Драйвер для диодов: IntraLED- драйверы для светодиодов, источники питания для светодиодов, светодиодных лент

Содержание

IntraLED- драйверы для светодиодов, источники питания для светодиодов, светодиодных лент

Драйверы (источники питания) для светодиодов 

Лампы накаливания и прочая светотехника, сделанная по устаревшим технологиям, постепенно повсеместно заменяется устройствами светодиодными. Они обладают целым рядом бесспорных преимуществ, самыми значительными из которых являются намного более долгий срок эксплуатации и возможность экономить на электроэнергии. Ведь светодиоды потребляют её во много раз меньше.

Для максимального продления срока службы светодиодов LED-устройства и приборы оборудуются специальными драйверами. Они имеют вид дополнительных электронных плат и очень важны для стабильной и адекватной работы светотехники на диодах.

К примеру, сроки эксплуатации этих технологичных устройств во многом зависят от температуры и её перепадов. Драйвера светодиодов функционируют в качестве стабилизаторов стандартных характеристик электротока при его поступлении на диоды. Степень напряжения при этом нивелируется до наиболее приемлемой.

Благодаря работе драйверов светодиодов, КПД светодиодной светотехники значительно повышается. После подсоединения полупроводниковых световых устройств (led лент) к драйверам электропитания одинаково нормальный режим обеспечивается для каждого светодиода в цепочке.

Сроки эксплуатации светодиодного оборудования в условиях обеспечения его неизменно стабильной работы значительно возрастают. Возможность перегревания полупроводниковых элементов сводится к минимуму, ведь электроток подаётся на них в оптимально сбалансированном ритме.

Также драйвер выполняет для светодиодного / полупроводникового прибора роль стабилизатора всех основных световых параметров, не допуская эффектов пульсации и (или) мерцания даже во время существенных скачков напряжения в электросети.

Драйверы предоставляют возможность выставления необходимого режима освещения, оптимальной регулировки его яркости.

Предназначенные для питания светодиодов элементы отбираются сообразно с силой тока, напряжений на выходе и мощностным параметрам оборудования. Мощность драйверов есть возможность рассчитать при помощи спецтехнологии. Ей на экспертном уровне владеют специалисты нашей компании.

По Вашему обращению они в сжатые сроки сделают нужный расчёт параметров и дадут грамотную консультацию насчёт подбора оптимально соответствующего целям элемента питания диодов. Для того, чтобы избежать ошибок и не усложнять себе задачу по подбору устройств, есть смысл приобретать сразу и светодиодное оборудование, и драйверы к нему – в едином комплекте.

Драйвер для светодиодов: назначение, выбор, подключение, схемы

Широкое распространение светодиодов повлекло за собой массовое производство блоков питания для них. Такие блоки называются драйверами. Основной их особенностью является то, что они способны стабильно поддерживать на выходе заданный ток. Другими словами, драйвер для светодиодов (LED) – это источник тока для их питания.

Назначение

Поскольку светодиод — это полупроводниковые элементы, ключевой характеристикой, определяющей яркость их свечения, является не напряжение, а ток. Чтобы они гарантированно отработали заявленное  количество часов, необходим драйвер, — он стабилизирует ток, протекающий через цепь светодиодов.

Возможно использование маломощных светоизлучающих диодов и без драйвера, в этом случае его роль выполняет резистор.

Применение

Драйверы применяются как при питании светодиода от сети 220В, так и от источников постоянного напряжения 9-36 В. Первые используются при освещении помещений светодиодными лампами и лентами, вторые чаще встречаются в автомобилях, велосипедных фарах, переносных фонарях и т.д.

Принцип работы

Как уже было сказано, драйвер – это источник тока. Его отличия от источника напряжения проиллюстрированы ниже.

Источник напряжения создает на своем выходе некоторое напряжение, в идеале не зависящее от нагрузки.

Например, если подключить к источнику напряжением 12 В резистор 40 Ом, через него пойдет ток 300 мА.

Если подключить параллельно два резистора, суммарный ток составит уже 600 мА при том же напряжении.

Драйвер же поддерживает на своем выходе заданный ток. Напряжение при этом может изменяться.

Подключим так же резистор 40 Ом к драйверу 300 мА.

Драйвер создаст на резисторе падение напряжения 12 В.

Если подключить параллельно два резистора, ток по-прежнему будет 300 мА, а напряжение упадет до 6 В:

Таким образом, идеальный драйвер способен обеспечить нагрузке номинальный ток вне зависимости от падения напряжения. То есть светодиод с падением напряжения 2 В и током 300 мА будет гореть так же ярко, как и светодиод напряжением 3 В и током 300 мА.

Основные характеристики

При подборе нужно учитывать три основных параметра: выходное напряжение, ток и потребляемая нагрузкой мощность.

Напряжение на выходе драйвера зависит от нескольких факторов:

  • падение напряжения на светодиоде;
  • количество светодиодов;
  • способ подключения.

Ток на выходе драйвера определяется характеристиками светодиодов и зависит от следующих параметров:

  • мощность светодиодов;
  • яркость.

Мощность светодиодов влияет на потребляемый ими ток, который может варьироваться в зависимости от требуемой яркости. Драйвер должен обеспечить им этот ток.

Мощность нагрузки зависит от:

  • мощности каждого светодиода;
  • их количества;
  • цвета.

В общем случае потребляемую мощность можно рассчитать как

где Pled — мощность светодиода,

N — количество подключаемых светодиодов.

Максимальная мощность драйвера не должна быть меньше .

Стоит учесть, что для стабильной работы драйвера и предотвращения выхода его из строя следует обеспечить запас по мощности хотя бы 20-30%. То есть должно выполняться следующее соотношение:

где Pmax   — максимальная мощность драйвера.

Кроме мощности и количества светодиодов, мощность нагрузки зависит еще от их цвета. Светодиоды разных цветов имеют разное падение напряжения при одинаковом токе. Например, красный светодиод CREE XP-E обладает падением напряжения 1.9-2.4 В при токе 350 мА. Средняя потребляемая им мощность таким образом составляет около 750 мВт.

У XP-E зеленого цвета падение 3.3-3.9 В при том же токе, и его средняя мощность составит уже около 1,25 Вт. То есть драйвером, рассчитанным на 10 ватт, можно питать либо 12-13 красных светодиодов, либо 7-8 зеленых.

Как подобрать драйвер для светодиодов, способы подключения

Допустим, имеется 6 светодиодов с падением напряжения 2 В и током 300 мА. Подключить их можно различными способами, и в каждом случае потребуется драйвер с определенными параметрами:

  1. Последовательно. При таком способе подключения потребуется драйвер напряжением 12 В и током 300 мА. Преимущество такого способа в том, что через всю цепь идет один и тот же ток, и светодиоды горят с одинаковой яркостью. Недостаток заключается в том, что для подключения большого числа светодиодов потребуется драйвер с очень большим напряжением. 
  2. Параллельно. Здесь уже будет достаточно драйвера на 6 В, но потребляемый ток будет примерно в 2 раза больше, чем при последовательном соединении. Недостаток: токи, текущие в каждой цепи, немного различаются из-за разброса параметров светодиодов, поэтому одна цепь будет светить несколько ярче другой. 
  3. Последовательно по два. Тут потребуется такой же драйвер, как и во втором случае. Яркость свечения будет уже более равномерная, но есть один существенный недостаток: при включении питания в каждой паре светодиодов из-за разброса характеристик один может открыться раньше другого, и через него пойдет ток, в 2 раза превышающий номинальный. Большинство светодиодов рассчитаны на такие кратковременные броски тока, но все-таки этот способ наименее предпочтителен.

Соединять таким образом параллельно 3 и более светодиодов недопустимо, так как при этом через них может пойти слишком большой ток, в результате чего они быстро выйдут из строя.

Обратите внимание, что во всех случаях мощность драйвера составляет 3.6 Вт и не зависит от способа подключения нагрузки.

Таким образом, целесообразнее выбирать драйвер для светодиодов уже на этапе закупки последних, предварительно определив схему подключения. Если же сначала приобрести сами светодиоды, а потом подбирать к ним драйвер, это может оказаться нелегкой задачей, поскольку вероятность того, что Вы найдете именно тот источник питания, который сможет обеспечить работу именно этого количества светодиодов, включенных по конкретной схеме, невелика.

Виды

В общем случае драйверы для светодиодов можно разделить на две категории: линейные и импульсные.

  1. У линейного выходом служит генератор тока. Он обеспечивает стабилизацию выходного тока при нестабильном входном напряжении; причем подстройка происходит плавно, не создавая высокочастотных электромагнитных помех. Они просты и дешевы, но невысокий КПД (менее 80%) ограничивает сферу их применения маломощными светодиодами и лентами.
  2. Импульсные представляют собой устройства, создающие на выходе серию высокочастотных импульсов тока.

Импульсные работают по принципу широтно-импульсной модуляции (ШИМ), то есть среднее значение выходного тока определяется отношением ширины импульсов к периоду их следования (эта величина называется коэффициентом заполнения).

На диаграмме выше показан принцип работы ШИМ-драйвера: частота импульсов остается постоянной, но изменяется коэффициент заполнения от 10% до 80%. Это ведет к изменению среднего значения тока Icp на выходе.

Импульсные драйверы получили широкое распространение благодаря компактности и высокому КПД (около 95%). Основным недостатком является больший по сравнению с линейными уровень электромагнитных помех.

Светодиодный драйвер на 220 В

Для включения в сеть 220 В выпускаются как линейные, так и импульсные. Существуют драйверы с гальванической развязкой от сети и без нее. Основными преимуществами первых являются высокий КПД, надежность и безопасность.

Без гальванической развязки обычно дешевле, но менее надежны и требуют осторожности при подключении, поскольку есть вероятность поражения током.

Китайские драйверы

Востребованность драйверов для светодиодов способствует их массовому производству в Китае. Эти устройства представляют собой импульсные источники тока, обычно на 350-700 мА, часто не имеющие корпуса.

Китайский драйвер для светодиода 3w

Основные их достоинства – низкая цена и наличие гальванической развязки. Недостатки следующие:

  • низкая надежность из-за использования дешевых схемных решений;
  • отсутствие защиты от перегрева и колебаний в сети;
  • высокий уровень радиопомех;
  • высокий уровень пульсаций на выходе;
  • недолговечность.

Ввиду большого количества недостатков эти драйверы пользуются маленьким спросом, но, сегодня в Китае производится огромное количество продукции, многие известные бренды перенесли свое производство в эту страну. В связи с этим, теперь в Китае можно купить и качественные драйверы для светодиодов, например на AliExpress, главное знать, что брать.

Что купить?

Мы проанализировали большое количество отзывов с форумов и самой площадки AliExpress и подготовили для вас свою подборку драйверов, которые подойдут для решения многих задач:

  1. Универсальный драйвер 5-24 Вольт, 2-4 Ампера, маленькие габариты. Входящее напряжение 85-260В. Есть 3 варианта компактного исполнения 5В, 2А; 12В,2А; 24В, 4А и еще один вариант 3 в 1. Цена очень приятная, от 4 до 9 долларов. Мы нашли самое выгодное предложение, продавец проверенный, отправляет быстро и качественно упаковывает. Только положительны отзывы. Посмотреть товар на AliExpress.
  2. Драйвер для светодиодных лампочек. Этот вид преобразователей в основном используется в лампочках и маленьких светильниках. Маленькие габариты и низкая цена. Входное напряжение 200-240В. Исходящее постоянное напряжение (DC) зависит от нагруженной мощности и может составлять 24-160 Вольт, соответственно мощность при этом составит 8-50 Вт. Мы также подобрали самое выгодное предложение с большим количеством заказов и положительных отзывов. Посмотреть товар на AliExpress.
  3. Еще один для лампочек. Этот товар такой же как и выше, но у этого продавца больше вариантов выбора по питанию и напряжению, возможно тут вы подберете то, что нужно именно вам. Посмотреть товар на AliExpress.
  4. Драйвер для светодиодных светильников и лент. Данный тип драйверов позволяет подключать светодиодные ленты и светильники. Входящее напряжение 110-260 Вольт. Максимальная нагрузка 300 Вт. Выходное напряжение 12 и 24 Вольта. Посмотреть товар на AliExpress.

Купить драйвер на AliExpress

Срок службы

Обычно срок службы драйвера меньше, чем у оптической части – производители дают гарантию на 30000 часов работы. Это связано с такими факторами, как:

  • нестабильность сетевого напряжения;
  • перепады температур;
  • уровень влажности;
  • загруженность драйвера.

Самым слабым звеном светодиодного драйвера являются сглаживающие конденсаторы, которые имеют тенденцию к испарению электролита, особенно в условиях повышенной влажности и нестабильного питающего напряжения. В результате уровень пульсаций на выходе драйвера повышается, что негативно сказывается на работе светодиодов.

Также на срок службы влияет неполная загруженность драйвера. То есть если он, рассчитан на 150 Вт, а работает на нагрузку 70 Вт, половина его мощности возвращается в сеть, вызывая ее перегрузку. Это провоцирует частые сбои питания. Рекомендуем почитать про срок службы светодиодных ламп.

Схемы драйверов (микросхемы) для светодиодов

Многие производители выпускают специализированные микросхемы драйверов. Рассмотрим некоторые из них.

ON Semiconductor UC3845 – импульсный драйвер с выходным током до 1А. Схема драйвера для светодиода 10w на этой микросхеме приведена ниже.

Supertex HV9910 – очень распространенная микросхема импульсного драйвера. Ток на выходе не превышает 10 мА, не имеет гальванической развязки.

Простой драйвер тока на этой микросхеме представлен ниже.

Texas Instruments UCC28810. Сетевой импульсный драйвер, имеет возможность организовать гальваническую развязку. Выходной ток до 750 мА.

Еще одна микросхема этой фирмы, — драйвер для питания мощных светодиодов LM3404HV — описывается в этом видео:

Устройство работает по принципу резонансного преобразователя типа Buck Converter, то есть функция поддержания требуемого тока здесь частично возложена на резонансную цепь в виде катушки L1 и диода Шоттки D1 (типовая схема приведена ниже). Также имеется возможность задания частоты коммутации подбором резистора RON.

Maxim MAX16800 – линейная микросхема, работает при малых напряжениях, поэтому на ней можно построить драйвер 12 вольт. Выходной ток – до 350 мА, поэтому может использоваться как драйвер питания для мощного светодиода, фонарика, и т.д. Есть возможность диммирования. Типовая схема и структура представлены ниже.

Заключение

Светодиоды гораздо более требовательны к источнику питания, чем другие источники света. Например, превышение тока на 20% для люминесцентной лампы не повлечет за собой серьезного ухудшения характеристик, для светодиодов же срок службы сократится в несколько раз. Поэтому выбирать драйвер для светодиодов следует особенно тщательно.

Как выбрать светодиодный драйвер, led driver

Самым оптимальным способом подключения к 220В, 12В является использование стабилизатора тока, светодиодного драйвера. На языке предполагаемого противника пишется «led driver». Добавив к этому запросу желаемую мощность, вы легко найдёте на Aliexpress или Ebay подходящий товар.

Содержание

  • 1. Особенности китайских
  • 2. Срок службы
  • 3. ЛЕД драйвер на 220В
  • 4. RGB драйвер на 220В
  • 5. Модуль для сборки
  • 6. Драйвер для светодиодных светильников
  • 7. Блок питания для led ленты
  • 8. Led драйвер своими руками
  • 9. Низковольтные
  • 10. Регулировка яркости

Особенности китайских

Многие любят покупать на самом большом китайском базаре Aliexpress. цены и ассортимент радуют.  LED driver чаще всего выбирают из-за низкой стоимости и хороших характеристик.

Но с повышением курса доллара покупать у китайцев стало невыгодно, стоимость сравнялась с Российской, при этом отсутствует гарантия и возможность обмена. Для дешевой электроники характеристики бывают всегда завышены. Например, если указана мощность в 50 ватт, в лучшем случае то это максимальная кратковременная мощность, а не постоянная. Номинальная будет 35W — 40W.

К тому же сильно экономят на начинке, чтобы снизить цену. Кое где не хватает элементов, которые обеспечивают стабильную работу. Применяются  самые дешевые комплектующие, с коротким сроком службы и невысокого качества, поэтому процент брака относительно высокий. Как правило, комплектующие  работают на пределе своих параметров, без какого либо запаса.

Если производитель не указан, то ему не надо отвечать за качество и отзыв про его товар не напишут. А один и тот же товар выпускают несколько заводов в разной комплектации. Для хороших изделий должен быть указан бренд, значит он не боится отвечать за качество своей продукции.

Одним из лучших является бренд MeanWell, который дорожит качеством своих изделий и не выпускает барахло.

Срок службы

Как у любого электронного устройства у светодиодного драйвера есть срок службы, который зависит от условий эксплуатации. Фирменные современные светодиоды уже работают до 50-100 тысяч часов, поэтому питание выходит из строя раньше.

Классификация:

  1. ширпотреб до 20.000ч.;
  2. среднее качество до 50.000ч.;
  3. до 70.000ч. источник питания на качественных японских комплектующих.

Этот показатель важен при расчёте окупаемости на долгосрочную перспективу. Для бытового пользования хватает ширпотреба. Хотя скупой платит дважды, и в светодиодных прожекторах и светильниках это отлично работает.

ЛЕД драйвер на 220В

Современные светодиодные драйвера конструктивно выполняются на ШИМ контроллере, который очень хорошо может стабилизировать ток.

Основные параметры:

  1. номинальная мощность;
  2. рабочий ток;
  3. количество подключаемых светодиодов;
  4. степень защиты от влаги и пыли
  5. коэффициент мощности;
  6. КПД стабилизатора.

Корпуса для уличного использования  выполняются из металла или ударопрочного пластика. При изготовлении корпуса из алюминия он может выступать в качестве системы охлаждения для электронной начинки. Особенно это актуально при заполнении корпуса компаундом.

На маркировке часто указывают, сколько светодиодов  можно подключить и какой мощности. Это значение может быть не только фиксированным, но и в виде диапазона. Например, возможно подключение светодиодов 12 220 от 4 до 7 штук по 1W. Это зависит от конструкции электрической схемы  светодиодного драйвера.

RGB драйвер на 220В

Для мощных РГБ диодов 10W, 20W, 30W, 50W, 100W

..

Трёхцветные светодиоды RGB отличаются от одноцветных тем, что содержат в одном корпусе кристаллы разных цветов красный, синий, зелёный. Для управления ими каждый цвет необходимо зажигать отдельно. У диодных лент для этого используется RGB контроллер и блок питания.

Если для RGB светодиода указана мощность 50W, то это общая на всё 3 цвета. Чтобы узнать примерную нагрузку на каждый канал, делим 50W на 3, получим около 17W.

Для РГБ на 1W, 3W, 5W, 10W

Кроме мощных led driver есть и на 1W, 3W, 5W, 10W.

Пульты дистанционного управления (ДУ) бывают 2 типов. С инфракрасным управлением, как у телевизора. С управлением по радиоканалу, ДУ не надо направлять на приёмник сигнала.

Модуль для сборки

Если вас интересует лед driver для сборки своими руками светодиодного прожектора или светильника, то можно использовать led driver без корпуса.

Если у вас уже есть стабилизатор тока для светодиодов, который не подходит по силе тока, то её можно увеличить или уменьшить. Найдите на плате микросхему ШИМ контроллера, от которого зависят характеристики  led драйвера. На ней указана маркировка, по которой необходимо найти спецификации на неё. В документации будет указана типовая схема включения.   Обычно ток на выходе задаётся одним или несколькими резисторами, подключенными к ножкам микросхемы. Если изменить номинал резисторов или поставить переменное сопротивление согласно информации из спецификаций, то можно будет изменить ток.  Только нельзя превышать начальную мощность, иначе может выйти из строя.

Драйвер для светодиодных светильников

К питанию уличной светотехники предъявляются немного другие требования. При проектировании уличного освещения учитывается, то LED driver будет работать в условиях от -40° до +40° в сухом и влажном воздухе.

Коэффициент пульсаций  для светильников может быть выше, чем при использовании внутри помещения. Для уличного освещения этот показатель становится не важным.

При эксплуатации на улице требуется полная герметичность блока питания. Существует несколько способов защиты от попадания влаги:

  1. заливка всей платы герметиком или компаундом;
  2. сборка блока с использованием силиконовых уплотнителей;
  3. размещение платы светодиодного драйвера в одном объёме со светодиодами.

Максимальный уровень защиты это IP68, обозначается как «Waterproof LED Driver» или «waterproof electronic led driver». У китайцев это не гарантия водонепроницаемости.

По моей практике заявленный уровень защиты от влаги и пыли не всегда соответствует  реальному.  В некоторых местах может не хватать уплотнителей. Обратите внимание на ввод  и вывод кабеля из корпуса, попадаются образцы с отверстием, которое не закрыто герметиком или другим способом. Вода по кабелю сможет затекать в корпус и затем в нём испаряться. Это приведет к возникновению коррозии на плате и открытых частях  проводов. Это многократно сократит срок службы прожектора или светильника.

Блок питания для led ленты

LED лента работает по другому принципу, для неё требуется стабилизированное напряжение. Токозадающий резистор установлен на самой ленте. Это облегчает процесс подключения, подсоединить можно отрезок любой длины начиная от 3см до 100м.

Поэтому питание для светодиодной ленты можно сделать из любого блока питания на 12в от бытовой электроники.

Основные параметры:

  1. количество вольт на выходе;
  2. номинальная мощность;
  3. КПД;
  4. степень защиты от влаги и пыли
  5. коэффициент мощности.

Led драйвер своими руками

Простейший драйвер своими руками можно изготовить за 30 минут, даже если вы не знаете основы электроники. В качестве источника напряжения можно использовать блок питания от бытовой электроники с напряжением от 12В до 37В. Особенно подходит блок питания от ноутбука, у которого 18 – 19В и мощность от 50W до 90W.

Потребуется минимум деталей, все они изображены на картинке. Радиатор для охлаждения мощного светодиода можно позаимствовать из компьютера. Наверняка где-нибудь дома в кладовке у вас пылятся старые запчасти от системного блока. Лучше всего подойдёт от процессора.

Ччто бы узнать номинал требуемого сопротивления, используйте калькулятор расчёта стабилизатора тока для LM317.

Прежде чем делать led driver 50W своими руками, стоит немного поискать, например есть в каждой диодной лампе. Если у вас есть неисправная лампочка, у которой неисправность в диодах, то можно использовать driver из неё.

Низковольтные

Подробно разберем виды низковольтных лед драйверов работающих от напряжения до 40 вольт. Наши китайские братья по разуму предлагают множество вариантов. На базе ШИМ контроллеров производятся стабилизаторы напряжения и стабилизаторы тока. Основное отличие, у модуля с  возможностью стабилизации тока на плате находится 2-3 синих регулятора, в виде переменных резисторов.

В качестве технических характеристик всего модуля указывают параметры ШИМ микросхемы, на которой он собран. Например устаревший но популярный LM2596 по спецификациям держит до 3 Ампер. Но без радиатора он выдержит только 1 Ампер.

Более современный вариант с улучшенным КПД это ШИМ контроллер XL4015 рассчитанный на 5А. С миниатюрной системой охлаждения может работать до 2,5А.

Если у вас очень мощные сверхяркие светодиоды, то вам нужен led драйвер для светодиодных светильников. Два радиатора охлаждают диод Шотки и микросхему XL4015. В такой конфигурации она способна работать до 5А с напряжением до 35В. Желательно чтобы он не работал в предельных режимах, это значительно повысить его надежность и срок эксплуатации.

Если у вас небольшой светильник или карманный прожектор, то вам подойдет миниатюрный стабилизатор напряжения, с  током до 1,5А. Входное напряжение от 5 до 23В, выход до 17В.

Регулировка яркости

Для регулирования яркости светодиода можно использовать компактные светодиодный диммеры, которые появились недавно. Если его мощности будет недостаточно, то можно поставить диммер побольше. Обычно они работают в двух диапазонах на 12В и 24В.

Управлять можно с помощью инфракрасного или радиопульта дистанционного управления (ДУ). Они стоят от 100руб за простую модель и от 200руб модель с пультом ДУ. В основном такие пульты используют для диодных лент на 12В. Но его с лёгкостью можно поставить к низковольтному драйверу.

Диммирование может быть аналоговым в виде крутящейся ручки и цифровым в виде кнопок.

LED драйвер. Зачем он нужен и как его подобрать?

В последнее время потребители всё чаще интересуются светодиодным освещением. Популярность LED ламп вполне обоснована – новая технология освещения не выделяет ультрафиолетового изучения, экономична, а срок службы таких ламп – более 10 лет. Кроме того, при помощи LED элементов в домашних и офисных интерьерах, на улице легко создать оригинальные световые фактуры.

Если вы решились приобрести для дома или офиса такие приборы, то вам стоит знать, что они очень требовательны к параметрам электросетей. Для оптимальной работы освещения вам понадобится LED — драйвер. Так как строительный рынок переполнен устройствами как различного качества так и ценовой политики, перед тем, как приобрести светодиодные устройства и блок питания к ним, не лишним будет ознакомиться с основными советами, которые дают специалисты в этом деле.

Для начала рассмотрим, для чего нужен такой аппарат как драйвер.

Каково предназначение драйверов?

Драйвер (блок питания)  — это устройство, которое выполняет функции стабилизации тока, протекающего через цепь светодиодов, и отвечает за то, чтобы купленный вами прибор отработал гарантированное производителем количество часов. При подборе блока питания необходимо для начала досконально изучить его выходные характеристики, среди которых ток, напряжение, мощность, коэффициент полезного действия (КПД), а также степень его защиты т воздействия внешних факторов.

К примеру, от проходных характеристик тока зависит яркость светодиод. Цифровое обозначение напряжения отражает диапазон, в котором функционирует драйвер при возможных скачках напряжения. Ну и конечно чем выше КПД, тем более эффективно будет работать устройство, а срок его эксплуатации будет больше.

Где применяются LED драйвера?

Электронное устройство – драйвер —  обычно питается от электрической сети в 220В, но рассчитан на работу и с очень низким напряжением в10, 12 и 24В. Диапазон рабочего выходного напряжения, в большинстве случаев, составляет от 3В до нескольких десятков вольт. К примеру, вам нужно подключить семь светодиодов напряжением 3В. В этом случае потребуется драйвер с выходным напряжением от 9 до 24В, который рассчитан на 780 мА. Обратите внимание, что, несмотря на универсальность, такой драйвер будет обладать малым коэффициентом полезного действия, если дать ему минимальную нагрузку.

Если вам нужно установить освещение в авто, вставить лампу в фару велосипеда, мотоцикла, в один или два небольших уличных фонаря или в ручной фонарь, питания от 9 до 36В вам будет вполне достаточно.

LED –драйверы по мощнее необходимо будет выбирать, если вы намерены подключить светодиодную систему, состоящую из трех и более устройств, на улице, выбрали её для оформления своего интерьера, или же у вас есть настольные офисные светильники, которые работают не менее 8 часов в день.

Как работает драйвер?

Как мы уже рассказывали, LED — драйвер выступает источником тока. Источник напряжения создает на своем выходе некоторое напряжение, в идеале не зависящее от нагрузки.

Например, подключим к источнику напряжением 12 В резистор 40 Ом. Через него пойдет ток величиной 300мА.

Теперь включим сразу два резистора. Суммарный ток составит уже 600мА.

Блок питания поддерживает на своем выходе заданный ток. Напряжение при этом может изменяться. Подключим так же резистор 40Ом к драйверу 300мА.


Блок питания создаст на резисторе падение напряжения 12В.

Если подключить параллельно два резистора, ток также  будет 300мА, а напряжение упадет в два раза.



Каковы основные характеристики LED — драйвера?

При подборе драйвера обязательно обращайте внимание на такие параметры, как выходное напряжение, потребляемая нагрузкой мощность (ток).

— Напряжение на выходе зависит от падения напряжения на светодиоде; количества светодиодов; от способа подключения.

— Ток на выходе блока питания определяется характеристиками светодиодов и зависит от их мощности и яркости, количества и цветового решения.

Остановимся на цветовых характеристиках LED — ламп. От этого, к слову, зависит мощность нагрузки. Например, средняя потребляемая мощность красного светодиода варьирует в пределах 740 мВт. У зеленого цвета средняя мощность составит уже около 1.20 Вт. На основании этих данных можно заранее просчитать, какой мощности драйвер вам понадобится.

Чтобы вам легче было просчитать общую потребляемую мощность диодов, предлагаем использовать формулу.

P=Pled x N

где Pled — это мощность LED, N — количество подключаемых диодов.

Еще одно важное правило. Для стабильной работы блока питания запас по мощности должен быть хотя бы 25%. То есть должно выполняться следующее соотношение:

Pmax ≥ (1.2…1.3)xP

где Pmax   — это максимальная мощность блока питания.

Как правильно подсоединять светодиоды-LED?

Подключать светодиоды можно несколькими способами.

Первый способ  – это последовательное введение. Здесь потребуется драйвер напряжением 12В и током 300мА. При таком способе светодиоды в лампе или на ленте  горят одинаково ярко, но если вы решитесь подключить большее число светодиодов, вам потребуется драйвер с очень большим напряжением.

Второй способ — параллельное подключение. Нам подойдет блок питания на 6В, а тока будет потребляться примерно в два раза больше, чем при последовательном подключении. Есть и недостаток — одна цепь может светить ярче другой.


Последовательно-параллельное соединение – встречается в прожекторах и других мощных светильниках, работающих и от постоянного, и от переменного напряжения.

Четвертый способ — подключение драйвера последовательно по два.  Он наименее предпочтителен.

Есть еще и гибридный вариант. Он соединил в себе достоинства от последовательного и параллельного соединения светодиодов.

Специалисты советуют драйвер выбирать перед тем, как вы купите светодиоды, да еще и желательно предварительно определить схему их подключения. Так блок питания будет для вас более эффективно работать.

Линейные и импульсные драйверы. Каковы их принципы работы?

Сегодня для LED ламп и лент выпускают линейные и импульсные драйверы.
У линейного выходом служит генератор тока, который обеспечивает стабилизацию напряжения, не создавая при этом электромагнитных помех. Такие драйверы просты в использовании  и не дорогие, но невысокий коэффициент полезного действия ограничивает сферу их применения.

 
Импульсные драйверы, наоборот, имеют высокий коэффициент полезного действия  (около 96%), да еще и компактны. Драйвер с такими характеристиками предпочтительнее использовать для портативных осветительных приборов, что позволяет увеличить время работы источника питания. Но есть и минус – из-за высокого уровня электромагнитных помех он менее привлекателен.


Нужен светодиодный драйвер на 220В?

Для включения в сеть 220В выпускаются линейные и импульсные драйверы. При этом если блоки питания обладают гальванической развязкой (передача энергии или сигнала между электрическими цепями без электрического контакта между ним), они  демонстрируют высокий коэффициент полезного действия, надежность и безопасность в эксплуатации.

Без гальванической развязки блок питания  обойдется вам дешевле, но будет не столь  надежным, потребует осторожности при подсоединении из-за опасности удара током.

При подборе параметров по мощности специалисты рекомендуют останавливать свой выбор на светодиодных драйверах с мощностью, превышающей необходимый минимум на 25%. Такой запас мощности не даст электронному прибору и питающему устройству быстро выйти из строя.

Стоит ли покупать китайские драйверы?

Made in China – сегодня на рынке можно встретить сотни драйверов различных характеристик, произведенных в Китае. Что же они собой представляют? В основном это устройства с импульсным источником тока на 350-700мА. Низкая цена и наличие гальванической развязки позволяют  таким драйверам быть в спросе у покупателей.  Но есть и недостатки прибора китайской сборки. Зачастую они не имеют корпуса, использование дешевых элементов снижает надежность драйвера, да еще и отсутствует защита от перегрева и колебаний в электросети.

Китайские драйверы, как и многие товары, выпускаемые в Поднебесной,  недолговечны. Поэтому если вы хотите установить качественную систему освещения, которая прослужит вам ни один год, лучше всего покупать преобразователь для светодиодов от проверенного производителя.
 

Каков срок службы led драйвера?

Драйверы, как и любая электроника, имеют свой срок эксплуатации. Гарантийный срок службы LED — драйвера составляет 30 000 часов. Но не стоит забывать, что время работы аппарата будет зависеть еще от нестабильности сетевого напряжения, уровня влажности и перепада температур, влияния на него внешних факторов.

Неполная загруженность драйвера также снижает срок эксплуатации прибора. К примеру, если LED – драйвер  рассчитан на 200Вт, а работает на нагрузку 90Вт, половина его мощности возвращается в электрическую сеть, вызывая ее перегрузку. Это провоцирует частые сбои питания и прибор может перегореть, сослужив вам всего год.

Следуйте нашим советам и тогда не придется часто менять светодиодные устройства.

Драйвер для светодиодов: принцип работы

В этой статье мы расскажем чем отличается драйвер для светодиодов от блока питания, какой принцип работы в основе стандартных драйверов, а также в чем преимущества и недостатки каждого из этих элементов питания.

 

Отличия блока питания от драйвера для светодиодов

 

Блок питания, просто даже судя по его названию, это отдельный функциональный элемент какой-либо цепи, отвечающий за подачу питания на те или иные приборы. Блок питания может иметь различные показатели мощности, напряжения и силы тока, выдаваемых на выходе. И именно напряжение является фактически основным параметром. В свою очередь драйвер для питания светодиодов выполняет фактически ту же функцию, но основным отличием является то, что драйвер отвечает за стабильную силу выдаваемого тока. В случае со светодиодами это достаточно важный момент. Так как оба эти элемента, и блок питания и драйвер, выполняют схожую функцию, их достаточно часто путают. Как раз в маркетинговых целях и было придумано отдельное название «драйвер», чтобы максимально разграничить эти два устройства.

В силу того, что большинство электроприборов работает от 220 В и подключаются к стандартной розетке, мы не привыкли задумываться о потребляемом токе. В случае же с подключением светодиодов, светодиодных лент и прочей подобной осветительной техники — это фактически самый важный параметр.



Блок питания

 

Рассмотрим отличия в работе блоков питания и драйвера для светодиодов на простом примере. Блок питания, как мы выяснили, отвечает за стабильное выходное напряжение. Значит, если к блоку питания с выходным напряжением 12 В подключить, например, одну лампу 12 вольт 5 ватт, то она потребует 0,42 А тока (5 / 12 = 0,42 А). Если подключить 2 такие лампы, то блок питания вынужден будет для обеспечения 12 вольт для каждой лампы, выдать ток в два раза больший. И так далее. Если неправильно рассчитать нагрузку на блок питания, он будет продолжать работать и выдавать стабильное напряжение, но со временем это может привести к его перегреву, выходу из строя, а может быть и к пожару.

 


Драйвер для светодиодов

 

С драйвером для светодиодов все несколько иначе. В его задачи входит вывод в цепь стабильного тока и что бы вы ни подключили к драйверу, ток не будет больше, чем тот, на который рассчитан драйвер. Например, у вас есть драйвер с параметрами мощности 3 ватта и тока 300 мА. Соответственно, напряжение, которое он сможет выдать равняется 10 вольтам (3 / 0,3 = 10). Такой драйвер сможет контролировать работу любого количества светодиодов, суммарное напряжение которых не превышает 10 вольт, а заявленный рабочий ток составляет 300 мА. Если подключить к нему диоды с рабочим током 700 мА, они все равно будут получать не более 300 мА.

 

Это помогает обезопасить светодиоды от перегрева, обеспечить более стабильную их работу, а как следствие, значительно увеличивает срок их службы.


Основные виды драйверов

В продаже на сегодняшний день вы можете найти два вида драйверов. Одни из них рассчитаны на любое количество светодиодов (главное, чтобы суммарная мощность их не превышала заявленной). Другие служат для подключения строгого определенного количества диодов. Именно этот момент стоит учитывать при выборе конкретного драйвера.

 Также драйверы можно разделить по типу их конструкции и принципу работы. Существуют драйверы на основе резистора, конденсаторной схемы, микросхемы LM317, микросхемы HV9910, драйверы с низковольтным входом и сетевые драйверы. Каждый из этих типов имеет свои преимущества и недостатки, свой КПД и особенности подключения.

 

Выбор и покупка драйвера для светодиодов

 Для того, чтобы обеспечить качественное подключение светодиодов, а также гарантировать их полную совместимость с драйвером и долговечность работы, Вам необходимо приобретать диоды и драйвер строго в связке, подбирая их максимально совместимыми друг к другу. Также при выборе драйвера обязательно стоит учитывать условия, в которых он будет работать и конкретные задачи, которые будут выполнять светодиоды, подключенные к нему.

 

Стоит заметить, что приобретая драйвер для светодиодов и сами диоды, многие покупатели ошибочно воспринимают максимальный заявленный уровень тока как рабочий. Например, если рабочий ток светодиодов 350 мА, то это максимальный показатель. Следовательно, в качестве источника питания стоит использовать драйвер с током 300-330 мА. Работа на повышенном токе, возможно, и не спровоцирует выход светодиодов из строя, но может значительно сократить срок их службы.

Драйвер для светодиодов. Зачем нужен и как правильно подобрать?

Лидирующую позицию среди наиболее эффективных источников искусственного света занимают сегодня светодиоды. Это во многом является заслугой качественных источников питания для них. При работе совместно с правильно подобранным драйвером, светодиод длительно сохранит устойчивую яркость света. А срок службы светодиода окажется очень-очень долгим, измеряемым десятками тысяч часов. Таким образом, правильно подобранный драйвер для светодиодов — залог долгой и надежной работы источника света. И в этой статье мы постараемся раскрыть тему того, как правильно выбрать драйвер для светодиода, на что обратить внимание, и какие вообще они бывают.

 
   Драйвер для светодиодов

Драйвером для светодиодов называют стабилизированный источник питания постоянного напряжения или постоянного тока. Вообще, изначально, светодиодный драйвер — это источник стабильного тока, но сегодня даже источники постоянного напряжения для светодиодов называют светодиодными драйверами. То есть можно сказать, что главное условие — это стабильные характеристики питания постоянным током.

Стабилизированный источник питания постоянного напряжения хорошо подойдет для питания:

  • светодиодных лент
  • LED-линеек
  • для запитки набора из нескольких мощных светодиодов, соединенных по одному параллельно

То есть когда номинальное напряжение светодиодной нагрузки точно известно, и достаточно только подобрать блок питания на номинальное напряжение при соответствующей максимальной мощности.

   Стабилизированный источник питания постоянного напряжения

Обычно это не вызывает проблем, например: 10 светодиодов на напряжение 12 вольт, по 10 ватт каждый, — потребуют 100 ваттный блок питания на 12 вольт, рассчитанный на максимальный ток в 8,3 ампера. Останется подрегулировать напряжение на выходе при помощи регулировочного резистора сбоку, — и готово.

Для более сложных светодиодных сборок, особенно когда соединяется несколько светодиодов последовательно, необходим не просто блок питания со стабилизированным выходным напряжением, а полноценный светодиодный драйвер — электронное устройство со стабилизированным выходным током. Здесь ток является главным параметром, а напряжение питания светодиодной сборки может автоматически варьироваться в определенных пределах.

Для ровного свечения светодиодной сборки, необходимо обеспечить номинальный ток через все кристаллы. Однако падение напряжения на кристаллах может у разных светодиодов отличаться (поскольку немного различаются ВАХ каждого из светодиодов в сборке), — поэтому напряжение не будет на каждом светодиоде одним и тем же, а вот ток должен быть одинаковым.

   Драйвер для светодиодов

Светодиодные драйверы выпускаются в основном на питание от сети 220 вольт или от бортовой сети автомобиля 12 вольт. Выходные параметры драйвера указываются в виде диапазона напряжений и номинального тока.

Например, драйвер с выходом на 40-50 вольт, 600 мА позволит подключить последовательно четыре 12 вольтовых светодиода мощностью по 5-7 ватт. На каждом светодиоде упадет приблизительно по 12 вольт, ток через последовательную цепочку составит ровно по 600 мА, при этом напряжение 48 вольт попадает в рабочий диапазон драйвера.

Драйвер для светодиодов со стабилизированным током — это универсальный блок питания для светодиодных сборок, причем эффективность его получается довольно высокой и вот почему.

Мощность светодиодной сборки — критерий важный, но чем обусловлена эта мощность нагрузки? Если бы ток был не стабилизированным, то значительная часть мощности рассеялась бы на выравнивающих резисторах сборки, то есть КПД оказался бы низким. Но с драйвером, обладающим стабилизацией по току, выравнивающие резисторы не нужны, вот и КПД источника света получится в результате очень высоким.

Драйверы разных производителей отличаются между собой выходной мощностью, классом защиты и применяемой элементной базой. Как правило, в основе — импульсный ШИМ-преобразователь на специализированной микросхеме, со стабилизацией выхода по току и с защитой от короткого замыкания и перегрузки.

Питание от сети переменного тока 220 вольт или постоянного тока с напряжением 12 вольт. Самые простые компактные драйверы с низковольтным питанием могут быть выполнены на одной универсальной микросхеме, но надежность их, про причине упрощения, ниже. Тем не менее, такие решения популярны в автотюнинге.

   Драйвер для светодиодов

Выбирая драйвер для светодиодов следует понимать, что применение резисторов не спасает от помех, как и применение упрощенных схем с гасящими конденсаторами. Любые скачки напряжения проходят через резисторы и конденсаторы, и нелинейная ВАХ светодиода обязательно отразится в виде скачка тока через кристалл, а это вредно для полупроводника. Линейные стабилизаторы — тоже не лучший вариант в плане защищенности от помех, к тому же эффективность таких решений ниже.

Лучше всего, если точное количество, мощность, и схема включения светодиодов будут заранее известны, и все светодиоды сборки будут одинаковой модели и из одной партии. Затем выбирают драйвер.

На корпусе обязательно указывается диапазон входных напряжений, выходных напряжений, номинальный ток. Исходя из этих параметров выбирают драйвер. Обратите внимание на класс защиты корпуса.

Для исследовательских задач подходят, например, бескорпусные светодиодные драйверы, такие модели широко представлены сегодня на рынке. Если потребуется поместить изделие в корпус, то корпус может быть изготовлен пользователем самостоятельно.

Как подключить светодиодную ленту

 

Светодиодный драйвер для мощных светодиодов

 

Смотрите также по этой теме:

   Устройство светодиода. Принцип работы и производство.

   Виды светодиодов и их характеристики. Достоинства и недостатки.

   SMD светодиоды. Светодиоды поверхностного монтажа.

   Подключение светодиодной ленты. Устройство и схема.

   

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

Драйверы для светодиодов, виды, достоинства и недостатки

   

Драйвер (в электронике) — управляющее отдельное устройство, преобразует электрические сигналы.

Драйверы светодиодов

Сами светодиоды нельзя подключать напрямую в сеть 220 вольт, так как могут выгореть. Также светодиоды не могут питаться напряжением, по указанным параметрам. Данное устройство должно ограничивать силу тока в соответствии характеристик диодов. Для этого в светодиодные светильники применяют специальное устройство, похожее на блок питания — драйвер, называемым токовым прибором. При подборе светодиодного драйвера нужно учитывать разброс параметров: временный и температурный уход светодиодов, так как любой диод и светодиод имеет вольт-амперную нелинейную характеристику. Даже светодиоды выпущенные из одной партии могут иметь различные характеристики: температурные, токовые. Все это сказывается на работу светодиодов, и является частой неисправностью.

Существует множество схем подключения светодиодов, самый простой способ подключить последовательно резистор. Но данная схема неэкономичная, так как резистор будет переводить излишки энергии в тепло. Чем больше сопротивление резистора, тем он меньше будет нагреваться. На самом деле на практике используют две основных схем драйвера: емкостные источники и импульсные источники.

В настоящее время все прожекторные мачты оснащаются светодиодными светильниками, потому-что они намного экономичнее и ярче обычных газоразрядных лам.

Еще один способ подключения светодиодов через электронную схему. Для этого способа производят специальные микросхемы, которые стабилизируют выходной ток. Для информационных цветных табло, где светодиодами нужно управлять отдельно применяют драйверы с управлением от микроконтроллера и со стабилизатором электрического тока. Чтобы зажечь светодиоды питающие от батареи питания, применяют повышающие преобразователи. А для питания светодиодных ламп освещения используют драйверы, которые стабилизируют ток, а не напряжение на выходе. Минус данного метода, то что нельзя подключать разное количество светодиодов.

Основы проектирования и основы разработки драйвера лазерного диода

Введение:

Если вы собираетесь начать работать с лазерными диодами, вы, скорее всего, знаете, что есть некоторые очень специфические нюансы для безопасного управления ими и контроля их температуры. Для них требуется специальный набор специально разработанных электронных элементов управления. Этот набор элементов управления объединяется для создания так называемого драйвера лазерного диода или источника тока лазерного диода.По сути, эти элементы определяют, как лазер включается и управляется для получения определенной длины волны и выходной мощности. И как это сделать, не повредив лазерный диод. Подробнее »

БЫСТРАЯ НАВИГАЦИЯ:

МАГАЗИН ЛАЗЕРНЫХ ДИОДОВ:

Купить все драйверы лазерных диодов »

Shop High Power (> 5 Amp) Драйверы лазерных диодов »

Магазин Печатные платы и OEM-драйверы лазерных диодов »


Краткий обзор лазерных диодов:

Чтобы понять, что такое драйверы лазерных диодов и почему они важны, важно понимать некоторые ключевые особенности устройств с лазерными диодами.Эти устройства требуют особого внимания к тому, как они включаются, работают и выключаются. В сети много подробной информации о лазерных диодах. Короче говоря, лазерный диод — это полупроводниковый прибор, сделанный из двух разных материалов. Один из P-материала, другой из N-материала, зажатого вместе. Прямое электрическое смещение через P-N-переход заставляет соответствующие дырки и электроны с противоположных сторон перехода объединяться, испуская фотон в процессе каждой комбинации.Поверхности зоны стыка (полости) имеют до зеркального блеска. Те, кто знаком с теорией лазеров, знают, что происходит, когда фотоны прыгают по полированной полости. Электрическое смещение для перехода должно быть стабильным, малошумящим источником свободного тока от переходных процессов.

В этой короткой статье содержится основная информация о драйверах лазерных диодов, также называемых источниками постоянного тока, и почему они важны для управления и защиты этих устройств. Он предоставляет общий обзор того, как работают драйверы лазерных диодов, и многие типы драйверов лазерных диодов, доступных в отрасли.

Что такое драйвер лазерного диода? А что такое источник постоянного тока?

Драйвер — это источник постоянного тока. Вот полезное короткое видео на YouTube, в котором объясняются источники постоянного тока и постоянного напряжения, а также почему источники тока предпочтительны для управления лазерными диодами. Если вас оскорбила его простота… приносим свои извинения.

Понимание коэффициентов настройки и эффективности:

Лазерные диоды — это токочувствительные полупроводники.Изменение тока возбуждения равно изменению длины волны устройства и выходной мощности. Любая нестабильность управляющего тока (шум, дрейф, индуцированные переходные процессы) повлияет на рабочие характеристики лазерного диода. В частности, они повлияют на выходную мощность и длину волны. Кроме того, на температуру диодного перехода напрямую влияет ток. Текущая нестабильность источника вызовет колебания температуры перехода; выходные характеристики (опять же мощность и длина волны) изменятся.Для того же диода, указанного выше:

Нестабильность управляющего тока напрямую приводит к колебаниям температуры перехода, хотя временная шкала несколько медленнее, чем прямое влияние изменений тока.

Понимание динамического импеданса и прямого напряжения вашего драйвера:

Прямое напряжение на лазерном диоде непостоянно. Он меняется, особенно после пороговой точки. Пороговая точка — это точка, в которой выходная оптическая мощность лазера линейна с входным током возбуждения, мВт / мА.

Для тех из вас, кто еще помнит вычисления, первая производная кривой V-I показывает график динамического сопротивления диода, оно также не является постоянным. Таким образом, вся нагрузочная характеристика лазерного диода непостоянна. Напряжение и сопротивление изменяются в зависимости от тока (и температуры). Итак, как мы узнали из видео об источниках постоянного тока, хороший, стабильный, малошумящий источник тока будет поддерживать постоянный ток независимо от нагрузки, подключенной к его выходу!

Почему не следует использовать настольный источник напряжения:

Источники напряжения (настольные источники питания) нарастают напряжение при включении, но ток не контролируется.Это не подходит для диодов, требующих постоянного регулируемого тока. Изменение сопротивления источника постоянного напряжения приводит к изменению тока. Если приложение требует постоянной мощности лазера и стабильной длины волны, источник напряжения не будет работать и может подвергнуть лазер риску теплового удара и / или переходных процессов из-за быстрого изменения тока.

Какие основные типы драйверов для лазерных диодов?

На самом общем уровне существует несколько классов или «типов» драйверов лазеров, которые вы обычно слышите.Это: постоянного тока (CW), импульсные (включая QCW), маломощные и высокомощные драйверы . Постоянный ток — это именно то, что он заявляет, постоянный выходной уровень с течением времени, скажем 30 мА, теоретически навсегда, если это необходимо. Импульсные драйверы лазерных диодов представляют собой интересную разновидность, поскольку выходная мощность является функцией времени, а коэффициент заполнения — лучший способ ее описать. Рабочий цикл — это время, в течение которого источник тока включен — высокий выходной ток, деленный на общее время импульса (время включения и выключения). Небольшое замечание о временах отключения в источниках тока: они никогда не отключены по-настоящему (то есть нулевой ток), но часто находятся на достаточно низком уровне выходного сигнала, при котором выход лазерного диода минимален — значительно ниже порогового значения.В следующем разделе дано общее определение версий этих типов драйверов с низким и высоким энергопотреблением.

Какие стандартные коммерчески доступные уровни мощности доступны для драйверов?

Драйверы «малой мощности» и «высокой мощности» — это общепринятая отраслевая терминология, описывающая величину выходной мощности нагрузки. Однако это немного неправильное название: выходной уровень не выражается в единицах мощности, то есть в ваттах, он выражается в единицах мкА, мА и амперах. В мире мощных импульсных источников тока вы можете увидеть выходной импульс, выраженный в Джоулях, то есть энергии, то есть 1 Вт = 1 Дж / с.В технических паспортах обычно также указывается величина выходного тока и напряжение, вам просто нужно их найти. Драйвер с низким энергопотреблением примерно определяется как от 1 мА до 5 ампер. Драйвер мощного лазерного диода — 5 А и до 100 А в режиме CW. Это драйверы уровня кВт, доступные в импульсном и QCW-режимах. Это ни в коем случае не стандарты, а просто обобщение, основанное на опыте автора в мире контроллеров лазерных диодов.

Краткий обзор схемы лазерного драйвера:

Следующий шаг — схематическое представление о том, как работает «типичный» лазерный диодный источник тока.У Wavelength Electronics есть отличное видео, описывающее их текущие конструкции источников. Это хорошая информация в виде блок-схемы, которую легко понять.

Информация, представленная в этом видео, применима ко всем имеющимся в продаже источникам тока для лазерных диодов, различия в функциях и характеристиках будут определять производительность и, конечно же, цену.

Конечно, вы можете гораздо глубже понять источники лазерного тока.Есть уровень, на котором вы, возможно, захотите построить свой собственный, здесь вам нужно будет разбираться в электрических схемах и компонентах. Быстрый поиск источников тока лазерных диодов на YouTube приведет к созданию множества собственных источников тока. Для тех из вас, у кого особые требования, не удовлетворяемые коммерческими производителями, есть хорошая статья под названием «Высокоустойчивый малошумящий лазерный драйвер тока» от BYU. Он очень подробный, содержит отличные схемы для тех, кто разбирается в электрическом проектировании с математически обоснованными принципами проектирования, а производительность подкрепляется данными и графиками.

Итак, с учетом сказанного, следующий уровень — покупка коммерчески доступного источника тока.

Каковы типичные диапазоны цен на коммерчески доступные драйверы лазерных диодов?

Вот краткий обзор основных стилей корпусов и ценовых диапазонов имеющихся в продаже источников постоянного и импульсного тока.

»Источники тока уровня ИС для монтажа на печатной плате: Это интегральная схема (ИС), припаянная непосредственно к печатной плате (ПП).Как правило, это источники более низкого энергопотребления и базового тока, обеспечивающие от 10 мА до 500 мА. Вы найдете их в своем DVD-плеере, сканерах штрих-кодов, указателях и т. Д. Диапазон цен: от 10 до 100 долларов.

»Драйверы OEM-модулей: Это источники тока, встроенные в небольшой корпус или радиатор; подключения к модулю драйвера необходимы для питания переменного или постоянного тока и источников логического управления, а также для подключения к нагрузке. Они доступны в широком диапазоне диапазонов выходного тока, от 50 мА до 100 А.Диапазон цен: от 250 до 2500 долларов.

»Настольные драйверы: Это автономные источники тока, которые размещены в корпусе с передней панелью для облегчения управления. Единственные подключения к нему — это вход переменного тока и выход для нагрузки лазерного диода. Они могут быть многофункциональными (управление микропроцессором, низкий уровень шума, высокая стабильность, многодиапазонный) или базовыми (аналоговое управление, одиночный диапазон, включение / выключение), малой или высокой мощностью. Доступны в импульсном и непрерывном режимах от 100 мА до 100 А и более.Вы найдете их во многих оптических лабораториях, чистых комнатах и ​​т. Д. Диапазон цен: от 1000 до 10 000 долларов

Какая функция наиболее важна? Защита вашего лазерного диода:

Защита лазерного диода, о которой часто забывают, забывают или просто игнорируют. Что ж, вы можете рискнуть и просто использовать любой источник тока или напряжения, но вы рискуете либо повредить очень дорогой лазерный диод в разработке, либо рискуете потерять часы лабораторной работы и устранения неполадок из-за перегоревшего лазера.Диодные лазеры имеют низкую стойкость к тепловому удару. Стратегии защиты, используемые в большинстве имеющихся в продаже источников тока лазерных диодов, включают способ включения и выключения источника тока (схемы медленного пуска), защиту от перегрузки по току (ограничения тока), защиту от переходных процессов, прокладку кабелей и т. Д. от Newport Corp. о защите: защита лазерного диода.

Рассмотрение всех уровней защиты должно быть важным фактором не только в коммерческих источниках тока лазерных диодов, но и в реализации и соблюдении в лаборатории или системе разработки продукции.

И не забывайте также о контроле температуры … многие критические параметры лазерного диода, включая длину волны, пороговый ток и эффективность, сильно зависят от температуры перехода. Таким образом, для многих приложений требуется очень стабильный контроль температуры.

Какие наиболее важные характеристики следует учитывать при выборе драйвера?

Этот ответ наверняка зависит от области применения диода. Например, лазерная указка не имеет таких строгих требований к контролю тока, как диод, используемый в спектроскопических приложениях, требующих очень узкой ширины линии.В большинстве исследовательских приложений, где вы собираетесь потратить от сотен до нескольких тысяч долларов на источник тока лазерного диода, наиболее важными характеристиками являются: защита от скачков и переходных процессов по току и напряжению, плотность шума тока и долговременная стабильность. Конечно, есть много других важных функций, но вам нужен источник постоянного тока, прежде всего, чтобы оптимизировать и защитить лазерный диод для конкретного применения.

Еще одно замечание об атрибутах, хотя и не упомянутых в первой тройке, текущий диапазон, конечно, важен.Но помимо очевидной причины, вот почему: если вы покупаете источник тока с диапазоном 2 А, а диоду требуется только 50 мА, обратите внимание на разрешение источника тока, оно зависит от общего выходного диапазона. Точность вывода также зависит от диапазона, если это важно для приложения. Обратите особое внимание на спецификации производителя для этих спецификаций. Поищите технические примечания или спросите производителя, как они определяются, измеряются и проверяются.

Кто делает драйверы для лазерных диодов?

Теперь у вас есть основа, которая поможет вам начать поиск конкретного драйвера источника тока для вашей лаборатории.Вы можете посетить наш индекс драйверов лазерных диодов, чтобы сравнить цены и характеристики многих ведущих мировых производителей. Эти компании предлагают широкий спектр маломощных, высокомощных, непрерывных и импульсных драйверов лазерных диодов, богатых функциями и характеристиками.

Драйвер лазерного диода

LDX-3210-120V Драйвер лазерного диода, прецизионный, 100 мА, 10 В, GPIB, 120 В переменного тока € 2 724

LDX-3210-120V Драйвер лазерного диода, прецизионный, 100 мА, 10 В, GPIB, 120 В переменного тока

LDX-3210-220V Драйвер лазерного диода, прецизионный, 100 мА, 10 В, GPIB, 220 В переменного тока € 2 724

LDX-3210-220V Драйвер лазерного диода, прецизионный, 100 мА, 10 В, GPIB, 220 В переменного тока

LDX-3220-120V Драйвер лазерного диода, прецизионный, 500 мА, 10 В, GPIB, 120 В переменного тока € 2 849

LDX-3220-120V Драйвер лазерного диода, прецизионный, 500 мА, 10 В, GPIB, 120 В переменного тока

LDX-3220-220V Драйвер лазерного диода, прецизионный, 500 мА, 10 В, GPIB, 220 В переменного тока

7 недель

€ 2 849

LDX-3220-220V Драйвер лазерного диода, прецизионный, 500 мА, 10 В, GPIB, 220 В переменного тока

LDX-3232-100V Драйвер лазерного диода, прецизионный, 4 А, 15 В, GPIB, 100 В переменного тока € 3 887

LDX-3232-100V Драйвер лазерного диода, прецизионный, 4 А, 15 В, GPIB, 100 В переменного тока

Основные сведения о драйверах лазерных диодов

В своей основной форме драйвер лазера представляет собой источник тока, состоящий из токоизмерительного резистора и операционного усилителя.Операционный усилитель измеряет напряжение на измерительном резисторе и регулирует его выход в цепи обратной связи, чтобы поддерживать напряжение резистора как можно ближе к управляющему напряжению.

Поскольку на отрицательный вход усилителя ток не течет, ток лазера I L равен управляющему напряжению V C , деленному на резистор считывания R S .

Выходной каскад большинства операционных усилителей не может обеспечивать ток более нескольких десятков мА, поэтому его обычно заменяют дискретным транзистором:

Соответствие напряжения

Драйвер лазера может регулировать ток только до тех пор, пока напряжение лазера остается в определенных пределах.Напряжение питания V S является суммой напряжения резистора считывания V Rs = R S x I L , напряжения лазера V L и напряжения транзистора V T .

Транзистор можно рассматривать как переменный резистор, управляемый операционным усилителем. Когда напряжение лазера увеличивается, операционный усилитель пытается уменьшить сопротивление транзистора R T , чтобы поддерживать постоянный ток. В какой-то момент сопротивление транзистора достигает минимального значения R Tmin , и драйвер ведет себя так, как если бы на лазер был подан V S , последовательно с R Tmin и R S .

Соответствующее напряжение — это максимальное напряжение лазера, при котором драйвер поддерживает регулировку тока. Это напряжение зависит от тока и обычно указывается на максимальном рабочем токе драйвера.

Анализ шума

На входе операционного усилителя мы можем рассмотреть три источника шума напряжения: шум управляющего напряжения v C 2 , приведенный ко входу шум операционного усилителя v O 2 и тепловой шум. шум чувствительного резистора v R 2 = 4 кОм B TR S .

Рассмотрим драйвер лазера на 100 мА, состоящий из чувствительного резистора 10 Ом, операционного усилителя с шумом входного напряжения 0,85 нВ / √Гц и бесшумного управляющего напряжения. При комнатной температуре тепловой шум резистора 10 Ом составляет около 0,4 нВ / √Гц. Поскольку два шума напряжения независимы, они в сумме составляют спектральную плотность мощности (0,4 2 +0,85 2 ) ½ = 1,0 нВ / √Гц. Разделив результат на 10 Ом, мы получим токовый шум 100 пА / √Гц.

Можно уменьшить токовый шум, увеличив номинал резистора считывания, как показано на графике ниже.При низких значениях резистора тепловым шумом можно пренебречь, а текущий шум масштабируется обратно пропорционально сопротивлению. Выше 50 Ом тепловой шум становится преобладающим, а текущий шум масштабируется только пропорционально величине, обратной корню квадратному из сопротивления.

Выбор номинала резистора — это компромисс между текущим шумом и потребляемой мощностью.

Модуляция лазерного тока

Модуляция может выполняться как минимум двумя способами, в зависимости от требуемой частоты модуляции.Пока частота модуляции меньше ширины полосы контура обратной связи, ток лазера можно модулировать с помощью управляющего напряжения V C . Эта полоса пропускания обычно составляет от нескольких кГц до нескольких МГц.

Выше полосы модуляции драйвера ток лазера можно модулировать с помощью тройника смещения, как показано на рисунке ниже:

Конденсатор позволяет модуляции переменного тока проходить через лазер, блокируя сигнал постоянного тока. Катушка индуктивности, которая изолирует драйвер от модуляции переменного тока, должна быть достаточно маленькой, чтобы не добавлять слишком много фазы в полосе пропускания драйвера.

Конфигурации заземления

У некоторых лазерных диодов положительная сторона (анод) или отрицательная сторона (катод) подключены к металлическому корпусу диода. Если металлический корпус должен быть заземлен, необходимо использовать драйвер лазера с заземленным анодом или заземленным катодом, как показано на рисунке ниже:

Драйверы с анодным заземлением работают от отрицательного источника питания, а драйверы с заземленным катодом работают от положительного источника питания. В большинстве случаев металлический корпус диода может быть электрически изолирован от земли, чтобы можно было использовать плавающую архитектуру.В этой архитектуре управляющая электроника работает ближе к земле, что часто приводит к повышению энергоэффективности.

Драйвер лазерного диода

| Импульсный лазерный диодный драйвер | Драйвер CW лазерного диода

Более тридцати лет AMI является лидером в разработке и производстве настоящих источников тока для управления лазерными диодами. Драйверы лазерных диодов AMI обеспечивают конечному пользователю активный контроль тока и защиту своих лазерных диодов. AMI предлагает широкий спектр драйверов для постоянно растущего числа лазерных диодов с диодной накачкой и прямым выходом.

Драйверы затравочного лазерного диода

AMI предлагает линейку драйверов диодов, предназначенных для управления затравочными лазерными диодами для волоконных лазеров. Эти драйверы могут питать большинство пакетов типа 1 «бабочка». Доступны различные варианты ширины импульса, мощности и управления. Посевные драйверы AMI питают двунаправленный термоэлектрический контроллер охлаждения (ТЕС) с двунаправленным пропорционально-интегрально-производным (ПИД) с допустимым током 3 А и допустимым напряжением 4,2 В.

Драйвер SOA

Драйвер полупроводникового оптического усилителя

AMI идеально подходит для управления 14-контактными модулями SOA или BOA в корпусе типа бабочка для использования в качестве усилителей мощности, оптического переключателя, преобразования длины волны и других.Драйвер выполнен в виде усилителя крутизны (аналоговое напряжение на входе, масштабированный ток на выходе) и включает встроенный контроллер TEC для термостабилизированной работы оптического усилителя. Схема драйвера работает от единственного источника питания 5 В. Все остальные необходимые напряжения генерируются на плате с помощью высокоэффективных импульсных источников питания

.

Драйверы импульсных лазерных диодов


AMI предлагает линейку импульсных драйверов лазерных диодов как для сильноточных, так и для слаботочных приложений.Сильноточный высокомощный драйвер AMI, модель 7701A , представляет собой OEM-дизайн для мощных лазерных систем DPSS и систем освещения. Высокоскоростная модель 766 компании AMI с высокой пиковой мощностью идеально подходит для управления 14-контактными лазерными диодными модулями в корпусе типа «бабочка» для использования в импульсных волоконных системах MOPA для обработки материалов, системах LIDAR для дистанционного зондирования, приложениях лазерной связи и дальномерах.

Высокоэффективные и надежные драйверы импульсных лазерных диодов, подобные нашей модели 774A , предлагаются для военных приложений.Эти драйверы представляют собой низковольтные преобразователи входной мощности постоянного тока / драйверы лазерных диодов, предназначенные для подачи импульсного высокого тока для нагрузок с лазерными диодами в портативных, ракетных, наземных транспортных средствах, кораблях и в воздухе.

Драйверы для лазерных диодов CW

AMI предлагает линейку драйверов для непрерывных лазерных диодов как для сильноточных, так и для слаботочных приложений. Модель 787 AMI идеально подходит для компактных промышленных и медицинских лазерных приложений. Фирменная технология позволяет AMI предлагать ток 50 А, 2.Драйвер CW-диода 5 В с лучшими в отрасли показателями эффективности и занимаемой площади. Модель 785A — отличный выбор для приложений, в которых используются чрезвычайно низкие пульсации на выходе и точное управление. Конечный пользователь может формировать форму выходного сигнала лазерного диода с полосой модуляции 600 кГц.

Наш мощный драйвер мощностью 2 кВт, модель 5705, разработан, чтобы вы могли соединять несколько модулей вместе для еще более мощных приложений.

Контроллеры лазерных диодов

Для лабораторных и настольных приложений драйверов лазерных диодов AMI предлагает контроллеры лазерных диодов моделей 8800D и 880D.Эти готовые к установке в стойку системы обеспечивают выходной ток для управления лазерными диодами для накачки твердотельных лазеров. Они предлагают переднюю панель и дистанционное управление, а также управление через интерфейс RS-232. Выходной ток отображается на легко читаемом ЖК-дисплее. Модели 8800D и 880D — отличные инструменты для создания прототипов, которые позволяют разработчикам лазеров гибко определять лучший лазерный диод и привод для их конечного использования. После определения окончательных требований AMI может помочь определить и разработать драйвер OEM, адаптированный к вашему приложению, который будет иметь более низкую стоимость, высокую надежность и компактность.

Драйверы импульсных лазерных диодов

— аналоговые модули

AMI предлагает линейку импульсных драйверов лазерных диодов как для сильноточных, так и для слаботочных приложений. Сильноточный высокомощный драйвер AMI модели 7701A — это OEM-разработка для высокомощных лазеров DPSS и систем освещения. Высокоскоростная модель 766 компании AMI с высокой пиковой мощностью идеально подходит для управления 14-контактными лазерными диодными модулями в корпусе типа «бабочка» для использования в импульсных волоконных системах MOPA для обработки материалов, системах LIDAR для дистанционного зондирования, приложениях лазерной связи и дальномерах.

Для лабораторных и настольных приложений AMI предлагает контроллер лазерных диодов модели 8800D. Эта управляемая микропроцессором система для монтажа в стойку обеспечивает импульсные выходные токи для возбуждения лазерных диодов для накачки твердотельных лазеров. Встроенный микропроцессор обеспечивает гибкость и удобство программного управления, а состояние системы отображается на легко читаемом графическом ЖК-дисплее. Модель 8800D — отличный инструмент для создания прототипов, который позволяет разработчику лазера гибко определять диод и привод для их конечного использования.После определения окончательных требований AMI может помочь определить и спроектировать OEM-драйвер, адаптированный к вашему приложению, который будет конкурентоспособным по цене, будет иметь высокую надежность и занимать мало места.

Новая серия 780 — это эффективные сборки импульсных, непрерывных и QCW драйверов OEM для работы с одиночными мощными лазерными диодами.

Стандартные продукты, представленные ниже, представляют собой заявления о возможностях. Большинство драйверов, которые AMI продает для OEM-производства, адаптированы к требованиям конечного использования.Свяжитесь с AMI сегодня, чтобы обсудить конкретные требования вашего приложения.

Таблицы данных

(в формате PDF) доступны для моделей, перечисленных ниже.

Модель Пиковый ток Макс.нагрузка
Напряжение
Входное напряжение Ширина импульса Время нарастания Макс.частота повторения
762 2,5 A 10,0 В +5 В постоянного тока от 20 нс до CW 10 нс 10 МГц
763 1.2 A 3,0 В +5 В постоянного тока 10 нс до CW 6 нс 50 МГц
766 1,1 A 10,0 В +5 В постоянного тока от 150 пс до 1,0 нс 100 пс 1 МГц
767 3,0 A 10,0 В +5 В постоянного тока от 150 до 750 пс 100 пс 1 МГц
7612A 1,2 A 3,0 В +5 В постоянного тока 6 нс до CW 6 нс 50 МГц
773 118 A 24 В от +5 до +12 В постоянного тока от 100 мкс до 3 мс 25 мкс 1 Вт максимальная средняя мощность
779A 120 A 140 В от -5 до -150 В постоянного тока от 100 мкс до 1 мс 4 мкс ± 1 мкс 1 кГц
7701A 300 A 280 В от 25 до 300 В постоянного тока от 100 мкс до 10 мс 10 мкс 1 кГц
8800D 300 A 280 В от 198 до 253 В переменного тока 1Ø, 50/60 Гц от 100 мкс до 5 мс 10 мкс 1 кГц
785A 20 A 26 В +12 В постоянного тока 2 мкс до CW 500 нс 600 кГц Модуляция
786 10.0 A 2,2 В от 2,7 до 4,3 В постоянного тока от 1 мс до 10 мс 200 мкс 10 Гц
787 50 A * 5,0 В +12 В постоянного тока 1 мс до CW 300 мкс Средняя мощность до 250 Вт
PLDD-50-SP 50 A 350 В от +12 до +28 В постоянного тока
+250 до +350 В постоянного тока
5 нс 2,5 нс 15 кГц
PLDD-200-12-20-2×2 200 A 24 В от +16 до +28 В постоянного тока 20 Гц

* Сложите несколько модулей модели 787 для увеличения выходного тока.

Драйверы импульсных лазерных диодов для военных приложений

Высокоэффективные и надежные драйверы импульсных лазерных диодов, подобные нашей модели 773 , предлагаются для использования в военных целях. Эти продукты представляют собой низковольтный преобразователь входной мощности постоянного тока / драйверы лазерных диодов, предназначенные для подачи импульсного высокого тока для нагрузок с лазерными диодами в портативных, ракетных, наземных транспортных средствах, кораблях и самолетах.

Модель Пиковый ток Макс.нагрузка
Напряжение
Входное напряжение Ширина импульса Время нарастания Частота повторения
773 118 A 24 В от +5 до +12 В постоянного тока от 100 мкс до 3 мс 25 мкс 1 Вт Максимальная средняя мощность
774A 200 A 40 V +19.От 6 до +32 В постоянного тока от 50 мкс до 400 мкс 45 мкс 20 Гц
PLDD-120-1-1 120 A 3 В +5 В постоянного тока 1 Гц
PLDD-120-9-1 120 A 18 В +5 В постоянного тока 1 Гц
PLDD-200-12-20-2×2 200 A 24 В от +16 до 28 В постоянного тока 20 Гц

AMI также предлагает драйверы диодов для следующих приложений:

Драйверы семенного лазерного диода
Драйвер SOA
Драйверы лазерного диода CW
Контроллеры лазерных диодов

Драйверы для лазерных диодов

Seed — аналоговые модули

AMI предлагает линейку драйверов диодов, предназначенных для управления затравочными лазерными диодами для волоконных лазеров.Наши драйверы подходят для большинства пакетов типа «бабочка» 1 типа. Доступны различные варианты ширины импульса, мощности и управления.

AMI’s Model 762 Программируемые OEM-драйверы лазерных диодов (драйверы лазерных диодов накачки) идеально подходят для управления 14-контактными модулями лазерных диодов в корпусе типа бабочка для использования в непрерывных или импульсных волоконно-оптических системах MOPA для обработки материалов, системах LIDAR для дистанционного зондирования, лазерах коммуникационные приложения и дальномеры.

Драйвер затравочного лазерного диода OEM модели 763 реализован как усилитель крутизны (аналоговое напряжение на входе, масштабированный ток на выходе).Схема драйвера работает от единственного источника питания 5 В. Все остальные необходимые напряжения генерируются на плате с помощью высокоэффективных импульсных источников питания.

Модель 766 предлагает настраиваемую пользователем ширину импульса от 150ps до 1 нс при выходных токах до 1,1 A. Схема драйвера работает от одного источника питания 5 В. Все остальные необходимые напряжения генерируются на плате с помощью высокоэффективных импульсных источников питания.

Все три перечисленных выше драйвера питают двунаправленный термоэлектрический контроллер охлаждения (ТЕС) с пропорционально-интегрально-производной (ПИД) с допустимым током 3 А и допустимым напряжением 4.2 В.

Стандартные продукты, представленные ниже, представляют собой заявления о возможностях. Большинство драйверов, которые AMI продает для OEM-производства, адаптированы к требованиям конечного использования. Свяжитесь с AMI сегодня, чтобы обсудить конкретные требования вашего приложения.

Таблицы данных

(в формате PDF) доступны для моделей, перечисленных ниже.

Модель Частота импульсов Пиковый ток (импульсный) Ширина импульса Характеристики Максимальное напряжение диодной нагрузки
762 До 10 МГц 2.5 A 20 нс по CW Быстрое время нарастания, компактный, RoHS и военная опция, контроллер TEC 10,0 В постоянного тока
763 До 50 МГц 1,2 A 10 нс до CW Быстрое время нарастания, контроллер TEC RoHS 3,0 В постоянного тока
766 До 1 МГц 1,1 A от 150 пс до 1 нс Длительность импульса от 150 пс при 0,4 A 10,0 В постоянного тока
767 До 1 МГц 3.0 A От 150 до 750 пс Плата принимает самые распространенные корпуса лазерных диодов с различными конфигурациями выводов. 10,0 В постоянного тока
7612A До 50 МГц 1,2 A 6 нс до CW Драйвер полупроводникового оптического усилителя
Идеально подходит для управления модулями SOA или BOA
3,0 В постоянного тока

AMI также предлагает драйверы диодов для следующих приложений:

Драйвер SOA
Драйверы импульсных лазерных диодов
Драйверы лазерных диодов CW
Контроллеры лазерных диодов

Драйверы лазерных диодов CW — аналоговые модули

AMI предлагает линейку драйверов для непрерывных лазерных диодов как для сильноточных, так и для слаботочных приложений.Модель 787 AMI идеально подходит для компактных промышленных и медицинских лазерных приложений. Запатентованная технология позволяет AMI предлагать диодные драйверы CW на 50 А, 5 В с лучшими в отрасли эффективностью и занимаемой площадью. Модель 787 может быть «штабелирована» для приложений с более высоким током. Модель 785A — отличный выбор для приложений, в которых используются чрезвычайно низкие пульсации на выходе и точное управление. Конечный пользователь может формировать выходные сигналы лазерного диода с полосой модуляции 600 кГц.

Наш мощный драйвер мощностью 2 кВт, модель 5705, разработан, чтобы вы могли соединять несколько модулей вместе для еще более мощных приложений.

Для лабораторных и настольных приложений драйвера непрерывного лазерного диода AMI предлагает контроллер непрерывного лазерного диода модели 880D. Эта система для монтажа в стойку под ключ обеспечивает непрерывные выходные токи для возбуждения лазерных диодов для накачки твердотельных лазеров. Модель 880D оснащена передней панелью и пультом дистанционного управления или может управляться через интерфейс RS-232. Выходной ток отображается на легко читаемом ЖК-дисплее. Модель 880D — отличный инструмент для создания прототипов, который позволяет разработчикам непрерывных диодных лазеров гибко определять лучший лазерный диод и привод для их конечного использования.После определения окончательных требований AMI может помочь определить и спроектировать OEM-драйвер, адаптированный к вашему приложению, который будет конкурентоспособным по цене, будет иметь высокую надежность и компактный размер.

Стандартные продукты, представленные ниже, представляют собой заявления о возможностях. Большинство драйверов для лазерных диодов CW, которые AMI продает для OEM-производства, адаптированы для удовлетворения требований конечного использования. Свяжитесь с AMI сегодня, чтобы обсудить конкретные требования вашего приложения.

Таблицы данных

(в формате PDF) доступны для моделей, перечисленных ниже.

Модель Пиковый ток Макс.нагрузка
Напряжение
Входное напряжение Характеристики Время нарастания Макс.выходная мощность CW
762 2,5 A 2,5 В +5 В постоянного тока Разработан для 14-контактного корпуса бабочка
Контроллер TEC, непрерывный или импульсный выход
10 нс 6,25 Вт
763 1,2 А 3.0 В +5 В постоянного тока Разработан для 14-выводного корпуса типа бабочка
Контроллер ТЕС, непрерывный или импульсный выход
6 нс 1,25 Вт
785A 20 A 26 В +12 В постоянного тока Выходной шум 0,9%
Ширина полосы модуляции 600 кГц
500 нс 130 Вт
787 50 A 5,0 В +12 В постоянного тока Возможность наращивания для более высокого тока.
Обновлено: 27.08.2021 — 06:15

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *