Что такое led драйвер: Что такое светодиодный (LED) драйвер?

Содержание

LED-драйвер: принцип работы, характеристики, производители

LED-драйвер (контроллер) — устройство, обеспечивающее стабильность тока при электроснабжении светодиодов и поддерживающее постоянный уровень яркости. Функцию защиты светодиодов от перегорания из-за превышенного напряжения выполняет резистор.Контроллеры для организации подсветки на улице и в помещении поставляются в алюминиевом, металлическом, пластмассовом корпусе, который имеет отверстия либо ребра для охлаждения и отвода тепла.

 

Корпус выполняется неразборным либо разборным с креплением на болтах. Контроллеры размещаться горизонтально и вертикально. Существует отдельная категория LED-драйверов, предназначенных для промышленного использования производителями светодиодных приборов освещения. Компоненты выполнены на отдельной плате или собраны в закрытый блок. В таком виде устройства устанавливаются в корпус светотехники.

Принцип работы LED-драйвера

Драйвер выполняет роль трансформатора и преобразует высокое напряжение стандартной бытовой сети 220В/50Гц в низковольтное 12В или 24В. В случае возникновения резких скачков напряжения в питающей сети драйвер стабилизирует его, обеспечивая оптимальный режим работы светодиодных потребителей и подавая на них стабильный ток. Поддержание постоянного тока необходимо и при температурных колебаниях окружающей среды. Рост температуры вызывает повышение тока, что приводит к повреждению светодиода.

Характеристики драйверов

По мощности LED-драйвера выпускаются следующих видов:

  • 20-60 Вт — устройства в пластмассовом корпусе;
  • 100-150 Вт — изделия в алюминиевом и металлическом корпусе.

Выходной ток может составлять от 150 мА до 700 мА. Обозначение класса защиты IP66 указывает, что драйвер может эксплуатироваться во влажной среде (вплоть до 100% влажности). Токопроводящие элементы таких устройств залиты компаундом, который предотвращает попадание влаги, возникновение короткого замыкания, повреждение контроллера.

Способы подключения драйвера

Подключение потребителей к контроллеру можно производить 2 способами:

  • Последовательно. Через цепь подключенных диодов проходит один и тот же ток, поэтому яркость на всех светодиодах одинаковая. Минус этого способа заключается в том, что при большом количестве светодиодов понадобится драйвер высокой мощности.
  • Параллельно. На аналогичное количество потребителей с такими же параметрами, как в первом случае, потребуется драйвер меньшей мощности. Части разделенной цепи будут светить неравномерно из-за разброса светодиодных параметров.

Виды LED-драйверов

В зависимости от типа устройства и области применения драйверы производятся 2 типов:

  • Линейные. Недорогие устройства, плавно выравнивающие ток при неустойчивом напряжении. Во время работы такие драйверы выделяют большое количество тепла и не пригодны для источников света с высокой мощностью.
  • Импульсные. Функционируют по принципу широтно-импульсной модуляции — значение тока зависит от длительности импульса в сравнении с количеством его повторений. Изделия имеют малые габариты и способны работать с большим диапазоном колебаний входного напряжения.

Производители драйверов

На российском рынке представлены LED-драйвера следующих производителей:

  • Mean Well. Тайваньский поставщик, предлагающий широкую линейку устройств для питания светодиодных приборов. Изделия отличаются высоким качеством и заводской гарантией 3-5 лет.
  • Monolithic Power Systems. Американский разработчик высокоинтегрированных драйверов — компактных и легких. Компания имеет большой опыт в разработке интегральных схем, применяет инновационные технологии, ориентируется на опыт конечного применения продуктов.
  • Inventronics. Совместное китайско-американское предприятие, ориентирующееся на внедрение новых разработок. Выпускает драйвера в том числе и для промышленного использования при производстве светодиодных светильников.
  • Tridonc. Австралийский производитель, который известен как поставщик контроллеров для бытового использования и создания трековых систем, даунлайтов.
  • Ирбис. Российский бренд, выпускающий драйвера с учетом качества отечественных электросетей. Разработаны модели для эксплуатации в различных географических поясах при любых температурах.

Надежность драйверов

Как никакие другие источники освещения, светодиодные ленты и светильники крайне требовательны к источникам питания и току. Например, эксплуатация люминесцентной лампы с превышенным на 20% током не вызовет существенного ухудшения технических характеристик. При таких же условиях эксплуатации светодиодных приборов их срок службы уменьшится многократно. Надежный драйвер защитит светодиоды от повреждения и преждевременного выхода из строя.


ЭМС LED драйверов

Светодиодные (LED) драйверы

LED драйвер это источник помех и от его качества зависит результат ЭМС тестирование в лаборатории электромагнитной совместимости. Другие части LED светильника, такие как светодиоды, кабеля, радиаторы, корпуса действует как антенны и могут увеличить помехи и эмиссию электромагнитной энергии в эфир.

Если светодиодный LED драйвер доступен на рынке, он должен проходит ряд испытания для сертификации или маркировки CE, FCC. Обычно светодиодные LED драйверы тестируется согласно стандартам для светильников или светодиодных ламп:

EN 55015 Предельные значения и методы измерений характеристик радиопомех электроосветительного и аналогичного оборудования
EN 61000−3−2 Электромагнитная совместимость. Часть 3 – 2. Пределы. Пределы для выбросов синусоидального тока оборудование с входным током не более 16A

EN 61547 Осветительное оборудование общего назначения. Требования к электромагнитной защищённости

Очень часто производители LED светильников приобретает тестированные и маркированные светодиодные драйверы, устанавливает их в свои лампы и отправляет их на ЭМС тестирование в аккредитованной лаборатории. После этого как они получают официальные результаты от ЕМС лаборатории: «Устройство не соответствуют нормам радиопомех», производители не могут понять: ПОЧЕМУ?

Три основные причины не соответствия:

1. Производители LED драйверов обманывают своих клиентов. Они не проверяли LED драйвера вообще или не проверяли текущую версию LED драйвера или поменяли электронные компоненты в драйверах в процессе производства, уже после испытаний и сертификации (если такая была).

2. Светодиодный драйвер тестируется в ЭМС лаборатории и проходит все испытания. Драйвер, во время в ЭМС тестирования, проверяется как отдельное устройство — без светодиодов, как нагрузки, без проводки (как в реальной светодиодной лампе). Светодиодный драйвер обычно тестируется с кабелем питания длиной <1,5м и нескольких десятков см длинной кабеля постоянного тока с резистивной нагрузкой или резистивной нагрузки с параллельно подключёнными конденсаторами — 10 мкФ и 0,1 мкФ. Эта ситуация отличается от реальной светодиодной (LED) лампы, поэтому результаты тестирования могут быть разными. В частности, в случае, если радиопомехи во время испытаний очень близки к предельным величинам.

3. Производитель светодиодных светильников не соблюдает инструкции установки LED драйвера. Обычно допускается такие ошибки как — неправильное заземление драйвера и LED радиатора, неправильная проводка кабелей.

RF EMC DEVEL­OP­MENT уже протестировали сотни светодиодных драйверов от различных производителей со всего мира: Mean­well, TDK-​Lamda, ММП-​Ирбис т.

д. На ринке есть компании, чьи (LED) драйвера ВСЕГДА соответствует ЭМС требованиям и не наблюдается проблемы в любой конфигурации. Есть компании, которые имеют дешевые, низкокачественные светодиодные драйверы, которые не соответствуют ЭМС стандартам, но и они предлагают высококачественные светодиодные драйверы, с которыми нету проблем во время ЭМС тестирования.

Но мы также обнаружили производители LED драйверов, которые распространяют низкокачественные LED драйверы с ложными сертификаты и протоколами испытаний, которые не соответствует ЭМС требованиям. Некоторые из них уже включены в список RAPEX.

RF EMC DEVEL­OP­MENT рекомендует внимательно проверять документацию LED драйверов перед покупкой большой партии и проверить в лаборатории электромагнитной совместимости пару образцов– особенно обращая вниманию на помехи, излучение в эфир, низкочастотные помехи (потребляемый ток).

RF EMC DEVEL­OP­MENT предлагает предварительные и аккредитованные ЭМС тесты и тесты на безопасность– LED драйверов, прототипов LED светильников и уже готовой продукции. RF EMC DEVEL­OP­MENT предлагает обучение персонала для проведение предварительных тестов на заводе с оборудованием низкой стоимости.

Что такое лед драйвер для светодиодов. Что такое драйвер для светодиодов и как подобрать нужный

Светодиоды продолжают форсировать очередные рубежи в мире искусственного освещения, подтверждая своё превосходство целым рядом преимуществ. Большая заслуга в успешном развитии LED-технологий принадлежит источникам питания. Работая в тандеме, драйвер и светодиод открывают новые горизонты, гарантируя потребителю стабильную яркость и заявленный срок службы.

Что собой представляет светодиодный драйвер, и какая функциональная нагрузка на него возложена? На что обратить внимание при выборе и есть ли альтернатива? Попробуем разобраться.

Что такое драйвер для светодиода и для чего он нужен?

Выражаясь по-научному, LED-драйвером называют электронное устройство, основным выходным параметром которого является стабилизированный ток.

Именно ток, а не напряжение. Устройство со стабилизацией напряжения принято именовать «блоком питания» с указанием номинального выходного напряжения. Его используют для запитки светодиодных лент, модулей и LED-линеек. Но речь пойдет не о нём.

Главный электрический параметр драйвера для светодиода – выходной ток, который он может длительно обеспечивать при подключении соответствующей нагрузки. В роли нагрузки выступают отдельные светодиоды или сборки на их основе. Для стабильного свечения необходимо, чтобы через кристалл светодиода протекал ток, указанный в паспортных данных. В свою очередь, напряжение на нём упадёт ровно столько, сколько потребуется p-n переходу при данном значении тока. Точные значения протекающего тока и прямого падения напряжения можно определить из вольта-мперной характеристики (ВАХ) полупроводникового прибора. Питание драйвер получает, как правило, от постоянной сети 12 В или переменной сети 220 В. Его выходное напряжение указывается в виде двух крайних значений, между которыми гарантируется стабильная работа.

Как правило, рабочий диапазон может быть от трёх вольт до нескольких десятков вольт. Например, драйвер с U вых =9-12 В, I вых =350 мА, как правило, предназначен для последовательного подключения трёх белых светодиодов мощностью 1 Вт. На каждом элементе упадёт примерно 3,3 В, что в сумме составит 9,9 В, а значит это попадает в указанный диапазон.

К стабилизатору с разбросом напряжений на выходе 9-21 В и током 780 мА можно подключить от трех до шести светодиодов по 3 Вт каждый. Такой драйвер считается более универсальным, но имеет меньший КПД при включении с минимальной нагрузкой.

Немаловажным параметром светодиодного драйвера является мощность, которую он может отдать в нагрузку. Не стоит пытаться выжать из него максимум. Особенно это касается радиолюбителей, которые мастерят последовательно-параллельные цепочки из светодиодов с выравнивающими резисторами, а потом этой самодельной матрицей перегружают выходной транзистор стабилизатора.

Электронная часть драйвера для светодиода зависит от многих факторов:

  • входных и выходных параметров;
  • класса защиты;
  • применяемой элементной базы;
  • производителя.

Современные драйверы для светодиодов изготавливают по принципу ШИМ-преобразования и с помощью специализированных микросхем. Широтно-импульсные преобразователи состоят из импульсного трансформатора и схемы стабилизации тока. Они питаются от сети 220 В, имеют высокий КПД и защиту от короткого замыкания и перегрузки.

Драйверы на базе одной микросхемы более компактны, так как рассчитаны на питание от низковольтного источника постоянного тока. Они также обладают высоким КПД, но их надёжность ниже из-за упрощенной электронной схемы. Такие устройства очень востребованы при светодиодном тюнинге автомобиля. В качестве примера можно назвать ИМС PT4115, о готовом схемотехническом решении на основе этой микросхемы можно прочесть в .

Критерии выбора

Сразу хочется отметить, что резистор – это не альтернатива драйверу для светодиода. Он никогда не защитит от импульсных помех и перепадов в питающей сети. Любое изменение входного напряжения пройдёт через резистор и приведет к скачкообразному изменению тока из-за нелинейности ВАХ светодиода.

Драйвер, собранный на базе линейного стабилизатора – тоже не лучший вариант. Низкая эффективность сильно ограничивает его возможности.

Выбирать LED-драйвер нужно только после того, как будет точно известно количество и мощность подключаемых светодиодов.

Помните! Чипы одного типоразмера могут иметь различную мощность потребления ввиду большого количества подделок. Поэтому старайтесь приобретать светодиоды только в проверенных магазинах.

Касаемо технических параметров, то на корпусе LED-драйвера обязательно должно быть указано:

  • мощность;
  • рабочий диапазон входного напряжения;
  • рабочий диапазон выходного напряжения;
  • номинальный стабилизированный ток;
  • степень защиты от влаги и пыли.

Очень привлекательны бескорпусные драйверы с питанием от 12 В и 220 В. Среди них существуют разные модификации, в которых можно подключать как один, так и несколько мощных светодиодов. Такие устройства удобны для проведения лабораторных исследований и экспериментов. Для домашнего использования всё равно придётся поместить изделие в корпус. В итоге денежная экономия на плате драйвера открытого типа достигается в ущерб надежности и эстетики.

Кроме подбора драйвера для светодиода по электрическим параметрам, потенциальный покупатель должен четко представлять условия его будущей эксплуатации (место размещения, температура, влажность). Ведь оттого, где и как будет установлен драйвер, зависит надёжность всей системы.

Читайте так же

Мощные светодиоды 1 Вт и выше сейчас совсем недорогие. Я уверен, что многие из вас используют такие светодиоды в своих проектах.

Однако питание таких светодиодов по-прежнему не такое простое и требует специальных драйверов. Готовые драйвера удобны, но они не регулируемые, или зачастую их возможности излишни. Даже возможности моего собственного универсального светодиодного драйвера могут быть лишними. Некоторые проекты требуют самого простого драйвера, возможности которого хватит.

Poorman»s Buck – простой светодиодный драйвер постоянного тока.

Этот светодиодный драйвер построен без микроконтроллера или специализированной микросхемы. Все используемые детали легкодоступные.

Хотя драйвер задумывался как самый простой, я добавил функцию регулировки тока. Ток может подстраиваться регулятором, установленным на плате или ШИМ сигналом. Это делает драйвер идеальным для использования с Arduino или другими управляющими устройствами — вы можете управлять мощными светодиодами микроконтроллером, просто отправляя ШИМ сигнал. С Arduino вы можете просто подавать сигнал с «AnalogWrite ()» для управления яркостью мощных светодиодов.

Особенности драйвера

Работа по схеме buck-конвертера (импульсного понижающего (step-down) преобразователя)
Широкий диапазон выходных напряжения от 5 до 24В. Питание от батарей и адаптеров переменного тока.
Настраиваемый выходной ток до 1А.
Метод контроля тока «цикл за циклом»
До 18Вт выходной мощности (при напряжении питания 24В и шестью 3 Вт светодиодами)
Контроль тока при помощи потенциометра.
Контроль тока может быть использован как встроенный диммер.
Защита от короткого замыкания на выходе.
Возможность управления ШИМ сигналом.
Маленькие размеры — всего 1х1,5х0,5 дюйма(без учета ручки потенциометра).

Схема светодиодного драйвера

Схема построена на очень распространенном интегральном двойном компараторе LM393, включённым по схеме понижающего преобразователя.

Индикатор выходного тока сделан на R10 и R11. В результате напряжение пропорционально току в соответствии с законом Ома. Это напряжение сравнивается с опорным напряжением на компараторе. Когда Q3 открывается, ток течёт через L1, светодиоды и резисторы R10 и R11. Индуктор не позволяют току повышаться резко, поэтому ток возрастает постепенно. Когда напряжение на резисторе повышается, напряжение на инвертирующем входе компаратора также увеличивается. Когда оно становится выше опорного напряжения, Q3 закрывается и ток через него перестаёт течь.

Поскольку индуктор «заряжен», в схеме остаётся ток. Он течет через диод Шоттки D3 и питает светодиоды. Постепенно этот ток затухает и цикл начинается снова. Этот метод контроля тока называется «цикл за циклом». Также этот метод имеет защиту от короткого замыкания на выходе.
Весь этот цикл происходит очень быстро — более чем 500 000 раз в секунду. Частота этих циклов изменяется в зависимости от напряжения питания, прямого падения напряжения на светодиоде и тока.

Опорное напряжение создается обычным диодом. Прямое падение напряжения на диоде составляет около 0,7В и после диода напряжение остаётся постоянным. Затем это напряжение регулируется потенциометром VR1 для контроля выходного тока. При помощи потенциометра выходной ток можно изменять в диапазоне около 11:01 или от 100% до 9%. Это очень удобно. Иногда после установки светодиодов они оказываются намного ярче, чем ожидалось. Вы можете просто уменьшить ток для получения необходимой вам яркости. Вы можете заменить потенциометр двумя обычными резисторами, если вы хотите установить яркость светодиодов один раз.

Преимущество такого регулятора в том, что он контролирует выходной ток без «сжигания» избыточной энергии. Энергии от источника питания берётся только столько, сколько нужно, чтобы получить необходимый выходной ток. Немного энергии теряется из-за сопротивления и других факторов, но эти потери минимальны. Такой конвертер имеет эффективность 90% и выше.
Этот драйвер при работе мало греется и не требует теплоотвода.

Настройка выходного тока

Драйвер может быть настроен на выходной ток от 350 мА до 1А. Изменяя значение R2 и подключая сопротивление R11, вы можете изменить выходной ток.

Потенциометр изменяет выходной ток от 9 до 100% от заданного тока. Если вы настроили драйвер на 1А на выходе, то минимальный возможный выходной ток будет 90мА. Это можно использовать для регулировки яркости светодиода.

ШИМ вход

Для основной работы схемы достаточно одного компаратора. Но в LM393 есть два компаратора. Чтобы второй компаратор не пропадал, я добавил управление ШИМ сигналом. Второй компаратор работает как логический, так что на входе ШИМ не должен быть никуда подключен или на нём должен быть высокий логический уровень. Обычно этот вывод можно оставить не подключённым и драйвер будет работать без ШИМ. Но если вам нужен дополнительный контроль, вы можете подключить Arduino или микроконтроллер и управлять светодиодами при помощи его. При помощи одного Arduino можно контролировать до 6 драйверов.

ШИМ работает в пределах текущего уровня, установленного потенциометром. Т.е. если вы поставите минимальный ток и ШИМ на 10%, то ток будет ещё ниже.

Источник ШИМ сигнала не ограничивается микроконтроллером. Можно использовать все, что производит напряжение от 0 до 5В. Можете использовать фоторезисторы, таймеры, логические микросхемы. Максимальная частота ШИМ составляет около 2 кГц, но я думаю, что максимальная частота 1 кГц будет оптимальной.

ШИМ вход также может быть использован в качестве входа для пульта дистанционного управления включения / выключения. Но схема будет работать, когда выключатель разомкнут и выключена, когда замкнут.

Сборка схемы очень проста. Все использованные детали стандартные.

Аналоги

Индуктивность L1 может быть от 47 до 100 мкГн, с током как минимум 1.2А. C1 может быть от 1 до 10 мкФ. С4 может быть до 22 мкФ, на минимум 35В постоянного тока.
Q1 и Q2 можно заменить на практически любые транзисторы общего назначения. Q3 может быть заменен другим P-канальным MOSFET –транзистором с током утечки более 2А, напряжением сток-исток не менее 30 В, и входным порогом ниже 4В.

Сборка
Припаяйте детали начиная с самых маленьких, в данном случае это IC1. Все резисторы и диоды установлены вертикально. Будьте внимательны с полярностью и цоколёвкой диодов и транзисторов.

Я разработал одностороннюю печатную плату, которую можно изготовить дома. Gerber файлы можно скачать ниже.

Подключение светодиодов

Напряжение питания должно быть не менее 2В, в соответствии с документацией к светодиодам. Напряжение питания белых светодиодов около 3.5В.

При максимальном напряжении питания к этому драйверу можно подключить до 6 светодиодов, соединенных последовательно. Лучше подключать светодиоды так, чтобы все они получали одинаковый ток. Ниже показано количество светодиодов и требуемое им напряжение питания.

Вы можете использовать последовательно-параллельное подключение светодиодов для подключения большего количества светодиодов по мере необходимости. Если у вас есть только источник питания 12В, но вы хотите подключить 6 светодиодов, сделать две строки из 3 светодиодов включенных последовательно и подключите их параллельно, как показано на схеме.

Я уверен, что есть множество применений для небольшого драйвера – фары, настольные лампы, фонари т.д. Питать схему можно напряжением от 5 до 24В, от этого будет зависеть количество подключаемых светодиодов. Для питания лучше использовать батарейки.

Список радиоэлементов
ОбозначениеТипНоминалКоличествоПримечаниеМагазинМой блокнот
IC1Компаратор

LM393

1В блокнот
Q1Биполярный транзистор

2N5551

12222, 3904 и др.В блокнот
Q2Биполярный транзистор

2N5401

12907, 3906 и др.В блокнот
Q3MOSFET-транзистор

NTD2955

1IRFU9024В блокнот
D1, D2Выпрямительный диод

1N4148

2В блокнот
D3Диод Шоттки

SB140

1В блокнот
L1Катушка индуктивности47-100 мкГн/1.2A1В блокнот
C1Конденсатор2.2 мкФ1В блокнот
C2, C3Конденсатор0.1 мкФ2В блокнот
C4Электролитический конденсатор100мкФ 35В1В блокнот
C5Конденсатор22 пФ1ОпциональноВ блокнот
R1, R4, R7Резистор

4.7 кОм

3
Сегодня в продаже можно увидеть множество различных типов источников питания для светодиодов. Данная статья призвана облегчить выбор нужного вам источника.

Прежде всего, рассмотрим различие стандарного блока питания и драйвера для светодиодов . Для начала нужно определиться — что такое блок питания? В общем случае это — источник питания любого типа, представляющий собой отдельный функциональный блок. Обычно он имеет определенные входные и выходные параметры, причем неважно — для питания каких именно устройств предназначен. Драйвер для питания светодиодов обеспечивает стабильный ток на выходе. Другими словами — это тоже блок питания. Драйвер — это лишь маркетинговое обозначение — дабы избежать путаницы. До появления светодиодов источники тока — а им и является драйвер, не имели широкого распространения. Но вот появился сверхяркий светодиод — и разработка источников тока пошла семимильными шагами. А чтобы не путаться — их называют драйверами. Итак, давайте договоримся о некоторых терминах. Блок питания — это источник напряжения (constant voltage), Драйвер — источник тока (constant current). Нагрузка — то, что мы подключаем к блоку питания или драйверу.

Блок питания

Большинство электроприборов и компонентов электроники требуют для своей работы источник напряжения. Им является обычная электрическая сеть, которая присутствует в любой квартире в виде розетки. Всем известно словосочетание «220 вольт». Как видите — ни слова о токе. Это означает, что если прибор рассчитан на работу от сети 220 В, то вам неважно — сколько тока он потребляет. Лишь бы было 220 — а ток он возьмет сам — столько, сколько ему нужно. К примеру, обычный электрический чайник мощностью 2 кВт (2 000 Вт), включенный в сеть 220 в, потребляет следующий ток: 2 000 / 220 = 9 ампер. Довольно много, учитывая, что большинство обычных электрических удлинителей рассчитано на 10 ампер. В этом причина частого срабатывания защиты (автомата) при включении чайников в розетку через удлинитель, в который и так вставлено много приборов — компьютер, например. И хорошо, если защита сработает, в противном случае удлинитель может просто расплавиться. И так — любой прибор, рассчитанный на включение в розетку — зная, какова его мощность, можно вычислить потребляемый ток.
Но большинство бытовых устройств, таких как телевизор, DVD-проигрыватель, компьютер, нуждаются в понижении сетевого напряжения с 220 В до нужного им уровня — например, 12 вольт. Блок питания — это как раз то устройство, которое занимается таким понижением.
Понизить напряжение сети можно разными способами. Самые распостраненные блоки питания — трансформаторный и импульсный.

Блок питания на основе трансформатора

В основе такого блока питания лежит большая, железная, гудящая штуковина.:) Ну, нынешние трансформаторы гудят поменьше. Основное достоинство — простота и относительная безопасность таких блоков. Они содержат минимум деталей, но при этом обладают неплохими характеристиками. Основной минус — КПД и габариты. Чем больше мощность блока питания — тем он тяжелее. Часть энергии расходуется на «гудение» и нагрев:) Кроме того, в самом трансформаторе теряется часть энергии. Другими словами — просто, надежно, но имеет большой вес и много потребляет — КПД на уровне 50-70%. Имеет важный неотъемлемый плюс — гальваническую развязку от сети. Это означает, что если произойдет неисправность или вы случайно залезете рукой во вторичную цепь питания — током вас не стукнет:) Еще один несомненный плюс — блок питания может быть включен в сеть без нагрузки — это ему не повредит.
Но давайте посмотрим, что будет, если перегрузить такой блок питания .
Имеется: трансформаторный блок питания с выходным напряжением 12 вольт и мощностью 10 ватт. Подключим к нему лампочку 12 вольт 5 ватт. Лампочка будет светиться на все свои 5 ватт и потреблять тока 5 / 12 = 0,42 А.



Подключим вторую лампочку последовательно к первой, вот так:



Обе лампочки будут светиться, но очень тускло. При последовательном соединении ток в цепи останется тем же — 0,42 А, а вот напряжение распределится между двумя лампочками, то есть каждая получит по 6 вольт. Понятно, что светиться они будут еле-еле. Да и потреблять при этом будут каждая примерно по 2,5 Вт.
Теперь изменим условия — подключим лампочки параллельно:



В итоге напряжение на каждой лампе будет одинаковое — 12 вольт, а вот тока они возьмут каждая по 0,42 А. То есть ток в цепи возрастет в два раза. Учитывая, что блок у нас мощностью 10 Вт — мало ему уже не покажется — при параллельном включении мощность нагрузки, то есть лампочек, суммируется. Если мы еще и третью подключим — то блок питания начнет дико греться и в конце концов сгорит, возможно, прихватив с собой вашу квартиру. А все это потому, что он не умеет ограничивать ток. Поэтому очень важно правильно рассчитать нагрузку на блок питания. Конечно, блоки посложнее содержат защиту от перегрузки и автоматически отключаются. Но рассчитывать на это не стоит — защита, бывает, тоже не срабатывает.

Импульсный блок питания

Самый простой и яркий представитель — китайский блок питания для галогеновых ламп 12 В. Содержит небольшое количество деталей, легкий, маленький. Размеры 150 Вт блока — 100х50х50 мм, вес грамм 100. Такой же трансформаторный блок питания весил бы килограмма три, а то и больше. В блоке питания для галогенных ламп тоже есть трансформатор, но он маленький, потому что работает на повышенной частоте. Надо отметить, что КПД такого блока тоже не на высоте — порядка 70-80%, при этом он выдает приличные помехи в электрическую сеть. Есть еще множество блоков, основанных на аналогичном принципе — для ноутбуков, принтеров и т.п. Итак, основное достоинство — небольшие габариты и малый вес. Гальваническая развязка также присутствует. Недостаток — тот же, что и у его трансформаторного собрата. Может сгореть от перегрузки:) Так что если вы решили сделать у себя дома освещение на 12 В галогенных лампах — подсчитайте допустимую нагрузку на каждый трансформатор.
Желательно создавать от 20 до 30% запаса. То есть если у вас трансформатор на 150 Вт — лучше не вешайте на него больше, чем 100 Вт нагрузки. И внимательно следите за равшанами, если они делают у вас ремонт. Расчет мощности им доверять не стоит. Также стоит отметить, что импульсные блоки не любят включения без нагрузки . Именно поэтому не рекомендуется оставлять зарядные устройства для сотовых в розетке по окончании зарядки. Впрочем, это все делают, поэтому большинство нынешних импульсных блоков содержат защиту от включения без нагрузки.

Эти два простых представителя семейства блоков питания выполняют общую задачу — обеспечение нужного уровня напряжения для питания устройств, которые к ним подключены. Как уже было сказано выше — устройства сами решают — сколько тока им нужно.

Драйвер

В общем случае драйвер — это источник тока для светодиодов . Для него обычно не бывает параметра «выходное напряжение». Только выходной ток и мощность. Впрочем, вы уже знаете, как можно определить допустимое выходное напряжение — делим мощность в ваттах на ток в амперах.
На практике это означает следующее. Допустим, параметры драйвера следующие: ток — 300 миллиампер, мощность — 3 ватта. Делим 3 на 0,3 — получаем 10 вольт. Это максимальное выходное напряжение, которое может обеспечить драйвер. Предположим, что у нас есть три светодиода, каждый из них рассчитан на 300 мА, а напряжение на диоде при этом должно быть около 3 вольт. Если мы подключим один диод к нашему драйверу, то напряжение на его выходе будет 3 вольта, а ток 300 мА. Подключим второй диод последовательно (см. пример с лампами выше) с первым — на выходе будет 6 вольт 300 мА, подключим третий — 9 вольт 300 мА. Если же мы подключим светодиоды параллельно — то эти 300 мА распределятся между ними примерно поровну, то есть примерно по 100 мА. Если мы подключим к драйверу на 300 мА трехваттные светодиоды с рабочим током 700 мА — они будут получать только 300 мА.
Надеюсь, принцип понятен. Исправный драйвер ни при каких условиях не выдаст больше тока, чем он рассчитан — как бы вы не подключали диоды. Надо отметить, что есть драйвера, которые рассчитаны на любое количество светодиодов, лишь бы их общая мощность не превышала мощность драйвера, а есть те, которые рассчитаны на определенное количество — 6 диодов, например. Некоторый разброс в меньшую сторону они, впрочем, допускают — можно подключить пять диодов или даже четыре. КПД универсальных драйверов хуже чем у их собратьев, рассчитанных на фиксированное количество диодов в силу некоторых особенностей работы импульсных схем. Также драйвера с фиксированным количеством диодов обычно содержат защиту от нештатных ситуаций. Если драйвер рассчитан на 5 диодов, а вы подключили три — вполне возможно, что защита сработает и диоды либо не включатся либо будут мигать, сигнализируя об аварийном режиме. Надо отметить, что большинство драйверов плохо переносят подключение к питающему напряжению без нагрузки — этим они сильно отличаются от обычного источника напряжения.

Итак, разницу между блоком питания и драйвером мы определили. Теперь рассмотрим основные типы драйверов для светодиодов, начиная с самых простых.

Резистор

Это простейший драйвер для светодиода. Выглядит как бочонок с двумя выводами. Резистором можно ограничить ток в цепи, подобрав нужное сопротивление. Как это сделать — подробно описано в статье «Подключение светодиодов в авто»
Недостаток — низкий КПД, отсутствие гальванической развязки. Способов надежно запитать светодиод от сети 220 В через резистор не существует, хотя во многих бытовых выключателях подобная схема используется.

Конденсаторная схема.

Сходна со схемой на резисторе. Недостатки те же. Возможно изготовить конденсаторную схему достаточной надежности, но при этом стоимость и сложность схемы сильно возрастут.

Микросхема LM317

Это следующий представитель семейства простейших драйверов для светодиодов . Подробности — в вышеупомянутой статье о светодиодах в авто. Недостаток — низкий КПД, требуется первичный источник питания. Преимущество — надежность, простота схемы.

Драйвер на микросхеме типа HV9910

Данный тип драйверов получил изрядную популярность благодаря простоте схемы, дешевизне комплектующих и небольших габаритах.
Преимущество — универсальность, доступность. Недостаток — требует квалификации и осторожности при сборке. Отсутствует гальваническая развязка с сетью 220 В. Высокие импульсные помехи в сеть. Низкий коэффициент мощности.

Драйвер с низковольтным входом

В эту категорию входят драйверы, рассчитанные на подключение к первичному источнику напряжения — блоку питания или аккумулятору. Например, это драйверы для светодиодных фонарей или ламп, предназначенных для замены галогенных 12 В. Преимущество — небольшие габариты и вес, высокий КПД, надежность, безопасность при эксплуатации. Недостаток — требуется первичный источник напряжения.

Сетевой драйвер

Полностью готовы к использованию и содержат все необходимые элементы для питания светодиодов. Преимущество — высокий КПД, надежность, наличие гальванической развязки, безопасность при эксплуатации. Недостаток — высокая стоимость, труднодоступны для приобретения. Могут быть как в корпусе, так и без корпуса. Последние обычно применяют в составе ламп или других источников света.

Применение драйверов на практике

Большинство людей, планирующих использовать светодиоды , совершают типичную ошибку. Сначала приобретаются сами СИД , затем под них подбирается драйвер . Ошибкой это можно считать потому, что в настоящее время мест, где можно приобрести в достаточном ассортименте драйвера, не так уж и много. В итоге, имея на руках вожделенные светодиоды, вы ломаете голову — как подобрать драйвер из имеющегося в наличии. Вот купили вы 10 светодиодов — а драйвера только на 9 есть. И приходится ломать голову — как быть с этим лишним светодиодом. Может быть, проще было сразу на 9 рассчитывать. Поэтому выбор драйвера должен происходить одновременно с выбором светодиодов. Далее, нужно учитывать особенности светодиодов, а именно падение напряжения на них. К примеру, красный 1 Вт светодиод имеет рабочий ток 300 мА и падение напряжения 1,8-2 В. Потребляемая им мощность составит 0,3 х 2 = 0,6 Вт. А вот синий или белый светодиод имеет при таком же токе падение напряжения 3-3,4 В, то есть мощность 1 Вт. Стало быть, драйвер с током 300 мА и мощностью 10 Вт «потянет» 10 белых или 15 красных светодиодов. Разница существенная. Типовая схема подключения 1 Вт светодиодов к драйверу с выходным током 300 мА выглядит так:

У стандартных 1 Вт светодиодов минусовой вывод больше плюсового по размеру, поэтому его легко отличить.

Как же быть, если доступны только драйвера с током 700 мА? Тогда придется использовать четное количество светодиодов , включая их по два параллельно.

Хочу заметить, что многие ошибочно предполагают, что рабочий ток 1 Вт светодиодов — 350 мА. Это не так, 350 мА — это МАКСИМАЛЬНЫЙ рабочий ток. Это означает, что при продолжительной работе необходимо использовать источник питания с током 300-330 мА. Это же верно и для параллельного включения — ток на один светодиод не должен превышать указанной цифры 300-330 мА. Вовсе не значит, что работа на повышенном токе вызовет отказ светодиода. Но при недостаточном теплоотводе каждый лишний миллиампер способен сократить срок службы. К тому же чем выше ток — тем ниже КПД светодиода, а значит, сильнее его нагрев.

Если речь пойдет о подключении светодиодной ленты или модулей, рассчитанных на 12 или 24 вольта, нужно принимать во внимание, что предлагаемые для них источники питания ограничивают напряжение, а не ток, то есть не являются драйверами в принятой терминологии. Это означает, во первых, что нужно внимательно следить за мощностью нагрузки, подключаемой к определенному блоку питания. Во-вторых, если блок недостаточно стабилен, скачок выходного напряжения может погубить вашу ленту. Слегка облегчает жизнь то, что в лентах и модулях (кластерах) установлены резисторы, позводяющие ограничить ток до определенной степени. Надо сказать, светодиодная лента потребляет относительно большой ток. Например, лента smd 5050 , количество светодиодов в которой составляет 60 штук на метр, потребляет около 1,2 А на метр. То есть для запитки 5 метров понадобится блок питания с током не менее 7-8 ампер. При этом 6 ампер потребит сама лента, а один-два ампера нужно оставить про запас, чтобы не перегружить блок. А 8 ампер — это почти 100 ватт. Такие блоки недешевы.
Драйверы более оптимальны для подключения ленты, но найти такие специфические драйвера проблематично.

Подытоживая, можно сказать, что выбору драйвера для светодиодов нужно уделять не меньше, а то и больше внимания, чем светодиодам. Небрежность при выборе чревата выходом из строя светодиодов, драйвера, чрезмерным потреблением и другими прелестями:)

Юрий Рубан, ООО «Рубикон», 2010 г .

Самым оптимальным способом подключения к 220В, 12В является использование стабилизатора тока, светодиодного драйвера. На языке предполагаемого противника пишется «led driver». Добавив к этому запросу желаемую мощность, вы легко найдёте на Aliexpress или Ebay подходящий товар.


  • 1. Особенности китайских
  • 2. Срок службы
  • 3. ЛЕД драйвер на 220В
  • 4. RGB драйвер на 220В
  • 5. Модуль для сборки
  • 6. Драйвер для светодиодных светильников
  • 7. Блок питания для led ленты
  • 8. Led драйвер своими руками
  • 9. Низковольтные
  • 10. Регулировка яркости

Особенности китайских

Многие любят покупать на самом большом китайском базаре Aliexpress. цены и ассортимент радуют. LED driver чаще всего выбирают из-за низкой стоимости и хороших характеристик.

Но с повышением курса доллара покупать у китайцев стало невыгодно, стоимость сравнялась с Российской, при этом отсутствует гарантия и возможность обмена. Для дешевой электроники характеристики бывают всегда завышены. Например, если указана мощность в 50 ватт, в лучшем случае то это максимальная кратковременная мощность, а не постоянная. Номинальная будет 35W — 40W.

К тому же сильно экономят на начинке, чтобы снизить цену. Кое где не хватает элементов, которые обеспечивают стабильную работу. Применяются самые дешевые комплектующие, с коротким сроком службы и невысокого качества, поэтому процент брака относительно высокий. Как правило, комплектующие работают на пределе своих параметров, без какого либо запаса.

Если производитель не указан, то ему не надо отвечать за качество и отзыв про его товар не напишут. А один и тот же товар выпускают несколько заводов в разной комплектации. Для хороших изделий должен быть указан бренд, значит он не боится отвечать за качество своей продукции.

Одним из лучших является бренд MeanWell, который дорожит качеством своих изделий и не выпускает барахло.

Срок службы

Как у любого электронного устройства у светодиодного драйвера есть срок службы, который зависит от условий эксплуатации. Фирменные современные светодиоды уже работают до 50-100 тысяч часов, поэтому питание выходит из строя раньше.

Классификация:

  1. ширпотреб до 20.000ч.;
  2. среднее качество до 50.000ч.;
  3. до 70.000ч. источник питания на качественных японских комплектующих.

Этот показатель важен при расчёте окупаемости на долгосрочную перспективу. Для бытового пользования хватает ширпотреба. Хотя скупой платит дважды, и в светодиодных прожекторах и светильниках это отлично работает.

ЛЕД драйвер на 220В

Современные светодиодные драйвера конструктивно выполняются на ШИМ контроллере, который очень хорошо может стабилизировать ток.

Основные параметры:

  1. номинальная мощность;
  2. рабочий ток;
  3. количество подключаемых светодиодов;
  4. степень защиты от влаги и пыли
  5. коэффициент мощности;
  6. КПД стабилизатора.

Корпуса для уличного использования выполняются из металла или ударопрочного пластика. При изготовлении корпуса из алюминия он может выступать в качестве системы охлаждения для электронной начинки. Особенно это актуально при заполнении корпуса компаундом.

На маркировке часто указывают, сколько светодиодов можно подключить и какой мощности. Это значение может быть не только фиксированным, но и в виде диапазона. Например, возможно от 4 до 7 штук по 1W. Это зависит от конструкции электрической схемы светодиодного драйвера.

RGB драйвер на 220В

..

Трёхцветные светодиоды RGB отличаются от одноцветных тем, что содержат в одном корпусе кристаллы разных цветов красный, синий, зелёный. Для управления ими каждый цвет необходимо зажигать отдельно. У диодных лент для этого используется RGB контроллер и блок питания.

Если для RGB светодиода указана мощность 50W, то это общая на всё 3 цвета. Чтобы узнать примерную нагрузку на каждый канал, делим 50W на 3, получим около 17W.

Кроме мощных led driver есть и на 1W, 3W, 5W, 10W.

Пульты дистанционного управления (ДУ) бывают 2 типов. С инфракрасным управлением, как у телевизора. С управлением по радиоканалу, ДУ не надо направлять на приёмник сигнала.

Модуль для сборки

Если вас интересует лед driver для сборки своими руками светодиодного прожектора или светильника, то можно использовать led driver без корпуса.

Прежде чем делать led driver 50W своими руками, стоит немного поискать, например есть в каждой диодной лампе. Если у вас есть неисправная лампочка, у которой неисправность в диодах, то можно использовать driver из неё.

Низковольтные

Подробно разберем виды низковольтных лед драйверов работающих от напряжения до 40 вольт. Наши китайские братья по разуму предлагают множество вариантов. На базе ШИМ контроллеров производятся стабилизаторы напряжения и стабилизаторы тока. Основное отличие, у модуля с возможностью стабилизации тока на плате находится 2-3 синих регулятора, в виде переменных резисторов.

В качестве технических характеристик всего модуля указывают параметры ШИМ микросхемы, на которой он собран. Например устаревший но популярный LM2596 по спецификациям держит до 3 Ампер. Но без радиатора он выдержит только 1 Ампер.

Более современный вариант с улучшенным КПД это ШИМ контроллер XL4015 рассчитанный на 5А. С миниатюрной системой охлаждения может работать до 2,5А.

Если у вас очень мощные сверхяркие светодиоды, то вам нужен led драйвер для светодиодных светильников. Два радиатора охлаждают диод Шотки и микросхему XL4015. В такой конфигурации она способна работать до 5А с напряжением до 35В. Желательно чтобы он не работал в предельных режимах, это значительно повысить его надежность и срок эксплуатации.

Если у вас небольшой светильник или карманный прожектор, то вам подойдет миниатюрный стабилизатор напряжения, с током до 1,5А. Входное напряжение от 5 до 23В, выход до 17В.

Регулировка яркости

Для регулирования яркости светодиода можно использовать компактные светодиодный диммеры, которые появились недавно. Если его мощности будет недостаточно, то можно поставить диммер побольше. Обычно они работают в двух диапазонах на 12В и 24В.

Управлять можно с помощью инфракрасного или радиопульта дистанционного управления (ДУ). Они стоят от 100руб за простую модель и от 200руб модель с пультом ДУ. В основном такие пульты используют для диодных лент на 12В. Но его с лёгкостью можно поставить к низковольтному драйверу.

Диммирование может быть аналоговым в виде крутящейся ручки и цифровым в виде кнопок.

Мы рассмотрим действительно простой и недорогой мощный светодиодный драйвер. Схема представляет собой источник постоянного тока, что означает, что он сохраняет яркость LED постоянной независимо от того, какое питание вы используете. Ели при ограничении тока небольших сверхярких светодиодов достаточно резистора, то для мощностей свыше 1-го ватта нужна специальная схема. В общем так питать светодиод лучше, чем с помощью резистора. Предлагаемый led драйвер идеально подходит особенно для , и может быть использован для любого их числа и конфигурации, с любым типом питания. В качестве тестового проекта, мы взяли LED элемент на 1 ватт. Вы можете легко изменить элементы драйвера на использование с более мощными светодиодами, на различные типы питания — БП, аккумуляторы и др.

Технические характеристики led драйвера:

Входное напряжение: 2В до 18В
— выходное напряжение: на 0,5 меньше, чем входное напряжение (0.5V падение на полевом транзисторе)
— ток: 20 ампер

Детали на схеме:

R2: приблизительно в 100-омный резистор

R3: подбирается резистор

Q2: маленький NPN-транзистор (2N5088BU )

Q1: большой N-канальный транзистор (FQP50N06L )

LED: Luxeon 1-ватт LXHL-MWEC


Другие элементы драйвера:

В качестве источника питания использован трансформатор-адаптер, вы можете использовать батареи. Для питания одного светодиода 4 — 6 вольт достаточно. Вот почему эта схема удобна, что вы можете использовать широкий спектр источников питания, и он всегда будет светить одинаково. Радиатор не требуется, так как идёт около 200 мА тока. Если планируется больше тока, вы должны установить LED элемент и транзистор Q1 на радиатор.

Выбор сопротивления R3

— ток LED устанавливается с помощью R3, он приблизительно равен: 0.5 / R3

Мощность рассеиваемая на резисторе приблизительно: 0.25 / R3

В данном случае установлен ток 225 мА с помощью R3 на 2,2 Ом. R3 имеет мощность 0,1 Вт, таким образом, стандартный 0,25 Вт резистор подходит отлично. Транзистор Q1 будет работать до 18 В. Если вы хотите больше, нужно изменить модель. Без радиаторов, FQP50N06L может рассеивать только около 0,5 Вт — этого достаточно для 200 мА тока при 3-х вольтовой разнице между источником питания и светодиодом.


Функции транзисторов на схеме:

Q1 используется в качестве переменного резистора.
Q2 используется в качестве токового датчика, а R3-это установочный резистор, который приводит к закрыванию Q2, когда течет повышенный ток. Транзистор создаёт обратную связь, которая непрерывно отслеживает текущие параметры тока и держит его точно в заданном значении.

светодиодный драйвер IC | Analog Devices

Некоторые файлы cookie необходимы для безопасного входа в систему, а другие необязательны для функциональной деятельности. Сбор наших данных используется для улучшения наших продуктов и услуг. Мы рекомендуем вам принять наши файлы cookie, чтобы обеспечить максимальную производительность и функциональность нашего сайта. Для получения дополнительной информации вы можете просмотреть сведения о файлах cookie. Узнайте больше о нашей политике конфиденциальности.

Принять и продолжить Принять и продолжить

Файлы cookie, которые мы используем, можно разделить на следующие категории:

Строго необходимые файлы cookie:
Это файлы cookie, которые необходимы для работы аналога.com или предлагаемые конкретные функции. Они либо служат единственной цели передачи данных по сети, либо строго необходимы для предоставления онлайн-услуг, явно запрошенных вами.
Аналитические / рабочие файлы cookie:
Эти файлы cookie позволяют нам проводить веб-аналитику или другие формы измерения аудитории, такие как распознавание и подсчет количества посетителей и наблюдение за тем, как посетители перемещаются по нашему веб-сайту. Это помогает нам улучшить работу веб-сайта, например, за счет того, что пользователи легко находят то, что ищут.
Функциональные файлы cookie:
Эти файлы cookie используются для распознавания вас, когда вы возвращаетесь на наш веб-сайт. Это позволяет нам персонализировать наш контент для вас, приветствовать вас по имени и запоминать ваши предпочтения (например, ваш выбор языка или региона). Потеря информации в этих файлах cookie может сделать наши службы менее функциональными, но не помешает работе веб-сайта.
Файлы cookie для таргетинга / профилирования:
Эти файлы cookie записывают ваше посещение нашего веб-сайта и / или использование вами услуг, страницы, которые вы посетили, и ссылки, по которым вы переходили.Мы будем использовать эту информацию, чтобы сделать веб-сайт и отображаемую на нем рекламу более соответствующими вашим интересам. С этой целью мы также можем передавать эту информацию третьим лицам.
Отклонить файлы cookie

Общие вопросы и ответы по драйверам / источникам питания для светодиодов

Драйверы светодиодов

или источники питания светодиодов обеспечивают светодиодные лампы электричеством, необходимым для максимальной производительности, подобно магнитному балласту люминесцентной лампы или низковольтному трансформатору лампы.Постоянный поток технологических инноваций и часто сбивающая с толку терминология может сделать выбор драйвера светодиодов непосильным даже для опытных профессионалов. Цель этой статьи — ответить на некоторые из наиболее распространенных вопросов и помочь дизайнеру / специалисту по свету разобраться в запутанном лабиринте выбора светодиодных драйверов.

  1. Что такое светодиодный драйвер и зачем он вам нужен?
    Светодиоды не могут работать без трех основных компонентов: чипсета, излучающего свет; драйвер, регулирующий мощность источника света; и радиатор, охлаждающий устройство.Драйвер светодиода является жизненно важным компонентом технологии, поскольку светодиоды используют мощность, преобразованную драйвером, для генерации света. Эти драйверы очень эффективны при преобразовании электроэнергии, поэтому светодиодная лампа мощностью 100 Вт может заменить металлогалогенную лампу мощностью 400 Вт.
  2. В чем разница между драйверами постоянного напряжения и постоянного тока?
    Одним из наиболее важных факторов, которые следует учитывать, является то, требуется ли приложению источник питания постоянного напряжения (CV), или постоянного тока (CC), .Драйвер CV обеспечивает фиксированное напряжение и подходит для освещения, где количество светодиодных цепочек и потребляемый ток неизвестны. В этих приложениях управление током осуществляется дополнительными компонентами на самом светодиодах. Драйверы CC обеспечивают постоянный ток и подходят для приложений, требующих постоянного тока, напрямую подключенного к светодиоду. Этот тип драйвера работает в ограниченном диапазоне напряжений, поэтому важно выбрать драйвер с подходящим номинальным напряжением.GRE Alpha, ведущий разработчик твердотельных источников питания для светодиодов, предлагает различные двухрежимные драйверы светодиодов для повышения гибкости проектирования освещения.
  3. Что такое драйвер светодиода переменного тока?
    Функция драйвера светодиода переменного тока заключается в понижении входного напряжения до более низкого выходного напряжения для удовлетворения небольших потребностей светодиода, обычно 12 или 24 вольт. Важно учитывать ваши требования к питанию, поскольку драйверы светодиодов переменного тока могут работать только с лампами, которые уже имеют внутренний преобразователь переменного тока в постоянный.
  4. Что такое PF и PFC и почему они важны?
    Коэффициент мощности (PF) — это соотношение между реальной и полной мощностью и представляет собой соотношение между фактической нагрузкой (кВт) и полной нагрузкой (кВА). Коррекция коэффициента мощности (PFC) имеет решающее значение для выбора драйвера светодиода, поскольку светодиоды с низким коэффициентом мощности потребляют более высокие нагрузки по току, чем нагрузки с более высоким коэффициентом мощности. Низкий коэффициент мощности приводит к более значительным потерям мощности в линиях электроснабжения, поэтому драйверы светодиодов должны соответствовать стандартам PFC.
  5. Поддерживает ли драйвер затемнение и без мерцания?
    Если приложение требует каких-либо уникальных функций, таких как регулировка яркости, обязательно выберите качественный светодиодный драйвер с функцией регулировки яркости без мерцания.Современные беспроводные драйверы светодиодов разработаны для совместимости с надежными беспроводными протоколами, такими как Bluetooth LE, Zigbee, EnOcean, Thread, Z-Wave и KNX, что обеспечивает практически мгновенную обратную связь без помех. Разработчики должны понимать различные доступные протоколы и сравнивать сильные стороны и ограничения.
  6. Могу ли я использовать драйвер на открытом воздухе?
    Драйверы светодиодов с классом защиты IP67 могут использоваться на открытом воздухе. Продукция с таким рейтингом полностью защищена от пыли и выдерживает погружение в воду на глубину до 1 м на срок до 30 минут.
  7. Совместим ли драйвер с системами беспроводного управления?
    Многие современные системы управления освещением должны иметь возможность подключения к Интернету вещей (IoT) — так называется сеть связанных беспроводных физических устройств. Если конструкция вашей системы требует беспроводного подключения, вы должны убедиться, что драйверы светодиодов являются беспроводными и могут «разговаривать» на том же языке, что и другие устройства в вашей системе. Подключенные устройства могут помочь дизайнерам спланировать системы, которые будут более энергоэффективными и интуитивно понятными.Если ваш светодиодный драйвер не должен «говорить» по одному из протоколов подключения loT, на рынке доступен широкий спектр надстроек модулей затемнения светодиодов. Эти продукты позволяют дизайнерам добавлять варианты дизайна проекта. «Это одна из наших основных уникальных инноваций, связанных с нашим модульным системным подходом», — сказал Ричард Фонг, директор GRE Alpha.
  8. Что такое заливка (инкапсуляция) и почему это важно?
    Герметизация увеличивает степень защиты IP (защита от проникновения) драйвера / источника питания за счет обеспечения водонепроницаемого барьера для защиты компонентов от жидкостей.Это особенно важно для наружного применения. Герметизирующий компаунд также отводит тепло от жизненно важных силовых компонентов к поверхности корпуса и, таким образом, снижает термическое напряжение и увеличивает срок службы компонентов.
  9. Каковы преимущества использования драйверов с высоким КПД?

    Энергоэффективность — это основная причина, по которой клиенты испытывают потребность в твердотельных светодиодных системах управления освещением. Использование высокоэффективных драйверов увеличивает достижимую экономию энергии.Источники питания с более высоким КПД рассеивают меньше тепла и продлевают срок службы продукта.

  10. Каков ожидаемый срок службы драйвера светодиода?
    Помимо экономии энергии, светодиодные системы освещения также должны выдерживать испытание временем. Известно, что светодиоды служат значительно дольше традиционных систем освещения. Таким образом, срок службы источника питания светодиода должен соответствовать ожидаемому сроку службы светодиода. Среднее время наработки на отказ (MTBF) — хороший индикатор качества светодиодного драйвера.Ведущие производители светодиодных драйверов, такие как GRE Alpha, указывают информацию о времени наработки на отказ в технических характеристиках своих продуктов. Разработчики систем освещения могут рассчитывать на целостность этих компонентов для своих систем управления.

Другими факторами, которые следует учитывать, являются надежность, функциональность и удобство использования. Не все водители одинаковы. Рассмотрим преимущества модульного пути. Основное преимущество заключается в том, что это дает пользователю возможность смешивать и подбирать то, что ему нужно, по разумной цене без необходимости чрезмерного проектирования.В этом отношении наш подход модульных систем уникален. Чтобы узнать больше о драйверах светодиодов и источниках питания, посетите GREAlpha.com или приведенные ниже статьи.

Список литературы

Корри, А. (1 января 2013 г.). Светодиодное освещение зависит от драйверов . Electronic Design, Нью-Йорк,
61, 5, 74.

Ван, Ю., Алонсо, Дж. М., и Руан, X. (1 июля 2017 г.). Обзор драйверов светодиодов и связанных технологий .Ieee Transactions on Industrial Electronics, 64, 7, 5754-5765.

Подано в: Промышленность

Как выбрать светодиодный драйвер IC?

LED зарекомендовал себя в области подсветки портативных устройств. Даже в области подсветки для ЖК-панели большого размера он начал бросать вызов распространенному CCFL. В освещении светодиоды особенно популярны на рынке благодаря своим особым характеристикам, таким как энергоэффективность, экологичность, длительный срок службы и низкие эксплуатационные расходы.Схема драйвера является важной и неотъемлемой частью светодиода. Будь то освещение, подсветка или панель дисплея, выбор технической архитектуры схемы драйвера должен соответствовать конкретным приложениям.

Механизм светодиодного освещения работает следующим образом: когда прямое напряжение прикладывается к обоим концам, неосновная и основная несущая в полупроводнике рекомбинируют, чтобы высвободить избыточную энергию, испуская фотоны. Основные функции схемы управления светодиодами заключаются в передаче переменного напряжения в постоянный источник питания и согласовании напряжения и тока в соответствии с требованиями светодиодных устройств.Помимо требований безопасности, схема драйвера светодиода должна также включать две другие основные функции:

Во-первых, постоянный ток должен поддерживаться как можно дольше, таким образом, изменение выходного тока может поддерживаться в диапазоне ± 10, особенно когда смена источника питания выходит за пределы диапазона ± 15. Вот причины использования драйвера постоянного тока при использовании светодиода в качестве монитора, других осветительных устройств или подсветки:

1. Чтобы ток привода не превысил максимальный уровень и не повлиял на его надежность.

2. Для удовлетворения ожидаемых требований к яркости и обеспечения однородности цвета и яркости каждого светодиода.

Во-вторых, схема драйвера должна поддерживать низкое энергопотребление, чтобы эффективность светодиодной системы оставалась на высоком уровне.

PWM (Pulse Width Modification) — это традиционная технология регулировки света, которая использует простые цифровые импульсы для включения и выключения светодиодного драйвера время от времени. Системе нужно только подавать широкие и узкие цифровые импульсы, чтобы легко изменять выход для регулировки яркости светодиода.Преимущество заключается в том, что эта технология может обеспечивать высококачественный белый свет с высокой эффективностью за счет простоты применения. Но есть фатальный недостаток: он подвержен EMI (электромагнитным помехам), иногда даже издает слышимые шумы.

Повышение напряжения — важная задача схемы драйвера светодиода, разделенная на два различных топологических режима, а именно: повышение напряжения через индуктивность и повышение заряда. Поскольку светодиод управляется током, а катушка индуктивности наиболее эффективна в момент передачи тока, наибольшая сила повышения напряжения через катушку индуктивности заключается в высоком КПД, который при правильной конструкции может достигать 90%.Однако не менее примечательна его слабость, то есть сильные электромагнитные помехи, которые предъявляют высокие требования к системам телекоммуникационных продуктов, таких как мобильные телефоны. С появлением зарядных насосов большинство мобильных телефонов не повышают напряжение через индуктор. Конечно, эффективность повышения напряжения с помощью зарядного насоса ниже, чем в противном случае.

Независимо от того, применяется ли освещение или задняя подсветка, разработчик продукта должен столкнуться с проблемой повышения эффективности передачи драйверов.Повышение эффективности передачи не только выгодно для портативных устройств, так как увеличивает время ожидания, но также является важным средством решения проблемы рассеивания тепла светодиодами. В освещении использование светодиода высокой мощности также подчеркивает проблему повышения эффективности передачи.

Светодиод нуждается в компонентах, стабилизирующих ток и напряжение, которые должны иметь высокое разделенное напряжение и низкое энергопотребление, в противном случае высокоэффективный светодиод снизит общую эффективность системы из-за высокого рабочего потребления, что противоречит принципу энергосбережения и высокого энергопотребления. эффективность.Следовательно, основная схема ограничения тока должна использовать высокоэффективные схемы, такие как емкость, катушка индуктивности или схема переключения с источником питания, поскольку можно обеспечить высокий КПД светодиодной системы вместо резистора или схемы последовательной стабилизации напряжения. Схема последовательной постоянной выходной мощности может поддерживать постоянную светоотдачу светодиода в широком диапазоне источников питания, но обычные ИС-схемы будут терять некоторую эффективность. Использование схемы переключения с источником питания может гарантировать постоянную выходную мощность с высокой эффективностью передачи при резких колебаниях напряжения источника питания.

В настоящее время светодиоды с их светоотдачей далеко не заменяют трехполосные люминесцентные лампы, однако светодиодные фонари могут эффективно работать при безопасном сверхнизком напряжении (SELV), например, подводное освещение в плавательных бассейнах или детских бассейнах, горнодобывающие лампы. Кроме того, светодиоды обладают уникальными преимуществами при прямом использовании зеленой энергии, такой как солнечная энергия, энергия ветра или аварийное освещение. В частности, при регулировке света, светодиоды не только обеспечивают регулировку от нуля до ста процентов, но также поддерживают высокую эффективность в течение всего процесса регулировки без ущерба для долговечности, что является сложной задачей для газоразрядных ламп.

Драйверы питания для светодиодов

Драйверы электронного светодиодного освещения

Эти драйверы представляют собой компактное решение для питания светодиодов. Электронный драйвер светодиода, как правило, меньше, легче и дешевле, чем магнитные драйверы, поэтому может быть предпочтительным для установок, где пространство ограничено.

Драйверы для жестких кабелей и сменные драйверы различной мощности доступны как в моделях с постоянным током, так и с постоянным напряжением. Чтобы настроить систему освещения, поищите в драйвере функции, такие как удаленный монтаж, или специальные элементы управления освещением, такие как регулировка яркости, которые совместимы с вашим драйвером.

Драйверы магнитных светодиодов

Эти магнитные драйверы светодиодов доступны как в моделях с постоянным током, так и с постоянным напряжением и имеют различные номинальные мощности.

Хотя магнитный драйвер может быть более громоздким и в некоторых случаях более дорогим, чем электронный драйвер, он, как правило, является более прочным и надежным вариантом для питания вашей светодиодной системы освещения.

Драйверы светодиодов на 12 Вольт

Основное назначение драйвера светодиода — преобразование входного переменного напряжения в низкое постоянное напряжение.Драйвер светодиодов на 12 вольт выходит за рамки простого ввода напряжения.

Он также фиксирует выходное напряжение источника питания на стабильном уровне 12 вольт, позволяя при этом изменять мощность нагрузки. По мере добавления светодиодных нагрузок выходное напряжение остается прежним (12 вольт), а выходной ток увеличивается, пока драйвер не достигнет максимальной нагрузки.

Драйверы постоянного напряжения обычно используются в коммерческих приложениях, таких как архитектурные вывески, где несколько светодиодов соединены вместе, а также в светодиодных ленточных огнях, полосовых световых индикаторах и шайбах.

Драйверы светодиодов на 24 В

светодиодных осветительных приборов, которым требуется фиксированное выходное напряжение 24 В, но переменная величина выходного тока требует 24-вольтного драйвера светодиода. Эти драйверы постоянного напряжения сочетают стабильное выходное напряжение 24 В с различными мощностями светодиодных систем освещения, таких как ленточные фонари, ленточные фонари, шайбовые фонари и т. Д.

Когда вы добавляете светодиоды в схему освещения, драйвер будет выдавать больший выходной ток, пока он не достигнет максимальной доступной мощности.

Что такое светодиодный драйвер?

Независимо от того, встроен ли он прямо в лампу, светильник или отдельный компонент, драйвер светодиодов является источником энергии для вашей системы светодиодного освещения.

Чтобы обеспечить правильную работу светодиодов, драйвер преобразует сетевое питание переменного тока (120 В или 277 В) в соответствующее напряжение постоянного тока (чаще всего 12 В постоянного тока или 24 В постоянного тока) или регулирует ток (чаще всего 350 или 700 миллиампер или мА) для ваших фонарей. . По сути, он контролирует диапазон напряжений, поступающих от ваших источников питания.

Драйверы светодиодов

также могут включать в себя компоненты, позволяющие регулировать яркость света. Но независимо от того, добавляете ли вы диммирование, компонент контроля напряжения имеет важное значение.

Типы светодиодных драйверов

Существует два основных различия между электронными и магнитными драйверами светодиодов: драйверы постоянного тока и драйверы постоянного тока.драйверы постоянного напряжения. Вы должны выбрать драйвер в зависимости от электрических требований вашей светодиодной системы.

Драйверы светодиодов постоянного тока фиксируют ток, подаваемый на осветительную арматуру, но позволяют изменять диапазон напряжений в зависимости от нагрузки.

Драйверы постоянного напряжения подают фиксированное напряжение, обычно 12 В или 24 В постоянного тока, и используют серию резисторов или встроенных регуляторов.

Поскольку не все драйверы светодиодов созданы одинаково, качество вашего источника питания будет иметь значительное влияние на эффективность и срок службы светодиодов.Чтобы обеспечить стабильный световой поток без отклонений, убедитесь, что вы используете правильный тип драйвера.

Выбор подходящего зависит от постоянного выходного напряжения или постоянного тока и общей мощности вашей системы.

Одно очень важное замечание. Независимо от того, какой тип драйвера вы выберете, общая мощность осветительных приборов, подключенных к драйверу, никогда не должна превышать максимально допустимую мощность. В противном случае защита не принесет никакой пользы.

Особенности

Если вы хотите интегрировать регулировку яркости или другие специализированные средства управления освещением, такие как средства коррекции или изменения цвета, датчики присутствия, фотоэлементы, пульты дистанционного управления или средства автоматизации, обязательно проверьте в листе технических данных производителя, что драйвер, который вы планируете использовать совместим.

Большинство драйверов светодиодов, особенно новые электронные, должны работать с этими имеющимися в продаже устройствами управления 0–10 В. Регулировка яркости 0-10 В осуществляется путем изменения напряжения от 0 до 10 по мере необходимости.

Светодиодный драйвер Тестирование и Руководство по тестированию


Зачем использовать имитатор светодиодов для тестирования драйвера светодиода?


Как показано на кривой V-I на рисунке 1, светодиод имеет прямое напряжение VF и рабочее сопротивление (Rd).

Драйверы светодиодов

обычно тестируются одним из следующих способов;

  • Использование светодиодов
  • Использование резисторов для нагрузки
  • Использование электронных нагрузок в режиме постоянного сопротивления (CR) или постоянного напряжения (CV)

Каждый из перечисленных выше способов загрузки имеет явные недостатки.Во-первых, те производители, которые используют настоящие светодиоды в качестве нагрузки, сталкиваются с проблемами из-за старения светодиодов. Для разных драйверов светодиодов могут потребоваться разные типы светодиодов или несколько светодиодов. Это делает его неудобным для тестирования в массовом производстве. Во-вторых, резистивные или линейные нагрузки не могут имитировать коэффициенты Vf и Rd светодиода. При использовании стандартной электронной нагрузки для тестирования драйверов светодиодов используются настройки режима CR (постоянное сопротивление) и CV (постоянное напряжение). Эти настройки позволяют тестировать только стабильную работу и, следовательно, не могут имитировать включение или ШИМ-регулировку яркости / яркости.

Для того, чтобы тщательно протестировать драйвер светодиодов, мы рекомендуем наши электронные нагрузки 6310A с имитацией светодиодной матрицы.


Сравните фактические характеристики светодиода с нагрузкой 6310A


На рисунке 2 показана форма кривой тока реального светодиода.

На рисунке 3 показана форма кривой тока от функции нагрузки в режиме светодиода 6310A.

На рисунках 2 и 3 показаны значения пускового напряжения и тока драйвера светодиода со светодиодом в сравнении с электронной нагрузкой Chroma 6310A в светодиодном режиме, и они очень похожи.

На рисунке 4 показана форма кривой тока диммирования светодиода.
На рис. 5 показана форма кривой тока диммирования при использовании 6310A в качестве светодиодной нагрузки.

Светодиодная нагрузка 6310A

Chroma будет рассчитывать и моделировать характеристики светодиодов на основе настроек коэффициентов Vo, Io, Rd, как показано на диаграмме ниже, Vo и Io не являются реальными значениями нагрузки.

Io определяется драйвером светодиода, если Io отличается от значения настройки, то Vo также будет изменяться.Например, если значение Io равно 100 мА, но выходной сигнал драйвера светодиода составляет 110 мА, то Vo также увеличится. Это отличается от стандартных режимов CC и CV.



Как мне определить, какой драйвер мне нужен для светодиодного освещения?

Распространено заблуждение, что принятие решения о том, какой светодиодный драйвер вам потребуется для светодиодного освещения, является сложным и математически сложным процессом. Это не тот случай. На самом деле это очень просто вычислить, и каждый может это сделать.

Посмотрите наше видео о том, как выбрать правильный драйвер для светодиодного освещения

Вот краткое руководство, которое покажет вам, как:

Первое, что вам нужно учитывать при расчете требований к вашему драйверу, — это мощность вашего продукта. Эта деталь всегда будет указана на нашем веб-сайте и в нашей брошюре под каждым продуктом.

Например, если вы собираетесь использовать длину светодиодной ленты — допустим, вы решили использовать ленту мощностью 9,6 Вт, это означает, что выбранная мощность ленты равна 9.6 Вт на метр . Если вы собираетесь использовать 2 метра ленты, вам нужно будет произвести такой простой расчет:

Это даст вам мощность, необходимую для вашей ленты. Вы должны всегда выбирать драйвер с более высокой мощностью, чем эта общая мощность, поэтому для этого примера вы должны приобрести драйвер мощностью 30 Вт или выше.

Если вы купите драйвер, мощность которого ниже, чем мощность освещения, которое необходимо для питания, освещение не будет работать. Если, например, ваша общая сумма составила 30 Вт ровно или немного меньше, лучше всего выбрать следующий размер на всякий случай.

Вот еще один пример:

Представьте, что вы собираетесь установить серию прожекторов; всего вам нужно 6 для освещаемого пространства. Вы выбрали свет 0,18 Вт. Расчет, который вам необходимо выполнить, следующий:

Следовательно, вы можете выбрать драйвер 8w или выше.

Последний пример:

Если бы вы собирались использовать один драйвер для запуска нескольких осветительных приборов, скажем: светодиодных ленточных прожекторов и , вы бы проделали тот же расчет еще раз, но сложили все окончательные итоги вместе.Если вы использовали:

3 метра светодиодной ленты 4,8 Вт, это будет:

5 прожекторов, каждый по 2,6 Вт, это будет:

Сложите их вместе:

14,40 Вт + 13,00 Вт = 27,40 Вт

Таким образом, вам потребуется драйвер мощностью 30 Вт или выше.

TLW предлагает ряд различных светодиодных драйверов. Все наши драйверы работают со светодиодами 12 В и являются драйверами UNI, что означает, что их можно использовать для питания одноцветных, двухцветных и RGB-продуктов. Они доступны в вариантах 8 Вт, 15 Вт, 30 Вт, 50 Вт, 100 Вт, 150 Вт и 200 Вт.

Мы также продаем два светодиодных драйвера с регулируемой яркостью 25 Вт и 50 Вт, которые можно использовать вместе с настенными диммерными переключателями, совместимыми со светодиодами.

Для получения дополнительной информации о нашем ассортименте драйверов посетите наши драйверы светодиодов.

Вы также можете просмотреть наш ассортимент интеллектуальных светодиодных драйверов.

Загрузите наше руководство в формате PDF по расчету мощности для драйверов.

Хотите узнать больше о драйверах светодиодов? Читайте в нашем блоге о том, сколько светодиодных драйверов вам нужно.

Вдохновляющее освещение от TLW | Lightworks

Что такое светодиодные драйверы и как их выбрать, Новости недвижимости, ET RealEstate

НЬЮ-ДЕЛИ: Если вы внимательно следите за светодиодной технологией, то, возможно, слышали о термине — светодиодные драйверы.Это одна из важнейших и запутанных частей светодиодного освещения, потому что на рынке доступно множество драйверов.

Итак, если вы не совсем разбираетесь в драйверах светодиодов и не знаете, какой из них лучше всего подходит для ваших светодиодных ламп, мы создали полное руководство для вашего удобства.

Драйверы светодиодов

Это очень важный продукт для предотвращения повреждения светодиодов при изменении прямого напряжения мощного светодиода в зависимости от уровня температуры.Прямое напряжение — это количество вольт, которое требуется светодиоду для того, чтобы проводить электричество и загораться. С повышением температуры прямое напряжение уменьшается, в результате чего светодиоды потребляют больше тока. Этот процесс будет продолжаться до тех пор, пока светодиод не разрядится и не загорится от истощения. Этот процесс называется тепловым разгоном. Драйверы светодиодов

служат для источников питания, которые имеют электрические характеристики, аналогичные светодиодам. Этот драйвер предотвратит ситуацию теплового разгона, поскольку он будет обеспечивать дополнительную мощность для светодиодов во время ситуации прямого напряжения при смене сезона.

Как выбрать идеальный светодиодный драйвер?

Теперь, если вы ищете лучшие драйверы для светодиодных фонарей, вы можете следовать этим динамическим советам.

Типы светодиодных драйверов

Прежде всего, вам необходимо понять, что доступны два типа светодиодных драйверов — входная мощность постоянного тока низкого напряжения в диапазоне 5-36 В постоянного тока и входная мощность переменного тока высокого напряжения варьируется в диапазоне 9 0-277 В переменного тока. .

Высоковольтные драйверы переменного тока называются автономными драйверами.Но, в большинстве случаев, специалисты рекомендуют использовать низковольтные входные драйверы постоянного тока. Они очень полезны для небольших гаджетов с множеством опций затемнения и регулировки. Однако, если у вас дома работают большие коммерческие устройства, вам придется использовать драйверы переменного тока.

Текущие характеристики драйвера

Во-вторых, рекомендуется проверить текущие характеристики драйвера в контексте светодиода, на котором вы хотите использовать драйвер. Драйвер более высокого уровня будет производить больше света и потреблять больше мощности.Очень важно иметь правильную информацию о токе вашего светодиодного драйвера и радиаторе, чтобы ваши светодиодные фонари не пострадали от перегрузки по току.

Вам также необходимо уточнить свои требования в драйверах, например, если вам нужен драйвер для диммирования, тогда вам нужно выбрать драйвер с функциями диммирования.

Разное, что необходимо учитывать

  • Какой тип светодиодов используется в вашем доме с точным числом?
  • Спросите у продавцов рекомендации по току прямого напряжения.
  • Выберите между текущим драйвером светодиодов или светодиодным драйвером постоянного напряжения.
  • Вы должны учитывать между текущим и постоянным.
  • Какой тип питания использует драйвер?
  • Учитывайте также и ограниченное пространство.
  • Имейте ясное представление о спецификациях приложения, для которого вы получаете драйвер.
Обновлено: 05.12.2021 — 05:04

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *