Как проверить транзистор?
Проверка транзистора цифровым мультиметром
Занимаясь ремонтом и конструированием электроники, частенько приходится проверять транзистор на исправность.
Рассмотрим методику проверки биполярных транзисторов обычным цифровым мультиметром, который есть практически у каждого начинающего радиолюбителя.
Несмотря на то, что методика проверки биполярного транзистора достаточно проста, начинающие радиолюбители порой могут столкнуться с некоторыми трудностями.
Об особенностях тестирования биполярных транзисторов будет рассказано чуть позднее, а пока рассмотрим самую простую технологию проверки обычным цифровым мультиметром.
Для начала нужно понять, что биполярный транзистор можно условно представить в виде двух диодов, так как он состоит из двух p-n переходов. А диод, как известно, это ничто иное, как обычный p-n переход.
Вот условная схема биполярного транзистора, которая поможет понять принцип проверки. На рисунке p-n переходы транзистора изображены в виде полупроводниковых диодов.
Устройство биполярного транзистора p-n-p структуры с помощью диодов изображается следующим образом.
Как известно, биполярные транзисторы бывают двух типов проводимости: n-p-n и p-n-p. Этот факт нужно учитывать при проверке. Поэтому покажем условный эквивалент транзистора структуры n-p-n составленный из диодов. Этот рисунок нам понадобиться при последующей проверке.
Транзистор со структурой n-p-n в виде двух диодов.
Суть метода сводиться к проверке целостности этих самых p-n переходов, которые условно изображены на рисунке в виде диодов. А, как известно,
Если вдруг при проверке выясниться, что p-n переход пропускает ток в обоих направлениях, то значит он «пробит». Если же p-n переход не пропускает ток ни в одном из направлений, то значит переход в «обрыве». Естественно, что при пробое или обрыве хотя бы одного из p-n переходов транзистор работать не будет.
Обращаем внимание, что условная схема из диодов необходима лишь для более наглядного представления о методике проверки транзистора. В реальности транзистор имеет более изощрённое устройство.
Функционал практически любого мультиметра поддерживает проверку диода. На панели мультиметра режим проверки диода изображается в виде условного изображения, который выглядит вот так.
Думаю, уже понятно, что проверять транзистор мы будем как раз с помощью этой функции.
Небольшое пояснение. У цифрового мультиметра есть несколько гнёзд для подключения измерительных щупов. Три, а то и больше. При проверке транзистора необходимо минусовой щуп (
Почему я так подробно рассказываю о том, как подключать измерительные щупы к мультиметру? Да потому, что щупы можно элементарно перепутать и подключить чёрный щуп, который условно считается «минусовым» к гнезду, к которому нужно подключить красный, «плюсовой» щуп. В итоге это вызовет неразбериху, и, как следствие, ошибки. Будьте внимательней!
Теперь, когда сухая теория изложена, перейдём к практике.
Какой мультиметр будем использовать?
В качестве мультиметра использовался многофункциональный мультитестер Victor VC9805+, хотя для измерений подойдёт любой цифровой тестер, вроде всем знакомых DT-83x или MAS-83x. Такие мультиметры можно купить не только на радиорынках, магазинах радиодеталей, но и в магазинах автозапчастей. Подходящий мультиметр можно купить в интернете, например, на Алиэкспресс.
Вначале проведём проверку кремниевого биполярного транзистора отечественного производства
Для тех, кто не знает, что означает это непонятное слово цоколёвка, поясняю. Цоколёвка — это расположение функциональных выводов на корпусе радиоэлемента. Для транзистора функциональными выводами соответственно будут коллектор (К или англ.- С), эмиттер (Э или англ.- Е), база (Б или англ.- В).
Сначала подключаем красный (+) щуп к базе транзистора КТ503, а чёрный (-) щуп к выводу коллектора. Так мы проверяем работу p-n перехода в прямом включении (т. е. когда переход проводит ток). На дисплее появляется величина пробивного напряжения. В данном случае оно равно 687 милливольтам (687 мВ).
Далее не отсоединяя красного щупа от вывода базы, подключаем чёрный («минусовой») щуп к выводу эмиттера транзистора.
Как видим, p-n переход между базой и эмиттером тоже проводит ток. На дисплее опять показывается величина пробивного напряжения равная 691 мВ. Таким образом, мы проверили переходы Б-К и Б-Э при прямом включении.
Чтобы удостовериться в исправности p-n переходов транзистора КТ503 проверим их и в, так называемом,
Чтобы проверить p-n переходы Б-К и Б-Э в обратном включении, поменяем полярность подключения щупов к выводам транзистора КТ503. Минусовой («чёрный») щуп подключаем к базе, а плюсовой («красный») сначала подключаем к выводу коллектора…
…А затем, не отключая минусового щупа от вывода базы, к эмиттеру.
Как видим из фотографий, в обоих случаях на дисплее отобразилась единичка «1», что, как уже говорилось, указывает на то, что p-n переход не пропускает ток. Так мы проверили переходы Б-К и Б-Э в обратном включении.
Если вы внимательно следили за изложением, то заметили, что мы провели проверку транзистора согласно ранее изложенной методике. Как видим, транзистор КТ503 оказался исправен.
Пробой P-N перхода транзистора.
В случае если какой либо из переходов (Б-К или Б-Э) пробиты, то при их проверке на дисплее мультиметра обнаружиться, что они в обоих направлениях, как в прямом включении, так и в обратном, показывают не пробивное напряжение p-n перехода, а сопротивление. Это сопротивление либо равно нулю «0» (будет пищать буззер), либо будет очень мало.
Обрыв P-N перехода транзистора.
При обрыве, p-n переход не пропускает ток ни в прямом, ни в обратном направлении – на дисплее в обоих случаях будет «1». При таком дефекте p-n переход как бы превращается в изолятор.
Проверка биполярных транзисторов структуры p-n-p проводится аналогично. Но при этом необходимо сменить полярность
В качестве образца для наших экспериментов возьмём отечественный кремниевый транзистор КТ3107 структуры p-n-p. Вот его цоколёвка.
В картинках проверка транзистора будет выглядеть так. Проверяем переход Б-К при прямом включении.
Как видим, переход исправен. Мультиметр показал пробивное напряжение перехода – 722 мВ.
То же самое проделываем и для перехода Б-Э.
Как видим, он также исправен. На дисплее – 724 мВ.
Теперь проверим исправность переходов в обратном направлении – на наличие «пробоя» перехода.
Переход Б-К при обратном включении…
Переход Б-Э при обратном включении.
В обоих случаях на дисплее прибора – единичка «1». Транзистор исправен.
Подведём итог и распишем краткий алгоритм проверки транзистора цифровым мультиметром:
Определение цоколёвки транзистора и его структуры;
Проверка переходов Б-К и Б-Э в прямом включении с помощью функции проверки диода;
Проверка переходов Б-К и Б-Э в обратном включении (на наличие «пробоя») с помощью функции проверки диода;
При проверке необходимо помнить о том, что кроме обычных биполярных транзисторов существуют различные модификации этих полупроводниковых компонентов. К таковым можно отнести составные транзисторы (транзисторы Дарлингтона), «цифровые» транзисторы, строчные транзисторы (так называемые «строчники») и т.д.
Все они имеют свои особенности, как, например, встроенные защитные диоды и резисторы. Наличие этих элементов в структуре транзистора порой усложняют их проверку с помощью данной методики. Поэтому прежде чем проверить неизвестный вам транзистор желательно ознакомиться с документацией на него (даташитом). О том, как найти даташит на конкретный электронный компонент или микросхему, я рассказывал здесь.
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
Как проверить транзистор мультиметром | Для дома, для семьи
Здравствуйте уважаемые читатели сайта sesaga.ru. Сегодня хочу рассказать, как проверить исправность транзистора обычным мультиметром. Хотя для этого существуют специальные пробники, и даже в самом мультиметре имеется гнездо для проверки транзисторов, но, на мой взгляд, все они не совсем практичны. Вот чтобы подобрать пару транзисторов с одинаковым коэффициентом усиления (h31э) пробники вещь даже очень нужная. А для определения исправности достаточно будет и обыкновенного мультика.
Мы знаем, что транзистор имеет два p-n перехода, причем каждый переход можно представить в виде диода (полупроводника). Поэтому можно утверждать, что транзистор — это два диода включенных встречно, а точка их соединения будет являться «базой».
Отсюда получается, что один диод образован выводами, например, базы и коллектора, а другой диод выводами базы и эмиттера. Тогда нам будет достаточно проверить прямое и обратное сопротивление этих диодов, и если они исправны, значит, и транзистор работоспособен. Все очень просто.
Начнем с транзисторов структуры (проводимость) p-n-p. На принципиальных схемах структура транзисторов обозначается стрелкой эмиттерного перехода. Если стрелка направлена к базе, значит это структура p-n-p, а если от базы, значит это транзистор структуры n-p-n. Смотрите рисунок выше.
Так вот, чтобы открыть p-n-p транзистор, на вывод базы подается отрицательное напряжение (минус). Мультиметр переводим в режим измерения сопротивлений на предел «2000», можно в режиме «прозвонка» — не критично.
Минусовым щупом (черного цвета) садимся на вывод базы, а плюсовым (красного цвета) поочередно касаемся выводов коллектора и эмиттера — так называемые коллекторный и эмиттерный переходы. Если переходы целы, то их прямое сопротивление будет находиться в пределах 500 – 1200 Ом.
Теперь проверяем обратное сопротивление коллекторного и эмиттерного переходов.
Плюсовым щупом садимся на вывод базы, а минусовым касаемся выводов коллектора и эмиттера. На этот раз мультиметр должен показать большое сопротивление на обоих p-n переходах.
В данном случае на индикаторе высветилась «1», означающая, что для предела измерения «2000» величина сопротивления велика, и составляет более 2000 Ом. А это говорит о том, что коллекторный и эмиттерный переходы целы, а значит, наш транзистор исправен.
Таким способом можно проверять исправность транзистора и на печатной плате, не выпаивая его из схемы.
Конечно, встречаются схемы, где p-n переходы транзистора сильно зашунтированы низкоомными резисторами. Но это редкость. Если при измерении будет видно, что прямое и обратное сопротивление коллекторного или эмиттерного переходов слишком мало, тогда придется выпаять вывод базы.
Исправность транзисторов структуры n-p-n проверяется так же, только уже к базе подключается плюсовой щуп мультиметра.
Мы рассмотрели, как проверить исправный транзистор. А как понять, что транзистор неисправный?
Здесь тоже все просто. Если прямое и обратное сопротивление одного из p-n переходов бесконечно велико, т.е. на пределе измерения «2000» и выше мультиметр показывает «1», значит, этот переход находится в обрыве, и транзистор однозначно неисправен.
Вторая распространенная неисправность транзистора – это когда прямое и обратное сопротивления одного из p-n переходов равны нулю или около того. Это говорит о том, что переход пробит, и транзистор не годен.
И тут уважаемый читатель Вы меня спросите: — А где у этого транзистора находится база, коллектор и эмиттер. Я его вообще в первый раз вижу. И будете правы. А ведь действительно, где они? Как их определить? Значит, будем искать.
В первую очередь, нужно определить вывод базы.
Плюсовым щупом мультиметра садимся, например, на левый вывод транзистора, а минусовым касаемся среднего и правого выводов. При этом смотрим, какую величину сопротивления показывает мультиметр.
Между левым и средним выводами величина сопротивления составила «1», а между левым и правым мультиметр показал 816 Ом. На данном этапе это нам ничего не говорит. Идем дальше.
Плюсовым щупом садимся на средний вывод, а минусовым касаемся левого и правого.
Здесь результат измерения получился почти таким же, как и на рисунке выше. Между средним и левым величина сопротивления составила «1», а между средним и правым получилось 807 Ом. Тут опять ничего не ясно, поэтому идем дальше.
Теперь садимся плюсовым щупом на правый вывод, а минусовым касаемся среднего и левого выводов транзистора.
На рисунке видно, что величина сопротивления между правым-средним и правым-левым выводами одинаковая и составила бесконечность. То есть получается, что мы нашли и измерили обратное сопротивление обоих p-n переходов транзистора. В принципе, уже можно смело утверждать, что вывод базы найден. Он оказался правым. Но нам еще надо определить, где у транзистора коллектор и эмиттер. Для этого измеряем прямое сопротивление переходов. Минусовым щупом садимся на вывод базы, а плюсовым касаемся среднего и левого выводов.
Величина сопротивления на левой ножке транзистора составила 816 Ом – это эмиттер, а на средней 807 Ом – это коллектор.
Запомните! Величина сопротивления коллекторного перехода всегда будет меньше по отношению к эмиттерному. Т.е. вывод коллектора будет там, где сопротивление p-n перехода меньше, а эмиттера, где сопротивление p-n перехода больше.
Отсюда делаем вывод:
1. Транзистор структуры p-n-p;
2. Вывод базы находится с правой стороны;
3. Вывод коллектора в середине;
4. Вывод эмиттера – слева.
А если у Вас остались вопросы, то можно дополнительно посмотреть мой видеоролик о проверке обычных транзисторов мультиметром.
Ну и напоследок надо сказать, что транзисторы бывают малой, средней мощности и мощные. Так вот, у транзисторов средней мощности и мощных, вывод коллектора напрямую связан с корпусом и находится в середине между базой и эмиттером. Такие транзисторы устанавливаются на специальные радиаторы, предназначенные для отвода тепла от корпуса транзистора.
Зная расположение коллектора, базу и эмиттер определить будет легко.
Удачи!
Проверка биполярного транзистора — Основы электроники
Приветствую всех любителей электроники, и сегодня в продолжение темы применение цифрового мультиметра мне хотелось бы рассказать, как проверить биполярный транзистор с помощью мультиметра.
Биполярный транзистор представляет собой полупроводниковый прибор, который предназначен для усиления сигналов. Так же транзистор может работать в ключевом режиме.
Транзистор состоит из двух p-n переходов, причем одна из областей проводимости является общей. Средняя общая область проводимости называется базой, крайние эмиттером и коллектором. Вследствие этого разделяют n-p-n и p-n-p транзисторы.
Итак, схематически биполярный транзистор можно представить следующим образом.
Рисунок 1. Схематическое представление транзистора а) n-p-n структуры; б) p-n-p структуры.
Для упрощения понимания вопроса p-n переходы можно представить в виде двух диодов, подключенных друг к другу одноименными электродами (в зависимости от типа транзистора).
Рисунок 2. Представление транзистора n-p-n структуры в виде эквивалента из двух диодов, включенных анодами друг к другу.
Рисунок 3. Представление транзистора p-n-p структуры в виде эквивалента из двух диодов, включенных катодами друг к другу.
Конечно же для лучшего понимания желательно изучить как работает p-n переход, а лучше как работает транзистор в целом. Здесь лишь скажу, что чтобы через p-n переход тек ток его необходимо включить в прямом направлении, то есть на n – область (для диода это катод) подать минус, а на p-область (анод).
Это я вам показывал в видео для статьи «Как пользоваться мультиметром» при проверке полупроводникового диода.
Так как мы представили транзистор в виде двух диодов, то, следовательно, для его проверки необходимо просто проверить исправность этих самых «виртуальных» диодов.
Итак, приступим к проверке транзистора структуры n-p-n. Таким образом, база транзистора соответствует p- области, коллектор и эмиттер — n-областям. Для начала переведем мультиметр в режим проверки диодов.
В этом режиме мультиметр будет показывать падение напряжения на p-n переходе в милливольтах. Падение напряжения на p-n переходе для кремниевых элементов должно быть 0,6 вольта, а для германиевых – 0,2-0,3 вольта.
Сначала включим p-n переходы транзистора в прямом направлении, для этого на базу транзистора подключим красный (плюс) щуп мультиметра, а на эмиттер черный (минус) щуп мультиметра. При этом на индикаторе должно высветиться значение падения напряжения на переходе база-эмиттер.
Далее проверяем переход база-коллектор. Для этого красный щуп оставляем на базе, а черный подключаем к коллектору, при этом прибор покажет падение напряжения на переходе.
Здесь необходимо отметить, что падение напряжения на переходе Б-К всегда будет меньше падения напряжения на переходе Б-Э. Это можно объяснить меньшим сопротивлением перехода Б-К по сравнению с переходом Б-Э, что является следствием того, что область проводимости коллектора имеет большую площадь по сравнению с эмиттером.
По этому признаку можно самостоятельно определить цоколевку транзистора, при отсутствии справочника.
Так, половина дела сделана, если переходы исправны, то вы увидите значения падения напряжения на них.
Теперь необходимо включить p-n переходы в обратном направлении, при этом мультиметр должен показать «1», что соответствует бесконечности.
Подключаем черный щуп на базу транзистора, красный на эмиттер, при этом мультиметр должен показать «1».
Теперь включаем в обратном направлении переход Б-К, результат должен быть аналогичным.
Осталось последняя проверка – переход эмиттер-коллектор. Подключаем красный щуп мультиметра к эмиттеру, черный к коллектору, если переходы не пробитые, то тестер должен показать «1».
Меняем полярность (красный-коллектор, черный— эмиттер) результат – «1».
Если в результате проверки вы обнаружите не соответствие данной методике, то это значит, что транзистор неисправен.
Эта методика подходит для проверки только биполярных транзисторов. Перед проверкой убедитесь, что транзистор не является полевым или составным. Многие изложенным выше способом пытаются проверить именно составные транзисторы, путая их с биполярными (ведь по маркировки можно не правильно идентифицировать тип транзистора), что не является правильным решением. Правильно узнать тип транзистора можно только по справочнику.
При отсутствии режима проверки диодов в вашем мультиметра, осуществить проверку транзистора можно переключив мультиметр в режим измерения сопротивления на диапазон «2000». При этом методика проверки остается неизменной, за исключением того, что мультиметр будет показывать сопротивление p-n переходов.
А теперь по традиции поясняющий и дополняющий видеоролик по проверке транзистора:
NPN, PNP без выпаивания с платы
Ни одна современная схема не обходится без полупроводниковых приборов. Самый распространённый из них — транзистор и именно он часто выходит из строя. Тому причиной — перепады напряжения, которые есть в наших сетях, нагрузки и т. д. Рассмотрим два способа позволяющие проверить исправность транзистора при помощи мультиметра.
Содержание статьи
Необходимый минимум сведений
Чтобы понять исправен биполярный транзистор или нет, нам необходимо знать хотя бы в самых общих чертах, как он устроен и работает. Это активный электронный компонент, который является полупроводниковым прибором. Есть два основных вида — NPN и PNP. Каждый из них имеет три электрода: база, эмиттер и коллектор.
Виды транзисторов и принцип работы
Коротко сформулировать принцип работы транзисторов можно таким образом, это управляемый электронный ключ. Он пропускает ток по направлению от коллектора к эмиттеру в случае NPN типа и от эмиттера к коллектору у PNP, при наличии напряжения на базе. Причём изменяя потенциал на базе, меняем степень «открытости» перехода, регулируя величину пропускаемого тока. То есть, если на базу подавать больший ток, имеем больший ток коллектор-эмиттер, уменьшим потенциал на базе, снизим ток, протекающий через транзистор.
Ещё важно знать, это то, что в обратном направлении ток течь не может. И неважно, есть потенциал на базе или нет. Он всегда течёт в направлении, на схеме указанном стрелкой. Собственно, это вся информация, которая нам нужна, чтобы знать как работает транзистор.
Цоколевка
У биполярных транзисторов средней и большой мощности цоколевка одинаковая в основном, слева направо — эмиттер, коллектор, база. У транзисторов малой мощности лучше проверять. Это важно, так как при определении работоспособности, эта информация нам понадобится.
Внешний вид биполярного транзистора средней мощности и его цоколевка
То есть, если вам необходимо определить рабочий или нет биполярный транзистор, нужно искать его цоколевку. Хотите убедиться или не знаете, где «лицо», то ищите информацию в справочнике или наберите на компьютере «имя» вашего полупроводникового прибора и добавьте слово «даташит». Это транслитерация с английского Datasheet, что переводится как «технические данные». По этому запросу вам в выдаче будет перечень характеристик прибора и его цоколёвка.
Как проверить транзистор мультиметром со встроенной функцией
Начнём с того, что есть мультиметры с функцией проверки работоспособности транзистора и определения коэффициента усиления. Их можно опознать по наличию характерного блока на лицевой панели. В ней есть гнездо под установку транзистора, круглая цветная пластиковая вставка с отверстиями под ножки полупроводникового прибора. Цвет вставки может быть любым, но обычно, он выделяется.
Первым делом переводим переключатель диапазонов (большую ручку) в соответствующее положение. Опознать режим можно по надписи — hFE. Перед тем как проверить транзистор мультиметром, определяемся с типом NPN или PNP.
Мультиметр с функцией проверки транзисторов
Далее рассматриваем разъёмы, в которые надо вставлять электроды. Они подписаны латинскими буквами: E — эмиттер, B — база, C — коллектор. В соответствии с надписями, ставим выводы полупроводникового элемента в гнёзда. Через несколько мгновений на экране высвечивается результат измерений, это коэффициент усиления транзистора. Если прибор неисправен, показаний не будет, транзистор неисправен.
Как видите, проверить рабочий транзистор или нет мультиметром со встроенной функцией проверки просто. Вот только в гнёзда нормально вставляются далеко не все электроды. Удобно устанавливать транзисторы с тонкими выводами S9014, S8550, КТ3107, КТ3102. У больших, надо пинцетом или плоскогубцами менять форму выводов, ну а транзистор на плате так не проверишь. В некоторых случаях проще проверить переходы транзистора в режиме прозвонки и определить его исправность.
Проверка на плате
Чтобы проверить транзистор мультиметром не выпаивая или нужен мультиметр с функцией прозвонки диодов. Переключатель переводим в это положение, подключение щупов стандартное: чёрный в общее звено (COM или со значком земли), красный — в среднее (гнездо для измерения сопротивления, тока, напряжения).
Как проверить транзистор мультиметром не выпаивая
Чтобы понять принцип проверки, надо вспомнить структуру биполярных транзисторов. Как уже говорили, они бывают двух типов: PNP и NPN. То есть это три последовательные области с двумя переходами, объединёнными общей областью — базой.
Строение биполярного транзистора и как его можно представить, чтобы понять как его будем проверять
Условно, мы можем представить этот прибор как два диода. В случае с PNP типом они включены навстречу друг другу, у NPN — в зеркальном отражении. Это представление на картинке в правом столбике и ни в коем случае не отображает устройство этого полупроводникового прибора, но поясняет, что мы должны увидеть при прозвонке.
Проверка биполярного транзистора PNP типа
Итак, начнём с проверки биполярника PNP типа. Вот что у нас должно получиться:
- Если подать на базу плюс (красный щуп), на эмиттер или коллектор — минус (чёрный щуп), должно быть бесконечно большое сопротивление. В этом случае диоды закрыты (смотрим на эквивалентной схеме).
- Если подаём на базу минус (чёрный щуп), а на эмиттер или коллектор плюс (красный щуп), видим ток от 600 до 800 мВ. В этом случае получается, что переход открыт.
Проверка биполярного PNP транзистора мультиметром
- Если щупами касаемся эмиттера и коллектора, показаний никаких нет, в обеих вариантах переходы оказываются запертыми.
Итак, PNP транзистор будет открыт только тогда, когда плюс подаётся на эмиттер или коллектор. Если во время испытаний есть хоть какие-то отклонения, элемент неработоспособен.
Тестируем исправность NPN транзистор
Как видим, в NPN приборе ситуация будет другой. Практически она диаметрально противоположна:
- Если подать на базу плюс (красный щуп), а на эмиттер или коллектор минус, переход будет открыт, на экране высветятся показания — от 600 до 800 мВ.
- Если поменять местами щупы: плюс на коллектор или эмиттер, минус на базу — переходы заперты, тока нет.
- При прикосновении щупами к эмиттеру и коллектору тока по-прежнему быть не должно.
Проверка работоспособности биполярного NPN транзистора мультиметром
Как видим, этот прибор работает в противоположном направлении. Для того чтобы понять, рабочий транзистор или нет, необходимо знать его тип. Только так можем проверить транзистор мультиметром не выпаивая его с платы.
И ещё раз обращаем ваше внимание, картинки с диодами никак не отображают устройство этого полупроводникового прибора. Они нужны только для понимания того, что мы должны увидеть при проверке переходов. Так проще запомнить, и понимать показания на экране мультиметра.
Как определить базу, коллектор и эмиттер
Иногда бывают ситуации, когда нет под рукой справочника и возможности найти цоколёвку в интернете, а надпись на корпусе транзистора стала нечитаемой. Тогда, пользуясь схемами с диодами, можно опытным путём найти базу и определить тип прибора.
Строение биполярного транзистора и как его можно представить чтобы понять как его будем проверять
Путём перебора ищем положение щупов, при котором «звонятся» все три электрода. Тот вывод, относительно которого появляются показания на двух других и будет базой. Потому, плюс или минус подан на базу определяем тип, PNP или NPN. Если на базу подаём плюс — это NPN тип, если минус — это PNP.
Чтобы определить, где эмиттер,а где коллектор, надо сравнить показания мультиметра при измерении. На эмиттере ток всегда больше. Так и найдём опытным путём базу, эмиттер и коллектор.
Как проверить транзистор | Электрик
Часто в ремонте разной электронной техники возникает подозрение в неисправности биполярных или полевых (Mosfet) транзисторов. Помимо специализированных приборов и пробников для проверки транзисторов, существуют способы доступные всем, из минимума нам подойдет самый простой тестер или мультиметр.
Как мы знаем транзисторы, в основном, бывают двух разновидностей: биполярные и полевые, принцип работы их похож но способы проверки существенно отличаются, поэтому мы рассмотрим разные методы проверки для каждых транзисторов по отдельности.
Проверка биполярных транзисторов
Способы проверки биполярных транзисторов достаточно просты и для удобства нужно помнить что биполярный транзистор условно представляет из себя два диода с точкой по середине, по сути из двух p-n переходов.
Биполярные транзисторы существуют двух типов проводимости: p-n-p и n-p-n что необходимо помнить и учитывать при проверке.
А диод как мы знаем, пропускает ток только в одну сторону, что мы и будем проверять.
Если так получится что ток проходит в обе стороны перехода то это явно указывает на то что транзистор «пробит» но это все условности, в реальности же при замере сопротивления ни в какой из позиций проверяемых переходов не должно быть «нулевого» сопротивления — поэтому это и есть самый простой способ выявления поломки транзистора.
Ну а теперь рассмотрим более достоверные способы проверки и поподробней.
И так выставляем тестер или мультиметр в режим прозвонки (проверка диодов), дальше нужно убедится в том что щупы вставлены в правильные разъемы (красный и черный), а на дисплее нет значка «разряжен». На дисплее должна быть единица а при замыкание щупов должны высветится нули (или близкие к нулям значения), также должен прозвучать звуковой сигнал. И так мы убедились в выборе правильного режима мультиметра, можем приступать к проверке.
И так поочередно проверяем все переходы транзистора:
- База — Эмиттер — исправный переход будит вести себя как диод, то есть проводить ток только в одном направление.
- База — Коллектор — исправный переход будит вести себя как диод, то есть проводить ток только в одном направление.
- Эмиттер — Коллектор — в исправном состояние сопротивление перехода должно быть «бесконечное», то есть переход не должен пропускать ток или прозваниватmся ни в одном из положений полярности.
В зависимости от полярности транзистора (p-n-p или n-p-n) будит зависить лишь направление «прозвонки» переходов база-эмиттер и база-коллектор, с разной полярностью транзисторов направление будет противоположное.
Как определяется «пробитый» переход?
Если мультиметр обнаружит что какой ли бо из переходов (Б-К или Б-Э) в обоих из включений полярности имеет «нулевое» сопротивление и пищит звуковая индикация то такой переход пробит и транзистор неисправен.
Как определить обрыв p-n перехода?
Если один из переходов в обрыве — он не будит пропускать ток и прозваниватся ни в одну из сторон полярности как бы вы не меняли при этом полярность щупов.
Думаю всем понятно как проверять переходы транзистора, суть проверки такая же как у диодов, черный (минусовой) щуп ставим например на коллектор, а красный щуп (плюсовой) на базу и смотрим показания на дисплее. Затем меняем щупы тестера местами и смотрим показания снова. В исправного транзистора в одном случае должно быть какое то значение, как правило больше 100, в другом случае на дисплее должна быть единица «1» что говорит о «бесконечном» сопротивление.
Проверка транзистора стрелочным тестером
Принцип проверки все тот же, мы проверяем переходы (как диоды)
Отличие лишь в том что такие «омметры» не имеют режима прозвонки диодов и «бесконечное» сопротивление у них находится в начальном состояние стрелки, а максимальное отклонение стрелки будит уже говорить о «нулевом» сопротивление. К этому нужно просто привыкнуть и помнить о такой особенности при проверке.
Измерения лучше всего производить в режиме «1Ом» (можно пробовать и до *1000Ом пределе).
Для проверки в схеме (не выпаивая) стрелочным тестером можно даже более точно определить сопротивление перехода если он в схеме зашунтирован низкоомным резистором, например показания сопротивления в 20 Ом будет уже указывать о том что сопротивление перехода не «нулевое» а значит большая вероятность что переход исправен. С мультиметром же в режиме прозвонки диодов будит такая картина что он попросту будет показывать «кз» и пищать (тоже конечно зависит от точности прибора).
Если не известно где база, а где эмиттер и коллектор. Цоколевка транзистора?
У транзисторов средней и большой мощности вывод коллектора всегда на корпусе который переиначенный для закрепления на радиатора, так что с этим проблем не будит. А уже зная расположение коллектора, найти базу и эмиттер будит намного проще.
Ну а если транзистор малой мощности в пластмассовом корпусе где все выводы одинаковы будим применять такой способ:
Все что нам нужно — поочередно замерить все комбинации переходов прикасаясь щупами поочередно к разным выводам транзистора.
Нам нужно найти два перехода которые покажут бесконечность «1». Например: мы нашли бесконечность между правим-левим и правим-среднем, то есть по сути мы нашли и измеряли обратное сопротивления двух p-n переходов (как диодов) из этого размещение базы стает очевидным — база справа.
Дальше ищем где коллектор а где эмиттер, для этого от базы уже измеряем прямое сопротивление переходов и здесь все стает ясно так как сопротивление перехода база-Коллектор всегда меньше по сравнению с переходом база-Эмиттер.
Быстрая точная проверка транзистора
Если под руками есть мультиметр с функцией тестирования коэффициента усиления транзисторов — замечательно, проверка займет несколько секунд, здесь лишь надо будет определить правильную цоколевку (если конечно она не известна).
У таких мультиметров проверочные гнезда состоят из двух отделов p-n-p и n-p-n, а кроме того каждый отдел имеет три комбинации как можно вставить туда транзистор, то есть вместе не более 6 комбинаций, и только лишь одна правильная которая должна показать коэффициент усиления транзистора, за условий что он исправен.
Простой пробник
В данной схеме транзистор будет работать как ключ, схема очень простая и удобная если нужно часто и много проверять транзисторы.
Если транзистор рабочий — при нажатие кнопки светодиод светится, при отпускание гаснет.
Схема представлена для n-p-n транзисторов, но она универсальна, все что нужно сделать, это поставить параллельно к светодиоду еще один светодиод в обратной полярности, а при проверке p-n-p транзистора — просто менять полярность источника питания.
Если по данной методике что то идет не так, задумайтесь, а транзистор ли перед вами и случайно быть может он не биполярный, а полевой или составной.
Часто бывает путают при проверке составные транзисторы пытаясь их проверить стандартным способом, но нужно в первую очередь смотреть справочник или «даташит» со всем описанием транзистора.
Как проверить составной транзистор Чтобы проверить такой транзистор его необходимо «запустить» то есть он должен как бы работать, для создания такого условия есть простой но интересный способ.
Стрелочным тестером, выставленным в режим проверки сопротивления (предел *1000?) подключаем щупы, плюсовой на коллектор, минусовой на эмиттер — для n-p-n (для p-n-p наоборот) — стрелка тестера не двинется сместа оставаясь в начале шкалы «бесконечность» (для цифрового мультиметра «1»)
Теперь если послюнявить палиц и замкнуть им прикоснувшысь к выводам базы и коллектора то стрелка сдвинется с места от того что транзистор немного приоткроется.
Таким же способом можно проверить любой транзистор даже не выпаивая з схемы.
Но следует помнить что некоторые составные транзисторы имеют в своем составе защитные диоды в переходе эмиттер-коллектор что дает им преимущество в работе с индукционной нагрузкой, например с электромагнитным реле.
Проверка полевых транзисторов
Здесь есть один отличительный момент при проверке таких транзисторов — они очень чувствительны к статическому электричеству которое способно вывести из строя транзистор если не соблюдать методы безопасности при проверке а также выпайке и перемещению. И в большей мере подвержены статике именно маломощные и малогабаритные полевые транзисторы.
Какие методы безопасности?
Транзисторы должны находится на столе на металлическом листе который подключен к заземлению. Для того чтобы снять с человека предельный статический заряд — применяют антистатический браслет который надевают на запястье.
Кроме того хранение и транспортировка особо чувствительных полевиков должна быть з закорочеными выводами, как правило выводы просто обматывают тонкой медной проволкой.
Полевой транзистор в отличие от биполярного управляется напряжением, а не током как у биполярного, поэтому прикладывая напряжение к его затвору мы его или открываем (для N-канального) или закрываем (для P-канального).
Проверить полевой транзистор можно как стрелочным тестером так и цифровым мультиметром.
Все выводы полевого транзистора должны показывать бесконечное сопротивление, независимо от полярности и напряжения на щупах.
Но если поставить положительный щуп тестера к затвору (G) транзистора N-типа, а отрицательный — к истоку (S), зарядится емкость затвора и транзистор откроется. И уже измеряя сопротивления между стоком (D) и истоком (S) прибор покажет некоторое значение сопротивления, которое зависит от ряда факторов, например емкости затвора и сопротивления перехода.
Для P-канального типа транзистора полярность щупов обратная. Также для чистоты эксперимента, перед каждой проверкой необходимо закорачивать выводы транзистора пинцетом чтобы снять заряд с затвора после чего сопротивление сток-исток должно снова стать «бесконечным» («1») — если это не так то транзистор скорее всего неисправен.
Особенностью современных мощных полевых транзисторов (MOSFET’ов) есть то что канал сток-исток прозванивается как диод, встроенный диод в канале полевого транзистора есть особенностью мощных полевиков (явление производственного процесса).
Чтобы не посчитать такую «прозвонку» канала за неисправность просто следует помнить о диоде.
В исправном состояние переход сток-исток MOSFETа должен в одну сторону звониться как диод а в другую показывать бесконечность (в закрытом состояние — после закорачивания выводов) Если переход прозваниваеться в обе стороны с «нулевым» сопротивлением то такой транзистор «пробит» и неисправен
Наглядный способ (экспресс проверка)
- Необходимо замкнуть выводы транзистора
- Тестером в режиме прозвонки (диод) ставим плюсовой щуп к истоку, а минусовой к стоку (исправный покажет 0.5 — 0.7 вольта)
- Теперь меняем щупы местами (исправный покажет «1» или по другому говоря бесконечное сопротивление)
- Минусовой щуп ставим к истоку, а плюсовой на затвор (открываем транзистор)
- Минусовой щуп оставляем на истоке, а плюсовой сразу ставим на сток, исправный транзистор будет открыт и покажет 0 — 800 милливольт
- Теперь можем поменять плюсовой и минусовой щупы местами, в обратной полярности переход сток-исток должен иметь такое же сопротивление.
- Плюсовой щуп ставим к истоку, а минусовой на затвор — транзистор закроется
- Можем снова проверить переход сток-исток, он должен показывать снова «бесконечное» сопротивление так как транзистор уже закрыт (но помним про диод в обратной полярности)
Большая емкость затвора некоторых полевых транзисторов (особенно мощных) позволяет некоторое продолжительное время сохранять транзистор открытим, что позволяет нам открыв его проверять сопротивление сток-исток уже убрав плюсовой щуп с затвора. Но у транзисторов с малой емкостью затвора необходимо очень быстро перемещать щупы что бы зафиксировать правильную работу транзистора.
Примечание: для проверки P-канального полевого транзистора, процесс выглядит также но щупы мультиметра должны быть противоположной полярности. Для удобства можно перекинуть их местами (красный на минус, а черный на плюс) и использовать все туже описану выше инструкцию.
Проверяя транзистор по такой методике канал сток-исток можно открывать и закрывать даже пальцем, например чтобы открыть достаточно прикоснутся пальцем к затвору держась при этом второй рукой за плюс, а чтобы закрыть нужно все также прикоснутся к затвору но уже держась другим пальцем или второй рукой за минус. Интересный опыт который дает понимание того что транзистор управляется не током (как у биполярных) а напряжением.
Простая схема пробника для проверки полевых транзисторов
Можно собрать простую и эффективную схему проверки полевиков которая достаточно ясно даст понять о состояние транзистора, к тому же достаточно быстро можно перекидать транзисторы если их предстоит проверять часто и много. В некоторых схемах можно проверить транзистор даже полностью не выпаивая его с платы.
Схема универсальна как для P-канальных так и для N-канальных полевых транзисторов в ней присутствует два светодиода включенных в обратной полярности друг к другу (каждый для своего типа) и все что остается при смене типа проверяемого полевого транзистора — просто поменять полярность источника питания.
Как проверить транзистор мультиметром: инструкции, видео
Полупроводниковые элементы используются практически во всех электронных схемах. Те, кто называют их наиболее важными и самыми распространенными радиодеталями абсолютно правы. Но любые компоненты не вечны, перегрузка по напряжению и току, нарушение температурного режима и другие факторы могут вывести их из строя. Расскажем (не перегружая теорией), как проверить работоспособность различных типов транзисторов (npn, pnp, полярных и составных) пользуясь тестером или мультиметром.
С чего начать?
Прежде, чем проверить мультиметром любой элемент на исправность, будь то транзистор, тиристор, конденсатор или резистор, необходимо определить его тип и характеристики. Сделать это можно по маркировке. Узнав ее, не составит труда найти техническое описание (даташит) на тематических сайтах. С его помощью мы узнаем тип, цоколевку, основные характеристики и другую полезную информацию, включая аналоги для замены.
Например, в телевизоре перестала работать развертка. Подозрение вызывает строчный транзистор с маркировкой D2499 (кстати, довольно распространенный случай). Найдя в интернете спецификацию (ее фрагмент показан на рисунке 2), мы получаем всю необходимую для тестирования информацию.
Рисунок 2. Фрагмент спецификации на 2SD2499Большая вероятность, что найденный даташит будет на английском, ничего страшного, технический текст легко воспринимается даже без знания языка.
Определив тип и цоколевку, выпаиваем деталь и приступаем к проверке. Ниже приведены инструкции, с помощью которых мы будем тестировать наиболее распространенные полупроводниковые элементы.
Проверка биполярного транзистора мультиметром
Это наиболее распространенный компонент, например серии КТ315, КТ361 и т.д.
С тестированием данного типа проблем не возникнет, достаточно представить pn переход в как диод. Тогда структуры pnp и npn будут иметь вид двух встречно или обратно подключенных диодов со средней точкой (см. рис.3).
Рисунок 3. «Диодные аналоги» переходов pnp и npnПрисоединяем к мультиметру щупы, черный к «СОМ» (это будет минус), а красный к гнезду «VΩmA» (плюс). Включаем тестирующее устройство, переводим его в режим прозвонки или измерения сопротивления (достаточно установить предел 2кОм), и приступаем к тестированию. Начнем с pnp проводимости:
- Присоединяем черный щуп к выводу «Б», а красный (от гнезда «VΩmA») к ножке «Э». Смотрим на показания мультиметра, он должен отобразить величину сопротивления перехода. Нормальным считается диапазон от 0,6 кОм до 1,3 кОм.
- Таким же образом проводим измерения между выводами «Б» и «К». Показания должны быть в том же диапазоне.
Если при первом и/или втором измерении мультиметр отобразит минимальное сопротивление, значит в переходе(ах) пробой и деталь требует замены.
- Меняем полярность (красный и черный щуп) местами и повторяем измерения. Если электронный компонент исправный, отобразится сопротивление, стремящееся к минимальному значению. При показании «1» (измеряемая величина превышает возможности устройства), можно констатировать внутренний обрыв в цепи, следовательно, потребуется замена радиоэлемента.
Тестирование устройства обратной проводимости производится по такому же принципу, с небольшим изменением:
- Красный щуп подключаем к ножке «Б» и проверяем сопротивление черным щупом (прикасаясь к выводам «К» и «Э», поочередно), оно должно быть минимальным.
- Меняем полярность и повторяем измерения, мультиметр покажет сопротивление в диапазоне 0,6-1,3 кОм.
Отклонения от этих значений говорят о неисправности компонента.
Проверка работоспособности полевого транзистора
Этот тип полупроводниковых элементов также называют mosfet и моп компонентами. На рисунке 4 показано графическое обозначение n- и p-канальных полевиков в принципиальных схемах.
Рис 4. Полевые транзисторы (N- и P-канальный)Для проверки этих устройств подключаем щупы к мультиметру, таким же образом, как и при тестировании биполярных полупроводников, и устанавливаем тип тестирования «прозвонка». Далее действуем по следующему алгоритму (для n-канального элемента):
- Касаемся черным проводом ножки «с», а красным – вывода «и». Отобразится сопротивление на встроенном диоде, запоминаем показание.
- Теперь необходимо «открыть» переход (получится только частично), для этого щуп с красным проводом соединяем с выводом «з».
- Повторяем измерение, проведенное в п. 1, показание изменится в меньшую сторону, что говорит о частичном «открытии» полевика.
- Теперь необходимо «закрыть» компонент, с этой целью соединяем отрицательный щуп (провод черного цвета) с ножкой «з».
- Повторяем действия п. 1, отобразится исходное значение, следовательно, произошло «закрытие», что говорит об исправности компонента.
Для тестирования элементов p-канального типа последовательность действий остается той же, за исключением полярности щупов, ее нужно поменять на противоположную.
Заметим, что биполярные элементы, у которых изолированный затвор (IGBT), тестируются также, как описано выше. На рисунке 5 показан компонент SC12850, относящийся к этому классу.
Рис 5. IGBT транзистор SC12850Для тестирования необходимо выполнить те же действия, что и для полевого полупроводникового элемента, с учетом, что сток и исток последнего будут соответствовать коллектору и эмиттеру.
В некоторых случаях потенциала на щупах мультиметра может быть недостаточно (например, чтобы «открыть» мощный силовой транзистор), в такой ситуации понадобится дополнительное питание (хватит 12 вольт). Подключать его нужно через сопротивление 1500-2000 Ом.
Проверка составного транзистора
Такой полупроводниковый элемент еще называют «транзистор Дарлингтона», по сути это два элемента, собранные в одном корпусе. Для примера, на рисунке 6 показан фрагмент спецификации к КТ827А, где отображена эквивалентная схема его устройства.
Рис 6. Эквивалентная схема транзистора КТ827АПроверить такой элемент мультиметром не получится, потребуется сделать простейший пробник, его схема показана на рисунке 7.
Рис. 7. Схема для проверки составного транзистораОбозначение:
- Т – тестируемый элемент, в нашем случае КТ827А.
- Л – лампочка.
- R – резистор, его номинал рассчитываем по формуле h31Э*U/I, то есть, умножаем величину входящего напряжения на минимальное значение коэффициента усиления (для КТ827A — 750), полученный результат делим на ток нагрузки. Допустим, мы используем лампочку от габаритных огней автомобиля мощностью 5 Вт, ток нагрузки составит 0,42 А (5/12). Следовательно, нам понадобится резистор на 21 кОм (750*12/0,42).
Тестирование производится следующим образом:
- Подключаем к базе плюс от источника, в результате должна засветиться лампочка.
- Подаем минус – лампочка гаснет.
Такой результат говорит о работоспособности радиодетали, при других результатах потребуется замена.
Как проверить однопереходной транзистор
В качестве примера приведем КТ117, фрагмент из его спецификации показан на рисунке 8.
Рис 8. КТ117, графическое изображение и эквивалентная схемаПроверка элемента осуществляется следующим образом:
Переводим мультиметр в режим прозвонки и проверяем сопротивление между ножками «Б1» и «Б2», если оно незначительное, можно констатировать пробой.
Как проверить транзистор мультиметром, не выпаивая их схемы?
Этот вопрос довольно актуальный, особенно в тех случаях, если необходимо тестировать целостность smd элементов. К сожалению, только биполярные транзисторы можно проверить мультиметром не выпаивая из платы. Но даже в этом случае нельзя быть уверенным в результате, поскольку не редки случаи, когда p-n переход элемента зашунтирован низкоомным сопротивлением.
Как проверить биполярный транзистор мультиметром
Сегодня я расскажу, как проверить исправность биполярного транзистора с помощью мультиметра. Эта проверка на наличие пробоя, то есть, она позволяет узнать живой транзистор или нет. Такую проверку я произвожу перед каждым впаиванием элемента при сборке новой схемы или в процессе ремонта. На сленге её также именуют «прозвонкой».
У всех современных мультиметров есть режим диодной проверки, вот его и нужно включить.
После чего необходимо подключить щупы, черный в разъем «COM», а красный в разъем со значком диода или измерения сопротивления.
После включения режима на экране прибора единица, которая означает обрыв, бесконечное сопротивление или закрытый PN переход транзистора или диода.
Дальше необходимо соединить щупы между собой и убедиться, что есть контакт щупов с мультиметром и они исправные.
На дисплее значение изменится с единицы на несколько нулей, в зависимости от точности прибора и сопротивления щупов. Некоторые приборы предусматривают звуковую сигнализацию в режиме проверки диодов (как у меня), это удобно при ремонте устройств, так как в момент проверки можно не смотреть на дисплей мультиметра, а сконцентрироваться на проблемном месте. Звуковой сигнал звучит только при малом сопротивлении (десятки и единицы Ом).
Определяем тип транзистора и обозначение выводов
Биполярные транзисторы бывают двух структур PNP и NPN. От типа структуры будет зависеть их проводимость. В дебри про электронно-дырочную структуру я углубляться не буду, а лишь опишу процесс проверки.
У меня есть транзистор КТ837H, на примере которого я буду описывать процесс проверки.
Первым делом необходимо найти техническое описание элемента (Datasheet) или справочник. В документации находим название структуры транзистора, в моем случае это PNP. Следующая нужная информация это расположение и обозначение выводов (цоколевка).
Транзистор, как два диода…
Транзисторы имеют два PN перехода и их можно представить как два последовательно соединенных диода. И проверять транзисторы можно как два диода. Точка соединения диодов будет базой, а два остальных вывода коллектором и эмиттером.
Если диоды соединены катодами (отрицательными выводами), то база N типа (N- negative, отрицательный).
Если диоды соединены анодами (положительными выводами), то база P типа (P- positive, положительный).
Полезным будет прочесть статью «Как проверить диод мультиметром».
Проверка транзисторов структуры PNP
Для PNP транзисторов соединяем черный щуп(отрицательный) к базе, а красным по очереди касаемся коллектора и эмиттера. Это называется прямым смещением. Переходы должны открыться.
Для исправного транзистора на дисплее должно отобразиться напряжение открытия переходов (обычно несколько сотен милливольт, примерно 500-800мВ), но ни в коем случае не десятки и тем более не единицы милливольт.
Как мы видим, исправный транзистор PNP типа открылся при касании базы черным (отрицательным) щупом, а красным (положительным) мы касались коллектора и эмиттера.
После чего, к базе транзистора PNP типа подключаем уже красный щуп, а черным по очереди касаемся коллектора и эмиттера. Транзистор, точнее его переходы должны быть закрыты, если элемент исправный. Это называется обратным смещением.
В этих положениях переходы заперты и на дисплее должна быть единица (она же бесконечность). Если в этих положениях переходы открываются и на дисплее отображается напряжение открытия (любое), то такой элемент не исправен. Обычно у пробитых элементов показания на дисплее прибора меньше десяти милливольт.
Ниже пример неисправного полупроводникового прибора, у него все выводы замкнуты, сопротивление между ними единицы Ом, поэтому в режиме диодной прозвонки (независимо от положения щупов) на дисплее 2мВ, то есть переход «пробитый».
Если хотя бы один переход звонится накоротко (на дисплее десятки или единицы милливольт), то такой полупроводник сразу подлежит замене.
Проверка транзисторов структуры NPN
Та же самая процедура, что и с PNP структурой, только открытие переходов у исправного элемента происходит при соединении красного (положительного) щупа к базе, а черного (отрицательного) к коллектору и эмиттеру.
При соединении черного щупа к базе, а красного к коллектору и эмиттеру у исправного полупроводника переходы должны быть закрыты и на дисплее «обрыв» (единица).
Примечание
В режиме диодной проверки на дисплее отображается значение не сопротивления в Омах, как многие считают, а значение напряжения открытия PN перехода в милливольтах.
Вернуться в блог
Написано Эли в четверг, 4 мая 2017 г.
Спросите любого полевого техника или специалиста по стендовым испытаниям, какое у них наиболее часто используемое испытательное оборудование, и они, вероятно, ответят, что это цифровой мультиметр. Эти универсальные устройства могут использоваться для тестирования и диагностики широкого спектра цепей и компонентов. В крайнем случае, цифровой мультиметр может даже заменить дорогое специализированное испытательное оборудование. Один особенно полезный навык — это умение проверять транзистор с помощью цифрового мультиметра.Для решения этой задачи существуют специализированные анализаторы компонентов, но для среднего хобби может быть трудно оправдать расходы.
Распиновка транзисторов
К счастью, использование цифрового мультиметра для получения базовых показаний «годен / не годен» с подозреваемого неисправного двухполюсного транзистора NPN или PNP — это простая и быстрая задача. Некоторые мультиметры имеют встроенную функцию тестирования транзисторов, если она у вас есть, вы можете пропустить этот пост в блоге — просто вставьте транзистор в гнездо на мультиметре и установите измеритель в правильный режим.Вы, вероятно, получите такую информацию, как коэффициент усиления (hFE), который можно будет проверить по таблице данных, а также результаты проверки пройден / не пройден. Если в вашем измерителе нет функции тестирования транзисторов, не бойтесь — транзисторы можно легко проверить с помощью настройки тестирования «Диод». (Некоторые счетчики имеют функцию проверки диодов в сочетании с проверкой целостности цепи — это нормально).
Тестирование транзистора
Удалите транзистор из схемы для получения точных результатов.
Шаг 1: (от базы к эмиттеру)
Подсоедините плюсовой провод мультиметра к BASE (B) транзистора.Подсоедините отрицательный вывод измерителя к ЭМИТТЕРУ (E) транзистора. Для исправного NPN-транзистора измеритель должен показывать падение напряжения от 0,45 до 0,9 В. Если вы тестируете транзистор PNP, вы должны увидеть «OL» (Over Limit).
Шаг 2: (от базы к коллектору)
Держите положительный провод на ОСНОВАНИИ (B) и вставьте отрицательный провод в КОЛЛЕКТОР (С).
Для исправного NPN-транзистора измеритель должен показывать падение напряжения от 0,45 до 0,9 В. Если вы тестируете транзистор PNP, вы должны увидеть «OL» (Over Limit).
Шаг 3: (от эмиттера к базе)
Подсоедините плюсовой провод мультиметра к ЭМИТТЕРУ (E) транзистора. Подсоедините отрицательный вывод измерителя к BASE (B) транзистора.
Для исправного транзистора NPN вы должны увидеть «OL» (превышение предела). Если вы проверяете транзистор PNP, измеритель должен показать падение напряжения между 0,45 и 0,9 В.
Шаг 4: (от коллектора к базе)
Подсоедините плюсовой провод мультиметра к КОЛЛЕКТОРУ (С) транзистора.Подсоедините отрицательный вывод измерителя к BASE (B) транзистора.
Для исправного транзистора NPN вы должны увидеть «OL» (превышение предела). Если вы проверяете транзистор PNP, измеритель должен показать падение напряжения между 0,45 и 0,9 В.
Шаг 5: (от коллектора к эмиттеру)
Подсоедините положительный провод измерителя к КОЛЛЕКТОРУ (C), а отрицательный провод измерителя к ЭМИТТЕРУ (E) — исправный транзистор NPN или PNP покажет на измерителе «OL» / превышение предела. Поменяйте местами провода (положительный на эмиттер и отрицательный на коллектор). Еще раз, хороший транзистор NPN или PNP должен показывать «OL».
Если размеры вашего биполярного транзистора противоречат этим шагам, считайте это плохим.
Вы также можете использовать падение напряжения, чтобы определить, какой вывод является эмиттером на немаркированном транзисторе, поскольку переход эмиттер-база обычно имеет немного большее падение напряжения, чем переход коллектор-база.
Помните: этот тест только проверяет, что транзистор не закорочен или не открыт, он не гарантирует, что транзистор работает в пределах своих проектных параметров.Его следует использовать только для того, чтобы решить, нужно ли вам «заменить» или «перейти к следующему компоненту». Этот тест работает только с биполярными транзисторами — вам нужно использовать другой метод для тестирования полевых транзисторов.
В качестве особой благодарности нашим клиентам и читателям блогов мы хотели бы предложить 10% скидку на весь ваш заказ, используя КОД: «BLOG1000»Чтобы получить месяц признательности нашим клиентам, все, что вам нужно сделать, это использовать код «BLOG1000» при оформлении заказа в вашей карте покупок.
И когда появится окошко, введите соответствующий текущий активный промокод.В данном случае это: BLOG1000
И продолжаем проверять!
Спасибо, что являетесь клиентом Vetco!
Вернуться в блог
Как проверить транзистор и диод »Электроника
Очень быстро и легко научиться тестировать транзистор и диод с помощью аналогового мультиметра — обычно этого достаточно для большинства приложений.
Учебное пособие по мультиметру включает:
Основы работы с измерителем
Аналоговый мультиметр
Как работает аналоговый мультиметр
Цифровой мультиметр DMM
Как работает цифровой мультиметр
Точность и разрешение цифрового мультиметра
Как купить лучший цифровой мультиметр
Как пользоваться мультиметром
Измерение напряжения
Текущие измерения
Измерения сопротивления
Тест диодов и транзисторов
Диагностика транзисторных цепей
В то время как многие цифровые мультиметры в наши дни имеют специальные возможности для тестирования диодов, а иногда и транзисторов, не все, особенно старые аналоговые мультиметры, которые все еще широко используются.Однако по-прежнему довольно легко выполнить простой тест «годен / не годен», используя простейшее оборудование.
Этот вид тестирования позволяет определить, работает ли транзистор или диод, и, хотя он не может предоставить подробную информацию о параметрах, это редко является проблемой, потому что эти компоненты проверяются при изготовлении, и производительность сравнительно редко меняется. упадут до точки, где они не работают в цепи.
Большинство отказов являются катастрофическими, в результате чего компонент становится полностью неработоспособным.Эти простые тесты мультиметра позволяют очень быстро и легко обнаружить эти проблемы.
Таким образом можно тестировать диодыбольшинства типов — силовые выпрямительные диоды, сигнальные диоды, стабилитроны / опорные диоды напряжения, варакторные диоды и многие другие типы диодов.
Как проверить диод мультиметром
Базовый тест диодов выполнить очень просто. Чтобы убедиться, что диод работает нормально, необходимо провести всего два теста мультиметра.
Тест диода основан на том факте, что диод будет проводить только в одном направлении, а не в другом.Это означает, что его сопротивление будет отличаться в одном направлении от сопротивления в другом.
Измеряя сопротивление в обоих направлениях, можно определить, работает ли диод, а также какие соединения являются анодом и катодом.
Поскольку фактическое сопротивление в прямом направлении зависит от напряжения, невозможно дать точные значения ожидаемого прямого сопротивления, так как напряжение на разных измерителях будет разным — оно будет даже различным в разных диапазонах измерителя.
Метод проверки диода аналоговым измерителем довольно прост.
Пошаговая инструкция:
- Установите измеритель на его диапазон Ом — подойдет любой диапазон, но, вероятно, лучше всего подойдет средний диапазон Ом, если их несколько.
- Подключите катодную клемму диода к клемме с положительной меткой на мультиметре, а анод — к отрицательной или общей клемме.
- Установите измеритель на показания в омах, и должны быть получены «низкие» показания.
- Поменяйте местами соединения.
- На этот раз должно быть получено высокое значение сопротивления.
Примечания:
- На шаге 3 выше фактическое показание будет зависеть от ряда факторов. Главное, чтобы счетчик отклонялся, возможно, до половины и более. Разница зависит от многих элементов, включая батарею в глюкометре и используемый диапазон.Главное, на что следует обратить внимание, это то, что счетчик сильно отклоняется.
- При проверке в обратном направлении кремниевые диоды вряд ли покажут какое-либо отклонение измерителя. Германиевые, которые имеют гораздо более высокий уровень обратного тока утечки, могут легко показать небольшое отклонение, если измеритель установлен на высокий диапазон Ом.
Этот простой аналоговый мультиметр для проверки диода очень полезен, потому что он очень быстро показывает, исправен ли диод.Однако он не может тестировать более сложные параметры, такие как обратный пробой и т. Д.
Тем не менее, это важный тест для обслуживания и ремонта. Хотя характеристики диода могут измениться, это случается очень редко, и очень маловероятно, что произойдет полный пробой диода, и это будет сразу видно с помощью этого теста.
Соответственно, этот тип теста чрезвычайно полезен в ряде областей тестирования и ремонта электроники.
Проверка диодов мультиметромКак проверить транзистор мультиметром
Тест диодов с помощью аналогового мультиметра может быть расширен, чтобы обеспечить простую и понятную проверку достоверности биполярных транзисторов. Опять же, тест с использованием мультиметра дает только уверенность в том, что биполярный транзистор не перегорел, но он все еще очень полезен.
Как и в случае с диодом, наиболее вероятные отказы приводят к разрушению транзистора, а не к небольшому ухудшению характеристик.
Испытание основано на том факте, что биполярный транзистор можно рассматривать как состоящий из двух встречных диодов, и при выполнении теста диодов между базой и коллектором и базой и эмиттером транзистора с использованием аналогового мультиметра, большая часть можно установить базовую целостность транзистора.
Эквивалентная схема транзистора с диодами для проверки мультиметром.Требуется еще один тест. Транзистор должен иметь высокое сопротивление между коллектором и эмиттером при разомкнутой цепи базы, так как имеется два встречных диода.Тем не менее, возможно, что коллектор-эмиттерный тракт перегорел, и между коллектором и эмиттером был создан путь проводимости, при этом все еще выполняя диодную функцию по отношению к базе. Это тоже нужно проверить.
Следует отметить, что биполярный транзистор не может быть функционально воспроизведен с использованием двух отдельных диодов, потому что работа транзистора зависит от базы, которая является переходом двух диодов, являясь одним физическим слоем, а также очень тонкой.
Пошаговая инструкция:
Инструкции даны в основном для транзисторов NPN, поскольку они являются наиболее распространенными в использовании.Варианты показаны для разновидностей PNP — они указаны в скобках (.. .. ..):
- Установите измеритель на его диапазон Ом — подойдет любой диапазон, но, вероятно, лучше всего подойдет средний диапазон Ом, если их несколько.
- Подключите клемму базы транзистора к клемме с маркировкой «плюс» (обычно красного цвета) на мультиметре
- Подключите клемму с маркировкой «минус» или «общий» (обычно черного цвета) к коллектору и измерьте сопротивление.Он должен читать обрыв цепи (для транзистора PNP должно быть отклонение).
- Когда клемма с маркировкой «положительный» все еще подключена к базе, повторите измерение, подключив положительную клемму к эмиттеру. Показание должно снова показать обрыв цепи (мультиметр должен отклоняться для транзистора PNP).
- Теперь поменяйте местами подключение к базе транзистора, на этот раз подключив отрицательную или общую (черную) клемму аналогового измерительного прибора к базе транзистора.
- Подключите клемму с маркировкой «плюс» сначала к коллектору и измерьте сопротивление. Затем отнесите к эмиттеру. В обоих случаях измеритель должен отклониться (указать обрыв цепи для транзистора PNP).
- Далее необходимо подключить отрицательный или общий вывод счетчика к коллектору, а положительный полюс счетчика — к эмиттеру. Убедитесь, что счетчик показывает обрыв цепи. (Счетчик должен показывать обрыв цепи для типов NPN и PNP.
- Теперь поменяйте местами соединения так, чтобы отрицательный или общий вывод измерителя был подключен к эмиттеру, а положительный полюс измерителя — к коллектору.Еще раз проверьте, что прибор показывает обрыв цепи.
- Если транзистор проходит все тесты, то он в основном исправен и все переходы целы.
Примечания:
- Заключительные проверки от коллектора до эмиттера гарантируют, что основание не «продувалось». Иногда возможно, что между коллектором и базой и эмиттером и базой все еще присутствует диод, но коллектор и эмиттер закорочены вместе.
- Как и в случае с германиевым диодом, обратные показания для германиевых транзисторов не будут такими хорошими, как для кремниевых транзисторов. Допускается небольшой ток, поскольку это является следствием наличия неосновных носителей в германии.
Обзор аналогового мультиметра
Хотя большинство мультиметров, которые продаются сегодня, являются цифровыми, тем не менее, многие аналоговые счетчики все еще используются. Хотя они могут и не быть новейшими технологиями, они по-прежнему идеальны для многих применений и могут быть легко использованы для измерений, подобных приведенным выше.
Хотя описанные выше тесты предназначены для аналоговых измерителей, аналогичные тесты могут быть проведены с цифровыми мультиметрами, цифровыми мультиметрами.
Часто цифровые мультиметры могут включать специальную функцию проверки биполярных транзисторов, и это очень удобно в использовании. Общие характеристики тестирования с помощью специальной функции тестирования биполярных транзисторов часто очень похожи на упомянутые здесь, хотя некоторые цифровые мультиметры могут давать значение для текущего усиления.
Использование простого теста для диодов и транзисторов очень полезно во многих сценариях обслуживания и ремонта.Очень полезно иметь представление о том, работает ли диод или транзистор. Поскольку тестеры транзисторов широко не продаются, возможность использования любого мультиметра для обеспечения этой возможности особенно полезна. Это даже удобнее, потому что тест выполнить очень просто.
Другие темы тестирования:
Анализатор сети передачи данных
Цифровой мультиметр
Частотомер
Осциллограф
Генераторы сигналов
Анализатор спектра
Измеритель LCR
Дип-метр, ГДО
Логический анализатор
Измеритель мощности RF
Генератор радиочастотных сигналов
Логический зонд
Тестирование и тестеры PAT
Рефлектометр во временной области
Векторный анализатор цепей
PXI
GPIB
Граничное сканирование / JTAG
Вернуться в меню тестирования.. .
Как проверить транзистор с помощью мультиметра (DMM + AVO) — NPN и PNP
Как найти базу, коллектор, эмиттер, направление и состояние транзистора с помощью мультиметраКак запомнить направление PNP и NPN Идентификация транзисторов и контактов, проверьте, хорошо это или плохо.
Если вы выберете эту простую тему с помощью цифрового (DMM) или аналогового (AVO) мультиметра, вы сможете:
- Запомнить направление транзисторов NPN и PNP
- Определить базу, коллектор и эмиттер Транзистор
- Проверьте транзистор, исправен он или нет.
PNP = заостренный
NPN = не заостренный.
, если вам кажется, что это немного сложно, попробуйте этот… он проще.
Щелкните изображение, чтобы увеличить.
PNP NPN
P = Точки N = Никогда
N = IN P = Точки
P = Постоянно N = iN
Сделать Итак, следуйте инструкциям, приведенным ниже.
- Удалите транзистор из схемы, т.е. отключите питание от транзистора, который необходимо проверить. Разрядите весь конденсатор (закоротив выводы конденсатора) в цепи (если есть).
- Установите мультиметр в режим «Проверка диодов», повернув поворотный переключатель мультиметра.
- Подключите черный (общий или -Ve) измерительный провод мультиметра к 1-й клемме транзистора, а красный (+ Ve) измерительный провод ко 2-й клемме (рис. Ниже). Вы должны выполнить 6 тестов, подключив черный (-Ve) измерительный провод и красный (+ Ve) измерительный провод к 1–2, 1–3, 2–1, 2–3, 3–1, 3–2 соответственно. просто замените измерительные провода мультиметра или переверните клеммы транзистора, чтобы подключить, проверить, измерить и записать показания в таблице (показанной ниже).Цифры красного цвета — это красный измерительный провод, а номера черного цвета — это черный (-Ve) измерительный провод мультиметра.
- Проверьте, измерьте и запишите показания дисплея мультиметра в таблице ниже.
У нас есть следующие данные из приведенной ниже таблицы.
Из 6 тестов мы получили данные и результаты только по двум тестам, то есть точкам со 2 по 1 и со 2 по 3. Если мы получили точки со 2 по 1, это 0,733 В постоянного тока, а с 2 по 3 0,728 В постоянного тока. Теперь мы можем легко найти тип транзистора, а также их коллектор, базу и эмиттер.
- Точка 2 — это база транзистора в транзисторе BC55.
- BC 557 — это транзистор PNP, в котором 2 nd (средний вывод — база) подключен к красному (+ Ve) измерительному проводу мультиметра.
- Вообще, клемма 1 = эмиттер, клемма 2 = база и клемма 3 = коллектор (транзистор BC 557 PNP), потому что результат теста для 2-1 = 0,733 В постоянного тока и 2-3 = 0,728 В постоянного тока, т. Е. 2-1 > 2-3.
BC 557 PNP | Точки измерения | Результат |
1-2 | OL | |
1-3 | ||
2-3 | 0,728 В постоянного тока | |
3-1 | OL | |
3-2 | OL |
2
nd Метод с использованием цифрового мультиметра для поиска базы транзистора.Если вы следуете той же схеме и способу подключения выводов мультиметра и клемм транзисторов один за другим на рисунке, показанном выше, на рисунках «c» и «d», красный (+ Ve) измерительный провод подключается к среднему. я.е. 2 вывода nd , а черный (-Ve) измерительный провод подключается к 1 выводу транзистора st .
Опять же, красный (+ Ve) измерительный провод подключается к среднему, то есть к 2 клемме и провода, а черный (-Ve) измерительный провод подключается к 3 rd одной клемме транзистора, и мультиметр показывает некоторое показание, например 0,717 В постоянного тока и 0,711 В постоянного тока соответственно в случае BC 547 NPN.
Общий провод — 2 и , подключенный к красному (+ Ve) измерительному проводу (т.е.е. P и да, два других вывода — это N), который является базовым. В случае транзистора BC 557 PNP все наоборот.
NPN или PNP?Все просто. Если черный (-Ve) измерительный провод мультиметра подключен к базе транзистора (в нашем случае 2 клеммы и ), то это PNP-транзистор , а когда красный (+ Ve) измерительный провод подключен к База терминала, это NPN транзистор .
Эмиттер или коллектор?Прямое смещение EB (эмиттер — база) больше, чем CB (коллектор — база) i.е. EB> CB в транзисторе PNP, например BC 557 NPN. Следовательно, это резистор типа PNP. В транзисторе NPN прямое смещение BE (база — эмиттер) больше, чем BC (база — коллектор), то есть BE> BC, например BC 547 PNP.
Вот вывод.
- Точка 2 — база транзистора в транзисторе BC547
- BC 547 — это транзистор NPN, где 2 nd (средняя клемма — база) подключена к красному (+ Ve) измерительному проводу мультиметра.
- Вообще, клемма 1 = эмиттер, клемма 2 = база и клемма 3 = коллектор (транзистор BC 547 NPN), потому что результат теста для 1-2 = 0.717 В постоянного тока и 2-3 = 0,711 В постоянного тока, т.е. 1-2> 2-3.
BC 547 NPN | Точки измерения | Результат |
1-2 | 0,717 В постоянного тока | |
1-2 | OL | |
1-3 | OL | |
2-3 | OL | |
2-3 | 0,711 В постоянного тока |
Шаги:
- Отключите источник питания от цепи и удалите транзистор из схемы.
- Поверните переключатель и установите ручку мультиметра в диапазон Ом (ОМ)
- Подключите черный (общий или -Ve) измерительный провод мультиметра к 1-й клемме транзистора, а красный (+ Ve) измерительный провод ко 2-й клемме ( Рис. 1 (а). (Вы должны выполнить 6 тестов, подключив черный (-Ve) измерительный провод к 1–2, 1–3, 2–1, 2–3, 3–1, 3–2 соответственно, всего лишь замените измерительные провода мультиметра или переверните клеммы транзистора, чтобы подключить, проверить, измерить и записать показания в таблице (показанной ниже).(Цифры красного цвета показывают выводы транзистора, подключенные к измерительному выводу Red (+ Ve) мультиметра, а числа в черном цвете показывают выводы транзистора, подключенные к измерительному выводу Black (-Ve) мультиметра (лучше). объяснение в таблице и на рис. ниже)
- Если мультиметр показывает высокое сопротивление как в первом, так и во втором тестах, изменив полярность транзистора или мультиметра, как показано на рис. 1 (a) и (b) (обратите внимание, что результат будет показан только для 2 тестов из 6, как указано выше).т.е. в нашем случае клемма 2 -го транзистора является BASE, потому что она показывает высокое сопротивление в обоих тестах с 2 по 3 и с 3 по 2, где красный (+ Ve) измерительный провод мультиметра подключен к 2 Вывод транзистора. Другими словами, обычное число в тестах — это Base, что составляет 2 из 1, 2 и 3.
Щелкните изображение, чтобы увеличить
PNP или NPN?Теперь это транзистор NPN, потому что он показывает чтение только тогда, когда КРАСНЫЙ (+ Ve) измерительный провод (т.е.е. Клемма P, где P = положительный) подключена к базе транзистора (см. Рис. Ниже). Если вы сделаете обратное, то есть черный (-Ve) измерительный провод (т.е. N = где N = отрицательный) мультиметра подключен к клемме транзистора в последовательности (от 1 до 2 и от 2 до 3) и покажет показания в обоих тестах, как указано выше. , Клемма 2 nd по-прежнему БАЗА, но транзистор — PNP (см. Рис. Ниже).
Проверить транзистор в цифровом мультиметре с транзистором или hFE или бета-режимомhFE, также известный как beta, означает усиление постоянного тока, что означает «коэффициент усиления прямого тока гибридного параметра, общий эмиттер», используемый для измерения hFE транзистора, который можно найти по следующей формуле.
h FE = β DC = I C / I B
Его также можно использовать для проверки транзистора и его вывода, как показано на рис. 1.
Для проверки транзистор в режиме hFE, в мультиметре есть 8-контактный разъем, обозначенный PNP и NPN, а также ECB (эмиттер, коллектор и база). Просто вставьте три контакта транзистора в слот мультиметра один за другим в разные разъемы, например, ECB или CBE (поворотная ручка должна находиться в режиме hFE).
Если они отображают показания (это будет показание транзистора h FE ), в нашем примере мы использовали транзистор BC548, который показывает бета-значение 368 (положение CBE), текущее положение на C, B, Слот E — это точные выводы транзистора (т. Е. Коллектор, база и эмиттер), а транзистор находится в хорошем положении, в противном случае замените его новым.
Похожие сообщения:
Как проверить транзистор NPN и PNP
Введение:Транзистор — это полупроводниковое устройство, используемое для усиления или переключения электронных сигналов и электроэнергии.Это трехконтактное полупроводниковое устройство, эти выводы обозначены как коллектор (C) , база (B) и эмиттер (E) . Теперь я покажу, как проверить транзистор с помощью мультиметра.
, метод 1: с использованием мультиметра с транзистором NPN
(A) |
- Сначала включите цифровой мультиметр и выберите режим диода .
- Подключите измерительные провода к клеммам транзистора.Оставьте измерительные провода подключенными в течение нескольких секунд при таком соединении (A) .
- Прочтите отображаемое измерение. Если значение транзистора находится в пределах диапазона измерения, мультиметр отобразит значение транзистора.
- отображается значение мультиметра от 0 до 150, транзистор исправен .
- отображается значение мультиметра 0 или 0,0L, транзистор неисправен .
(B) |
- Подключите измерительные провода к клеммам транзистора.Оставьте измерительные провода подключенными в течение нескольких секунд при таком соединении (B) .
- Прочтите отображаемое измерение. Если значение транзистора находится в пределах диапазона измерения, мультиметр отобразит значение транзистора.
- отображается значение мультиметра от 0 до 150, транзистор исправен .
- отображается значение мультиметра 0 или 0,0L, транзистор неисправен .
(C) |
- Подключите измерительные провода к клеммам транзистора.Держите измерительные провода подключенными в течение нескольких секунд при таком соединении (C) .
- Прочтите отображаемое измерение. Если значение транзистора находится в пределах диапазона измерения, мультиметр отобразит значение транзистора.
- отображается значение мультиметра 1, транзистор исправен .
(D) |
- Подключите измерительные провода к клеммам транзистора.Держите измерительные провода подключенными в течение нескольких секунд при таком соединении (D) .
- Прочтите отображаемое измерение. Если значение транзистора находится в пределах диапазона измерения, мультиметр отобразит значение транзистора.
- отображается значение мультиметра 1, транзистор исправен .
(E) |
- Подключите измерительные провода к клеммам транзистора.Держите измерительные провода подключенными в течение нескольких секунд при таком соединении (E) .
- Прочтите отображаемое измерение. Если значение транзистора находится в пределах диапазона измерения, мультиметр отобразит значение транзистора.
- отображается значение мультиметра 1, транзистор исправен .
(F) |
- Подключите измерительные провода к клеммам транзистора.Держите измерительные провода подключенными в течение нескольких секунд при таком соединении (F) .
- Прочтите отображаемое измерение. Если значение транзистора находится в пределах диапазона измерения, мультиметр отобразит значение транзистора.
- отображается значение мультиметра 1, транзистор исправен .
(G) |
- Подключите измерительные провода к клеммам транзистора.Оставьте измерительные провода подключенными в течение нескольких секунд при таком соединении (G) .
- Прочтите отображаемое измерение. Если значение транзистора находится в пределах диапазона измерения, мультиметр отобразит значение транзистора.
- отображается значение мультиметра от 0 до 150, транзистор исправен .
- отображается значение мультиметра 0 или 0,0L, транзистор неисправен .
(H) |
- Подключите измерительные провода к клеммам транзистора.Держите измерительные провода подключенными в течение нескольких секунд при таком соединении (H) .
- Прочтите отображаемое измерение. Если значение транзистора находится в пределах диапазона измерения, мультиметр отобразит значение транзистора.
- отображается значение мультиметра от 0 до 150, транзистор исправен .
- отображается значение мультиметра 0 или 0,0L, транзистор неисправен .
метод 3: с использованием источника питания с NPN
- Если нажать кнопку на стороне питания , транзистор включится , а светодиод включится .в противном случае будет нажата кнопка заземления, транзистор выключится , а светодиод выключится . он работает нормально, транзистор хороший . не работает, транзистор плохой .
метод 4: с использованием источника питания с PNP
- Если нажать кнопку , сторона питания , транзистор выключится, , а светодиод выключится, . в противном случае будет нажата кнопка заземления, транзистор включится , а светодиод включится .он работает нормально, транзистор хороший . не работает, транзистор плохой .
Как проверить транзистор с помощью цифрового мультиметра
Обновлено 23 ноября 2019 г.
Автор S. Hussain Ather
Очень важно отслеживать компоненты электрической цепи. Вы можете узнать напряжение или ток, проходящие через резисторы и другие элементы схемы, чтобы убедиться, что они работают легко и безопасно.Для этих целей пригодятся различные инструменты, такие как мультиметры и омметры.
Для проверки диодов транзисторов вы можете внимательно следить за признаками неисправности транзисторов. Транзисторы используются в диодах, элементах схемы, которые пропускают электричество только в одном направлении. Они используются для усиления электрического тока до более высокого значения.
Они созданы путем помещения тонкого среза материала n-типа между двумя большими кусками материала p-типа или материала p-типа между двумя большими кусками n-типа.В этой установке материалы p-типа положительны из-за отсутствия электронов, а материалы n-типа отрицательны из-за избытка электронов.
Если вы заметили, что ваша схема не дает таких эффективных результатов, возможно, пришло время проверить транзистор. Тестирование может помочь вам выяснить, работает ли транзистор так, как могло бы быть. Вы бы использовали мультиметр, цифровое устройство, которое измеряет различные электрические свойства элементов схемы.
Процедура тестирования транзистора
Существует пять шагов для проверки транзистора в электрической цепи.Эти шаги включают подключение:
- базы к эмиттеру
- База к коллектору
- Эмиттер к базе
- Коллектор к базе
- Коллектор к эмиттеру
Для NPN-транзистора эмиттер заземлен с коллектором под напряжением, которым управляет база. Для конструкции PNP коллектор заземлен с эмиттером, находящимся под напряжением.
Эти методы тестирования показывают, закорочен или открыт транзистор для биполярных транзисторов.Транзистор может по-прежнему колебаться в своих характеристиках в определенном диапазоне только в результате того, как он был спроектирован.
Чтобы начать процедуру тестирования транзистора, удалите транзистор из самой схемы. Возьмите мультиметр и подключите положительный вывод к базе транзистора. Затем подключите отрицательный вывод к эмиттеру транзистора.
На этом этапе проверьте показания мультиметра. Правильно работающий NPN-транзистор должен показывать падение напряжения между 0.45 и 0,9 вольт, а на транзисторе PNP должно отображаться сообщение о превышении предела. Любые знаки на мультиметре, которые отличаются от этих значений, могут указывать на неисправность транзистора.
Затем подключите отрицательный вывод мультиметра к коллектору транзистора; это этап «от базы к коллекционеру». Как и в случае с предыдущим шагом, NPN-транзистор должен иметь падение напряжения от 0,45 до 0,9 вольт, а PNP-транзистор должен быть выше предела.
Переключение показаний
Для шага «эмиттер-база» подключите положительный вывод мультиметра к эмиттеру, а отрицательный — к базе.В этом случае показания следует поменять местами. Транзистор NPN должен показывать сообщение о превышении предела, а для PNP — падение напряжения между 0,45 и 0,9 вольт. Аналогичным образом, если положительный вывод подключен к коллектору, а отрицательный — к базе, вы должны увидеть те же результаты на мультиметре.
Для пятого и последнего шага подключите положительный провод к коллектору, а отрицательный — к эмиттеру. И в схемах PNP, и в NPN должны отображаться сообщения о превышении лимита. Поменяйте отведения друг с другом, и вы должны увидеть те же сообщения.
Также полезно определить, какой вывод соответствует какому в немаркированном транзисторе, глядя на сами падения напряжения и определяя, какие из них соответствуют каким.
Проверка транзисторов с помощью вольтметра
Неисправный транзистор иногда можно определить по частично сгоревшему или искаженному внешнему виду, но чаще всего нет видимой индикации. Один из подходов к устранению неполадок — замена заведомо исправного компонента, но это дорогостоящий способ.Кроме того, это ненадежно, потому что внешний дефектный компонент может мгновенно уничтожить замену без видимых доказательств. Разумная альтернатива — проверить транзистор. Обычный мультиметр может быстро выполнять внутрисхемные тесты, которые не являются полностью окончательными, но, как правило, предоставляют приемлемую информацию о состоянии «годен / не годен», используя либо режим проверки диодов, либо режим измерения сопротивления.
Обычная процедура тестирования предназначена для использования с цифровым мультиметром в диапазоне тестирования диодов с минимальным напряжением 3,3 В на d.u.t. (проверяемый диод). Сначала рассмотрим процедуру тестирования полевого МОП-транзистора в расширенном режиме (т.е. когда устройство не является проводящим при 0 В, приложенном к затвору, работающему как переключатель). Подключите источник полевого МОП-транзистора к отрицательному выводу измерителя. (Удерживайте полевой МОП-транзистор за корпус или за язычок, но не касайтесь металлических частей испытательных зондов какими-либо другими выводами полевого МОП-транзистора до тех пор, пока это не понадобится.) Коснитесь положительным выводом измерителя на затворе полевого МОП-транзистора. Теперь переместите положительный зонд в «Слив». У вас должно быть низкое чтение.Внутренняя емкость полевого МОП-транзистора на затворе теперь заряжена измерителем, и устройство «включено».
При подключении плюсового провода измерителя к стоку закоротите исток и затвор. Затвор разрядится, и показания счетчика должны стать высокими, указывая на непроводящее устройство.
Полевые МОП-транзисторы, которые выходят из строя, часто имеют короткое замыкание сток-затвор. Это может вернуть напряжение стока на затвор, где оно подается (через резисторы затвора) в схему управления, что может привести к тому, что уровни напряжения и тока превысят пределы компонентов в этой секции.Перегрузка также повлияет на любые другие параллельно включенные вентили MOSFET. Таким образом, лучше всего проверить схемы управления неработающими полевыми МОП-транзисторами. Чтобы избежать перегрузок, некоторые разработчики добавляют стабилитрон между истоком и затвором — стабилитроны замыкаются при коротком замыкании, чтобы ограничить повреждение в случае отказа полевого МОП-транзистора. Другая тактика — добавить сверхминиатюрные резисторы затвора. Они имеют тенденцию открываться (как предохранитель) при перегрузке, отключая затвор MOSFET.
Другой частый режим отказа полевого транзистора — это короткое замыкание сток-исток.Проверить проблему можно с помощью омметра. Подключите затвор устройства к клемме источника. Если путь сток-исток исправен, при установке щупов омметра в одном направлении должно быть обнаружено короткое замыкание. Другое направление должно измерять бесконечное сопротивление — или, по крайней мере, несколько мегаом. Измеряемый диодный переход — это корпусный диод полевого транзистора. Основной диод покажет катод на стоке для N-канального устройства и на истоке для P-канального устройства.
К сожалению, современные мультиметры используют низкое возбуждение для измерения сопротивления (1-2 В), чтобы простое активное зондирование элементов схемы не повредило их.Проблема в том, что тестирование полевого транзистора одним только современным мультиметром становится проблематичным. Причина в том, что для включения большинству мощных полевых транзисторов требуется напряжение смещения затвор-исток не менее 4-5 В. Полевые транзисторы логического уровня можно включать при напряжении от 0,3 до 1,5 В.
Показанная здесь простая схема N-канального полевого транзистора помогает определить, правильно ли устройство работает в качестве переключателя. Мультиметр должен показывать довольно низкое напряжение между точками 2 и 4. Измерение R dsON устройства начинается с удаления связи между точками 1 и 2, затем измерения между точками 2 и 4 для получения приблизительного значения сопротивления на мультиметре.
Закорочив точки 1 и 2 вместе, измерьте напряжение между точкой 2 и точкой 4, затем замкните точку 3 и точку 4. Вы должны увидеть, что напряжение изменяется от низкого в первом тесте до фактического приложенного напряжения батареи (обычно 9 В).
Вы можете определить, есть ли остаточная утечка между стоком и источником, закоротив точку 3 и точку 4, а затем измерив напряжение на точке 1 питания сопротивления 100 кОм от батареи. Тогда ток утечки в миллиамперах приблизительно равен = (показания мультиметра в милливольтах) / (10 4 ).Чтобы измерить номинальное пороговое значение V gs (напряжение от начала до включения) полевого транзистора, замкните точку 2 и точку 3, а затем измерьте напряжение между точкой 2 и точкой 4, как и раньше.
При исследовании полевых МОП-транзисторов с р-каналом, просто поменяйте полярность батареи и используйте ту же схему. Полярность всех щупов мультиметра будет изменена на обратную, но процедура останется прежней.
Теперь рассмотрим JFET. Проверка полевого транзистора как диода (переход затвор-канал) с помощью омметра должна указывать на низкое сопротивление между затвором и истоком при одной полярности и высокое сопротивление между затвором и истоком при обратной полярности измерителя.Если измеритель показывает высокое сопротивление при обеих полярностях, соединение затвора разомкнуто. С другой стороны, если омметр показывает низкое сопротивление при обеих полярностях, затворный переход закорочен.
Теперь рассмотрим проверку непрерывности через канал сток-исток. Если вы знаете, какие клеммы на устройстве являются затвором, истоком и стоком, лучше всего подключить перемычку между затвором и истоком, чтобы устранить любой накопленный заряд на емкости PN перехода затворного канала, который может удерживать полевой транзистор в цепи. отключенное состояние без подачи внешнего напряжения.Без этого шага любое показание измерителя непрерывности через канал будет непредсказуемым, потому что заряд может или не может накапливаться в соединении затвор-канал.
Хорошая стратегия — вставить штыри JFET в антистатическую пену перед испытанием. Проводимость пены создает резистивное соединение между всеми выводами JFET. Это соединение гарантирует, что весь остаточный заряд, накопленный на PN-переходе затворного канала, рассеивается, тем самым открывая канал для точной проверки целостности цепи исток-сток.
Поскольку канал JFET представляет собой единый непрерывный кусок полупроводникового материала, обычно нет разницы между выводами истока и стока. Проверка сопротивления от истока к стоку должна дать то же значение, что и проверка от стока к истоку. Это сопротивление должно быть относительно низким (ниже нескольких сотен Ом), когда напряжение PN перехода затвор-исток равно нулю. Приложение напряжения обратного смещения между затвором и истоком должно перерезать канал и привести к более высокому показанию сопротивления на измерителе.
Это подводит нас к биполярным транзисторам. Полезно помнить, что биполярный транзистор можно смоделировать как два последовательно соединенных диода. Плавающие выводы обеспечивают две контрольные точки, а подключенные выводы являются третьей контрольной точкой с центральным отводом. Эти два диода не будут работать как настоящий транзистор, потому что соединение с центральным отводом не является полупроводниковым переходом, а модель с двумя диодами не имеет трех отдельных кремниевых слоев, как в транзисторе. Тем не менее, подключение демонстрирует базовую концепцию тестирования транзисторов и идентификации клемм.
Чтобы проверить транзистор с помощью мультиметра в режиме проверки диодов, вставьте черный щуп в общий, а красный щуп в Diode Test или Ohms. Большинство производителей подключают красный к положительной клемме внутренней батареи, но это может варьироваться, поэтому лучше всего проверить полярность с помощью второго мультиметра в режиме постоянного напряжения. Обычное испытательное напряжение 3 В.
Естественно предположить, что центральный вывод на корпусе транзистора подключается к базе, но это соглашение не является универсальным.Подключите черный зонд к базе. Кратковременно поднесите красный щуп к эмиттеру и отметьте напряжение. Затем переключите красный зонд на эмиттер. Если показания совпадают, пока все хорошо. Снимая черный щуп с базы и заменяя его красным щупом, коротко прикоснитесь черным щупом к эмиттеру и коллектору.
Если предыдущие показания были высокими, а эти — низкими, транзистор проходит статический тест. Если предыдущие показания были низкими, а эти высокие, транзистор также проходит статический тест.Если показания двух красных щупов не совпадают или показания двух черных щупов не совпадают при реверсировании щупов, транзистор неисправен.
Если идентификационные данные базы, эмиттера и коллектора неизвестны, подключите черный щуп к одному из выводов транзистора. По очереди коротко прикоснитесь красным щупом к каждому из оставшихся отведений. Если оба провода показывают высокий уровень, черный зонд подключен к базе, транзистор NPN и в норме. Если на двух других отведениях есть разные показания, переместите черный щуп к другому отведению и прикоснитесь красным щупом к оставшимся проводам.При повторении теста с черным щупом, касающимся по очереди каждого из трех выводов, вы должны иметь высокое сопротивление, а транзистор неисправен или PNP.
Снимите черную пластину и подсоедините красный зонд к одному из проводов. Затем прикоснитесь черным щупом по очереди к каждому из оставшихся проводов. Когда касаются каждого из выводов и сопротивление становится высоким, красный вывод подключается к базе, и транзистор является хорошим устройством PNP.
Если вы получаете два разных показания для двух отведений, переместите красный зонд к другому отведению и повторите тест.Подключите красный зонд по очереди к каждому из трех выводов. Если два других вывода не дают таких же показаний при прикосновении к черному щупу, транзистор является PNP и неисправен.
Тесты мультиметраопределяют, перегорел ли транзистор (разомкнут или закорочены), и дают приблизительную оценку способности транзистора к усилению. Но они не сообщают о фактических рабочих параметрах. Чтобы получить больше информации, следующим шагом будет тестер транзисторов сервисного типа. Этот прибор выполняет три измерения для биполярных транзисторов: прямой ток (бета), ток утечки база-коллектор с открытым эмиттером и короткое замыкание от коллектора к эмиттеру и базе.Измеряется H fe , и транзистор считается исправным, если этот показатель превышает определенный уровень. Однако тест отклонит некоторые функциональные, но низкоуровневые транзисторы H fe .
Некоторые тестеры транзисторов служебного типа могут проверять компоненты как в цепи, так и вне ее, и они способны идентифицировать неизвестные клеммы транзисторов. Поскольку H fe различается в зависимости от устройства, тестеры транзисторов служебного типа могут давать ошибочные показания и не являются безошибочными.
В высоконадежном, интуитивно понятном и удобном тесте компонентов можно использовать осциллограф в сочетании со встроенным генератором сигналов осциллографа или с внешним автономным AFG.Конденсаторы, катушки индуктивности, биполярные транзисторы и кабели можно легко проверить и определить их значения. Сигнал от AFG подается на исследуемый компонент, и отклик отображается на осциллографе. Обычно выходной импеданс 50 Ом от AFG подается через тройник на тестируемое устройство и на аналоговый вход осциллографа. Кроме того, выход AFG OUT подключен к Trigger IN осциллографа.
Лучшие тестеры транзисторов — это приборы лабораторного уровня.Сопутствующим инструментом является индикатор кривой полупроводника. Он содержит упрощенный осциллограф в дополнение к источникам напряжения и тока, которые пользователь применяет к ИУ. На вход тестируемого транзистора подается напряжение развертки, и его выходной ток измеряется и отображается в виде графика на экране прибора. Пользователь может регулировать подаваемое напряжение, его полярность и последовательный импеданс. Когда диод подвергается изменяющемуся напряжению, отображаются различные параметры, такие как прямое напряжение, обратный ток утечки и обратное напряжение пробоя.
Ступенчатое напряжение может подаваться на входную цепь полевого транзистора или ступенчатый ток может подаваться на биполярный транзистор. Результат позволяет определить коэффициент усиления транзистора или триггерное напряжение тиристора. Чтобы оценить характеристики транзистора, представленное ему полное сопротивление («тяговое усилие») можно систематически изменять. Усилие нагрузки применяется, когда изменение импеданса нагрузки вызывает смещение центральной частоты от ее номинального значения.
Как проверить транзистор мультиметром
Мы можем зарабатывать деньги, просматривая продукты по партнерским ссылкам на этом сайте.Спасибо вам всем!
Транзисторы действуют как затвор или переключатель для электрических сигналов с возможностью регулирования напряжения или тока. Обычно они имеют три слоя, которые сделаны из полупроводниковых материалов, которые могут проводить ток. Такими полупроводниковыми материалами являются:
Как работает транзистор
Если небольшое изменение напряжения или тока происходит во внутренних слоях полупроводника транзистора, происходит быстрое и сильное изменение тока, которое передается на весь компонент.Затем транзисторы действуют как переключатель, многократно замыкаясь и открываясь, а также как электрический затвор.
- Транзисторы используются в обеих комбинациях, называемых интегральными и одиночными схемами.
- Транзисторы, используемые в комбинированных / интегральных схемах, встречаются в таком оборудовании, как высокопроизводительные компьютеры, сотовые телефоны, планшеты, ноутбуки и настольные компьютеры.
- В этой статье вы услышите о различных типах транзисторов, таких как PNP и NPN.
- Транзистор PNP — положительный, отрицательный, положительный.Это также известно как поиск источников.
- Транзистор NPN означает отрицательный, положительный, отрицательный. Это также известно как опускание.
Итак, в чем разница между этими двумя транзисторами?
В транзисторе NPN ток обычно течет от коллектора к выводу эмиттера. С другой стороны, PNP-транзистор обычно включается, когда на выводе базы транзистора нет тока. В транзисторе PNP ток часто течет от эмиттера к клемме коллектора.
Транзистор NPN включается при высоком уровне сигнала, в то время как транзистор PNP обычно включается при очень низком уровне сигнала.
Основное различие между транзистором NPN и транзистором
PNP обычно заключается в правильном смещении их соединений транзисторов. Полярности напряжения и направления тока обычно постоянно противоположны друг другу.Когда дело доходит до мультиметров, технические специалисты и профессионалы используют их чаще всего.От цифрового мультиметра до аналогового мультиметра — этот электрический инструмент используется для диагностики и тестирования многих электрических компонентов и цепей широкого диапазона.
Когда дело доходит до тестирования или проверки транзисторов, этот универсальный компонент — мультиметр — лучше всего подходит для этой работы. Большинство цифровых мультиметров имеют встроенную функцию тестирования транзисторов. В таких случаях тестирование транзисторов становится очень быстрым и простым.
Как проверить транзистор с помощью мультиметра со встроенными функциями транзистора
Если ваш цифровой мультиметр имеет встроенную функцию тестирования транзисторов, все, что вам нужно, это выполнить следующие простые шаги:
- Первый шаг — вставить транзистор в гнездо цифрового мультиметра.
- После этого вам нужно установить мультиметр в правильный режим.
- После завершения вы получите такие показания, как усиление (hFE). Имея это значение, вы можете перепроверять показания «не прошел / прошел» и таблицы данных.
Проверка транзистора мультиметром (настройки диодов)
Для мультиметров без встроенной функции тестирования транзисторов вы можете проверить свои транзисторы с помощью функции тестирования диодов.
Для получения точных и правильных показаний вам необходимо удалить транзистор из схемы.Ниже приведены шаги, которые необходимо выполнить:
1. Подключение базы к излучателю
Первое, что нужно сделать на этом этапе, — это подключить положительный вывод цифрового мультиметра к БАЗУ транзистора (B).
После этого подсоедините отрицательный вывод цифрового мультиметра к ЭМИТТЕРУ транзистора (E).
Если ваш NPN-транзистор в идеальном состоянии, цифровой мультиметр должен показать падение напряжения от 0,45 до 0,9 В. Для транзистора PNP ваш цифровой мультиметр должен давать показания OL (превышение предела).
2. Подсоединение базы к коллектору
На этом этапе вам нужно, чтобы цифровой мультиметр оставался положительным, провод к ОСНОВАНИЮ (B), а затем подключил отрицательный провод цифрового мультиметра к КОЛЛЕКТОРУ (C).
Для правильно функционирующего транзистора NPN цифровой мультиметр должен показывать падение напряжения от 0,45 до 0,9 В. Для транзистора PNP ваш цифровой мультиметр должен давать показания OL (превышение предела).
3. Подключение излучателя к базе
Первое, что нужно сделать на этом этапе, — это подсоединить положительный вывод цифрового мультиметра к ЭМИТТЕРУ транзистора (E).
После этого подсоедините отрицательный вывод цифрового мультиметра к БАЗУ транзистора (B)
.Для исправного функционирования NPN-транзистора цифровой мультиметр должен давать показания OL (превышение предела). Для транзистора PNP ваш цифровой мультиметр должен показывать падение напряжения от 0,45 до 0,9 В.
4. Подключение коллектора к базе
На этом этапе вам нужно будет подсоединить положительный вывод цифрового мультиметра к КОЛЛЕКТОРУ (C), а затем подсоединить отрицательный вывод цифрового мультиметра к ОСНОВАНИЮ (B).
Для исправного функционирования NPN-транзистора цифровой мультиметр должен давать показания OL (превышение предела). Для транзистора PNP ваш цифровой мультиметр должен показывать падение напряжения от 0,45 до 0,9 В.
5. Подключение коллектора к эмиттеру
На этом этапе вам нужно будет подсоединить положительный провод цифрового мультиметра к КОЛЛЕКТОРУ (C), а затем подсоединить отрицательный провод цифрового мультиметра к ЭМИТТЕРУ (E).
Для правильно функционирующего транзистора NPN и PNP цифровой мультиметр должен давать показания OL (превышение предела).
6. Подключение эмиттера к коллектору
Наконец, вам нужно будет держать положительный вывод цифрового мультиметра на ЭМИТТЕРЕ (E), а затем подключить отрицательный вывод цифрового мультиметра к КОЛЛЕКТОРУ (C)
.Для правильно функционирующего транзистора NPN и PNP цифровой мультиметр должен давать показания OL (превышение предела).
Для любого неисправного транзистора показания цифрового мультиметра будут отличаться от приведенных выше результатов.
ПРИМЕЧАНИЕ
Проверка транзистора мультиметром позволит определить только неисправность транзистора; он не определит, работает ли ваш транзистор в том диапазоне, в котором они должны работать.
подсказки
В наши дни, когда у вас неисправный транзистор, его можно заменить на Mosfet. Хотя и МОП-транзистор, и транзистор могут иметь похожие стили, функции и могут выглядеть одинаково, они оба отличаются по своим конфигурациям и характеристикам.
Основное различие между ними заключается в том, что транзисторы зависят от тока и должны увеличиваться пропорционально нагрузке, в то время как Mosfet зависит от напряжения.
.