220 вольт между фазой и нулем, между 2 фазами — 380 вольт.

Различия

Если не учитывать разницу в количестве проводов сетей и схеме подключения, то можно определить некоторые другие особенности, которые имеют трехфазные и однофазные сети.

При трехфазном питании от сети возможен дисбаланс фаз из-за неравномерного разделения фаз нагрузки.На одну фазу можно подключить мощный обогреватель или печку, а на другую телевизор и стиральную машину. Затем возникает этот негативный эффект, сопровождающийся несимметрией напряжений и токов по фазам, что приводит к выходу из строя бытовых устройств. Чтобы не допустить подобных факторов, необходимо перед прокладкой проводов электрической сети предварительно распределить нагрузку по фазам.
Для трехфазной сети требуется больше кабелей, проводов и переключателей, а это означает, что это не слишком экономит деньги.
Возможности однофазной бытовой сети значительно меньше трехфазной по мощности. Если вы планируете использовать несколько мощных потребителей и бытовую технику, электроинструменты, желательно подвести к дому или квартире трехфазную электросеть.
Основным преимуществом трехфазной сети является небольшое падение напряжения по сравнению с однофазной сетью при одинаковой мощности. Это можно объяснить тем, что в 3-х фазной сети ток в фазном проводе в три раза меньше, чем в 1-фазной сети, а по нулевому проводу ток отсутствует.


Преимущества однофазной сети

Главное преимущество — эффективность его использования. В таких сетях используются трехпроводные кабели, по сравнению с тем, что в трехфазных сетях — пятипроводные. Для защиты оборудования в однофазных сетях необходимы однополюсные защитные, а в трехфазных сетях без трехполюсных автоматов не обойтись.

В связи с этим размеры устройств защиты также будут существенно отличаться.Даже на одной электрической машине уже есть экономия двух модулей. А по размеру он составляет порядка 36 мм, что существенно повлияет на размещение машин в нем. А при установке экономия места составит более 100 мм.

Трехфазные и однофазные сети для частного дома

Потребление электроэнергии населением постоянно увеличивается. В середине прошлого века в частных домах было относительно мало бытовой техники.Сегодня это совсем другая картина. Бытовые потребители энергии в частных домах растут не по дням, а по часам. Поэтому в их частной собственности больше не стоит вопрос, какие электросети выбрать для подключения. Чаще всего в частных домах выполняют электросеть с тремя фазами, а от однофазной сети отказываются.

Но стоит ли трехфазная сеть такого преимущества при установке? Многие считают, что, соединив три фазы, можно будет использовать большое количество устройств.Но не всегда получается. Максимально допустимая мощность определяется техническими условиями на подключение. Обычно для всех частных домохозяйств этот параметр составляет 15 кВт. В случае однофазной сети этот параметр примерно такой же. Поэтому понятно, что особой выгоды по мощности нет.

Но необходимо помнить, что если трехфазная и однофазная сети имеют равную мощность, то для трехфазной сети это можно применить, так как мощность и ток распределяются по всем фазам, следовательно, она нагружает меньше отдельных фаз. проводники.Номинальный ток автоматического выключателя для 3-х фазной сети также будет ниже.

Большое значение имеет размер, который для трехфазной сети будет иметь размер значительно больше. Это зависит от размера трехфазного, который больше, чем однофазный, и вводной автомат будет занимать больше места. Поэтому коммутатор для трехфазной сети будет состоять из нескольких ярусов, что является недостатком этой сети.

Но у трехфазного питания есть свои преимущества, которые выражаются в том, что можно подключать приемники трехфазного тока.Они могут быть и другими мощными устройствами, что является преимуществом трехфазной сети. Рабочее напряжение Трехфазная сеть составляет 380 В, что выше, чем в однофазной сети, а это значит, что вопросам электробезопасности придется уделять больше внимания. Так же обстоит дело и с пожарной безопасностью.

Недостатки трехфазной сети для частного дома

Как следствие, есть несколько недостатков использования трехфазной сети для частного дома:

  1. Необходимо получить технические условия и разрешение на подключение к сети от электросети.
  2. Повышается опасность поражения электрическим током, а также опасность возгорания из-за повышенного напряжения.
  3. Значительные габаритные размеры распределительного щита. Для владельцев загородных домов такой недостаток не имеет большого значения, так как в них достаточно места.
  4. Установка в виде модулей на лицевую панель обязательна. В трехфазной сети это особенно актуально.
Преимущества трехфазного питания для частного дома
  1. Можно равномерно распределить нагрузку по фазам, чтобы избежать дисбаланса фаз.
  2. Возможность подключения к сети мощных трехфазных потребителей энергии. Это самая ощутимая ценность.
  3. Снижение номиналов входных устройств защиты, а также уменьшение входных.
  4. Во многих случаях можно получить разрешение компании на продажу энергии для увеличения допустимого максимального уровня потребления электроэнергии.

В результате можно сделать вывод, что ввод в трехфазную сеть электроснабжения рекомендуется практически для частных домов и домов с жилой площадью более 100 м 2.Трехфазное питание особенно подходит тем владельцам, которые собираются установить циркулярную пилу, отопительный котел, различные приводы механизмов с трехфазными электродвигателями.

Остальным владельцам частных домов переходить на трехфазное питание не нужно, так как это может создать только дополнительные проблемы.

В настоящее время так называемая трехфазная система переменного тока, изобретенная и разработанная в 1888 году русским инженером-электриком Доливо-Добровольским, получила самое широкое распространение во всем мире.Он первым сконструировал и построил трехфазный генератор, трехфазный асинхронный электродвигатель и трехфазную линию электропередачи. Эта система обеспечивает наиболее благоприятные условия для передачи электрической энергии по проводам и позволяет встраивать простые в устройстве и удобные в эксплуатации электродвигатели.

Трехфазная система электрических цепей — это система, состоящая из трех цепей, в которой действуют переменные электродвижущие силы одинаковой частоты, сдвинутые по фазе друг относительно друга на 1/3 периода (j = 120 °).Каждая цепь такой системы называется фазой, а система из трех переменных токов, сдвинутых по фазе в таких цепях, называется трехфазным током.

Поддержание постоянного фазового сдвига между колебаниями напряжения на выходе трех независимых генераторов — довольно техническая задача. На практике трехфазные генераторы используются для выработки трех противофазных токов. Дроссель в генераторе представляет собой электромагнит, обмотка которого запитана постоянным током.Индуктор — это ротор, а якорь генератора-статора. Каждая обмотка генератора представляет собой отдельный генератор тока. Подключив провода к концам каждого из них, как показано на рисунке, мы получили бы три независимые цепи, каждая из которых могла бы питать те или иные приемники, например электрические лампы. В этом случае для передачи всей энергии, которую поглощают приемники, потребуется шести проводов . Однако можно соединить между собой обмотки генератора трехфазного тока, чтобы уложиться в четыре или даже три провода, то есть значительно сэкономить проводку.Первый из этих методов называется звездой. При этом все концы фазных обмоток X, Y, Z соединяются с общим узлом O (он называется нейтральной или нулевой точкой генератора) и начинают служить зажимами для подключения нагрузки. Напряжение между нулевой точкой и началом каждой фазы называется фазным напряжением ( U f ) и напряжение между началами обмоток, то есть точками A и B, B и C, C и A, называется линейным напряжением ( U л ). В этом случае действующее значение линейного напряжения превышает действующее значение фазного напряжения в

В случае равномерной нагрузки всех трех фаз ток в нейтральном проводе равен нулю и его нельзя использовать. При несимметричной нагрузке ток в нейтральном проводе не равен нулю, а намного меньше, чем ток в линейных проводах. Поэтому нейтральный провод может быть тоньше фазы.

Обмотки трехфазного генератора можно соединять треугольником.Конец каждой обмотки соединяется с началом следующей, так что они образуют замкнутый треугольник, а линейные провода соединяются с вершинами

Содержимое:

Одним из вариантов многофазных электрических цепей является трехфазная цепь. В многофазных электрических цепях синусоидальные электродвижущие силы действуют с той же частотой. Они отличаются друг от друга по фазе и созданы из общего источника энергии. В трехфазных цепях важными параметрами являются фазное и линейное напряжение, различающиеся своими электрическими характеристиками.

Что такое фаза

Каждая часть многофазной системы с одинаковой токовой характеристикой называется фазой. Следовательно, определение фазы в электротехнике имеет двоякое значение. Во-первых, как величина, изменяющаяся синусоидально, а во-вторых, как отдельная часть в системе многофазных электрических цепей. Количество фаз определяет название цепей: двухфазная, шестифазная и т. Д.

Наиболее распространенные цепи в современной энергетике — трехфазные.Они имеют ряд преимуществ перед другими типами цепей, как однофазными, так и многофазными. Они более экономичны при производстве и передаче электроэнергии. Трехфазное напряжение возникает в результате вращения магнита внутри катушки. С его помощью просто формируется вращающийся круг, обеспечивающий работу асинхронных двигателей. Это явление известно как ЭДС или иначе индукция электродвижущей силы.

Вращающийся магнит называется ротором, а расположенные вокруг него катушки образуют статор.Напряжение переменного тока получается путем преобразования постоянного напряжения, когда прямая линия принимает синусоидальную конфигурацию с изменяющимися положительными и отрицательными значениями.


Изменение магнитного потока происходит за счет вращения ротора, что приводит к образованию переменного напряжения. В статоре три катушки, каждая из которых имеет свою отдельную электрическую цепь. Каждая катушка смещена относительно друг друга на 120 градусов по окружности. Под действием вращающегося магнита то же самое происходит во всех катушках.Напряжение переменного тока между фазами в трехфазной сети.

Трехфазные цепи позволяют получить на одной установке два рабочих напряжения — фазное и линейное.

Фазное и линейное напряжение в трехфазных цепях

Фазное напряжение — возникает между началом и концом любой фазы. В противном случае это также определяется как напряжение между одним из фазных проводов и нулевым проводом.

Линейный — определяется как межфазный или межфазный — возникает между двумя проводами или одними и теми же клеммами разных фаз.

Рассматривая фазные и линейные напряжения и токи, следует отметить, что индикаторное фазное напряжение составляет примерно 58% от линейных параметров. Таким образом, в нормальных условиях эксплуатации линейные показатели такие же и превышают фазовые в 1,73 раза. То есть, если линейное напряжение равно 380, которое равно фазному напряжению, можно определить с помощью этого коэффициента.

В трехфазной сети напряжение обычно оценивается по данным сетевого напряжения.Для трехфазных линий, отходящих от подстанции, устанавливается линейное напряжение 380 вольт. Это соответствует фазному напряжению 220 вольт. В трехфазных четырехпроводных сетях указывается номинальное напряжение с обозначением обеих величин — 380/220 В. Это означает, что к такой сети подключаются как устройства на 380 вольт, так и однофазные — 220 вольт.

Наиболее распространенная трехфазная система 380/220 вольт с заземленным нулевым проводом. Однофазные приборы на 220 вольт подключаются к линейному напряжению между любой парой фазных проводов.Трехфазные приборы подключаются к трем разным фазным проводам. В последнем случае использование нейтрального провода не требуется, при этом повышается риск поражения электрическим током при нарушении изоляции.

Разница линейного напряжения от фазы

Прежде чем рассматривать практическое значение этих параметров, необходимо точно знать, чем отличаются линейное и фазное напряжения. Определенное межфазное напряжение в трехфазной цепи может возникать либо между двумя фазами, либо между одной из фаз и нейтральным проводом.Такое взаимодействие становится возможным за счет использования в схеме четырехпроводной трехфазной схемы. Его основные характеристики — это напряжение и частота.


Предполагается, что напряжение, возникающее между двумя фазными проводниками, является линейным, а фаза находится между фазой и нулем. Линейное напряжение используется для расчета токов и других параметров трехфазной цепи. К таким схемам можно подключать не только трехфазные контакты, но и однофазные, например, различную бытовую технику.Номинальное значение сетевого напряжения составляет 380 В. Иногда оно меняется под воздействием различных факторов, возникающих в локальной сети. Таким образом, все основные различия между двумя типами напряжения заключаются в способах соединения обмоток.

Наиболее распространенное линейное напряжение, благодаря безопасному использованию и удобному распределению сетей. Для его измерения достаточно мультиметра, а для определения характеристик фазного напряжения необходимы вольтметры, датчики тока и другие специальные устройства.

Контроль и настройка этого параметра осуществляется с помощью. Этот прибор поддерживает этот показатель на стандартном уровне, в том числе нормализует и повышенное напряжение.

Использование линейного и фазного напряжения

Классическим примером использования линейного и фазного напряжений считается подключение, используемое при запуске. трехфазный генератор. В его конструкцию входят первичная и вторичная обмотки, которые могут быть соединены звездой или треугольником.


Схема «треугольник» предполагает соединение конца первой фазы с началом второй.Кроме того, каждый фазовый провод подключается к линейным проводам источника тока. В результате токи выравниваются, и фазное напряжение становится линейным. Таким же образом подключаются электродвигатели и трансформаторы.

Другой вариант — звездообразная схема. В этом случае пуск всех обмоток подключается к одной сети перемычками. Таким образом, ток с характеристиками этой сети будет течь в обмотки, и межфазное напряжение будет взаимодействовать со всеми активными контактами.

Между двумя фазными проводами его иногда называют межфазным или межфазным. Фаза — это напряжение между нулевым проводом и одной из фаз. В нормальных условиях эксплуатации линейные напряжения одинаковы и в 1,73 раза превышают фазное напряжение.

Рабочие напряжения трехфазной цепи

Трехфазные цепи имеют ряд преимуществ по сравнению с многофазными и однофазными цепями, с их помощью можно легко получить вращающееся круговое магнитное поле, обеспечивающее работу асинхронных двигателей. .Напряжение трехфазной цепи оценивается по ее линейному напряжению; для линий, отходящих от подстанций, устанавливается на 380 В, что соответствует фазному напряжению 220 В. Для обозначения номинального напряжения трехфазной четырехпроводной сети используются оба значения — 380/220 В, Подчеркивая, что подключайте не только трехфазные устройства, рассчитанные на номинальное напряжение 380 В, но и однофазные — на 220 В.

Фаза — это часть многофазной системы, имеющая такую ​​же токовую характеристику.Независимо от способа подключения фаз, существует три действующих значения напряжения трехфазной цепи. Они сдвинуты друг относительно друга по фазе на угол 2π / 3. Четырехпроводная схема, помимо трех линейных напряжений, имеет еще и трехфазную.

Номинальное напряжение

Наиболее распространенные номинальные напряжения приемников переменного тока составляют 220, 127 и 380 В. Напряжения 220 и 380 В чаще всего используются для питания промышленных устройств, а 127 и 220 В используются для бытовых приборов. Все они (127, 220 и 380 В) считаются номинальными напряжениями трехфазной сети.Их наличие в четырехпроводной сети дает возможность подключать однофазные приемники, рассчитанные на 220 и 127 В или 380 и 220 В.

Различия в системах распределения питания

Трехфазные 380/220 В трехфазные Наиболее распространена фазовая система с заземленной нейтралью, но есть и другие способы распределения электроэнергии. Например, в некоторых населенных пунктах можно встретить трехфазную систему с незаземленной изолированной нейтралью и линейным напряжением 220 В.

В этом случае нулевой провод не требуется, а вероятность поражения электрическим током при нарушении изоляции снижается за счет к незаземленной нейтрали.Трехфазные приемники подключаются к трем фазным проводам, а однофазные проводники подключаются к линейному напряжению между любой парой фазных проводов.

Схема заземления в частном доме 380. Устройство заземления в частном доме своими руками. Выбор дизайна зависит от многих факторов.

Оставлять жилое помещение без качественного заземления как минимум безрассудно. Любая неисправность бытовой техники потенциально опасна для жителей.Нарушение изоляции приводит к прохождению тока к телу, а это уже грозит самыми неприятными последствиями.

Во избежание поражения электрическим током людей, использующих устройства, в каждой розетке предусмотрен третий контакт для отвода тока. Но работает только в случае подключения всех розеток к заземляющему контуру, погруженному в землю за пределами жилого дома.

В то время в квартирах чаще всего использовались двухпроводные алюминиевые провода, в одной комнате у нас был 1 выключатель и 1 розетка.Что такое земля? Защитное заземление — основа пассивных частей электрооборудования для защиты людей от опасных электрических токов.

В настоящее время все мы не обходимся без мобильного телефона, у нас обычно есть телевизор или компьютер в каждой комнате. На кухнях есть посудомоечные машины, ванны или сушильные машины. Мы больше не думаем об одном гнезде в комнате и рассчитываем собрать 4-5 или более гнезд.

Цепь заземления в частном доме представляет собой конструкцию из металлических заготовок, вкопанных в землю на одинаковом расстоянии и замкнутых между собой соответствующей полосой.

Он состоит из штифтов или углов, расположенных в одну линию или выстроенных в одну линию (квадрат). Закапывают «стояки» на глубину не менее семидесяти сантиметров. Они свариваются полосой металла шириной 4 и толщиной 0,3 см.

В каких случаях необходимо заземление?

Многие устройства оснащены металлическими корпусами. Поэтому иногда рука, касающаяся стиральной машины или холодильника, вызывает электрический разряд или постоянное напряжение. Из-за достаточно большого количества небезопасных или устаревших устройств изоляции также могут возникать опасные для жизни вещи.Хотя даже относительно простое устройство имеет относительно высокое напряжение, обычно ток составляет всего 1 мА. По мере подъема устройства ток постоянно увеличивается. Поэтому необходимо обустроить землю в квартирах, т.е. снизить электрический заряд до земли, подключив прибор к третьему подводящему кабелю.

На заметку. Во избежание проблем с энергонаблюдением сопротивление цепи не должно превышать 4 Ом. Нигде в нормативных документах этой организации не указано, что нельзя делать заземление частного дома своими руками.Если все сделано правильно, претензий быть не должно.

Перед тем, как установить систему заземления для частного дома, следует уточнить несколько важных моментов:

Как правило, изоляция этого кабеля желтого цвета с зеленой полосой. В сертифицированных штекерных разъемах этот кабель подключается к электронной почте. вторичный выходной контакт. Этот провод во входных шкафах соединен с корпусом шкафа «нулевым» проводом и цепью заземления: металлическими полосами и трубными конструкциями, прикрученными к земле.

Заземление в старой постройке дома устанавливали только на кухнях, где устанавливались стандартные плиты. Заземление в новостройке обычно встречается в каждом гнезде, а также в организации, которая заботится о мощности электричества, регулирует мощность дома.

  1. Лучшая электропроводность глины. Эта грунтовка — лучшее место для нанесения защитного контура.
  2. Песчаные почвы можно обрабатывать солевым раствором. Это улучшит проводимость, но при этом сократит срок эксплуатации конструкции (что вряд ли устроит владельцев).
  3. Замкнутая петля, то есть соединенная металлической лентой геометрической формы, более надежно закрепленная по прямой. В случае коррозии одной из опор вся конструкция продолжит полноценно функционировать.
  4. Место, где находится земля, опасно для человека и животных! Может быть потенциальный ток. Животное, пораженное током, погибнет из-за своего небольшого размера. Это место опасно и для маленьких детей.
  5. Контур должен быть обнесен или покрыт элементами декора, в которых никто не двинется.Например, построить холм из камней.

Процесс сборки контура включает следующие этапы:

CCTV и заземление

Каждый день он проводит измерения и экспериментирует на мышах и насекомых, чтобы выяснить возможное воздействие неионизирующего излучения на организмы. Как зависит выраженность симптомов? От чувствительности каждого человека, от вида излучения, от продолжительности воздействия и от возраста. Особенно уязвимы дети. Беспроводной телефон или беспроводные игры не нужны.Является ли действие электромагнитного излучения на организм человека кумулятивным? Эпидемиологические исследования показали, что по мере увеличения использования мобильного телефона рядом с мозгом повышается вероятность роста опухоли.

  • Потребуются уголки (50 мм) длиной 2 метра или шпильки диаметром 32 мм.
  • Сделана разметка на выбранном сайте. Расстояние между штырями 1-1,2 метра.
  • Углы заточены за счет обрезки концов болгаркой.
  • В местах разметки выкапываются углубления глубиной 70 сантиметров.Это значение нужно для того, чтобы зимой опустить контур ниже точки промерзания почвы. Ямы соединяются траншеями одинаковой глубины.
  • Уголок кувалдой или отбойным молотком забивают вертикально в каждую из ям. Над поверхностью остается только ее верхний край, необходимый для дальнейшей установки.
  • Все столешницы сварены металлической полосой.
  • От ближайшей булавки к подвалу дома идет автобус (круглая сталь). Обычный провод не подойдет, он слишком быстро сгниет в земле.
  • В основании к шине приваривается болт М10 (поможет в работе). К нему крепится провод, идущий прямо к щитку электропитания — к клеммной колодке, к которой подключается заземляющий провод от розеток в доме.

Радиация, помимо прямого воздействия, также оказывает долгосрочное воздействие на здоровье. Считаете ли вы, что чрезвычайно важно ограничить использование беспроводных устройств, излучающих опасное излучение? Конечно. Средства защиты сводят к нулю воздействие радиационного загрязнения.Мы можем использовать беспроводные устройства, если соблюдаем правила.

Современные люди также «бомбардируются» облучением от экзогенных источников. Достаточно ли достаточного сокращения внутренних источников? Это важно, потому что внешние источники не могут их контролировать. Однако для высоких частот были начаты и применены методы защиты стен специальными красителями.

Важно! Болт необходимо смазать консистентной смазкой для предотвращения коррозии.

Способы подключения к коммутатору

Провод подключается к болту М10 шины заземления.В стене пробивается отверстие через перфоратор, через который провод выводится к распределительному щиту в помещении. Проволока может быть алюминиевая (16 кв. Мм) или медная (6 кв. Мм).

Могут ли приборы для измерения радиации в домашних условиях уменьшить облучение? Вы можете получить такое устройство, чтобы контролировать, какие уровни радиации присутствуют в космосе. Конечно, не всегда легко понять, где именно происходит излучение, но, по крайней мере, можно определить опасные точки и избежать их.

Сколько радиации мы получаем от наших устройств и как их защитить Как мы можем повредить наш мобильный телефон, беспроводной телефон или маршрутизатор? В последние годы появился еще один вид загрязнения: электромагнитное.Сколько излучения излучает каждое устройство, каковы пределы безопасности и как мы можем защитить его?

Частные дома в настоящее время подключены к электросети через воздушные линии с заземлением TN-C. Суть такой системы в том, что нейтральный провод линии заземлен. Фаза и рабочий ноль, подключенные к защитному проводу, подключаются к зданиям.


Для таких линий есть два способа подключения.

Что входит в космические исследования: Измерение нагрузки с помощью специальных инструментов в спящем положении.Требуемая продолжительность измерений и испытаний для различных корректирующих мер составляет около двух часов для первой контрольной позиции и увеличивается примерно на полчаса до одного часа для каждой последующей. Во время измерений заказчик может отслеживать эффективность проверяемых мер и формировать собственное мнение об ожидаемых результатах. Затем измерения обрабатываются в офисе, и проводится окончательное исследование с выводами и предлагаемыми мерами.

Система заземления TN-C-S

Непосредственно на совмещенных проводах, разделенных на два отдельных: рабочий и защитный.То есть получается трехжильная разводка.

  • Это делается путем размещения внутри экрана шины, к которому будет подключен защитный провод (заземление).
  • От шины заземления к шине проложена перемычка с подключенным нулевым проводом.
  • На третьей шине смонтирована фаза.

ТТ соединение

Фазу и комбинированный провод (нулевой и защитный), подключенные к дому по воздуху, смонтированы на отдельных шинах, изолированных от электрощита.

Исследование включает в себя: Запись текущей ситуации. Определение источников нагрузки. Тестирование различных мер защиты и мониторинг производительности. Предлагаемые контрмеры. Полезная информация о том, как привлечь внимание к общей информации по этой проблеме и связанным с ней проблемам со здоровьем.

РАДИОЛИНСКИЙ ОБРАЗЕЦ ЕЖЕДНЕВНО ЕЖЕДНЕВНО. Часто задаваемые вопросы: Почему в машине больше радиации? Поскольку автомобиль прикреплен, ваш мобильный телефон вынужден излучать более сильный сигнал для связи с базовой станцией, тем самым повышая уровень ее излучения.По этой причине лучше использовать внешнюю антенну. Внешняя антенна стоит около 30 евро в зависимости от устройства и входит в автомобильный комплект вне автомобиля.

Заземление дома выводится на третью шину, имеющую металлическое соединение с корпусом щита.
Преимущества системы заземления TT ​​:

Защита от случайного возникновения потенциального напряжения на корпусе бытовой техники. Это происходит в случае перегорания совмещенного провода или появления напряжения в нулевом проводе при неравномерной нагрузке по фазам (иногда до 40 В).

Лучше всего, если вы уже выключили свой мобильный телефон до того, как дойдете до заправки. Искра, которая может возникнуть при открытии или закрытии сотового телефона, может вызвать «взрыв», хотя вероятность этого практически равна нулю. Если у вас есть кардиостимулятор, перед использованием мобильного телефона проконсультируйтесь с врачом. Использование мобильных устройств может создавать помехи в работе схемы кардиостимулятора, что может повлиять на работу кардиостимулятора. Скорее всего, если вы разговариваете по самому мобильному телефону, а не с кем-то рядом.

При установке перемычки между шиной заземления и проводом заземления в аварийной ситуации ток течет к шине заземления.

недостатки :

Стоимость Также требуется реле напряжения.

Что важно помнить при выполнении монтажных работ

Перед тем, как подключить их к соответствующему проводу в доме, вы должны соблюдать простые правила:

Система заземления TT ​​

Чтобы ограничить помехи, вы должны говорить с противоположной стороны от кардиостимулятора и не класть мобильный телефон в карман рядом. к нему.Если у вас возникла аритмия, вам следует прекратить его использование и обратиться к врачу. Помехи прекращаются, когда мы извлекаем сотовый телефон. Однако каждый кардиостимулятор отличается своей чувствительностью к помехам. Большинство родителей чувствуют себя в безопасности, когда их ребенок подвижен, потому что они могут общаться с ними, где бы они ни находились.

  1. не заземляют приборы последовательно;
  2. выводить несколько розеток на одно крепление на заземляющем проводе;
  3. не красить и не размещать заземляющий провод на стене;
  4. Клеммы
  5. или площадки для крепления заземляющих контактов, являющиеся отверстиями для болтов М4, необходимо смазать консистентной смазкой для предотвращения коррозии;
  6. изоляция заземляющих проводов должна быть желтого цвета с зеленой полосой, а их сечение не менее 4 квадратных метров.мм

Некоторые бытовые приборы следует заземлять не через розетку, а путем прикрепления провода непосредственно к корпусу (на специальном креплении).

Но хорошо ли пользоваться мобильными телефонами? Директивы ЕС не выделяют возраст пользователей, поэтому нет необходимости принимать специальные меры для детей. Мобильный телефон похож на беспроводной? Беспроводные телефоны излучают электромагнитное излучение, но их мощность передачи намного ниже, чем у мобильных телефонов. Ассортимент портативных устройств намного меньше мобильных.Сигнал телефонной трубки должен пройти всего несколько метров, чтобы достичь базы телефона, в то время как сигнал мобильной связи имеет гораздо большее расстояние и, следовательно, должен быть сильнее.

  • стиральная машина — устройство с большой мощностью, которое во влажной среде может проводить ток даже при полностью исправной изоляции;
  • сказывается тем, что при плохом контакте с розеткой может излучать волны, опасные для здоровья. Многие производители выпускают печи со специальным винтом заземления на корпусе;
  • духовка и варочная поверхность — эти устройства отличаются повышенным энергопотреблением и повышенным риском повреждения изоляции;
  • компьютер, работающий от источника бесперебойного питания, также нуждается в отдельном заземлении.Утечка из блока питания мешает работе компьютера и снижает скорость интернета. Системный блок компьютера заземляется через любой крепежный винт на корпусе.

Установка заземления в частном доме — дело ответственное. Большинство владельцев справятся с этой задачей самостоятельно. А те, кто сомневается, могут обратиться в соответствующие службы.

Нюансы заземления частного дома

Защищает ли корпус от радиации? Чехол может защитить только мобильный телефон, но не вас.Действительно, по мнению экспертов, корпус «заставляет» соту излучать больше излучения для связи с базовой станцией. Продаются различные наклейки, которые наклеиваются на мобильное устройство и «обещают» защитить вас от их излучения. На самом деле эти наклейки излучают мало света, то есть, по словам их производителей, они используют излучение, чтобы включить свет, превращая его в электричество.

Таким образом, считается, что они удаляют его из нашего тела, потому что вместо того, чтобы быть принятым нашим телом, он использует наклейку.В мобильных измерениях, однако, не было снижения радиации, но оказалось, что использование наклейки имеет противоположный эффект: то есть мобильный передает с большей интенсивностью, чтобы преодолеть наклейки с препятствиями.

Монтаж цепи заземления коммерческой фирмой с последующим приемом работ службой регулирования мощности — удовольствие недешевое. Но в случае аварии можно будет потребовать возмещения ущерба.

Какой вариант заземления в частном доме выбрать, каждый решает сам.Главное, чтобы все было выполнено качественно и прослужило долгие годы.

Монтаж заземления в частном доме на видео

Содержимое:

Многие люди живут и проводят время в загородных домах и в частных загородных домах. Они стараются создать для себя максимальный уют и комфорт, окружить всеми удобствами. Подавляющее большинство таких объектов полностью электрифицировано, поэтому часто возникает вопрос, как сделать заземление в частном доме своими руками.

Схема заземления в частном доме своими руками 220 и 380в

В каждом частном доме устраивают заземление в зависимости от того, какое напряжение к нему подключено — 220 или 380 вольт. Обе схемы заземления практически одинаковы. В обоих случаях контур заземления устройства будет точно таким же. Существующие отличия касаются способа подключения в зависимости от типа электрической сети.

При подключении к однофазной сети напряжением 220 вольт используются три провода — фаза, ноль и земля.Розетки также имеют три соответствующих контакта. Если подключено трехфазное напряжение 380 вольт, используются пять проводов, из которых три фазные, а два других служат нулем и заземлением. В розетках тоже пять контактов.

Категорически запрещается использовать нейтральный провод вместо заземляющего провода независимо от напряжения в электрической сети. В этом случае вполне возможен выход из строя дорогостоящей бытовой техники и оборудования. Кроме того, существует реальная угроза здоровью и жизни людей в доме.

При заземлении в частном доме следует учитывать разницу сопротивлений. Если установка выполняется по правилам, то сопротивление заземления при напряжении 220 вольт будет около 30 Ом. При напряжении 380 вольт этот показатель будет равен 10 Ом. Большую роль играет удельное сопротивление заземления, в котором проложен контур заземления. Например, каменистая почва имеет очень низкие показатели.

Схемы заземления

В первую очередь необходимо определиться с наиболее подходящим вариантом схемы заземления для частного дома.В зависимости от этого в будущем будет смонтирована вся система.


Наиболее популярные схемы заземления:

  • Замкнутый контур в виде треугольника. Его главным преимуществом считается более надежная работа. В случае повреждения перемычки между штырями, работа системы продолжится с любой стороны.
  • Линейная схема состоит из нескольких выводов, установленных на одной линии и соединенных последовательно друг с другом.Недостатком этой системы является ее полный отказ, если перемычка установлена, установленная в самом начале.

Для частного дома лучше всего подходит треугольник. По работе эта схема ничем не отличается от других систем, но КПД у нее намного выше. Исходя из конкретных условий, вы можете использовать свой вариант и настроить заземление в виде прямоугольника или другой формы.

Инструменты и материалы необходимые

Для изготовления искусственного заземления использовалась сталь металлическая.Лучше всего для этих целей подходят круглые прутки, трубы разного сечения и углов.

Категорически запрещается использовать профильную арматуру в качестве заземлителей и заземлителей. Это происходит из-за горячего внешнего слоя, присутствующего во всех изделиях этого типа. В результате распределение тока по поперечному сечению нарушается, и процесс окисления происходит намного быстрее.


Для защиты металла от коррозии практикуется использование оцинкованных электродов.В некоторых случаях токопроводящий бетон может выполнять функции заземляющего проводника.

Существуют комплекты заводского изготовления, состоящие из бесшовных штифтов с медным покрытием. Их длина 1,5 метра, а на конце есть резьба. Для соединения штифтов между собой предусмотрены специальные латунные резьбовые муфты. Погружение электродов в землю осуществляется мощными ручными ударными инструментами с использованием адаптера и направляющей головки. Электроды соединяются с заземляющим проводом зажимами из нержавеющей стали.Защита компаундов от коррозии на стыках осуществляется путем покрытия специальной пастой.

Не красить заземления и не наносить на них другие покрытия, снижающие проводимость. Однако под действием коррозии толщина стальных деталей постепенно уменьшается. Этот фактор необходимо учитывать, поэтому сечение электрода подбирается с определенным запасом. Таким образом обеспечивается достаточно продолжительная работа схемы.


В нормативных документах определяется минимально допустимое сечение заземления, которое следует учитывать при выборе материалов.Так, для прутка оцинкованного этот параметр составляет 6 мм2, для прутка из обычного черного металла — 10 мм2, а для проката прямоугольного сечения — 48 мм2. Стенки труб или полок из стального проката выбираются минимальной толщиной 4 мм.

Большое значение имеет правильный выбор материала для соединения электродов. В большинстве случаев используется полоса, но в определенных условиях допускается использование трубы, уголка или проволоки. С помощью этих материалов можно провести заземление непосредственно к электрическому щиту.Сечение заземляющего проводника внутри здания должно совпадать с сечением фазового проводника, используемого в разводке.

Все заземляющие проводники подключены к одной заземляющей шине, используемой для переключения. Сама шина сделана из специальной электробронзы. Он является одним из элементов распределительного щита и крепится непосредственно на его стене. Для выполнения работ могут потребоваться кувалда и лестница. Соединение деталей из проката черных металлов осуществляется сваркой.

Монтаж системы заземления

В частных домах практиковалось использование в форме треугольника с равными сторонами. Для того чтобы сделать контур заземления в частном доме своими руками планировку будущей постройки, выполняйте точно такую ​​же конфигурацию. Расстояние заземления от фундамента здания не должно превышать 1 метр.


После завершения разметки по периметру треугольника отрывается траншея глубиной от 0,8 до 1 метра.Его ширина колеблется от 50 до 70 см, что обеспечивает удобство при сварочных и других работах. Сама траншея необходима для прокладки горизонтального соединительного заземления.

В каждой вершине треугольника забиты вертикальные заземлители под углом 2-3 метра в длину. Их почти полностью засыпают ударами кувалды. Чтобы уголки лучше заходили в землю, их концы заостряют. Облегчить работу поможет устройство небольших колодцев напротив каждой вершины треугольника, глубиной около 1.5 мес. В этом случае углы забиваются в землю на меньшее расстояние.


После выполнения всех подготовительных работ можно приступать к непосредственному монтажу контура заземления:

  • В самом начале работы углы забиваются в землю таким образом, чтобы их верхний край выступал примерно на 20–25 см над поверхностью дна траншеи.
  • По окончании монтажа вертикального заземления выполняется горизонтальная обвязка с целью создания замкнутого контура.Все соединения производятся сваркой — к концам уголков приваривается стальная полоса. Использование болтовых соединений не допускается, так как через некоторое время происходит окисление этих мест. В результате контакт теряется и цепь заземления начинает работать неэффективно.
  • После полной сборки контура заземления его необходимо подключить к электрическому щиту. Делается это с помощью заземлителя, для которого используется стальная проволока сечением 8-10 мм.Его приваривают к контуру, а затем укладывают в траншею до стыка с щитом. В этом месте также приваривается болт диаметром 6 или 8 мм, к которому будет крепиться заземляющий провод.
  • Если стальной проволоки нет, то заземляющим проводом вполне может быть стальная полоса, такая же, как и в горизонтальном заземляющем проводе. Полоса будет еще эффективнее, так как у нее большая площадь контакта с землей. Однако с ним труднее работать, особенно при укладке на изгибы траншеи.
  • По окончании всех сварочных работ места сварки обрабатываются специальными антикоррозийными составами. Краску для этих целей использовать нельзя, так как она полностью нарушает связь металла с землей и система заземления просто не сработает.

После проверки всех соединений выкопанную траншею засыпают землей. Далее заземление необходимо подключить к оборудованию, установленному в доме. Во многих частных домах используется система заземления TN-C, где они заземлены.После установки собственного контура заземления эта схема перестанет работать и потребует переделки системы TN-C-S или TT.

Система заземления TN-C-S

В цепи TN-C нет отдельного заземляющего проводника, поэтому его необходимо преобразовать в цепь TN-C-S. Для этого необходимо в электрощите разделить совмещенный PEN-провод, который одновременно является нулевым рабочим и защитным проводником. После разъединения должны получиться два отдельных провода: N — рабочий и PE — защитный.


Поскольку в дом подводится всего два питающих провода, для получения трехжильной внутренней разводки необходимо использовать специальную заземляющую шину РЕ, соединенную с экраном через металлическую поверхность. Подключается к проводу PEN, выведенному из внешней сети.

Затем шину РЕ соединяют перемычкой с такой же шиной, подключенной к нулевому рабочему проводнику N. Нулевую шину обязательно изолировать от экрана. После этого сам экран подключается к цепи заземления.Для этого используется многожильный медный провод, один конец которого соединяется с экраном, а другой прикрепляется к заземляющему проводнику с помощью болта, приваренного к концу.

Заземление по схеме ТТ

Эта система не требует разделения проводов PEN. Схема предусматривает подключение фазного провода к шине, изолированной от электрощита. Далее он будет выполнять функцию нулевого провода. После этого корпус щита подключается к цепи заземления.


Таким образом, заземление в частном доме своими руками по схеме ТТ не предусматривает какого-либо контура электрического соединения с проводником PEN. Это подключение имеет значительные преимущества перед схемой TN-C-S. При поджигании провода PEN нулевой потенциал на корпусах инструментов останется. Поэтому схема ТТ считается более надежной и безопасной. Серьезным недостатком является его дороговизна, так как наличие в схеме защитных устройств обязательно.

Как сделать собственное заземление дома

Требования к месту для Oracle Exadata Database Machine и Oracle Exadata Storage Expansion Rack

Масса

См. Также: Требования к напольным покрытиям

Уровни шума

86 дБ (А)

85 дБ (А)

83 дБ (А)

83 дБ (А)

Мощность

См. Также: Требования к электропитанию

Охлаждение

См. Также: Требования к температуре и влажности, а также требования к вентиляции и охлаждению

  • Флэш-накопители Extreme

    Максимум: 52 578 БТЕ / час (55 469 кДж / час)

    Типичное значение: 36 804 БТЕ / час (38 829 кДж / час)

  • Диски большой емкости

    Максимум: 52052 БТЕ / час (54915 кДж / час)

    Типичное значение: 36 437 БТЕ / час (38 441 кДж / час)

  • Флэш-накопители Extreme

    Максимум: 28 396 БТЕ / час (29 958 кДж / час)

    Типичное значение: 19877 БТЕ / час (20970 кДж / час)

  • Диски большой емкости

    Максимум: 28 133 БТЕ / час (29 680 кДж / час)

    Типичное значение: 19 693 БТЕ / час (20 776 кДж / час)

  • Флэш-накопители Extreme

    Максимум: 14,195 БТЕ / час (14,975 кДж / час)

    Типичное значение: 9 936 БТЕ / час (10 483 кДж / час)

  • Диски большой емкости

    Максимум: 14 082 БТЕ / час (14 856 кДж / час)

    Типичное значение: 9 857 БТЕ / час (10399 кДж / час)

  • Флэш-накопители Extreme

    Максимум: 11 674 БТЕ / час (12317 кДж / час)

    Типичное значение: 8172 БТЕ / час (8622 кДж / час)

  • Диски большой емкости

    Максимум: 11530 БТЕ / час (12164 кДж / час)

    Типичное значение: 8071 БТЕ / час (8,515 кДж / час)

Воздушный поток спереди назад (в зависимости от условий центра обработки данных)

См. Также: Требования к температуре и влажности, а также требования к вентиляции и охлаждению

  • Флэш-накопители Extreme

    Максимум: около 2434 куб. Футов в минуту

    Типичный: Приблизительно 1704 кубических футов в минуту

  • Диски большой емкости

    Максимум: примерно 2410 куб. Футов в минуту

    Типичный: Приблизительно 1687 кубических футов в минуту

  • Флэш-накопители Extreme

    Максимум: примерно 1315 куб. Футов в минуту

    Типичный: Приблизительно 920 куб. Футов в минуту

  • Диски большой емкости

    Максимум: примерно 1302 куб. Фута в минуту

    Типичный: Приблизительно 912 куб. Футов в минуту

  • Флэш-накопители Extreme

    Максимум: примерно 657 куб. Футов в минуту

    Типичный: Приблизительно 460 куб. Футов в минуту

  • Диски большой емкости

    Максимум: примерно 652 куб. Футов в минуту

    Типичный: Приблизительно 456 куб. Футов в минуту

  • Флэш-накопители Extreme

    Максимум: примерно 540 куб. Футов в минуту

    Типичный: Приблизительно 378 куб. Футов в минуту

  • Диски большой емкости

    Максимум: примерно 534 куб. Футов в минуту

    Типичный: Приблизительно 374 куб. Фут. / Мин.

IP-адресов

См. Также: «Требования к сетевому подключению и IP-адресу для машины базы данных Oracle Exadata»

68 для сети Ethernet, при условии одного кластера

До 36 для RDMA Network Fabric

38 для сети Ethernet, при условии одного кластера

До 18 для RDMA Network Fabric

22 для сети Ethernet, при условии одного кластера

До 8 для RDMA Network Fabric

22 для сети Ethernet, предполагая один кластер

До 8 для RDMA Network Fabric

Отбрасывает сеть

См. Также: «Требования к сетевому подключению и IP-адресу для машины базы данных Oracle Exadata»

Минимум 11 отбросов сети

Минимум 7 отбросов сети

Минимум 5 отбросов сети

Минимум 5 отбросов сети

Внешнее подключение

См. Также: «Требования к сетевому подключению и IP-адресу для машины базы данных Oracle Exadata»

18 портов Ethernet 1 GbE / 10 GbE

16 портов Ethernet 10 GbE

Не менее 12 портов RDMA Network Fabric

12 портов Ethernet 1 GbE / 10 GbE

8 портов Ethernet 10 GbE

Не менее 12 портов RDMA Network Fabric

6 портов Ethernet 1 GbE / 10 GbE

4 порта Ethernet 10 GbE

Не менее 12 портов RDMA Network Fabric

6 портов Ethernet 1 GbE / 10 GbE

4 порта Ethernet 10 GbE

Не менее 12 портов RDMA Network Fabric

% PDF-1.5 % 496 0 obj> эндобдж xref 496 109 0000000016 00000 н. 0000003926 00000 н. 0000004160 00000 н. 0000002531 00000 н. 0000004321 00000 п. 0000004468 00000 н. 0000004667 00000 н. 0000005185 00000 н. 0000006254 00000 н. 0000006290 00000 н. 0000006490 00000 н. 0000006672 00000 н. 0000006749 00000 н. 0000007479 00000 н. 0000008518 00000 н. 0000008689 00000 н. 0000008869 00000 н. 0000009384 00000 п. 0000009575 00000 п. 0000009732 00000 н. 0000010224 00000 п. 0000012917 00000 п. 0000013107 00000 п. 0000013300 00000 п. 0000029699 00000 н. 0000029756 00000 п. 0000029863 00000 п. 0000029950 00000 н. 0000030064 00000 п. 0000030279 00000 п. 0000030425 00000 п. 0000030521 00000 п. 0000030749 00000 п. 0000030885 00000 п. 0000031038 00000 п. 0000031142 00000 п. 0000031256 00000 п. 0000031411 00000 п. 0000031501 00000 п. 0000031633 00000 п. 0000031772 00000 п. 0000031876 00000 п. 0000031981 00000 п. 0000032081 00000 п. 0000032185 00000 п. 0000032285 00000 п. 0000032394 00000 п. 0000032607 00000 п. 0000032714 00000 п. 0000032866 00000 п. 0000033060 00000 п. 0000033167 00000 п. 0000033336 00000 п. 0000033512 00000 п. 0000033615 00000 п. 0000033763 00000 п. 0000033906 00000 п. 0000034025 00000 п. 0000034179 00000 п. 0000034285 00000 п. 0000034402 00000 п. 0000034530 00000 п. 0000034676 00000 п. 0000034806 00000 п. 0000034941 00000 п. 0000035108 00000 п. 0000035233 00000 п. 0000035339 00000 п. 0000035507 00000 п. 0000035668 00000 п. 0000035799 00000 п. 0000035943 00000 п. 0000036066 00000 п. 0000036198 00000 п. 0000036315 00000 п. 0000036432 00000 п. 0000036548 00000 н. 0000036639 00000 п. 0000036733 00000 п. 0000036839 00000 п. 0000036984 00000 п. 0000037089 00000 п. 0000037200 00000 н. 0000037353 00000 п. 0000037502 00000 п. 0000037603 00000 п. 0000037709 00000 п. 0000037820 00000 п. 0000037933 00000 п. 0000038113 00000 п. 0000038230 00000 п. 0000038369 00000 п. 0000038466 00000 п. 0000038639 00000 п. 0000038731 00000 п. 0000038859 00000 п. 0000038973 00000 п. 0000039117 00000 п. 0000039258 00000 п. 0000039388 00000 п. 0000039549 00000 п. 0000039657 00000 п. 0000039759 00000 п. 0000039901 00000 н. 0000040058 00000 н. 0000040224 00000 п. 0000040389 00000 п. 0000040511 00000 п. 0000040647 00000 п. трейлер ] >> startxref 0 %% EOF 499 0 obj> поток g5UggOcǺ? zW [1v / W ㅙ [toUX ~ —Z3 ~~ ܱ &% grxsl ԰ ne] vDhI1e / ґc۵zv + ̄9! d ~ [&.хм ф p1 + E-6 & \ 2ȺmoMǢ! n ۅ $

Распределительная система — обзор

Заземление

Распределительные системы при установке на промышленных предприятиях часто представляют собой незаземленную схему треугольника, заземленную через сопротивление треугольник или систему звездой. Системы с заземлением через сопротивление могут быть как с высоким, так и с низким сопротивлением. См. Схемы на Рисунке 5-1.

РИСУНОК 5-1. Заземление для распределительных сетей.

Преимущество использования незаземленного или высокоомного заземления заключается в том, что одиночное замыкание на землю не прерывает работу.Это верно даже для схемы, в которой возникла проблема. Это единственное преимущество.

Использование незаземленной системы имеет несколько недостатков. Переходные напряжения, вызванные помехами в линии из-за дуги, включения и выключения оборудования или ударов молнии, не имеют пути заземления и могут подвергнуть изоляцию проводки и оборудования напряжению, в несколько раз превышающему номинальную.

Эту проблему несколько смягчает емкость между проводниками системы, которая обеспечивает систему емкостного заземления.Небольшая система может подавать на землю приблизительно 0,1 ампер, тогда как очень большая система может иметь токи до 20 ампер.

Когда замыкание на землю происходит в незаземленной системе, оно может оставаться незамеченным в течение длительного периода времени. Из-за природы этих неисправностей может возникнуть повторяющееся искрение, вызывающее переходные процессы и нагрузку на систему. Повреждение, даже без учета переходных процессов, вызовет нагрузку на изоляцию в 1,73 раза больше напряжения на трансформаторе, соединенном звездой.Это не важно для низковольтных систем, где изоляция рассчитана на 600 В, но для систем среднего напряжения изоляция кабеля рассчитана на 100% для межфазного напряжения, и следует учитывать более высокие номинальные напряжения кабеля, если операции должны выполняться. продолжайте работу в условиях замыкания на землю.

Для систем со 100% -ной изоляцией рекомендуется устранение повреждения в течение 1 минуты. Необходимо установить устройство обнаружения замыкания на землю для предупреждения о коротких замыканиях, чтобы устранить замыкание до повторного замыкания, которое может вызвать серьезное повреждение установки.Чтобы система продолжала работать в течение неопределенного периода времени, рекомендуется, чтобы номинальная мощность изоляции составляла 173% от напряжения между фазой и нейтралью.

В незаземленных системах часто бывает трудно локализовать неисправность, даже если ее наличие обнаруживается системой предупреждения. Если нет физических доказательств, которые можно наблюдать, нагрузки придется выводить из эксплуатации по одной. Проводники, питающие нагрузки, и нагрузки должны пройти тестовый прогон «hipot».

Большинство трудностей, связанных с незаземленными системами, можно преодолеть с помощью систем заземления с высоким сопротивлением.Система будет продолжать работать в режиме неисправности без возникновения переходных перенапряжений, а локализацию проблемы определить труднее.

Это может быть выполнено в системе звездой, поместив резистор между нейтралью и землей. В системе треугольника можно использовать зигзагообразный трансформатор, подключенный к трем фазам треугольника. Резистор следует поместить между нейтралью зигзагообразного трансформатора и землей.

При заземлении с высоким сопротивлением токи короткого замыкания ограничиваются до 0.1% от трехфазного тока короткого замыкания на землю, что более чем достаточно для надежной работы реле замыкания на землю. С появлением высокочувствительных реле системы заземления с низким сопротивлением редко используются на современных предприятиях.

NEC в статье 230 требует защиты от замыкания на землю только при отключении обслуживания. Если необходимо обеспечить обслуживание других частей здания, защиту от замыканий на землю следует распространить на фидеры и ответвленные цепи с избирательным отключением цепей, встроенных в систему.Для медицинских учреждений статья 517 NEC требует как минимум двух ступеней защиты.

Заземление 3-проводного механизма подачи на вспомогательную панель в отдельном гараже?

Цитата:

Сообщение от Quint ➡️ Я рад, что прочитал об этом. Конечно, было бы легче сделать то, что предлагал Род, но это также было бы очень небезопасно. Теперь мне просто нужно решить, насколько сильно я действительно хочу протянуть четвертый провод вниз по кабелепроводу длиной 75 футов 1 дюйм. Помимо добавления заземляющего стержня на субпанели, у меня возникает соблазн оставить его как есть, по крайней мере, на данный момент.Это подводит меня к завершению и возвращает меня к сути обсуждения, как указано в моих вопросах, цитируемых ниже:

Итак, есть ли у кого-нибудь какие-либо мысли по этому поводу?

Извините, но то, что я предложил, небезопасно … Удаление соединения между землей и нейтралью на вспомогательной панели необходимо в вашем случае, если вы добавите заземление на вспомогательной панели.

Это от Майка Холта (не общее обсуждение концепций, а (скорее) его ответ на вопрос о требованиях кода, относящихся к этой теме.Майк Холт (во всяком случае, на мой взгляд) лучший из лучших, когда дело касается интерпретации электрических кодов.

Цитата:

(Вопрос Q4. Заземление удаленных зданий и сооружений

NEC 250.32 позволяет соединить заземленный (нейтральный) провод цепи, питающий второе здание, с заземляющим проводом оборудования в системе заземляющих электродов удаленного здания второго здания. электрически соединены через токопроводящий путь, такой как экранирование коаксиального кабеля или водопровода, это обеспечит альтернативный путь для нейтрального тока, протекающего во время нормальной работы (например, резисторов, подключенных параллельно).Это банальная проблема? Знаете ли вы о каких-либо проблемах, которые могут возникнуть в такой ситуации, например о реле GFI в основной службе? Все, с кем я обсуждал это, сочли это тривиальным. На них размещаются жилые дома, соединенные общей водопроводной сетью. Хотелось бы услышать ваши комментарии.
; / quote]

Его ответ:

A4. Практика подключения заземленного (нейтрального) проводника к корпусу оборудования разрешена только в соответствии с 250.32 (B) (2), где

(1) заземляющий провод оборудования не проходит с питанием к зданию или сооружению, и

( 2) отсутствуют непрерывные металлические пути, соединенные с системой заземления в обоих задействованных зданиях или сооружениях, и

(3) защита оборудования от замыканий на землю не была установлена ​​на общей сети переменного тока, и

(4) размер Длина заземленного проводника не должна быть меньше большего из следующих:

Требуемый 220.22 (максимальная несимметричная нагрузка нейтрали) или

Требуется 250.122 (размер заземляющего провода оборудования).

Если заземляющий провод оборудования не проложен к отдельному зданию или строению, необходимо использовать заземленный (нейтральный) провод для обеспечения эффективного пути тока замыкания на землю, необходимого для устранения любых замыканий на землю (между линиями и проводами).

Обновлено: 08.10.2021 — 12:50

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *